当前位置: 仪器信息网 > 行业主题 > >

飞秒加工系统

仪器信息网飞秒加工系统专题为您提供2024年最新飞秒加工系统价格报价、厂家品牌的相关信息, 包括飞秒加工系统参数、型号等,不管是国产,还是进口品牌的飞秒加工系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合飞秒加工系统相关的耗材配件、试剂标物,还有飞秒加工系统相关的最新资讯、资料,以及飞秒加工系统相关的解决方案。

飞秒加工系统相关的资讯

  • 飞秒激光结合自组装复合加工技术获突破
    p style=" text-indent: 2em " 记者从中国科学技术大学获悉,该校工程科学学院微纳米工程实验室利用飞秒激光引导毛细力自组装复合加工方法,实现了手性可控三维微结构和三维金属纳米间隙结构的灵活制备,并实现了在涡旋光手性检测和高灵敏度生化检测方面的应用,相关研究成果日前分别发表在《先进材料》和《先进功能材料》上。 /p p style=" text-indent: 2em " 手性微结构在光学和力学等领域具有重要的应用潜力,可以用于构筑多种多样的光学和力学超材料。目前三维手性微结构的灵活、可控制备仍存在诸多困难。中国科学技术大学微纳米工程实验室在飞秒激光复合加工方面开展了长期的系统性研究。在前期工作中,他们通过将飞秒激光直写与毛细力自组装技术结合,开发了新型的飞秒激光复合加工方法,实现了复杂多层级聚合物结构的制备,并在微物体操纵、微粒制备、微光学、仿毛细血管微通道制备等多个领域开展了应用研究。 /p p style=" text-indent: 2em " 在前期工作的基础上,研究团队将飞秒激光直写与毛细力驱动自组装技术相结合,通过调控微结构的空间排布、结构尺寸等参数,引导毛细力的方向和大小,成功制备了多层级手性微结构,并展示了该方法高度的灵活性和可扩展性。 /p p style=" text-indent: 2em " 此外,该研究团队还利用这种飞秒激光复合加工方法成功制备了三维金属纳米间隙结构,并实现了典型表面增强拉曼光谱SERS标的物R6G和抗癌药物DOX的高灵敏度检测。该研究为非平坦表面上构建金属纳米间隙结构提供了一种新的方法,有望将基于微流体的表面增强拉曼光谱检测技术应用于精准医疗、实时在线检测等领域。(记者吴长锋) /p
  • 中国科大实现飞秒激光复合材料加工多关节微机械
    近年来,飞秒激光双光子聚合技术作为一种具有纳米精度的真三维加工方式已被广泛应用于制造各种功能微结构,这些微结构在微纳光学,微传感器和微机器系统等领域展现出广阔的应用前景。然而,如何利用飞秒激光实现复合多材料加工,并进一步构建具有多模态的微纳机械仍极具挑战。鉴于此,中国科学技术大学微纳米工程实验室吴东教授团队提出了一种飞秒激光二合一写入多材料的加工策略,制造了由温敏水凝胶和金属纳米颗粒组成的微机械关节,随后开发出具有多种变形模式(10)的多关节人形微机械。该工作于7月17日以“Light-triggered multi-joint microactuator fabricated by two-in-one femtosecond laser writing”为题发表于Nature Communications。 图1. 受人类多关节变形启发,利用飞秒激光二合一多材料加工策略构建多关节人形微机械。   飞秒激光二合一加工策略包括使用不对称双光子聚合构建水凝胶关节以及在关节局部区域激光还原沉积银纳米颗粒(Ag NPs)(图1)。其中,非对称光聚合技术使水凝胶微关节局部区域的交联密度产生各向异性,最终使其可以实现方向和角度可控的弯曲变形。原位激光还原沉积可以在水凝胶关节上精确加工银纳米颗粒,这些银纳米颗粒具有很强的光热转换效应,使多关节微机械的模态切换表现出超短响应时间(30 ms)和超低驱动功率( 图3. 通过设计微关节的位置和变形方向,双关节微机械臂能够收集不同位置和方向的多个微货物。   辛晨博士和任中国博士为该工作的共同第一作者,通讯作者为吴东教授。论文的合作者还包括中科大的褚家如教授、胡衍雷教授、李家文副教授、香港中文大学的张立教授等。该项研究工作得到了国家自然科学基金、科技部国家重点研发计划等基金的支持。
  • 理化所三维金属纳米结构飞秒激光加工获重要进展
    中科院理化技术研究所段宣明团队、日本理化学研究所河田聪团队通过合作,近日在利用飞秒激光多光子纳米加工技术进行三维微纳结构制备的研究中获得重要进展,成功突破了光学衍射极限,实现了纳米尺度的三维金属纳米结构加工。 近年来,利用飞秒激光直写技术进行三维纳米结构加工,已成为一个广泛受到关注的研究工作。该研究团队利用基于非线性光学原理的飞秒激光多光子直写纳米加工技术,突破衍射极限,利用多光子聚合反应成功地获得纳米尺度加工分辨率,并实现了功能性纳米复合材料的三维微纳结构加工。 金属纳米材料与结构在电子信息、生物检测等多个领域有重要应用前景,但是加工制备具有各种金属三维纳米结构,仍然是目前国际上研究开发的热点与难点。在利用飞秒激光多光子三维纳米加工技术进行金属纳米结构加工的研究中,加工分辨率长期徘徊在微米至亚微米尺度范围,未能实现突破光学衍射极限的纳米尺度加工。针对飞秒激光多光子还原制备金属纳米结构过程中,金属纳米粒子在激光作用下易于生长成为大块晶体的问题,研究团队提出了利用表面活性剂限制金属纳米材料生长,以获得三维金属纳米结构的思路。他们在硝酸银水溶液中添加了含有肽键的羧酸盐阴离子表面活性剂,使多光子光化学还原的银纳米粒子由微米及亚微米尺度不均一分布,成为尺寸约20纳米的均一分布,获得了仅为约激光波长六分之一的120纳米线宽的银纳米线,成功地突破光学衍射极限,实现了纳米尺度加工与三维金属纳米结构的加工。同时,激光加工所用功率也由数十毫瓦降低到了一毫瓦以下,为进行金属纳米结构的多光束平行快速加工奠定了技术基础。该项研究工作成果发表在5月18日出版的Small上。该研究工作所展示的任意三维金属纳米结构加工能力,使飞秒激光多光子三维纳米加工技术具备了在微纳电子器件的三维金属纳米布线与三维金属T型栅、人工介质材料、亚波长等离子光学器件、表面等离子生物传感器及太阳能三维纳米电极等纳米器件制备中获得广泛应用的可能性。 中国科学院、科技部国际科技合作计划、日本科学技术振兴机构对该研究工作给予了支持。
  • ALCOR 920性能再次提升!脑科学双光子显微成像系统理想飞秒激光光源——Spark Lasers
    自Spark Lasers公司推出ALCOR 920系列920nm飞秒光纤激光器以来,该系列产品就成为脑科学双光子显微成像系统主要使用的光纤飞秒激光器。凭借其高功率、窄脉宽、高稳定性、免维护等特性,ALCOR 920不仅成为传统钛蓝宝石飞秒激光器的高性价比替代产品,也成为同类产品的市场引领者。 ALCOR 920采用了Spark Lasers最新的HPC® 技术(High Pulse Contrast),功率有了进一步提高,同时脉冲形状也得到了优化。与前一代产品相比,ALCOR 920-1的平均功率从之前的1W提高到了1.5W;ALCOR 920-2的平均功率从之前的2W提高到了2.5W。ALCOR 920-4仍提供高达4W的平均功率,是目前市面上920nm飞秒光纤激光器中输出光功率最高的产品。图1 ALCOR系列产品主要参数列表 飞秒激光器作为双光子显微成像系统的核心部件之一,对系统成像效果是至关重要的。那么,如果想要得到好的成像效果,应该怎么办呢?我们有方法:1. 选择高峰值功率的激光器由于双光子效应是与光子密度正相关的非线性效应,越高的峰值功率就意味着越多的荧光分子能够同时吸收两个光子到达激发态,并在跃迁至基态的过程中发出荧光,也就是说最终被探测器采集到的荧光信号也就越强,最终生成的图像亮度和对比度也就越高。峰值功率的计算方式可以由下面的公式计算得出:例如,标准款ALCOR 920-2的平均功率为2.5W,重复频率为80MHz,脉冲宽度为100fs,那么ALCOR 920-2的峰值功率就高达312.5kW。 假如有一款飞秒激光器脉冲宽度只能做到150fs,平均功率和重复频率却能和ALCOR 920-2一样,那么会有什么影响呢?我们通过计算可以得到,这款激光器的峰值功率仅有208kW,仅有ALCOR 920-2的66.6%,这也就意味着相应的荧光强度也会有很大幅度的降低。同样地,假如有另一款产品,脉冲宽度也能达到100fs,但是平均功率却比较低,那么其峰值功率也是比较低的。 图2 使用低脉冲质量的激光器和Spark Lasers的高质量脉冲激光器的最终图像对比 2. 使用色散预补偿得到最优化的脉冲宽度然而,拥有一台激光器只是搭建双光子显微成像系统的第一步。由于成像系统内部有很多光学元器件,如反射镜、滤光片、光强调制器、空间光调制器、分光棱镜、物镜等等,而这些光学元器件中的大部分都会引入正色散,导致飞秒脉冲激光到达测量点处的过程中发生展宽,即脉冲宽度变宽。在上面的计算中我们可以看出,脉冲宽度变宽会导致激光峰值功率的下降,会在很大程度上降低荧光光强,以至于最终的图像亮度和对比度会变差。 ALCOR 920系列在激光头内部集成了色散预补偿模块,可以在激光发射时就带有负色散,这些负色散可以在激光脉冲传播过程中和光学器件引入的正色散相互抵消,从而使得在测量点处,脉冲宽度能保持比较窄。 标准款ALCOR带有0~-60000fs2的大色散补偿范围,同时提供0~-90000fs2的超大色散补偿范围选配,可以满足大部分双光子显微成像系统对色散补偿要求,甚至是最复杂的系统。根据我们的经验,一般复杂程度的双光子显微成像系统对色散补偿的要求在-30000fs2~-50000fs2。3. 对功率进行调制和精确控制ALCOR 920可提供XSight选配模块,即集成化内置AOM模块,以满足双光子显微成像系统对激光实现光强的开/关调制或模拟调制来实现复杂的功能的需要。内置模块可以在很大程度上节省光学平台的空间以及在光路中调试外置调制器的时间精力,同时,该模块能够提供:超高精度光强调节(分辨率高达0.1%)高带宽模拟调制(0~1MHz)高速光开关(上升/下降沿关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
  • 新技术!增材减材一体化新系统,不同工艺无缝切换,加工精度优于100 nm!
    增材减材复合神器随着材料加工、微纳机电、微流控、新型医疗设备、微电子器件等领域的发展,对不同材料的精细激光加工的需求越来越多。借助激光加工技术不仅可以对材料进行减材制造,还可以对特定材料进行增材制造。近日,Quantum Design中国公司引进了Femtika公司设计并生产的飞秒激光微纳加工综合系统-Laser Nanofactory,以满足科研或工业界对精细激光加工的需求。Laser Nanofactory是一款集增材与减材制造于一体的综合微纳加工系统。Laser Nanofactory与传统的微纳3D打印设备相比不仅可用于光子学聚合物微纳结构的加工,还可以用于石英,陶瓷,玻璃和金属等材料从毫米到微米尺度的精确加工。得益于Femtika国际领先的飞秒激光技术,Laser Nanofactory加工速度可高达50 mm/s,加工精度优于100 nm,加工过程中无拼接痕迹。Laser Nanofactory可以提供不同功率的激光,满足您从工业生产到科研探索的多方面需求。Femtika飞秒激光微纳加工综合系统-Laser Nanofactory 精选案例2.1多光子聚合(Multi-Photon Polymerization)微纳加工光学微结构左图为菲涅尔微透镜,右图为微棱镜 生物医药左图为微针阵列,右图为生物用微支架 MEMS/传感器左图为可活动的微锁链,右图为微型弹簧 2.2激光选择性刻蚀 微流控加工左图为在熔融石英玻璃上制备的微流道,右图为在玻璃中刻蚀的特斯拉阀 MEMS左图为微型间歇齿轮,右图为特殊3D喷嘴 2.3激光刻蚀 金属加工左图为在金属上制备直径为30 μm的微洞,右图为长度500 μm的二维码 表面改性左图为在金属表面上制备的疏水微结构,右图为在金属表面上制备的亲水微结构利用飞秒激光在钛金属表面产生不同厚度的氧化层 2.4 综合加工应用利用激光刻蚀制备出较大的微流道,再通过多光子聚合技术在流道的特定位置形成微滤网 已有用户发表文章[1] A. Butkut&edot , G. Merkininkait&edot , T. Jurk&scaron as, J. Stan&ccaron ikas, T. Baravykas, R. Vargalis, T. Ti&ccaron kūnas, J. Bachmann, S. &Scaron akirzanovas, V. Sirutkaitis, and L. Jonu&scaron auskas, “Femtosecond Laser Assisted 3D Etching Using Inorganic-Organic Etchant”, Materials 2022,15, 2817, (2022).[2] G. Kontenis, D. Gailevi&ccaron ius, N. Jimenez, and K. Staliunas, “Optical Drills by Dynamic High‑ Order Bessel Beam Mixing”, Phys. Rev. Applied 17, 034059, (2022).[3] D. &Ccaron ere&scaron ka, A. &Zcaron emaitis, G. Kontenis, G. Nemickas, and L. Jonu&scaron auskas, “On‑ Demand Wettability via Combining fs Laser Surface Structuring and Thermal Post-Treatment”, Materials 2022,15, 2141, (2022).[4] A. Butkut&edot , and L. Jonu&scaron auskas, “3D Manufacturing of Glass Microstructures Using Femtosecond Laser”,Micromachines 2021,12, 499, (2021).[5] D. Andrijec, D. Andriukaitis, R. Vargalis, T. Baravykas, T. Drevinskas, O. Korny&scaron ova, A. Butkut&edot , V. Ka&scaron konien&edot , M. Stankevi&ccaron ius, H. Gricius, A. Jagelavi&ccaron ius, A. Maru&scaron ka, and L. Jonu&scaron auskas, “Hybrid additive subtractive femtosecond 3D manufacturing of nanofilter based microfluidic separator”, Applied Physics A (2021).[6] D. Gonzalez-Hernandez, S. Varapnickas, G. Merkininkait&edot , A. &Ccaron iburys, D. Gailevi&ccaron ius, S. &Scaron akirzanovas, S. Juodkazis, and M. Malinauskas,”Laser 3D Printing of Inorganic Free‑ Form Micro-Optics”, Photonics 2021,8, 577, (2021).[7] D. Andriukaitis, A. Butkut&edot , T. Baravykas, R. Vargalis, J. Stan&ccaron ikas, T. Ti&ccaron kūnas, V. Sirutkaitis, and L. Jonu&scaron auskas, “Femtosecond Fabrication of 3D Free-Form Functional Glass Microdevices: Burst-Mode Ablation and Selective Etching Solutions”, 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference, (2021).[8] A. Butkut&edot , T. Baravykas, J. Stan&ccaron ikas, T. Ti&ccaron kūnas, R. Vargalis, D. Paipulas, V. Sirutkaitis, and L. Janu&scaron auskas, “Optimization of selective laser etching (SLE) for glass micromechanical structure fabrication”, Optical Express 23487, Vol. 29, No. 15, 19.07.2021, (2021).[9] A. Maru&scaron ka, T. Drevinskas, M. Stankevi&ccaron ius, K. Bimbirait&edot -Survilien&edot , V. Ka&scaron konien&edot , L. Jonu&scaron auskas, R. Gadonas, S. Nilsson, and O. Korny&scaron ova, “Single-chip based contactless conductivity detection system for multi-channel separations”, Anal. Methods, 2021,13,141–146, (2021).[10] L. Bakhchova, L. Jonu&scaron auskas, D. Andrijec, M. Kurachkina, T. Baravykas, A. Eremin, and U. Steinmann,“Femtosecond Laser-Based Integration of Nano-Membranes into Organ-on-a-Chip Systems”, Materials 2020, 13, 3076 (2020).[11] T. Ti&ccaron kūnas, D. Paipulas, and V. Purlys, “Dynamic voxel size tuning for direct laser writing,” Opt. Mater. Express 10, 1432-1439 (2020).[12] T. Ti&ccaron kūnas, D. Paipulas, and V. Purlys, “4Pi multiphoton polymerization”, Appl. Phys. Lett. 116, 031101 (2020).[13] L. Jonu&scaron auskas, T. Baravykas, D. Andrijec, T. Gadi&scaron auskas, and V. Purlys, “Stitchless support-free 3D printing of free-form micromechanical structures with feature size on-demand”, Sci Rep 9, 17533 (2019).[14] S. Gawali. D. Gailevi&ccaron ius, G. Garre-Werner, V. Purlys, C. Cojocaru, J. Trull, J. Montiel-Ponsoda, and K. Staliunas, “Photonic crystal spatial filtering in broad aperture diode laser”, Appl. Phys. Lett. 115, 141104 (2019).[15] L. Jonu&scaron auskas, D. Gailevi&ccaron ius, S. Rek&scaron tyt&edot , T. Baldacchini, S. Juodkazis, and M. Malinauskas, “Mesoscale laser 3D printing,” Opt. Express 27, 15205-15221 (2019).[16] L. Jonu&scaron auskas, D. Mackevi&ccaron iūt&edot , G. Kontenis and V. Purlys, “Femtosecond lasers: the ultimate tool for high precision 3D manufacturing”, Adv. Opt. Technol., 20190012, ISSN (Online) 2192-8584, (2019).[17] L. Grineviciute, C. Babayigit, D. Gailevicius, E. Bor, M. Turduev, V. Purlys, T. Tolenis, H. Kurt, and K. Staliunas,“Angular filtering by Bragg photonic microstructures fabricated by physical vapour deposition”, Appl. Surf. Sci., 481, 353-359 (2019).[18] D. Gailevi&ccaron ius, V. Padolskyt&edot , L. Mikoliūnait&edot , S. &Scaron akirzanovas, S. Juodkazis, and M. Malinauskas, “Additive manufacturing of 3D glass-ceramics down to nanoscale resolution”, Nanoscale Horiz., 4, 647-651 (2019).[19] E. Yulanto, S. Chatterjee, V. Purlys, and V. Mizeikis, “Imaging of latent three-dimensional exposure patterns created by direct laser writing in photoresists”, Appl. Surf. Sci., 479, 822-827 (2019).[20] L. Jonu&scaron auskas, S. Juodkazis, and M. Malinauskas, “Optical 3D printing: bridging the gaps in the mesoscale”, J. Opt., 20(05301) (2018).[21] E. Skliutas, S. Kasetaite, L. Jonu&scaron auskas, J. Ostrauskaite, and M. Malinauskas “Photosensitive naturally derived resins toward optical 3-D printing,” Opt. Eng. 57(4), 041412 (2018).[22] L. Jonu&scaron auskas, S. Rek&scaron tyte, R. Buividas, S. Butkus, R. Gadonas, S. Juodkazis, and M. Malinauskas,“Hybrid subtractive-additive-welding microfabrication for lab-on-chip applications via single amplified femtosecond laser source,” Opt. Eng. 56(9), 094108 (2017).
  • 重磅新品!Nanoscribe全能双光子微纳加工系统Quantum X shape
    Quantum X shapeReshaping precision,output,usabilityQuantum X shape是Nanoscribe推出的全新高精度3D打印系统,用于快速原型制作和晶圆级批量生产,以充分挖掘3D微纳加工在科研和工业生产领域的潜力。作为2019年推出的第一台双光子灰度光刻 (2GL ® ) 系统Quantum X的同系列产品,Quantum X shape提升了3D微纳加工能力,即完美平衡精度和速度以实现高精度增材制造,以达到最高水平的生产力和打印质量。作为一款真正意义上的全能机型,该系统是基于双光子聚合技术(2PP)的专业激光直写系统,可为亚微米精度的2.5D和3D物体的微纳加工提供极高的设计自由度。Quantum X shape可实现在6英寸的晶圆片上进行高精度3D微纳加工。这种效率的提升对于晶圆级批量生产尤其重要,这对于科研和工业生产领域应用有着重大意义。总而言之,该系统拓宽了3D微纳加工在多个科研领域和工业行业应用的更多可能性(如生命科学、材料工程、微流体、微纳光学、微机械和微电子机械系统(MEMS)等)。作为Nanoscribe的新型高精度3D打印系统,Quantum X shape可自由设计几乎任何2.5D或3D形状的结构,并提供大尺寸高质量结构制作。Reshaping precision.作为已被工业界认可的Quantum X平台的二代加工系统,Quantum X shape在3D微纳加工领域无与伦比的精度,比肩于Nanoscribe公司在表面结构应用上突破性的双光子灰度光刻(2GL ® )。全新的Quantum X shape的高精度有赖于其最高能力的体素调制比和超精细处理网格,从而实现亚体素的尺寸控制。此外,受益于双光子灰度光刻对体素的微调,该系统在表面微结构的制作上可达到超光滑,同时保持高精度的形状控制。双光子聚合(2PP)是一种可实现最高精度和完全设计自由度的增材制造方法。而作为同类最佳的3D微加工系统Quantum X shape具有下列优异性能:在所有空间方向上低至 100 纳米的特征尺寸控制,适用于纳米和微米级打印制作高达 50 毫米的目标结构,适用于中尺度打印左图:机械器件的快速高精度小批量生产。200个结构的通宵产量右图:使用Nanoscribe微纳加工技术制作的3D微针,轻松实现具有高纵横比,形状精度和锋利边缘的不同设计变化Reshaping output.高速3D微纳加工系统Quantum X shape可实现一流形状精度和高精度制作。这种高质量的打印效果及产量是结合了最先进的振镜系统和智能电子系统控制单元的结果,同时还离不开工业级飞秒脉冲激光器以及平稳坚固的花岗岩操作平台。Quantum X shape具有先进的激光焦点轨迹控制,可操控振镜加速和减速至最佳扫描速度,并以 1 MHz 调制速率动态调整激光功率。Quantum X shape 带有独特的自动界面查找功能,可以以低至 30 纳米的精度检测基板表面。这种在最高扫描速度下的纳米级精度体现,再加上自校准程序,可在最短的时间内实现可靠和准确的打印,为 3D 微纳加工树立了新标杆。这些优异的性能使Quantum X shape 成为快速原型制作和应用于微纳光学、微流体、材料表面工程、MEMS 等其他领域中晶圆级规模生产的理想工具。Reshaping usability.通过系统集成触控屏控制打印文件来大大提高实用性。通过系统自带的nanoConnectX软件来进行打印文件的远程监控及多用户的使用配置,实现推动工业标准化及基于晶圆批量效率生产。Quantum X shape作为具备光敏树脂自动滴配功能的直立式打印系统,非常适合标准6英寸晶圆片工业批量加工制造。用户还可以通过设备的集成触控屏直接或远程访问Quantum X shape打印系统来控制打印作业。通过远程访问软件nanoConnectX ,用户可以看到触控屏的显示选项并操控所有功能,实现从任何地方启动、监控和控制连接打印系统的打印作业进程。这使得整个小组成员(例如研究小组或部门所有成员)均可在个人电脑访问打印系统。实现了最低限度减少实验室准备时间,简化并提高整个制备、执行和监控打印作业效率,并在共享系统时大大提升团队协作。nanoConnectX远程访问软件实现任意电脑连接到Quantum X shape系统进行远程执行,检查和控制整个打印作业。了解更多相关应用,欢迎联系Nanoscribe中国子公司纳糯三维科技(上海)有限公司
  • 上海凯来助力学术研究,国产飞秒激光剥蚀系统再现科技魅力
    点击蓝字 关注我们在刚刚结束的第十三届全国同位素地质年代学与同位素地球化学学术讨论会上,上海凯来仪器有限公司携带国产自研的GenesisGEO新型飞秒激光剥蚀系统大放异彩!这款新品凭借其尖端科技和卓越性能,一经亮相便成为全场焦点。在展示过程中,专家老师们亲自上手体验,通过对石英等具有挑战性的样品进行操作,专家老师们均可以轻松打出了圆形或矩形平顶坑。与传统飞秒激光和193nm相比,GenesisGEO新型飞秒激光剥蚀系统显示出绝对的领先优势,极大拓展了飞秒激光剥蚀的应用领域,为同位素地质年代学和同位素地球化学领域的研究提供更加高效、精确的工具。专家们纷纷围绕GenesisGEO展开热烈讨论,探索其在地质年代学与地球化学领域的深远应用。无疑,它已成为推动学科进步的重要力量。分享汇报,助力科研上海凯来在专题五上进行了精彩的分享汇报,主题为"国产新型飞秒激光剥蚀系统的最新研究进展及其应用领域"。传统飞秒存在非平底坑、光斑范围小、光斑类型有限等瓶颈;而193nm激光在剥蚀过程中存在明显热效应。两者限制了激光剥蚀技术在地学研究中的应用范围。上海凯来完全自主研发的GenesisGEO新型飞秒激光剥蚀系统通过全新的技术路线,实现了关键突破:平底坑、束斑范围广(1~500μm)、矩形/圆形光斑任选、高能量密度≥50J/cm2等,为地学研究工作提供了新型的科研利器和新的视角与方法。本次报告不仅为我们带来了最新的技术进展,也为地质等相关领域的研究和应用提供了更多的思路和可能性。在汇报中的提问环节,大家响应热烈,许多专家老师听了汇报后前往上海凯来展台进行参观,积极交流新型飞秒激光前沿应用。GenesisGEO新型飞秒激光剥蚀系统的优异性能获得了众多专家的一致认可,认为GenesisGEO是国产仪器的翘楚,为国争光!从上世纪90年代中期至今,中国学者见证了激光剥蚀与质谱联用技术在地学领域的蓬勃发展。上海凯来自成立至今已20余年的时间,随着凯来自研新型飞秒的顺利落地,相信国产新型飞秒将给用户提供更强大、有效的分析工具。我们坚信中国人可以制造出自己的完全自主创新研发的分析仪器,助力相关领域的蓬勃发展,再次感谢各位专家学者及新老用户的关注和支持!专业认可,品质保证GenesisGEO新型飞秒激光剥蚀系统“ 开拓性的设备感受高质量剥蚀效果 ”GenesisGEO新型飞秒激光剥蚀系统为上海凯来全自研自主创新技术,无美国技术,无卡脖子风险。其全新的技术理念颠覆了人们对传统激光剥蚀技术的认知,即将带来全新的激光剥蚀技术革新,很快将在地球化学、环境科学、生命科学、新材料及半导体等关键领域的核心技术重点突破。仪器特点:平底坑,低分馏超大范围光斑,1-500μm无需ArF气体,光路无需N2保护全中文界面,无人值守操作3D动态变焦No Defocussing!左为不变焦剥蚀,右为变焦剥蚀,变焦速率可自定义样品类型:玻璃新型飞秒剥蚀坑形貌钠钙玻璃样品,从左向右尺寸依次为10μm, 20μm, 30μm, 40μm, 50μm, 60μm, 70μm, 80μm, 90μm, 100μm, 200μm, 300μm, 400μm, 500μm微量打点分析石英样本打点信号曲线GenesisGEO新型飞秒激光剥蚀系统采用高功率飞秒激光源,能够提供更高的能量密度,能够对花岗岩类石英轻松剥蚀,检出限≤3ppb。其产生的热效应更小,基体效应弱且脉冲宽度极短,可以实现更高的时间分辨率和更精确的样品剥蚀。碳酸盐岩定年分析Tarim下交点年龄:211.5±3.1Ma(参考年龄:208.5±0.6Ma)GenesisGEO飞秒激光剥蚀系统与Agilent8900三重四级杆联用,对Tarim样品进行碳酸盐岩定年分析,光斑大小为100μm,数据结果与参考年龄一致。流体包裹体分析单个流体包裹体分析GenesisGEO飞秒激光剥蚀系统具有新型观察系统,可清晰观察单个包裹体锆石成像光斑大小1-500μm连续可调,最低可至500nm!可实现高空间分辨率成像。关于凯来上海凯来成立于2004年,起始于专业代理国际先进分析仪器,定位为专业技术服务商,聚焦专业细分市场,目前已经成为多个领域的领导者。上海凯来总部位于上海临港新片区海洋科技创业园,设有应用演示及服务实验室,客户定制产品及研发中心,专注于推广和研发前沿的元素分析测试解决方案。目前在北京,武汉,成都,深圳,青岛设有应用实验室,并处于快速扩展中。公司文化:“只有精英才能生存”。END
  • 405万!同济大学多模式飞秒超快光谱系统采购项目
    项目编号:3109-234Z20233009(项目编号:Z20230347)项目名称:同济大学多模式飞秒超快光谱系统采购项目预算金额:405.0000000 万元(人民币)最高限价(如有):405.0000000 万元(人民币)采购需求:号产品名称数量简要技术规格1多模式飞秒超快光谱系统 1套1. 飞秒振荡器:小于等于100fs脉冲,780-820nm可调,固定为800nm时带宽60nm,重频84MHz,功率750mW(最小带宽时),噪音2.飞秒放大器Femtosecond amplifier:35-120fs输出,平均功率7.0W,能量稳定性1000:1,后脉冲对比度 100:1,光束指向不稳定性1.采购人信息名称:同济大学地址:中国上海四平路1239号联系方式:段老师 86-21-659826702.采购代理机构信息名称:上海政采项目管理有限公司地址:上海市静安区天目中路380号11楼联系方式:戴小军、朱逸元、王静雯、王悦 8621-620912733.项目联系方式项目联系人:戴小军电话:8621-62091273
  • 陈黎明教授团队成功研制一套飞秒时间分辨的X射线衍射系统
    在超快时间尺度上获得物质的动力学演化过程一直是人们努力的重要方向。基于激光等离子体相互作用产生的飞秒硬X射线源由于具有脉宽短、亮度高和源尺寸小等突出的优点,可广泛应用于瞬态微成像/相衬成像、时间分辨吸收谱学和X射线衍射等实验研究中。其中,激光泵浦--超快X射线衍射的手段能为我们提供飞秒级时间尺度、亚埃级空间尺度上材料的结构动力学信息。中国科学院物理研究所/北京凝聚态物理国家研究中心光物理实验室L05组博士研究生朱常青(指导教师为原物理所陈黎明研究员、现上海交通大学物理与天文学院教授),利用L05组的高脉冲能量(100mJ)、低重频(10Hz)激光器,研制了一套飞秒时间分辨的X射线衍射系统。该装置工作在相对论的激光强度(2×1019W/cm2)下,可以有效地激发高Z金属材料的Kα射线,并且能够通过优化X射线多层膜反射镜,进一步提高X射线的聚焦强度。利用该装置对SrCoO2.5薄膜样品的瞬态结构进行了探测,结果表明该装置不仅可以用来分析样品的超快动力学行为,并且和KHz等小能量装置相比对于不同的特殊应用具有高度的灵活性。该装置有望将来在物理、化学和生物领域的超快动力学探测方面发挥重要作用。相关成果以“快速通讯”的形式发表于最近的Chinese Physics B上,并被选为该期的亮点文章。这也是该团队利用激光超快X射线源在成像和衍射应用方面,最新获得的创新成果。前序成果包括Rev. Sci. Instrum. 85 113304 (2014)、Chin. Phys. B 24 108701 (2015)等。该实验室装置的建成,也为物理所怀柔综合极端条件用户装置中的超快X射线动力学子系统(XD3)的建设,提供了有益的经验。该成果的取得也得到了XD3研制团队成员鲁欣副研究员、李毅飞博士和王进光博士的大力支持。这项工作及相关研究得到了国家重点研发计划、科学挑战计划、国家自然科学基金和中科院先导专项的支持。文章链接:http://cpb.iphy.ac.cn/EN/10.1088/1674-1056/ac0baf 图1. 超快X射线衍射装置示意图图2. 在光泵浦下超快X射线衍射信号随延时的变化:(a)泵浦光作用20ps后劳厄衍射斑的角移;(b)不同的泵浦-探针延时,所对应的光致拉伸度。
  • 北京海菲尔格科技有限公司赞助2023中国矿物加工大会(CMPC)
    由矿冶科技集团有限公司、中国有研科技集团有限公司、北京科技大学、中国矿业大学(北京)、中国矿物加工大会理事会联合主办的“2023中国矿物加工大会(CMPC)”于2023年4月21-23日在北京市国际会议中心顺利落下帷幕! 本次大会是为了深入贯彻落实“十四五”规划,探讨我国矿物加工技术的新趋势,交流新发展理念背景下我国矿物加工科学研究中的新成果,分享矿物加工技术发展的新进展,进一步推动我国矿物加工专业的科学、可持续发展,助力我国资源领域“碳达峰”“碳中和”目标的实现 。 大会邀请了业内院士、专家、学者就我国矿物加工基础和应用研究方面的前沿问题进行研讨与交流, 在大会中提出了发展建议和重点研究方向,推动中国矿物加工科学与技术的自主创新。△ 展会现场人头涌动、气氛高涨 作为赞助单位,北京海菲尔格科技有限公设立了展位。结合本次矿物浮选等主题展示了我们的PIXACT品牌的PBM气泡在线监测软件和设备,吸引了大量来自业界专家、学者、高校师生、及行业精英们浓厚的兴趣,并在我司展位前共同学习和探讨。△ 北京海菲尔格科技有限公司大会展位 近年来,随着计算机技术的发展,国内外选矿厂的自动化程度越来越高,选矿厂的检测与控制系统也要求实现稳定控制、监督控制、最优控制。浮选过程控制的主要目标是保持合格的最终精矿品位、尽量提升有用成分的回收率、减少药剂消耗和提高浮选效率。浮选过程控制的主要因素包括:药剂的加药量、基于泡沫信息的综合检测分析技术、浮选矿浆pH值、浮选槽液位、充气量等。 Pixact 气泡监测 (PBM) 系统专为在线分析工业过程中的气泡悬浮液和泡沫而设计。测量基于悬浮液的直接光学成像和先进的图像分析。 PBM气泡监测系统是为在线测试气泡变化过程和颗粒分布情况而设计,其结合了在线原位显微镜技术和高级图像分析技术。PBM气泡监测系统实时提供过程的显微镜图像数据,可以对气泡生成变化过程进行表征,例如尺寸分布、形态和数量等。同时测试系统专利的图像分析算法在图像数据中检测晶体和其它颗粒,产生实时的特征数字化信息。PBM气泡监测系统获得的实验结果可以有效地帮助优化气泡工艺、控制过程参数以及排查过程故障。PBM气泡监测系统可以被安装到各种应用场合,包括实验室小型浮选柱、工厂级别大型浮选机、各类浮选柱等。每秒钟获得的图片包含成百上千个气泡,提供的是有代表性的测试结果。用实时相机可视化观察晶体及颗粒悬浮液(可放大、暂停等)。图像实时分析,帮助下一步过程提供决策信息。在线监测(直接在样品溶液体系中测试),并实时提供气泡及颗粒的粒度、粒径、形状等。节约时间,降低劳动力成本,提高生产效率。
  • 飞纳台式扫描电镜多次应邀在公安刑侦系统内演示
    近日飞纳台式扫描电镜多次应邀在公安刑侦系统内做枪击残留物及火药成分分析演示,取得了良好的效果。下图为一种枪击残留物颗粒,利用飞纳台式扫描电镜既可以观察形貌图像,又可以检测成分:下图为另一个的枪击残留物颗粒的形貌及 EDS 分析效果:通过比对这两个枪击残留物颗粒形态及成分数据可以发现这两个枪击残留物颗粒成分大致相同,应该是来自于同一种子弹的底火生成。飞纳台式扫描电镜进行枪击残留物(GSR)分析的特点:1、台式扫描电镜中唯一可以做枪击残留物分析的科学仪器2、一次可以放置 36 个样品,测样效率高,数据量大准确性更高3、枪击残留物(GSR)检测软件为通用软件,兼容性强,技术成熟4、配合飞纳台式扫描电镜大样品室卓越版 Phenom XL 可以实现全自动分析5、稳定的 CeB6 灯丝,不会在实验过程中发生烧断6、极强的通用性,飞纳台式电镜 XL 本身可以作为扫描电镜使用7、该产品完全符合国际通用标准:ASTM E1588 - 168高准确性:与 FEI 大电镜(配 GSR)识别率重叠 90% 以上飞纳台式扫描电镜的枪击残留物分析将有助于刑侦行业提高检测效率,促进司法公正,构建和谐社会。知识小贴士枪击残留物分析在甄别一个犯罪中是否使用了枪械的过程中发挥着重要的作用。枪击残留物分析技术是基于扫描电子显微镜的使用,它用来扫描样品来发现可疑的枪击残留物颗粒。如果一个可疑的枪击残留颗粒被发现,就可以利用能谱仪来确定颗粒的成分。最常见的搜索标准是铅,锑,和钡的存在。然而,无铅底火(如含有钛、锌)的检测也常被要求。在子弹的发射过程中会产生枪击残留物,这些枪击残留物是如何产生的?这些就要从子弹的构造来看,一般子弹由弹头、药筒、装药、底火四部分组成。如下图所示:手枪击针击发底火后,底火摩擦产生火星开始快速燃烧进而点燃装药,装药开始燃烧,弹壳内压增大,当压力上升到 250~500kg / 平方厘米时,弹头脱离弹壳,挤入线膛,开始起动。弹头在高温、高压气体作用下,迅速向前运动。弹头发射出去的同时,底火燃烧的颗粒会向各个方向扩散开去,落在持枪人的手上,衣服甚至头发上,也可以落在枪击现场附近的人身上。一般子弹的底火中含有原发性爆炸化合物三硝基间苯二酚铅,氧化剂硝酸钡及还原剂锑硫化物,因此枪击残留物颗粒的化学成分是非常有特征性的,一般含有铅,钡和锑等元素,而且不同的子弹所使用的底火都是不同的,甚至相同厂家生产的不同批次的底火也是有区别的,可以通过鉴别枪击残留物的成分来追溯到犯罪嫌疑人所使用的子弹来源进而有助于案件的侦破。
  • 岛津微焦点CT系统助力碳纤维增强复合材料(CFRP)制孔加工新技术
    引 言碳纤维增强复合材料(CFRP:Carbon Fiber Reinforced Plastics)因其高比强度、高比刚性和良好的耐腐蚀性而广泛用于航空航天、国防工业和其他领域。然而CFRP属于典型难加工材料,尤其是制孔加工,CFRP构件为了与其他零部件装配通常要对其进行大量的制孔,传统制孔加工技术难以满足要求,这成为CFRP推广应用的瓶颈。 为了研发高效高质量、低成本的CFRP制孔技术,南方科技大学吴勇波讲席教授团队的汪强博士后研究员等人利用岛津公司的inspeXio SMX-225CT FPD HR微焦点X射线CT系统,观察新技术斜螺旋铣削法(THM)和传统螺旋铣削法(CHM)所获得CFRP制孔加工质量。通过inspeXio SMX-225CT FPD HR微焦点X射线CT系统对两种不同方法CFRP制孔加工样品进行扫描成像,再使用VG软件对其数据进行比较分析,发现利用CHM获得孔的表面出现明显毛刺,而使用THM获得孔的表面非常光滑。这验证了斜螺旋铣削法这一新技术相比传统螺旋铣削法更有利于CFRP高质量制孔加工。论文链接:https://doi.org/10.1007/s00170-018-2995-5图1 基于CHM和THM的加工孔的3D扫描图图2 inspeXio SMX-225CT FPD HR微焦点X射线CT系统外观图 图1是通过微焦点CT扫描后的三维立体图像。无需特殊前处理,直接把样品放进inspeXio SMX-225CT FPD HR CT设备中直接扫描,测试速度快,短短几分钟就可以得出清晰的图像。岛津公司inspeXio SMX-225CT FPD HR是一款高性能微焦点X射线CT系统(图2)。特点是检出器动态范围大,相当于1400万像素的输入分辨率,加之进一步改良过的高输出微焦点X射线发生器,完全颠覆了“无法在高电压输出设备上获得轻质材料的高清晰高对比度的图像”这一常识,能够获得大视野范围、高分辨率、高对比度的断面图像。无论是在研发的复合材料(GFRP、CFRTP),还是大型铝合金压铸件产品,这款仪器能够完成各种样品所需要的研究、开发和检查的实验。 图3 基于CHM和THM加工孔的3D扫描图(图片版权归Int J Adv Manuf Technol所有) 图3分别显示了CHM(θ=0°)和THM(θ=5°)加工孔的CT放大扫描结果。图像表明,CHM孔口处存在大量的毛刺,而在THM孔入口处很少出现毛刺现象,从而抑制了THM孔口的撕裂。使用CHM加工时,孔表面在90°图6 CHM和THM加工孔CT横截面图 (图片版权归Int J Adv Manuf Technol所有) 图7 THM加工孔CT展开图(a)和SEM图(b) (图片版权归Int J Adv Manuf Technol所有) 在图6和图7中,通过CT扫描后用专用图像处理软件把孔内表面展开,可以清晰的观察CHM(θ=0°)和THM(θ=5°)的孔内表面形貌。这一分析手段有利于观察分析被测物体内部结构,是本公司产品的优势之一。在CHM中,当90°α180°时,可以看到粗糙的表面缺陷位于α=135°附近。但是在THM中,所有α角度的钻孔表面都是光滑的。最后通过SEM扫描验证缺陷位置。 SMX-225CT FPD HR微焦点X射线CT系统扫描结果协助研究者验证了THM加工方法在CFRP制孔加工中显著优于CHM,为后续研究提供了准确的数据。
  • 国家重大科研仪器研制项目“飞秒-纳米时空分辨光学实验系统”取得重要进展
    p style=" text-align: justify text-indent: 2em " 北京大学物理学院介观物理国家重点实验室、纳光电子前沿科学中心龚旗煌院士团队在国家重大科研仪器研制项目的支持下,研制成功“飞秒-纳米超高时空分辨光学实验系统”。该实验系统能够同时实现几个飞秒的超高时间分辨率和四纳米的超高空间分辨率,成为介观光学与微纳光子学研究的强大实验测量手段。 /p p style=" text-align: justify text-indent: 2em " 最近,研究团队利用超高时空分辨光发射电子显微镜(PEEM),首次从近场微观角度揭示了局域表面等离激元近场增强与退相干时间的内在关联,相关研究成果以标题“Correlation between near-field enhancement and dephasing time in plasmonic dimers”于4月24日发表在物理学权威期刊《物理评论快报》(Physical Review Letters, DOI:10.1103/PhysRevLett. 124.163901)上。研究团队还首次从时间和能量布居演化两个维度全面揭示了单层WS2超快电子冷却和弛豫动力学过程,相关成果以标题“Ultrafast Electron Cooling and Decay in Monolayer WS2 Revealed by Time- and Energy-Resolved Photoemission Electron Microscopy”于4月3日发表在纳米领域重要期刊《纳米快报》(Nano Letters, DOI:10.1021/acs.nanolett.0c00742)上。 /p p style=" text-align: justify text-indent: 2em " 在表面等离激元光子学实验中,团队利用PEEM高空间分辨率的优势直接观测到金纳米结构二聚体阵列体系中局域表面等离激元模式的近场分布(图1),通过激发光波长依赖的光发射强度测量和基于超短脉冲的光发射自相关测量,分别获得同一结构的表面等离激元的近场增强和退相干时间,发现两者之间的关联依赖于金纳米结构二聚体间隙和激发光的偏振方向(图2和图3),首次揭示出这种关联性由近场远场耦合和纳米结构局域作用共同决定。研究成果对于理解表面等离激元光子学中的基本物理问题以及拓展表面等离激元在高灵敏检测与传感、太阳能电池等微纳光子器件应用研究具有重要意义。 /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202004/uepic/a9a3c0d1-724b-48e3-9835-ef3b9b0a8257.jpg" title=" 1.png" / /p p style=" text-align: center text-indent: 0em " 图1.金纳米盘二聚体结构示意图,SEM和PEEM图像(图片来源于网络) /p p style=" text-align: center text-indent: 0em " & nbsp img src=" https://img1.17img.cn/17img/images/202004/uepic/0364c343-9c77-4a7a-bbe0-f3fbaabbf45f.jpg" title=" 2.png" / /p p style=" text-align: center text-indent: 0em " 图2.纵向偏振下PEEM测量的金纳米棒二聚体结构近场特性、以及局域表面等离激元超快动力学(图片来源于网络) /p p style=" text-align: center text-indent: 0em " & nbsp img src=" https://img1.17img.cn/17img/images/202004/uepic/09389613-d1fd-497c-aae9-b9d6dcb7f225.jpg" title=" 3.png" / /p p style=" text-align: center text-indent: 0em " 图3.横向偏振下PEEM测量的金纳米盘二聚体结构近场特性、以及局域表面等离激元超快动力学(图片来源于网络) /p p style=" text-align: justify text-indent: 2em " 在单层WS2超快电子冷却和弛豫动力学过程研究中,团队发现衬底上的和悬空的单层WS2都存在的两个时间尺度的超快动力学过程(图4),分别归于导带的电子冷却和缺陷捕获过程,从衰减曲线可以观察到两个时间尺度的过程,分别为0.3 ps和3ps左右。通过能量分辨的PEEM测量(图5),团队发现第一个过程与电子在导带的冷却相对应,第二个过程反映了电子在导带底的弛豫。通过对比悬空的单层WS2样品的PEEM测量(图6),并结合荧光光谱和拉曼光谱表征,发现该弛豫过程主要与缺陷态有关。此项研究借助于PEEM在空间、时间与能量等多维度的分辨能力,揭示了典型TMDs材料单层WS2超快的电子冷却和缺陷捕获的动力学过程。研究还发现缺陷态的产生与真空下光照有关,这种缺陷的产生方式及其对动力学过程的显著影响,在一般的光发射实验和光谱测量中值得注意。 /p p style=" text-align: justify text-indent: 2em " & nbsp /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202004/uepic/3c51a77b-88a1-452d-b69f-12e2bf8de95b.jpg" title=" 4.png" / /p p style=" text-align: center text-indent: 0em " 图4.WS2/hBN/p-Si样品结构和时间分辨PEEM测量(图片来源于网络) /p p style=" text-align: center text-indent: 0em " & nbsp img src=" https://img1.17img.cn/17img/images/202004/uepic/00e81eb6-4218-477c-a2c6-274d9ec6cc7c.jpg" title=" 5.png" / /p p style=" text-align: center text-indent: 0em " 图5.WS2/hBN/p-Si样品时间和能量分辨PEEM测量,电子能量分布曲线可以由费米-狄拉克分布拟合(图片来源于网络) /p p style=" text-align: center text-indent: 0em " & nbsp img src=" https://img1.17img.cn/17img/images/202004/uepic/e5ce24c3-5475-4725-bbc2-f705b3ee4021.jpg" title=" 6.png" / /p p style=" text-align: center text-indent: 0em " 图6.悬空的单层WS2样品的时间分辨PEEM测量(图片来源于网络) /p p style=" text-align: justify text-indent: 2em " 相关研究工作由北京大学团队、日本北海道大学电子科学研究所Hiroaki Misawa教授团队和中国科学院半导体研究所谭平恒研究员课题组合作完成。北京大学博士生李耀龙是两篇文章的第一作者。研究工作得到了科技部重点研发计划、国家自然科学基金委、人工微结构和介观物理国家重点实验室、量子物质科学协同创新中心、极端光学协同创新中心和纳光电子前沿科学中心、日本文部科学省及日本学术振兴会等的支持。 /p
  • 先进超快(飞秒、皮秒)激光器
    table width=" 633" cellspacing=" 0" cellpadding=" 0" border=" 1" align=" center" tbody tr style=" height:25px" class=" firstRow" td style=" border: 1px solid windowtext padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 成果名称 /span /p /td td colspan=" 3" style=" border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign=" bottom" width=" 501" height=" 25" p style=" text-align:center line-height:150%" strong span style=" line-height:150% font-family:宋体" 先进超快(飞秒、皮秒)激光器 /span /strong /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 单位名称 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 501" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 中科院物理研究所 /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 联系人 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 168" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 方少波 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 161" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 联系邮箱 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 172" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" Renee_zlj@126.com /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 成果成熟度 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 501" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" □正在研发& nbsp & nbsp √已有样机& nbsp & nbsp □通过小试& nbsp & nbsp □通过中试& nbsp & nbsp √可以量产 /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 合作方式 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 501" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" √技术转让& nbsp & nbsp & nbsp √技术入股& nbsp & nbsp & nbsp √合作开发& nbsp & nbsp & nbsp √其他 /span /p /td /tr tr style=" height:304px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 633" height=" 304" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 成果简介: /span /strong /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 激光器被广泛运用于工业、农业、精密测量和探测、通讯与 /span span style=" font-family:宋体" a href=" https://www.baidu.com/s?wd=%E4%BF%A1%E6%81%AF%E5%A4%84%E7%90%86& tn=44039180_cpr& fenlei=mv6quAkxTZn0IZRqIHckPjm4nH00T1Ykmy7WP1K-Pjf3PhRdPynv0ZwV5Hcvrjm3rH6sPfKWUMw85HfYnjn4nH6sgvPsT6KdThsqpZwYTjCEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-TLwGUv3EnHmsrjfsPjT1" target=" _blank" span style=" color:windowtext text-underline:none" 信息处理 /span /a /span span style=" font-family:宋体" 、医疗、军事等各方面,并在许多领域引起了革命性的突破。其中,超快激光器倍受各界追捧。它不仅可以实现加工的“超精细”,还实现了真正意义上的激光“冷”加工;由于超快特性,可以用于更精密的手术;更高的峰值功率,可引雷、放电,快速毁坏目标,导弹拦截、卫星致盲等等。 /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 由于飞秒激光的前沿性,是激光产业中高利润的高端产品。国际市场每年飞秒激光相关产值约100 亿美元,国内市场为国外公司垄断,大量外汇流失(10亿美元),同时影响国家安全。 /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 中国科学院物理研究所光物理重点实验室从事飞秒激光器研究多年,开发出一系列飞秒激光器及相关科研成果,包括: /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒钛宝石激光振荡器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" TW /span span style=" font-family:宋体" 级飞秒超强激光放大器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 高重复频率飞秒激光放大器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒参量激光器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 光纤飞秒激光器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 全固态飞秒激光器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 全固态皮秒激光器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 低噪声光学频率梳 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 窄线宽及可调谐激光器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 同步及延时控制器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 周期量级激光及其CEP锁定 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 用户定制激光器 /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 部分产品和指标达到国际领先或国内首次的程度,包括: /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 同步飞秒激光器(国际领先) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒PW超强激光(世界纪录) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 若干全固态飞秒激光(国际首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 紫外波段皮秒激光(国际领先) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 红外波段飞秒激光(国际领先) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 阿秒激光装置(国内首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒光学频率梳(国内首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒参量激光振荡器(国内首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒镁橄榄石激光(国内首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒Cr:YAG激光(国内首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒激光压缩器(国内最短脉宽) /span /p p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 主要技术指标: /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/ea10646a-372a-4205-8429-4a0ef2b8d87e.jpg" title=" 3.png" / /p p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 技术特点: /span /strong /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 超快:国内最短激光脉冲,3.8fs/可见光波段 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 超强:1.16PW峰值功率,当时的世界纪录 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 阿秒:160as/XUV极紫外波段,国内首次实现 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 光梳:稳定度~10-18 /秒,国际同类最高结果之一 /span /p /td /tr tr style=" height:75px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 633" height=" 75" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 应用前景: /span /strong /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 自20世纪60年代问世以来,激光已在工业、医学、军事等众多领域广泛应用。近年,超短脉冲激光即超快激光成为激光领域的先端发展趋势。脉冲越短,激光的精度越高、释放的能量越大。在实验室, a href=" http://laser.ofweek.com/tag-%E6%BF%80%E5%85%89%E8%84%89%E5%86%B2.HTM" target=" _blank" title=" 激光脉冲" span style=" color:windowtext text-underline:none" 激光脉冲 /span /a 已短到飞秒级别(1飞秒等于千万亿分之一秒)。超快激光投入应用,成为人类工具史上的又一“利器”。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 飞秒激光作为最重要的前沿方向,可以完成常规激光无法完成的工作,因此应用更为广泛,需求量巨大。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 在加工制造领域:比常规激光更高的精度、更高质量的加工效果。如发动机汽缸、太阳能电池、仿生加工… /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 在医疗领域:由于超快特性,可以用于更精密的手术,无痛、高效。近视、老花… /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 在国防领域:更高的峰值功率,快速毁坏目标,导弹拦截、卫星致盲。引雷、放电等常规激光所不能。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 在科研领域:常规激光远远不能的科学前沿:激光粒子加速、高能物理、光钟…… /span /p /td /tr tr style=" height:72px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 633" height=" 72" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 知识产权及项目获奖情况: /span /strong /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 已经申请相关发明专利23项。包括—— /span /p p style=" text-indent:28px line-height:24px" a title=" 高对比度飞秒激光脉冲产生装置" span style=" font-family:宋体 color:windowtext text-underline:none" 高对比度飞秒激光脉冲产生装置 /span /a span style=" font-family:宋体" (申请号CN201210037173.1) /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 一种全固态皮秒激光再生放大器(申请号CN201210360026.8) /span /p p style=" text-indent:28px line-height:24px" a title=" 飞秒锁模激光器" span style=" font-family: 宋体 color:windowtext text-underline:none" 飞秒锁模激光器 /span /a span style=" font-family:宋体" (申请号CN201410251367.0) /span /p p style=" text-indent:28px line-height:24px" a title=" 基于全固态飞秒激光器的天文光学频率梳装置" span style=" font-family:宋体 color:windowtext text-underline:none" 基于全固态飞秒激光器的天文光学频率梳装置 /span /a span style=" font-family:宋体" (申请号CN201410004852.8) /span /p p style=" text-indent:28px line-height:24px" a title=" 全固态陶瓷锁模激光器" span style=" font-family:宋体 color:windowtext text-underline:none" 全固态陶瓷锁模激光器 /span /a span style=" font-family:宋体" (申请号CN201310349408.5)等 /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 曾获得国家自然科学二等奖 /span /p /td /tr /tbody /table p br/ /p
  • 赛默飞完成对BD先进生物加工业务的收购
    p style=" text-align: left line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp strong 仪器信息网讯 /strong 日前,赛默飞宣布已完成先前宣布的,对BD公司先进生物加工技术的收购。最终的收购价格为4.77亿美元,该业务将整合到赛默飞的的生命科学解决方案部分。 br/ & nbsp & nbsp & nbsp & nbsp 先进的生物加工业务的年收入约1亿美元,拥有160名员工分布于在底特律和迈阿密等地。 br/ & nbsp & nbsp & nbsp & nbsp “我们很高兴完成此次收购,正式欢迎我们的新成员,”赛默飞执行副总裁兼首席运营官Mark Stevenson说,“先进生物加工技术,拥有细胞培养基产品和强大的技术服务项目为主导的生物组合,新业务的加入,将使我们的生物制药领域的客户能更快的将新的创新药物推向市场。” br/ & nbsp & nbsp & nbsp & nbsp 收购的业务预计将在2018年增加1500万美元的收入,对调整后的每股收益(EPS)没有影响。而2019年,该公司预计调整后每股收益增加0.04美元至0.05美元。 /p p style=" text-align: left line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 此前宣布收购的相关新闻详情请见: br/ https://www.instrument.com.cn/news/20180908/470966.shtml /p p br/ /p
  • 天津大学精仪学院六轴精密铣车复合加工系统公开招标
    p   天津大学精仪学院六轴精密铣车复合加工系统公开招标公告,详细信息如下: /p p   项目名称:精仪学院六轴精密铣车复合加工系统 /p p   项目编号:TDZC2017N0032 /p p   项目联系方式: /p p   项目联系人:刘老师 /p p   项目联系电话:022-27407584 /p p   采购单位联系方式: /p p   采购单位:天津大学 /p p   地址:天津市津南区海河教育园区雅观路135号 /p p   联系方式:孟老师:022-27406282 /p p   一、采购项目的名称、数量、简要规格描述或项目基本概况介绍: /p p   精仪学院六轴精密铣车复合加工系统,1台/套,详见招标文件 /p p   二、投标人的资格要求: /p p   1、具有独立承担民事责任的能力 2、具有良好的商业信誉和健全的财务会计制度 3、具有履行合同所必需的设备和专业技术能力 4、具有依法缴纳税收和社会保障资金的良好记录 5、参加此项采购活动前三年内,在经营活动中没有重大违约、违法记录 6、本项目不接受联合体投标。 /p p   三、招标文件的发售时间及地点等: /p p   预算金额:335.0 万元(人民币) /p p   时间:2017年06月09日 12:53 至 2017年06月16日 16:30(双休日及法定节假日除外) /p p   地点:在天津大学招投标管理系统(http://zbb.tju.edu.cn/)已注册且审核通过的潜在投标人或者供应商方可在天津大学招投标管理系统(http://zbb.tju.edu.cn/)内购买或免费下载磋商文件电子文档 /p p   招标文件售价:¥0.0 元,本公告包含的招标文件售价总和 /p p   招标文件获取方式:下载电子文档 /p p   四、投标截止时间:2017年06月30日 09:00 /p p   五、开标时间:2017年06月30日 09:00 /p p   六、开标地点: /p p   天津大学北洋园校区行政服务中心A118 /p p   七、其它补充事宜 /p p   八、采购项目需要落实的政府采购政策: /p p   1. 根据财政部发布的《政府采购促进中小企业发展暂行办法》规定,本项目对小型和微型企业产品的价格给予6%的扣除。小微企业以投标人填写的《中小企业声明函》及国家企业信用信息公示系统的公示内容为判定标准,否则不予认定。 /p p   2. 根据财政部发布的《关于政府采购支持监狱企业发展有关问题的通知》规定,本项目对监狱企业产品的价格给予6%的扣除。监狱企业须投标人提供由省级以上监狱管理局、戒毒管理局(含新疆生产建设兵团)出具的属于监狱企业的证明文件,否则不予认定。 /p p   3. 按照现行《财政部、国家发展改革委关于调整节能产品政府采购清单的通知》文件要求,对政府采购清单中的节能产品采用优先采购和强制采购的评标方法。按照现行《财政部、环保部关于调整环境标志产品政府采购清单的通知》文件要求,对政府采购清单中的环境标志产品采用优先采购的评标方法。 /p p   4. 按照《财政部关于在政府采购活动中查询及使用信用记录有关问题的通知》(财库〔2016〕125号)的要求,根据开标当日“信用中国”网站(www.creditchina.gov.cn)、中国政府采购网( a href=" http://www.ccgp.gov.cn" www.ccgp.gov.cn /a )的信息,对列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单及其他不符合《中华人民共和国政府采购法》第二十二条规定条件的供应商,拒绝参与政府采购活动,同时对信用信息查询记录和证据进行打印存档。 /p
  • 飞秒激光烧蚀制备大面积均匀纳米结构进展
    最近,在中国科学院院士徐至展领导下,中山大学光电材料与技术国家重点实验室与中国科学院上海光机所强场激光物理国家重点实验室展开合作研究,在飞秒激光烧蚀制备大面积均匀纳米结构方面取得重要进展,相关成果发表在《光学快报》(Optics Express) (2008, 16, 19354-19365))。纳米科技领域国际著名期刊Small (2008, 4, No. 12, 2099)在News from the micro-nano world栏目以“大面积均匀纳米结构”(Large-area Uniform Nanostructures)为题专门报道了这项研究成果,并将它与美国科学家近期实现的“大面积组装单壁碳纳米管三维结构”并列为微纳结构合成制备新方法 另外,自然中国网站于2008年12月10日在Research Highlights栏目中也专栏推荐并重点介绍了该成果。   飞秒激光烧蚀具有低的破坏阈值及小的热扩散区的特点,可实现对材料的“非热”微加工,从而大大减小传统长脉冲激光加工中热效应带来的负面影响,显著提高加工精度,在光电器件微加工领域具有广阔的应用前景。但是由于传统激光直写方法的效率较低,目前飞秒激光烧蚀制备微纳结构在实际应用中尚不具备高的经济性。因此,探索如何直接用飞秒激光烧蚀高效地制备大面积均匀纳米结构是当前飞秒激光微加工领域的一个研究热点。   博士生黄敏及其导师徐至展等采用飞秒激光辐照自诱导亚波长纳米结构的途径,通过调控飞秒激光脉冲的波长、能量、偏振等条件并采用新颖的快速非相干调制技术,成功地在氧化锌、硒化锌等宽带隙材料及石墨表面实现了纳米光栅、纳米颗粒及纳米方块结构的大面积制备。这种利用飞秒激光烧蚀直接制备纳米结构的方法具有均匀性好,效率高,热效应小,通用性高,环保等优点,并克服了以往飞秒激光烧蚀制备纳米结构过程中的二度污染问题。更为重要的是,经过这种方法处理后,材料表面的光电特性发生了显著的改变,并可随纳米结构的改变而呈现不同的光谱特征。这种方法在新型光电器件等方面具有重要的潜在应用价值,有望提高LED照明器件的发光效率和增加太阳能电池的吸收效率。(来源:中科院上海分院)   (《光学快报》(Optics Express ),Vol. 16, Issue 23, pp. 19354-19365,Min Huang,Zhizhan Xu)
  • 北京海菲尔格科技有限公司赞助参加2022(第七届)氟材料高端应用及相关加工技术研讨会
    北京海菲尔格科技有限公司赞助参加2022(第七届)氟材料高端应用及相关加工技术研讨会近年来,新能源行业发展迅猛,六氟磷酸锂、锂电级PVDF等氟相关新能源材料迎来重大发展机遇,刺激新增投资在近期集中涌现。2022(第七届)氟材料高端应用及相关加工技术研讨会姗姗来迟,定于2022年8月15-17日在美丽的杭州盛大召开。本次研讨会的目标是避免同质化竞争,拓展下游应用,引导后疫情时代氟化工企业转型升级。研讨会包括三个分论坛,主题分别为:新能源用氟材料分论坛、氟电子化学品和新型氟碳化学品分论坛,大会将邀请资深专家学者莅临现场为与会人员带来氟材料领域的精彩报告。北京海菲尔格科技有限公司有幸能参与到此次盛会中,研讨会现场我们会展出:芬兰Pixact公司的PCM结晶监测系统和德国TEWS ELEKTRONIK公司的MW4492微波水分测试系统,欢迎各位与会领导和专家现场共同探讨和交流。众所周知,结晶和粒度监测与控制是进行氟材料研究和生产不可或缺的监测手段。芬兰Pixact公司的PCM结晶监测系统采用透射光原理设计,由仪器探头末端发出的激光透过测试样品,由探头另一端的高分辨率CCD相机接收透射光并对晶体成像,对于微小晶体也可以清晰成像,并保证图像质量。PCM结晶监测系统利用功能强大的图像算法,可以实时给出高准确度的晶体颗粒度数据:晶体尺寸D10、D50、D90等、晶体尺寸分布、晶体尺寸变化趋势、晶体形态、晶体径长比、晶体生长速率等数据。应用到研发领域的PCM结晶监测系统PCM结晶监测系统广泛应用于研发和工业生产中,可以实现:原料杂质监控,补料时间确定,晶体颗粒度监控,二次成核控制,晶体颗粒度分布宽度监控,出料时刻判定,加晶种方案优化,晶体颗粒形状调整,生产质量稳定性监控,等等。应用到工业现场的PCM结晶监测系统PTFE聚四氟乙烯微粉的含水量在0.01%~0.05%,如何快速准确地测试水分含量,一直是困扰大家的一个问题。德国TEWS ELEKTRONIK公司的MW4492微波水分仪可以很好地表征PTFE粉末的水分含量和堆密度,专为苛刻条件、极低水分含量客户提供解决方案。应用到实验室领域的德国TEWS ELEKTRONIK公司的微波水分仪微波水分仪测试方便、快捷高效、灵敏度高、重复性好。微波水分仪的测试速度非常快(测试速度为毫秒级),也可以在生产线上安装,在线实时监测生产过程中各个环节物料的水分含量,不需要人工取样及样品制备,完全自动化。德国TEWS ELEKTRONIK公司作为卓越的水分和密度测试解决方案的市场领导者,已有近50年的历史。应用到工业现场的德国TEWS ELEKTRONIK公司的微波水分仪随着“十四五”新开局,国家层面对新能源、新基建、5G等战略新兴领域政策扶持加大,高端氟材料需求增长、促进我国氟材料行业的快速发展。对于氟材料行业的探索和发展也成为各相关行业关注的重点,本届会议正是为大家搭建一个共同讨论的平台,共同为氟材料行业的发展添砖加瓦。相信在主办方和组委会的共同努力下将为大家奉上一场健康安全、富有成效的行业盛会!
  • 全球首台商用石墨烯飞秒光纤激光器问世
    记者从近日在江苏泰州举行的中国石墨烯标准化论坛上获悉,泰州巨纳新能源有限公司研制的世界首台商用石墨烯飞秒光纤激光器Fiphene问世,同时创造了脉冲宽度最短(105fs)和峰值功率最高(70kW)两项石墨烯飞秒光纤激光器世界纪录。   飞秒光纤激光器的应用领域非常广阔,包括激光成像、全息光谱及超快光子学等科研应用,以及激光材料精细加工、激光医疗(如眼科手术)、激光雷达等领域。传统的飞秒光纤激光器核心器件&mdash &mdash 半导体饱和吸收镜(SESAM)采用半导体生长工艺制备,成本很高,且技术由国外垄断。   在飞秒光纤激光器领域,石墨烯被认为是取代SESAM的最佳材料。2010年诺贝尔物理学奖获得者撰文预测石墨烯飞秒光纤激光器有望在2018年左右产业化。要实现真正的产业化,需要解决高质量石墨烯制备、大规模低成本石墨烯转移、石墨烯与光场强相互作用、石墨烯饱和吸收体封装以及激光功率稳定控制等一系列关键技术。泰州巨纳新能源有限公司经过多年持续研究,成功攻克了这些关键技术,率先实现了石墨烯飞秒光纤激光器的产品化,主要性能指标均高于同类产品,具有很高的性价比和很强的市场竞争能力。   该产品被命名为Fiphene,取Fiber(光纤)和Graphene(石墨烯)两个词的组合。泰州巨纳新能源有限公司计划以Fiphene为平台,推出更多石墨烯光纤激光器产品,将石墨烯的应用发展向前推进。
  • 我国飞秒脉冲激光参数准确度国际领先
    中国计量科学研究院超短脉冲激光测量研究取得突破性进展   我国飞秒脉冲激光参数准确度国际领先   日前,由中国计量科学研究院承担的国家“十一五”科技支撑课题“飞秒脉冲激光参数测量新技术研究”通过专家验收。该课题自主研制的飞秒脉冲自相关仪和飞秒脉冲光谱相位相干仪实现了飞秒脉冲激光参数的准确测量,课题组提出的飞秒脉冲光谱相位还原方法降低了传统方法的测量不确定度,将我国飞秒脉冲激光参数的准确度提高到国际领先水平。   飞秒是时间单位,1飞秒相当于10-15秒。它有多快呢?我们知道,光速是1秒钟30万公里,而在一飞秒内,光只能走0.3微米,相当于一根头发丝的1%。飞秒脉冲是人类目前在实验室条件下所能获得的在可见光至近红外波段的最短脉冲。它以其独具的持续时间极短、峰值功率极高、光谱宽度极宽等优点,在物理学、生物学、化学、光通讯、外科医疗、精细加工制造及超小器械制造等领域得到广泛的应用。如何准确地测量超短脉冲信息已成为飞秒脉冲研究领域迫切需要解决的难题。   该课题成功解决了这一技术难题,实现了超短脉冲时域参数的精确测量,对于超短脉冲的更深一步的研究和应用具有重要意义。多家国际同行研究单位引用课题组提出的新技术成功解决了超短脉冲研究和应用中存在的技术问题,极大地提升了我国在超短脉冲激光参数测量领域的国际地位。   据课题负责人邓玉强博士介绍,课题组在成功解决飞秒级超短脉冲参数测量的基础上,又展开了皮秒级超短脉冲测量的研究。皮秒脉冲处于纳秒脉冲和飞秒脉冲之间的带隙(1皮秒=10-12秒),它的光谱相对较窄,难以使用测量飞秒脉冲的光谱干涉技术,而传统的自相关仪器又存在量程范围小,需要标定校准,测量准确度不高等诸多问题。为解决这些问题,课题团队又自主研发了一种新技术和装置,实现了亚十飞秒(10-14秒)至数百皮秒(10-10秒)宽度范围内超短脉冲的精确测量,能得到强度自相关和条纹分辨自相关两种结果。该装置可实现测量的自校准,不仅提高了皮秒级激光脉冲宽度的测量准确度,而且扩大了超短脉冲参数测量的量程,进一步提高了我国超短脉冲激光时域参数的测量能力。
  • 飞秒激光在ITO薄膜表面诱导周期性透明纳米导线
    使用线偏激光照射金属、半导体、透明介质等材料产生表面周期结构(laser induced periodic surface structures,LIPSS)是一种普遍的现象,LIPSS的周期取决于激光条件和材料的性质,在接近入射激光波长到小于波长的十分之一范围变化。这些周期性纳米结构可用于有效地改变材料的性质,并在表面着色、光电特性调控、双折射和表面润湿性等方面有许多应用。氧化铟锡(indium tin oxide,ITO)具有较宽的带隙,对可见光与近红外波段有很高的透射率,ITO薄膜具有较低的电阻率,是液晶面板、新型太阳能电池等元件的重要组成部分。一直以来,发展制备ITO薄膜的新方法,调控ITO薄膜的光电特性是非常重要的研究课题,而在激光加工领域,使用激光在ITO薄膜诱导LIPSS是一个有效且简便的方法。华东师范大学精密光谱科学与技术国家重点实验室贾天卿教授课题组探究了一种通过飞秒激光直写在ITO薄膜表面加工LIPSS的方法,并详细分析了不同激光参数下加工的ITO薄膜在可见到红外光波段的透射率与其各向异性电导率的变化规律。合适的激光参数可以在ITO薄膜上有效地加工大面积低空间频率的LIPSS,这些LIPSS能够表现出独立纳米导线的特性,并且在电学特性上具有良好的一致性。结果表明,飞秒激光直写过程中并不会改变材料的性质,而且与原始的ITO薄膜相比,具有规则LIPSS的ITO薄膜在红外波段的平均透射率提高了197%。这对于将ITO薄膜表面加工规则的LIPSS作为透明电极应用于近红外波段的光电器件具有重要的意义。如图1,原始ITO薄膜的面电阻各向同性。随着激光能流密度的增加,垂直和水平于LIPSS方向的面电阻迅速增加且变化梯度不同,出现了明显的各向异性导电性,当ITO薄膜表面出现规则且独立的LIPSS结构以后,在一定能流密度范围,ITO薄膜能够在不同方向上显现出单向导电/绝缘的电学特性。图1 扫描速度为3 mm/s时,不同能流密度激光辐照后ITO薄膜的面电阻。图中给出了电学测量中横向(Transverse)与纵向(Longitudinal)的定义通过调节激光的能流密度,可以在一个较大的范围内制备出不同形貌的纳米导线(LIPSS)。图2(a)展示了不同能流密度的飞秒激光加工的纳米导线扫描电镜图像。在能流密度上升的过程中,纳米导线的宽度从537 nm降低到271 nm。纳米导线的高度从平均220 nm降低到142 nm,如图2(b)所示。纳米导线的单位电阻随着能流密度的上升从15 kΩ/mm上升到73 kΩ/mm,这是由于纳米导线的宽度与高度都在同步下降造成的,如图2(c)。图 2 (a)不同能流密度下的纳米导线的扫描电镜图像;(b)纳米导线的高度与宽度随着能流密度的变化情况;(c)纳米导线的单位电阻与电阻率随着能流密度的变化情况如图3,原始厚度为185 nm的ITO薄膜在1200~2000 nm的近红外光谱范围内的平均透射率为21.31%。经过飞秒激光直写后,当能流密度在0.510~ 0.637 J/cm2的范围内,ITO薄膜对于近红外的透过率达到54.48%~63.38%,相较原始的ITO薄膜得到了156%~197%的提高。同时,飞秒激光直写后的ITO薄膜在可见光波段的透过率略微提高且曲线较为平滑。通过调节激光的能流密度,ITO薄膜在近红外的透过率能够得到显著提高,并且能够保持较好的导电性。图 3 扫描速度为3 mm/s时,不同能流密度激光直写后的ITO薄膜的透射率。在0.637 J/cm2时红外波段(1200~2000 nm)透过率为63.38%该工作近期以“Periodic transparent nanowires in ITO film fabricated via femtosecond laser direct writing”为题发表在Opto-Electronic Science (光电科学)。
  • 全球创新性飞秒激光蓝宝石切片机和蓝宝石划片机研发成功
    孚光精仪公司联合德国,俄罗斯和立陶宛合作伙伴历时2年研发的新一代飞秒激光蓝宝石划片机和飞秒激光蓝宝石切片机成功问世,将大幅度提高智能手机蓝宝石屏的加工效果和效率,据悉,这一新技术将在10月份向全球推广。这种飞秒激光蓝宝石划片机和飞秒激光蓝宝石切片机采用全球领先的工业级飞秒激光,突破飞秒激光成本高,效率低的缺点,革命性地提高蓝宝石划片和切割效果,没有毛刺,没有熔融问题产生。经过评估,这种飞秒激光蓝宝石划片机和飞秒激光蓝宝石切片机达到了预定研发目标,具有如下优势:不仅适合蓝宝石划片切割,还适合不同玻璃的加工满足不同形状切割需求高速划片切割,划片速度高达800mm/s光滑切片,粗糙度Ra www.f-opt.cn Tel: 021-51300728, 4006-118-227
  • 国内首台产品级掺镱高功率飞秒振荡器研制成功
    近日,北京量子信息科学研究院(简称“量子院”)全光量子源团队开发完成了国内首台产品级高功率飞秒振荡器——Fermion-007。该产品弥补了国内瓦量级飞秒振荡器的产品空白,在国际上仅有立陶宛Light Conversion等少数几家公司具有相当技术指标的产品。Fermion-007采用了多项创新技术,仅一级振荡器即可输出大于7W、重频80MHz的飞秒脉冲激光,其指标、可靠性均达到国际先进水平。目前,研发团队已接到超快电镜应用领域的商业合作订单。作为产生飞秒脉冲激光的“种子”,超快飞秒振荡器(Ultrafast femtosecond oscillator)具有高重频、高光束质量等优势,但输出功率普遍较低,往往需要对其进行功率放大以满足应用需求。然而,这种“振荡器+放大器”的技术路线会大大增加系统复杂度,导致成本变高、可靠性变差,从而限制了飞秒激光的受众范围。此外,超快电镜、飞秒双光子显微成像等应用对激光重复频率也有较高要求,因此,高功率飞秒振荡器成为相关领域的急需产品。飞秒振荡器主要分为光纤和固体两大类。固体振荡器虽然技术难度较高,但最高输出功率比光纤高3个量级,且具有更高重频和更长的锁模器件寿命,是满足应用需求的最佳技术方案。二者的具体对比见表1。表1 光纤、固体飞秒振荡器参数对比光纤飞秒振荡器固体飞秒振荡器直接输出功率百pW至mW量级几十mW至W量级最高重复频率百MHz几GHz飞秒锁模方式/器件寿命SESAM/3个月1. SESAM/3个月2. 克尔透镜锁模/无寿命问题技术难度技术门槛较低。基于标准化光纤器件、光纤熔接机设计、生产。技术门槛较高。对于腔型设计、调试经验、工程化等均有要求较高。对于产品商业化而言,工程水平的高低起决定作用。定制化程度激光器结构、指标类似,激光表现主要依赖于光纤、熔接仪器等的上游器件的性能。结构灵活性好,适合针对应用定制功率、重频、脉宽、中心波长等指标国内商业化现状5-10家商业化公司目前尚无商业化公司基于上述应用需求和技术路线分析,北京量子院开发了Fermion系列高功率全固态(DPSS)飞秒振荡器。在不需要额外放大的情况下,Fermion-007可直接输出大于7W、80MHz的飞秒脉冲激光,脉冲宽度~120fs,中心波长1035nm。此外,输出激光还具有优异的光束质量和长期稳定性,两维M2小于1.2,12小时连续运转功率均方根值小于0.3%。图1 Fermion-007 光谱及脉冲宽度测量图2 Fermion-007 光束质量及长期稳定性工程化是激光器从实验样机蜕变成可用产品的核心环节。Fermion-007采用了低热阻晶体封装、一体化密封、温湿度负反馈控制等多项工程技术,并对腔体、冷却模组的设计进行了模拟优化,以降低高泵浦热量对激光器运行环境的不利影响。激光器采用克尔透镜锁模(Kerr-lens mode locking)作为飞秒脉冲产生、维持的机制,相比可饱和吸收体(SESAM)具有更长的寿命和更高的器件可靠性。此外,研发团队首次将新型“射频同步技术”应用到Fermion-007中,用以自启动及维持飞秒锁模状态,从根本上克服了克尔透镜锁模飞秒振荡器长期存在的“失锁”问题。图3 Fermion-007 机械热分布及水路的模拟高功率飞秒振荡器在双光子显微成像、光参量泵浦等领域应用广泛。近年来,随着相关技术的发展,超快电镜、超快电子衍射等标准化仪器对此类激光器的市场需求也在迅速提升。超快电子显微镜(Ultrafast electron microscopy(UEM))是由传统电镜升级改造而成的高端分析仪器,“飞秒激光驱动光阴极”系统是其新增的核心模块。升级后的超快电镜除了拥有原子尺度的空间分辨率外,还具有飞秒-皮秒尺度的超高时间分辨率,由此成为研究材料动力学过程的有力工具。图4 Fermion系列产品在超快电镜中的应用研发团队与相关系统商开展了新型超快电镜开发的前沿合作,首次提出利用飞秒振荡器产生高重频的超快电子,以降低激光脉冲对光阴极造成的损伤风险。该方案有望从根本上解决此类仪器长期存在的光阴极可靠性问题,提高超快电镜产品的使用寿命和市场竞争力。据合作系统商的预估,超快电镜未来3年总市场需求量可达到50台/年。研发团队简介高功率飞秒振荡器是量子院全光量子源团队于子蛟助理研究员主导完成的研究项目。全光量子源团队于2020年由鲁巍教授组建,隶属于北京量子院技术产业开发中心。团队致力于打造支撑量子产业相关的关键激光设备,包括超快超强激光装置(TW-PW系统)、激光加速桌面光源及应用、新型高端科研飞秒激光器的前沿技术研究、产品研发及产业化落地。
  • 西安光机所成功推出三维光纤激光加工系统
    近日,西安光机所瞬态光学与光子技术国家重点实验室成功进行了三维光纤激光加工系统的演示试验,得到在场专家的好评。该系统所使用的500W光纤激光器是由中科院西安光机所新孵化企业西安中科梅曼激光科技有限公司研制。该企业致力于高功率光纤激光器的研发、生产和销售,并可为光纤激光加工系统提供全套的解决方案。现已具备200W~1000W光纤激光器的生产能力,所推出的光纤激光器在切割速度、切割质量等方面与国外同类产品相比具有较强的竞争优势。   三维光纤激光加工系统   500W光纤激光器
  • 飞纳台式扫描电镜在制药领域中的应用
    漳州卫生职业学院主要研究中药新制剂与新技术,使中药制剂的生产工艺更合理,质量更符合各项规定,毒副反应小且疗效突出,以最大限度地发挥药物疗效为目的。同时,也使中药制剂便于生产、运输、携带、贮藏、服用和治愈病患,并获得良好社会效益和经济效益。 在中药制剂生产过程中,为了充分地发挥其药效和达到治愈效果,会添加一些辅料,这些辅料在中药表面的含量和分布状态会直接影响到中药制剂的药效。 普通光学显微镜很难观察到辅料在中药表面的形态,因此需要借助扫描电镜进行观察,而普通电镜只能对导电样品观察,不导电样品需要喷金处理后才能观察,进而会影响该样品的下一步测试。 飞纳台式扫描电镜独特的真空设计,可以对不导电样品直接观测,即使对植物中药,无需喷金也能直接观察。辅料和中药的组成元素有很大差别,因此产生的背散射电子信号强度也不一样,用背散射探头能够轻松地观察辅料在中药表面的分布。 利用飞纳电镜颗粒系统拓展软件,可以对辅料的颗粒大小进行统计和分析,根据分析结果改善相应的生产加工工艺。 电镜只能对样品微区进行分析,而中药往往都是比较大的块体,所以,用户手动操作电镜对整块中药表面的辅料分布情况进行观察,往往需要耗费大量的时间和精力。飞纳电镜自动马达样品台结合自动拼合软件能够很好的解决该问题,只需操作人员选择观测区域,采集图片和拼图的任务由仪器和软件完成,不仅高效而且智能。中药在扫描电镜中的二次电子图像中药在扫描电镜下的背散射图像观察块儿状中药时的软件操作界面用户认真学习飞纳电镜的操作
  • 飞秒激光直写双刺激协同响应的水凝胶微致动器研究获进展
    在自然界中生物能够对外界刺激做出反应并产生特定的形状变化,这种响应行为对生物体的生存和繁衍至关重要。在众多材料中,水凝胶因其模量适中,刺激响应条件多样以及生物相容性好等因素而引起了广泛关注。随着仿生学以及材料科学的发展,能够感知和响应外部刺激的智能水凝胶致动器在软体机器人、传感和远程操控等领域显示出良好的应用前景。目前,微加工技术已经将响应型水凝胶致动器的尺寸缩小到微米级。然而,如何在微尺度下构建能够对复杂的微环境进行多重响应的水凝胶微致动器仍然是一个挑战。   近日,中国科学院理化技术研究所研究员郑美玲团队在双刺激协同响应的水凝胶微致动器的研究工作中取得进展。团队通过非对称飞秒激光直写加工制备了一种双刺激协同响应的水凝胶微致动器。该水凝胶微结构对pH/温度的双重协同响应是通过添加功能单体2-(二甲基氨基)乙基甲基丙烯酸酯实现的。通过水凝胶微结构的拉曼光谱分析,解释了不同pH和温度下协同响应的产生机制,并且展示了由pH或温度控制的聚苯乙烯微球的捕获。该研究为设计和制造可控的微尺度致动器提供了一种策略,并在微机器人和微流体中具有应用前景。研究成果发表于Small 。   飞秒激光直写加工技术由于具有超高的空间分辨率、三维加工能力和无需实体掩膜等特点,被广泛用于制备各种三维微结构。研究人员利用含有功能单体的光刻胶,通过调整激光功率、扫描速度和扫描策略实现了具有不对称交联密度的双重响应水凝胶微结构的制备(图1)。   进一步地,研究人员制备了含有三个不对称微臂的微致动器来提高对不同环境的刺激响应能力。该微致动器由三个交联密度交替分布的微臂组成。为了更加方便地展示水凝胶微致动器在不同温度及pH条件下的可控性,研究还使用了直径10微米的聚苯乙烯微球作为目标颗粒在不同条件下进行捕获(图2)。   此外,研究人员还描述了一种具有双刺激协同响应特性的微致动器(图3),其具有的更为丰富的形状变化是由温度升高时的氢键断裂与酸性条件下叔胺基的质子化同时作用产生的。该研究提出的双重刺激协同响应特性相较于单一响应刺激赋予了微制动器更大的可操控性,这一特性使其在微操纵和微型软体机器人方面具有潜在应用。图1 双刺激协同响应型水凝胶微致动器的制备与响应机制图2 双重刺激响应型水凝胶微致动器的捕获行为图3 水凝胶微致动器的双重刺激协同响应特性
  • 甘其毛都口岸加工园区管理委员会142.00万元采购固体废弃物
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 [乌拉特中旗]竞争性磋商甘其毛都口岸加工园区管理委员会甘其毛都口岸加工园区工业固体废弃物填埋场竞争性磋商公告 内蒙古自治区-巴彦淖尔市-乌拉特中旗 状态:公告 更新时间: 2023-03-05 招标文件: 附件1 项目概况 甘其毛都口岸加工园区工业固体废弃物填埋场采购项目的潜在供应商应在内蒙古自治区政府采购网获取采购文件,并于 2023年03月16日 15时00分(北京时间)前提交响应文件。 一、项目基本情况 项目编号:BSZCZQS-C-F-230022 项目名称:甘其毛都口岸加工园区工业固体废弃物填埋场 采购方式:竞争性磋商 预算金额:1,420,000.00元 采购需求: 合同包1(甘其毛都口岸加工园区工业固体废弃物填埋场): 合同包预算金额:1,420,000.00元 品目号 品目名称 采购标的 数量(单位) 技术规格、参数及要求 品目预算(元) 最高限价(元) 1-1 工程设计服务 甘其毛都口岸加工园区工业固体废弃物填埋场 1(项) 详见采购文件 1,420,000.00 - 本合同包不接受联合体投标 合同履行期限:合同签订后30个日历日内完成 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定: (1)具有独立承担民事责任的能力; (2)具有良好的商业信誉和健全的财务会计制度; (3)具有履行合同所必需的设备和专业技术能力; (4)有依法缴纳税收和社会保障资金的良好记录; (5)参加政府采购活动前三年内,在经营活动中没有重大违法记录; (6)法律、行政法规规定的其他条件。 2.落实政府采购政策需满足的资格要求: 无。 3.本项目的特定资格要求: 合同包1(甘其毛都口岸加工园区工业固体废弃物填埋场)特定资格要求如下: (1)具有有效建设行政主管部门核发的工程设计市政行业乙级或工程设计环境工程设计专项(固体废物处理处置工程)乙级或工程设计市政行业(环境卫生工程或排水工程)专业乙级及以上资质。 (2)项目负责人具有市政行业相关专业中级及以上职称。 三、获取采购文件 时间: 2023年03月05日至 2023年03月10日,每天上午 00:00:00至 12:00:00,下午 12:00:00至 23:59:59(北京时间,法定节假日除外) 地点:内蒙古自治区政府采购网 方式:在线获取。获取采购文件时,需登录“政府采购云平台”,按照“执行交易→应标→项目应标→未参与项目”步骤,填写联系人相关信息确认参与后,即为成功“在线获取”。 售价: 免费获取 四、响应文件提交 截止时间: 2023年03月16日 15时00分00秒(北京时间) 地点: 内蒙古自治区政府采购网(政府采购云平台)五、开启 时间: 2023年03月16日 15时00分00秒(北京时间) 地点:乌拉特中旗公共资源交易中心四楼开标室六、公告期限 自本公告发布之日起3个工作日。七、其他补充事宜 无 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名 称:甘其毛都口岸加工园区管理委员会 地 址:海流图镇 联系方式:150478900512.采购代理机构信息 名 称:内蒙古泓源工程项目管理有限公司 地 址:内蒙古自治区呼和浩特市赛罕区展览馆西路102号新城国际住宅小区3号楼1单元1301 联系方式:187049251213.项目联系方式 项目联系人:王慧 电 话:18704925121 内蒙古泓源工程项目管理有限公司 2023年03月05日 相关附件: 甘其毛都口岸加工园区工业固体废弃物填埋场磋商文件(2023030502).pdf × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:固体废弃物 开标时间:null 预算金额:142.00万元 采购单位:甘其毛都口岸加工园区管理委员会 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:内蒙古泓源工程项目管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 [乌拉特中旗]竞争性磋商甘其毛都口岸加工园区管理委员会甘其毛都口岸加工园区工业固体废弃物填埋场竞争性磋商公告 内蒙古自治区-巴彦淖尔市-乌拉特中旗 状态:公告 更新时间: 2023-03-05 招标文件: 附件1 项目概况 甘其毛都口岸加工园区工业固体废弃物填埋场采购项目的潜在供应商应在内蒙古自治区政府采购网获取采购文件,并于 2023年03月16日 15时00分(北京时间)前提交响应文件。 一、项目基本情况 项目编号:BSZCZQS-C-F-230022 项目名称:甘其毛都口岸加工园区工业固体废弃物填埋场 采购方式:竞争性磋商 预算金额:1,420,000.00元 采购需求: 合同包1(甘其毛都口岸加工园区工业固体废弃物填埋场): 合同包预算金额:1,420,000.00元 品目号 品目名称 采购标的 数量(单位) 技术规格、参数及要求 品目预算(元) 最高限价(元) 1-1 工程设计服务 甘其毛都口岸加工园区工业固体废弃物填埋场 1(项) 详见采购文件 1,420,000.00 - 本合同包不接受联合体投标 合同履行期限:合同签订后30个日历日内完成 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定: (1)具有独立承担民事责任的能力; (2)具有良好的商业信誉和健全的财务会计制度; (3)具有履行合同所必需的设备和专业技术能力; (4)有依法缴纳税收和社会保障资金的良好记录; (5)参加政府采购活动前三年内,在经营活动中没有重大违法记录; (6)法律、行政法规规定的其他条件。 2.落实政府采购政策需满足的资格要求: 无。 3.本项目的特定资格要求: 合同包1(甘其毛都口岸加工园区工业固体废弃物填埋场)特定资格要求如下: (1)具有有效建设行政主管部门核发的工程设计市政行业乙级或工程设计环境工程设计专项(固体废物处理处置工程)乙级或工程设计市政行业(环境卫生工程或排水工程)专业乙级及以上资质。 (2)项目负责人具有市政行业相关专业中级及以上职称。 三、获取采购文件 时间: 2023年03月05日至 2023年03月10日,每天上午 00:00:00至 12:00:00,下午 12:00:00至 23:59:59(北京时间,法定节假日除外) 地点:内蒙古自治区政府采购网 方式:在线获取。获取采购文件时,需登录“政府采购云平台”,按照“执行交易→应标→项目应标→未参与项目”步骤,填写联系人相关信息确认参与后,即为成功“在线获取”。 售价: 免费获取 四、响应文件提交 截止时间: 2023年03月16日 15时00分00秒(北京时间) 地点: 内蒙古自治区政府采购网(政府采购云平台)五、开启 时间: 2023年03月16日 15时00分00秒(北京时间) 地点:乌拉特中旗公共资源交易中心四楼开标室六、公告期限 自本公告发布之日起3个工作日。七、其他补充事宜 无 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名 称:甘其毛都口岸加工园区管理委员会 地 址:海流图镇 联系方式:150478900512.采购代理机构信息 名 称:内蒙古泓源工程项目管理有限公司 地 址:内蒙古自治区呼和浩特市赛罕区展览馆西路102号新城国际住宅小区3号楼1单元1301 联系方式:187049251213.项目联系方式 项目联系人:王慧 电 话:18704925121 内蒙古泓源工程项目管理有限公司 2023年03月05日 相关附件: 甘其毛都口岸加工园区工业固体废弃物填埋场磋商文件(2023030502).pdf
  • 赛默飞拟投资6亿美元扩大其生物加工生产设施
    赛默飞世尔科技近日宣布,将投资6亿美元扩大其生物加工生产设施至2022年。公司预计,这笔投资将使其目前的生产能力增加一倍以上。  赛默飞世尔在一份声明中表示,该公司将支持不断上升的新冠疫情相关需求,并满足客户对新疫苗和其他条件下的生物制剂的长期需求。该投资将在美洲、欧洲和亚洲的11个制造业基地创造1500个新就业岗位。  此前有投资机构预测,在新冠疫情驱动下,市场对病毒检测的需求将在2021年继续增加,预计2020年第四季度美国乃是全球的COVID-19检测量将超过每日200万次。
  • 国内首套太赫兹扫描隧道显微镜系统研发成功
    近日,中国科学院空天信息研究院(广州园区)-广东大湾区空天信息研究院(以下简称“大湾区研究院”)成功研制出太赫兹扫描隧道显微镜系统,实现了优于原子级(埃级)的空间分辨率和优于500飞秒的时间分辨率,成为国内首套自主研制的太赫兹扫描隧道显微镜系统。THz-STM系统扫描隧道显微镜(STM)是一种用于观察和定位单个原子的扫描探针显微工具,通过原子尺度的针尖,在不到一个纳米的高度上,对不同样品进行超高精度扫描成像。STM在低温下可以利用探针尖端精确操纵单个分子或原子,不仅是重要的微纳尺度测量工具,也是颇具潜力的微纳加工工具,在原子级扫描、材料表面探伤及修补、引导微观化学反应、控制原子排列等领域广泛应用。但是,传统的电学调制速率限制了STM在更高时间分辨率的观测(一般具有微秒量级的时间分辨率)。2013年,加拿大阿尔伯塔大学教授Frank Hegmann,首次将太赫兹脉冲和STM结合,实现了亚皮秒时间分辨和纳米空间分辨,随后德国、美国等科研团队纷纷开展相关技术研究。大湾区研究院太赫兹研究团队历时近12个月,突破了太赫兹与扫描隧道针尖耦合、太赫兹脉冲相位调制等核心关键技术,成功研制出国内首台太赫兹扫描隧道显微镜(THz-STM)。该显微镜具有埃级空间分辨率和亚皮秒时间分辨率(提升100万倍以上),可同时实现高时间和空间分辨下的精密检测(飞秒-埃级),为进一步揭示微纳尺度下电子的超快动力学过程提供了强有力的技术手段,可用于新型量子材料、微纳光电子学、生物医学、超快化学等领域。该研究得到国家自然科学基金委太赫兹基础科学中心、广东省科学技术厅、广州市、黄埔开发区等相关项目的资助。THz自相关脉冲和THz-STM电流信号硅重构表面原子分辨和金表面原子分辨
  • 突破!我国首台太赫兹扫描隧道显微镜系统研制成功
    2022年2月,中国科学院空天信息研究院(广州园区)-广东大湾区空天信息研究院(以下简称“大湾区研究院”)成功研制出太赫兹扫描隧道显微镜系统,实现了优于原子级(埃级)的空间分辨率和优于500飞秒的时间分辨率,为国内首套自主研制的太赫兹扫描隧道显微镜系统。扫描隧道显微镜(STM)是一种用于观察和定位单个原子的扫描探针显微工具。通过原子尺度的针尖,在不到一个纳米的高度上,对不同样品进行超高精度扫描成像。STM在低温下可以利用探针尖端精确操纵单个分子或原子,不仅是重要的微纳尺度测量工具,也是颇具潜力的微纳加工工具,在原子级扫描、材料表面探伤及修补、引导微观化学反应、控制原子排列等领域具有广泛应用。但是,传统的电学调制速率限制了STM在更高时间分辨率的观测(一般具有微秒量级的时间分辨率)。2013年,加拿大阿尔伯塔大学Frank Hegmann教授,首次将太赫兹脉冲和STM结合,实现了亚皮秒时间分辨和纳米空间分辨,随后德国、美国等著名科研团队纷纷开展相关技术研究。但我国在该领域的研究一直处于空白。大湾区研究院太赫兹研究团队历时近12个月,突破了太赫兹与扫描隧道针尖耦合、太赫兹脉冲相位调制等核心关键技术,成功研制出国内首台太赫兹扫描隧道显微镜(THz-STM),具有埃级空间分辨率和亚皮秒时间分辨率(提升100万倍以上),可同时实现高时间和空间分辨下的精密检测(飞秒-埃级),为进一步揭示微纳尺度下电子的超快动力学过程提供了强有力的技术手段,可用于新型量子材料、微纳光电子学、生物医学、超快化学等诸多领域,有望取得具有重要国际影响力的原创性科研成果。该研究得到国家自然科学基金委太赫兹基础科学中心、广东省科技厅、广州市、黄埔开发区等相关项目的资助。 THz-STM系统硅重构表面原子分辨(左),金表面原子分辨(右)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制