当前位置: 仪器信息网 > 行业主题 > >

动态吸附装置

仪器信息网动态吸附装置专题为您提供2024年最新动态吸附装置价格报价、厂家品牌的相关信息, 包括动态吸附装置参数、型号等,不管是国产,还是进口品牌的动态吸附装置您都可以在这里找到。 除此之外,仪器信息网还免费为您整合动态吸附装置相关的耗材配件、试剂标物,还有动态吸附装置相关的最新资讯、资料,以及动态吸附装置相关的解决方案。

动态吸附装置相关的资讯

  • 大连化物所微型固态吸附棒萃取器和热解吸装置通过项目验收
    日前,大连化物所承担的“十五”科技攻关项目专题“微型固态吸附棒萃取器和热解吸装置”通过科技部组织的专家验收。专家组认为:该课题主要针对茶叶、烟草、乳制品、软饮料和水样等样品中农药残留分析的样品处理,攻关目标明确,立项合理,具有广阔的应用前景;微型固态吸附棒采用溶胶-凝胶法制备吸附涂层,耐温高,使用寿命长。   大连化物所于2001年开始进行该专题攻关,从实验室原理样机开始,尝试了多种技术路线,在两年的时间里完成了整套微型固态吸附棒和热解吸装置的研制与开发工作。本项目所研究的萃取棒萃取相的制作工艺及原理与其它商品化的萃取棒有着很大的区别,本项目中采用的制膜技术为溶胶凝胶法,制得的萃取相耐溶剂冲洗且在高温下不发生热解吸。微搅拌吸附棒可以实现批量生产。热解吸装置设计巧妙,体积小,容易与气相色谱仪联用,与国外同类仪器相比,本装置借助气相色谱进样口完成样品传输线加热,在分析过程中采用保留间隙技术而避免了由于使用冷阱需对样品聚焦,因此设备简化、可靠并大大降低制造成本。所制得的萃取棒耐用、成本较低,解吸器设计合理,结构简单,适合大规模工业化生产,设备适合我国的国情。   该装置可广泛应用于芳香烃、多环芳烃、多氯联苯、农药、香味物质、酚类等挥发性半挥发性物质的分析,同时实现对非挥发性物质的分析检测。我国有1万多个农科所/站、卫生防疫站、产品质量监督检验所/站,进出口商品检验检疫局,其中的绝大多数需要对农产品和食品的农残进行分析,所以在这些领域推广应用该项技术,对提高我国农副产品的进出口监测水平有重要意义。
  • 动态气体稀释装置研制
    table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr td width=" 19%" p style=" line-height: 1.75em " 成果名称 /p /td td width=" 80%" colspan=" 3" p style=" line-height: 1.75em " 动态气体稀释装置 /p /td /tr tr td width=" 19%" p style=" line-height: 1.75em " 单位名称 /p /td td width=" 80%" colspan=" 3" p style=" line-height: 1.75em " 四川中测标物科技有限公司 /p /td /tr tr td width=" 19%" p style=" line-height: 1.75em " 联系人 /p /td td width=" 35%" p style=" line-height: 1.75em " 潘义 /p /td td width=" 16%" p style=" line-height: 1.75em " 联系邮箱 /p /td td width=" 28%" p style=" line-height: 1.75em " 9026427@qq.com /p /td /tr tr td width=" 19%" p style=" line-height: 1.75em " 成果成熟度 /p /td td width=" 80%" colspan=" 3" p style=" line-height: 1.75em " □正在研发 □已有样机 □通过小试 □通过中试 ■可以量产 /p /td /tr tr td width=" 19%" p style=" line-height: 1.75em " 合作方式 /p /td td width=" 80%" colspan=" 3" p style=" line-height: 1.75em " □技术转让 □技术入股& nbsp □合作开发& nbsp ■其他 /p /td /tr tr td width=" 100%" colspan=" 4" p style=" line-height: 1.75em " strong 成果简介: /strong br/ & nbsp & nbsp & nbsp /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201603/insimg/7cb1b79c-6fea-4759-b6ad-1c14f1498136.jpg" title=" 1-动态气体稀释装置.png" width=" 325" height=" 349" border=" 0" hspace=" 0" vspace=" 0" style=" width: 325px height: 349px " / /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp 特点:每路采用单独质量流量控制器,显示标准状况和工作状况流量;气路惰性化防腐及吸附处理,多点校准,精度进一步提高; br/ & nbsp & nbsp & nbsp 指标:流量范围(0-20000)SCCM br/ & nbsp & nbsp & nbsp 重复性 :& lt 0.2% br/ & nbsp & nbsp & nbsp 最大允许误差:& lt 1% br/ & nbsp & nbsp & nbsp 稀释比:1:1—5000:1(可选) /p /td /tr tr td width=" 100%" colspan=" 4" p style=" line-height: 1.75em " strong 应用前景: /strong br/ & nbsp & nbsp & nbsp DDG-I动态气体发生装置根据质量流量混合法,使用多个MFC精确控制流量,可动态稀释高浓度气体标准物质到所需要低浓度,也可单独控制每路输出样品流量。主要应用于计量检测部门检定气体分析仪、报警器等开展检定、校准上述仪器而配制气体标准物质,同时可用于环境保护、石油化工、煤矿等多行业配制气体标准物质。 /p /td /tr tr td width=" 100%" colspan=" 4" p style=" line-height: 1.75em " strong 知识产权及项目获奖情况: /strong br/ & nbsp & nbsp & nbsp 实用新型专利1项 br/ & nbsp & nbsp & nbsp 专利名称:气体稀释装置 br/ & nbsp & nbsp & nbsp 专利号:ZL & nbsp & nbsp 2011 2 0514474.X /p /td /tr /tbody /table p br/ /p
  • 浅谈比表面积分析方法之气体物理吸附技术
    固体表面积分析测试方法有多种,其中气体吸附法是最成熟和通用的方法。其基本原理是测算出某种气体吸附质分子在固体表面物理吸附形成完整单分子吸附层的吸附量,乘以每个分子覆盖的面积(分子截面积,molecular cross-sectional area),即得到样品的总表面积。吸附剂的总表面积除以其质量称为比表面积(specific surface area,m2/g),它是表面积的常用表示方式。实验测定吸附等温线的原则是,在恒定温度下,将吸附剂置于吸附物气体中,待达到吸附平衡后测定或计算气体的平衡压力和吸附量。基于在恒定低温下测量气体的吸附和脱附曲线,并通过对等温线的进行计算,可获取样品的孔径分布、比表面积、孔隙度和平均孔径等固体材料性质。测定方法分为静态法和动态法。前者有容量法(体积法)、重量法等;后者有重量法、流动色谱法等。在此介绍常用的静态容量法和动态流动色谱法。静态容量法需要测量气体体积的压力变化。将已知的气体量注入到恒定温度下的装有吸附剂的样品管中,当吸附发生时,样品内的压力降低直到平衡状态;平衡压力下气体吸附量为注入到样品内气体的量和平衡压力下样品管内剩余气体量的差值。吸附等温线通常使用进气技术将气体注入到体系内,再应用气体定律等到连续的数据点。需要精确知道死体积(自由空间),可以通过校正样品管体积再减去吸附剂的体积(通过密度计算)得到,也可以通过在一定程度上不在吸附剂上发生吸附的气体(如氦气)来测量。容量法气体吸附装置示意动态流动色谱法为在大气压力下,吸附气体和惰性气体的混合物在样品上连续流动,通过热传导检测器(TCD)监测样品对吸附物的吸收。首先,在环境温度下监测从样品管流过的气体,作为建立基线的参考;接下来,降低样品所处温度以促进吸附,并检测随着由于发生吸附导致的气体混合物热导率的变化,当吸附平衡建立时,出口气原始混合物的比例恢复,TCD信号恢复到基线;然后将样品温度提高到环境温度,这时因为被吸附的气体从样品脱附,并再次改变气体混合物中组分的比例。将任一信号(通常是脱附)与校准信号进行积分,可以得到样品吸附的气体量,混合物中吸附气体的分压除以饱和压力就是吸附发生时的相对压力。流动色谱法系统总之,无论什么方法,所使用的气体都是在固体表面形成物理吸附的气体,例如氮气、氩气、二氧化碳等,常使用的冷浴温度一般为氮气@77K(液氮温度),氩气@77K(液氮温度)/87K(液氩温度),二氧化碳@273.15K(冰水混合物温度)/298.15K(室温)/195K(干冰温度)。参考文献《现代催化研究方法新编》 辛勤 罗孟飞 徐杰 主编,科学出版社2018年本文作者:钟华 博士,毕业于中国科学院大连化学物理研究所。在粉体与颗粒表征仪器行业工作10多年,多年在高校研究所开展不同技术讲座和培训,对颗粒表征仪器有丰富的理论知识和仪器应用、市场实践经验。
  • 美国康塔仪器公司推出高温型动态蒸汽吸附仪——Aquadyne DVS-2HT
    美国康塔仪器公司很高兴地宣布Aquadyne DVS水蒸汽吸附分析仪高温型问世,它的温度分析范围能够从10~85℃。Aquadyne DVS-2HT 高温型是继Aquadyne DVS - 1 单天平型以及Aquadyne DVS- 2双天平型后加入这一精密水吸附分析仪系列的最新成员。   Aquadyne DVS水蒸汽吸附分析仪是用于精确测量样品水蒸汽吸附量的仪器,它可以测定被吸附和解吸的速率。其原理是通过重量分析法监测进程,同时精确地控制在非反应性流动气体中的含水量。这即是动态蒸汽吸附(DVS)的技术。该仪器使用安置在温度控制箱内的精密微量天平,测量样品重量在微克范围内微小变动。随着精确的温度和湿度控制,这种高灵敏度保证了每一次结果的精确性和可重复性。   在分析过程中完全控制相对湿度(RH )和温度允许,使得研究者可以调查产品长期暴露在实际湿度环境下的条件。将样品暴露于极端的温度或湿度环境下,可被用来模拟在正常水平的长期暴露或确定在该样品的结构开始降解的点。Aquadyne DVS- 2HT扩展了暴露样品的温度范围。   水吸附分析仪通常用于在各种工业应用中,包括医药,食品加工,陶瓷等。Aquadyne DVS- 2HT的新高温范围对于燃料电池和建筑材料的应用特别重要,因为预测材料的寿命需要暴露于高温和高湿的条件。   美国康塔仪器公司成立于1968年,专注于多站分析仪器和最先进的技术,是世界领先的设计、制造以及销售和服务支持多孔材料和粉末的性质表征的仪器公司。康塔仪器公司不仅获得了ISO 9001认证,并且还以提供科学应用程序支持而著称。美国康塔仪器公司拥有遍布全球的超过50个销售,服务和分销办事处,竭诚为您提供最优质的科学仪器和产品支持!   欲了解更多信息,请联系qc.sales @ quantachrome.com ,或致电800-810-0515 美国康塔仪器北京代表处http://www.quantachrome.com/vapor_sorption/aquadyne_dvs.html
  • 麦克网络研讨会:了解穿透吸附的理论与应用
    穿透曲线是描述吸附柱出口吸附质浓度随时间变化的曲线。穿透曲线可以让用户评价吸附剂介质,并计算其对流动的气体或蒸气的吸附量。穿透曲线可应用在分离、吸附、变压吸附和变温吸附等领域。 与静态吸附测量相比,动态穿透吸附能带来诸多优势。它能够轻松收集多组分吸附数据,确定吸附物选择性,同时模拟工艺条件。2022年2月,作为材料表征技术的全球专业供应商, Micromeritics 正式推出全新穿透曲线分析仪 ( Breakthrough Analyzer,下称BTA)。BTA 是一套用于模拟工业生成相关条件下精细表征吸附剂性能的强大系统,其设计结合了Micromeritics 在气体吸附方面广受认可的专业知识,以及微反应器和中试装置技术,为气体或蒸汽混合物提供可靠的选择性吸附数据。作为评估下一代吸附剂性能的高效工具,BTA 可广泛应用于气体分离、储存和净化、二氧化碳捕获和能量储存等领域。 想了解穿透吸附的基础理论与分析,为您的研究工作选择合适的方法?欢迎参加由micromeritics举办的直播网络研讨会。 内容看点:竞争性穿透吸附理论穿透曲线分析仪BTA分子筛高压吸附CO2双组分蒸汽竞争性吸附BTA在DAC技术上的应用 直播时间:2022年3月24日周四14:00—15:00 扫描下方二维码,免费注册参加麦克举办的网络研讨会!
  • 精微高博“高性能氮吸附比表面及孔径分析仪”项目通过技术鉴定
    仪器信息网讯 2010年4月20日,受北京精微高博科学技术有限公司委托,中国分析测试协会组织相关专家对其“高性能氮吸附比表面及孔径分析仪”项目进行了技术鉴定。清华大学金国藩院士担任本次鉴定会主任,参加鉴定会的还有中国分析测试协会张渝英秘书长,中国分析测试协会汪正范研究员,北京钢铁研究总院胡荣泽教授,北京理工大学傅若农教授,北京燕山石化公司研究院刘希尧教授,中国石油大学赵震教授等十余位专家。 鉴定会现场 清华大学金国藩院士主持鉴定会 中国分析测试协会张渝英秘书长   “比表面积”是指每克物质中所有颗粒总外表面积之和,比表面积对于材料的吸附、催化、吸波、抗腐蚀、烧结等功能具有重要的影响。目前比较成熟的测定比表面积的方法是动态氮吸附法,已经列入国际标准和国家标准(如国际标准ISO-9277,美国ASTM-D3037,国家标准GB/T 19587-2004)。北京精微高博科学技术有限公司是比表面仪、孔隙率分析仪的专业生产厂家,成立于2004年,目前已经有300多个国内用户。   鉴定会开始,首先由该项目负责人北京精微高博科学技术有限公司董事长、北京理工大学钟家湘教授作“JW系列比表面及孔径分析仪研制报告”。钟家湘教授先介绍了JW系列比表面及孔径分析仪的研制背景:2000年实现了对直接对比法的操作机械化,并融入了计算机技术;2004年解决了氮气和氦气流量的精确控制等关键技术;2005年研制成功动态、常压、单气路孔径分析仪;2007年研制成功全自动动态氮吸附比表面仪;2008年研发了可以测试吸附等温线以及吸脱附滞后环的新方法;2009年研究成功动态阶梯法比表面测定新方法。最后,钟教授着重讲解了动态氮吸附BET比表面测定仪和静态容量法BET比表面测定仪的总体设计,抽气微调阀、真空系统、压力测试点精度控制等关键部件的技术创新以及所能够达到的技术指标。 北京精微高博科学技术有限公司董事长钟家湘教授   之后专家严格审核了仪器的技术资料、权威机构的测试报告、科技查新资料、用户反馈信息等。在讨论和质疑环节中,各位专家就仪器的可靠性和稳定性、测试报告的规范性、相关标准的制定等问题与项目负责方进行了深入的交流和探讨,并提出了许多建设性意见。 现场考察仪器 JW系列氮吸附仪   最后,经各位专家充分讨论,一致达成以下鉴定意见:   1. 北京精微高博科学技术有限公司先后研发成功:动态氮吸附BET比表面测定仪、动态常压单气路比表面及孔径分析仪、静态容量法BET比表面测定仪、静态容量法比表面及孔隙度分析仪等两大系列十余种机型,国内外用户已超过300家,为我国氮吸附仪的发展做出了贡献   2. 在动态氮吸附仪的研制中,采用了精密且快速的流量调节系统、准确的定量氮气自动切入系统和无污染真空预处理系统等技术,新开发的动态可测吸脱附曲线和滞后环的方法以及动态阶梯法BET比表面测定仪均达到了国内外先进水平   3. 在静态容量法氮吸附仪的研制中,创造了独有的微型精密微调装置、双级真空系统、以及测试压力点精密控制的软硬件系统,使仪器的控制精度达到国际先进水平,在T-图分析及微孔测试分析方面,已取得突破,填补了国内的空白   4. JW系列氮吸附仪,包括动态和静态两个系列,经过国家计量部门采用比表面在8m2/g-80m2/g的标准样品的检测时,比表面的测试重复性精度±1%,总孔体积和平均孔径的测试重复性精度±1.5% ,达到了国际先进水平 测试速度优于国内外同类仪器的水平   5. JW系列氮吸附比表面及孔径分布测定仪是自主创新与现代技术集成,具有我国自己的特色和自主的知识产权,总体上达到了国内领先水平,部分指标达到了国际先进水平。   鉴定委员会一致同意通过鉴定,希望今后进一步提高产品的性能指标,完善产品的功能,尽快占领国内外市场。   关于北京精微高博科学技术有限公司   北京精微高博科学技术有限公司,以北京理工大学为技术背景,是北京科委批准的高新技术企业,专业生产氮吸附比表面仪及孔径分布(孔隙率)分析仪。公司设有专门的技术研发部门,销售及售后服务部门,在上海设有分公司,为客户提供高品质的产品及高效的服务是公司首要宗旨。   精微高博在中国比表面积及孔径测试仪领域独具特殊优势,是中国最大的氮吸附仪研制、生产、销售的厂家,是中国动态氮吸附BET比表面和孔径分布测试仪的原创者和开拓者。精微高博作为国产仪器的代表,与国外仪器一起参与了国家标准物质比表面标定的200余种样品的测试,产品经计量院出具的检测报告证明了测试精度高,重复性好,达到国际先进水平,完全可代替进口,与国外仪器相比,还具有质优价廉的优势。
  • 美国康塔仪器推出新一代物理化学吸附仪
    Autosorb-IQ ——气体吸附测量技术的革命性进展   Autosorb-IQ是一种全新的、高精度、多功能型气体吸附分析仪,可最多同时进行两个样品的超低压微孔物理吸附测定。   长达90小时以上的杜瓦瓶连续使用时间。分析站具有静、动态化学吸附测试功能(自带程序升温炉和强制风冷系统)。   可加装蒸汽发生装置具备蒸汽吸附功能。内置脱气站具有程序控制升温速率/持续时间/自校正功能方案,配置独立低温冷阱,可加装涡轮分子泵(选件)实现高真空脱气处理。   Autosorb-IQ的构造以及它的升级功能使它成为现今最先进的物理化学分析仪。 Autosorb-IQ的类型 1. Autosorb-IQ –AG(基本型) 基本型Autosorb-IQ适用于高分辨率,高精度的物理吸附研究,可使用任何非腐蚀性气体,内含1000 torr高精度压力传感器和二阶机械真空泵。具有超低压微孔分析和化学吸附的扩展能力。 2. Autosorb-IQ-MP(微孔型) 微孔型Autosorb-IQ-MP拥有1000、10、1torr的高精度压力传感器和高真空涡轮分子泵系统,具有IQ-AG的全部功能以及超低压微孔分析功能,并具备化学吸附的扩展能力,可加装第二套分析站系统。 3. Autosorb-IQ-Chemi(化学吸附型) 针对化学催化剂的特征,化学吸附型Autosorb-IQ具有IQ-AG和IQ-MP的全部分析功能,并具备静、动态化学吸附功能,可加装第二套分析站系统。
  • MFA-140多功能吸附仪在金城石化集团完美运行一周年
    北京彼奥德电子技术有限公司是继老北分(即北分集团)后,国内首家物理吸附仪的研发、生产企业,成立于2003年1月9日。十多年的发展进程中,公司先后组建了专业的技术研发团队,建立了完善的售后服务体系。以连续流动法比表面积分析设备为先端,连续拓展了包括真空静态容量法设备在内的8大系列、十几个型号的产品线,SSA3000系列(动态法)、SSA4000系列(静态法)、SSA7000系列(静态法)和MFA100系列(静态法)四大系列产品完全遵循国家标准及国际标准。彼奥德集合多年的研发、生产、客户体验经验和多位中科院资深学家的技术积累,共同攻克种种科学难关。多年来,彼奥德产品质量及服务赢得了良好的客户口碑。 山东金诚石化集团是以石油炼制为主的现代企业集团,是中国500强企业。先后荣获 “中国石油和化工优秀民营企业”、“全国节能减排先进单位”、“山东省文明单位”、“山东省诚信企业”、“山东省纳税先进企业”、“省级守合同重信用企业”、“山东省第九届消费者满意单位”等荣誉称号。 2012年12月,集团旗下的山东金城重油化工有限公司采购彼奥德MFA-140多功能吸附仪一台,用于催化剂比表面积、孔容积、孔径分布测试。该产品上市于2012年10月,是一款应用于微孔领域的高性能、多功能物理吸附仪。产品一经上市,引起了各界人士的关注及好评。MFA-140突破原有的技术,在仪器结构及产品性能等方面有很大提高,取得了多项独有技术专利。例如:独有压力探测B-ST技术(专利号:ZL 2012 2 0407947.0)、独有液氮实时添加技术(专利号:ZL 2012 2 0407948.5) MFA-140多功能吸附仪是一款可应用于微孔领域的高性能、多功能物理吸附分析仪;拥有先进的技术、卓越的品质、更全面的理论模型及优良的测试精度,满足科研、学术探讨等多方面应用需求 仪器性能优势 (一)拥有4个独立分析站(二)比表面积在1m2/g以下的样品可准确测量,精确到0.0005m2/g(三)断电数据保护功能(四)触屏控制,并配备强大的计算机端分析软件(五)领先的气路结构设计,实现了物理吸附分析技术的完美超越(六)配置分子泵及高真空电磁阀与集成气路组成高真空系统 先进技术应用 (一)全新的集成气路结构和工艺(二)死体积引入液面高度校准(自由空间温差动态校准技术)(三)高精度冷却液液面定位系统(四)配置1torr、10torr低量程压力传感器,可分析微孔(五)真空抽气的动态调速(I-PID) (六)冷却液注入装置与死体积双向定位系统(七)独有的压力测试B-ST技术(八)先进的触屏控制显示系统
  • 【高校设备更新实施方案】来了!焕新国产—气体吸附仪器助力科研
    【高校设备更新实施方案】来了!焕新国产—气体吸附仪器助力科研点击填写【高校设备更新】采购需求市面上的气体吸附产品庞杂,如何挑选更适合您的仪器1. 产品功能稳定,数年间持续为您提供准确数据2. 产品自动化程度高,方便操作3. 售前售后为您排忧解难,有问题随时解决4. 线上丰富资料库,学习机器使用技巧,了解更多应用发展静态法产品优势:介孔系列的一体化集装式真空管路系统,有效提高系统极限真空度和测试精度微孔系列的高真空不锈钢微焊管路系统配套 VCR 接口和气动阀,系统内壁电抛光处理,可以保证系统的低漏气率,配合分子泵,达到更高真空度高精度数字化压力测量及数据采集系统,抗干扰能力强,可扩展性高,多量程压力传感器分段测量确保微孔低压力测量准确性采用国际同类知名品牌一致的仪器检测及验收标准,确保测试数据与国际接轨。测试数据经多家权威国家级计量院计量认证,获得计量认可证书动态法产品优势:优质的不锈钢管路系统,密封性更好,可靠性更强,降低热导池温漂误差,提高仪器使用寿命实时调节 P/P0 在 0.03~0.35 范围内任何比例的混合气体可满足客户不同的测试需求多样品测试速度快,同时对于小表面积测试结果准确度高、重复性好真密度产品优势:大热容量的集装式恒温系统,确保全程温度的均匀性和缓变性,针对特殊样品可以按需进行控温,满足不同测试需求高精度数字量采集系统,抗干扰能力更强,可扩展性高。采用高精度计算模型,提高测试精度样品仓底部安装过滤装置,有效防止样品吸入管路系统。测试腔体底部进气方式,有效防止样品飞溅高温高压气体吸附仪产品优势:高压及真空通用的不锈钢微焊管路系统,确保高压和高真空下极低的漏气率,提高仪器稳定性和使用寿命可定制的防飞溅不锈钢微焊样品管,确保高压测试安全,提高仪器使用寿命及可靠性微型标准腔体(参考腔体),结合高密封性管路系统,少量样品量(毫克级至几克级)可达到传统仪器采用几十克样品量测试结果同等精度测试完成后无任何数据二次误差消除操作,确保测试结果的一致性和可靠性
  • 《光栅尺静动态特性研究及动态检测装置研制》通过验收
    近日,广东省计量院承担的原省质监局科技计划项目《光栅尺静动态特性研究及动态检测装置研制》顺利通过省市场监督管理局组织的专家组验收。   《光栅尺静动态特性研究及动态检测装置研制》项目由广东省计量院计量科研部牵头完成。该项目针对现有光栅尺检测装置静态校准检测方法不能满足光栅尺运行速度、加速度等实际工况运行需求,研制了一套基于精密气浮导轨的光栅尺静动态误差检测装置,可模拟光栅尺不同的运行速度、加速度工况,研究了几何参数、运行速度、加速度等因素对光栅尺测量精度的影响。项目获授权发明专利、实用新型专利各1件,发表科技论文2篇。项目产品经第三方机构校准,主要技术指标满足任务书(合同)要求。   目前,该项目成果已应用于广东光栅数显技术有限公司、苏州必力信光电有限公司等光栅设备生产、经销企业,使用效果良好,获得较好评价。
  • EZ6001总溶解砷在饮用水吸附工艺过程控制的应用
    EZ6001总溶解砷在饮用水吸附工艺过程控制的应用EZ6001总溶解砷在饮用水吸附工艺过程控制的应用——改进砷处理系统控制的在线监测哈希公司 安道尔共和国一条源水供应是来自于比利牛斯山的Birena山脉。与其他水源不同的是在春季总砷的含量高达10~20ppm(总溶解性砷14~18ppb)。砷是一种有毒的化学物质,摄入剂量过大会对身体健康产生严重危害。WHO在1983年制定了饮用水中砷最 大摄入剂量为10µg/L。2001年WHO声明为了人类生命健康该限值应该进一步降低。在2015年,当地政府投资了超过50万欧元设计一家新车间去除从Birena泉水中取水引入的砷,砷去除工艺是基于一种选择性的氧化铁介质吸附技术。考虑到砷的性质包括它本身的化学组成和它的处理过程,当局制定了完整的方案确保工艺效果及可能遇到的挑战:(1)厂区监测包括日常外部实验室检测,结果至少要3~4天,利用在线仪表得到实时数据就显得尤为重要。(2)精确的砷浓度监测控制,优化除砷系统旁路的安全使用,并对吸附系统的表现提供可靠的信息。在线砷仪表和手工测量有着相似的最 低检出限。(3)可以得到处理后进入蓄水池水的砷浓度实时数据(对于任何突发事件的安全响应和快速反应)。当地主管部门对哈希的产品线非常了解,他们在不同工艺段已经使用了浊度仪、pH探头和电导率在线测量装置。图1 Birena饮用水厂图2&3 Birena饮用水厂内吸附过滤装置选择性介质由于其很高的吸附去除率被普遍应用在去除砷的工艺中,吸附单元操作简单,整个过程只需要一台泵即可操作运行。然而正如普通的过滤/吸附过程,最重要的是建立和控制运行过程,(滤池反冲洗和再生过程)并保持在可行的水利设计范围内。因此,在线砷监控对于Birena饮用水厂旁路控制、吸附单元和饮用水过程水质量控制非常关键。符合客户要求的仪器为 EZ6001.99003302总溶解性三价和五价砷在线分析仪:该泉水中只检测出了五价砷作为砷的来源;过程中布置了三个监测点(原水、滤出水、出厂水);源水非常干净,没有预处理装置;作为 PLC 连接的 x3 模拟输出。EZ6001 分析仪的特性和精度允许在饮用水当中通过伏安法来监测砷;在线监砷分析仪提高了除砷装置的利用效率,确保出厂水砷浓度不超标;能够对过滤器可能发生的突发工艺变化进行预警;便于更好地监测过滤器过滤介质表现、穿透情况和生命周期。在本案例中, 被应用于饮用水厂过程中砷监测,仪表运行稳定,实时数据可以指导控制吸附除砷装置工作,对水厂优化去除特征污染物起到了很好的帮助,确保当地居民能够喝到放心安全的饮用水。 END
  • 美国康塔Autosorb-1实现无限制进行气体吸附实验
    美国康塔仪器公司正式介绍与OXFORD合作开发的Optistat® DN低温恒温器! 随着材料科学的迅猛发展,科学家对不同周期或不同温度的材料吸附实验提出了更高的要求, 康塔公司与世界著名的低温专业公司OXFORD合作在享誉世界的Gold Grad 研究级 Autosorb-1全自动 物理/化学吸附分析仪上联合开发了取代冷阱杜瓦的Optistat® DN低温恒温装置。该装置专用于Autosorb-1系列仪器。从此, Autosorb-1实现了在77K到200K之间进行无限制气体吸附实验的可能。 该装置具有以下特点: - 仅用液氮做冷媒, 专用于Autosorb-1系列全自动物理/化学吸附分析仪 - 可在77K到200K之间进行无限制气体吸附实验 - 无需液氩在87K进行高分辨微孔/介孔氩吸附分析 - 对不同吸附物质在不同温度下进行宽范围的准确测量 - 吸附热的准确测定 - 温度精度: +/- 0.03K - 在样品区具有三点校正的温度传感器 低温恒温器与Autosorb的结合为催化剂开发和新材料研究提供了新的实验手段。 欲知更多详情,请致电康塔公司代表处。
  • Markes吸附管的优势
    为什么Markes的热脱附吸附管更好?装填有吸附剂的 3&half " × 1/4" 吸附管是进行热解吸分析的主要样品收集装置。我们发现市场上存在众多吸附管品牌,那么选择哪个品牌的吸附管?基本需要考虑的因素包括产品质量、成本和交货速度等。在本文中,我们将探讨Markes吸附管的优势,并强烈建议您选择Markes的吸附管产品!对分析工作者来说,采样是分析过程中至关重要的一步。即使拥有灵敏的仪器、先进的软件和完善的分析方法,如果样品收集过程未被优化,分析结果的可靠性会受到很大的影响。对我们来说,安全可靠的采样始于产品质量。虽然购买较便宜的吸附管产品看似节省了成本,但如果产品未能达到预期性能,这种节省就没有意义。“产品质量”可能是一个模糊的概念,因此我们将重点讨论吸附管的洁净度。因素1:吸附管的洁净度吸附管若不足够洁净,其背景信号会出现在色谱图中,影响目标化合物的定性和定量分析。随着应用检测限要求的不断降低,吸附管的洁净度在疾病生物标志物的呼吸监测和空气中优先污染物的处理等领域变得格外重要。因此,吸附管产品质量的核心之一就是洁净度。Markes的预老化吸附管在发货前都经过严格的质量检查。以下三张图显示了10根Markes预老化吸附管和其他两个友商的同等数量吸附管,在相同条件下进行两次连续解吸的平均背景差异(友商2没有类似于我们的“空气有毒物专用吸附管”和“通用吸附管”产品,因此未作比较)。结果显示,在每种测试条件下,Markes的吸附管第一次和第二次解吸的背景都显著低于其他友商。事实上,在某些情况下,其他友商的吸附管第二次解吸的结果仅略低于Markes[预老化吸附管第一次解吸的水平,这清楚地证明了吸附管洁净度对结果的重大影响。因素2:吸附管类型的正确选择吸附管产品质量的另一个关键因素是选择适合分析要求的吸附管。通过与客户和合作伙伴的紧密合作,我们不断了解分析热脱附市场的新趋势,并致力于为各种采样挑战寻找合适的吸附剂组合。我们不仅提供多种类型的吸附管,而且设计了一系列符合特定要求和应用的吸附管。凭借近25年的行业经验,我们还能根据需要帮助客户开发定制吸附管。然而,除了吸附管本身,我们更向客户提供与热脱附相关的技术经验和知识。与其他友商不同,我们将吸附管与合适且经过验证的吸附剂以及聚焦冷阱相结合,确保分析作为整体进行。此外,我们庞大的应用案例库能够为多种方法的开发提供有力的支持。因素3:产品一致性最后,同样重要的是产品批次间的一致性。确保您去年购买的吸附管,与今年购买的性能完全相同。因此,Markes的吸附管制造过程在严格的质量控制下进行,每根管的填充重量误差控制在±2.5%以内。发货前,每根管都会经过严格的物理测试,而预老化管在出厂前会进行色谱测试。我们的目标是在每个阶段都为您提供可靠且高品质的产品。
  • 我国成功研制疲劳试验机动态力校准装置
    我国成功研制疲劳试验机动态力校准装置让材料可靠性测试更精准 日前,由中国计量科学研究院自主研制的疲劳试验机动态力校准装置通过专家鉴定。经鉴定,该装置主要技术指标达到国际先进水平,并填补了国内疲劳试验机动态力校准方法研究方面的空白。 疲劳是指材料在重复或交变应力作用下,所受应力远小于其抗拉强度时,经多次循环后,在无显著外观变形情况下而发生的断裂现象。这种断裂一旦发生,往往将导致灾难性的设备或人身伤亡事故。据了解,汽车零部件的破坏中85%由疲劳引起的,航空工程中有60%~80%的断裂是由结构材料的疲劳破坏引起的。为保证产品、工程质量和人身安全,相关行业主要通过疲劳试验机来测量试件材料的疲劳极限和疲劳寿命等性能指标。 该装置的成功研制,为疲劳试验机校准、检定和定型鉴定提供了高准确度的计量标准和科学合理的装置和方法。为航空航天、汽车、船舶、冶金、建筑等行业的材料可靠性与使用寿命测试提供了有力的技术支撑,并为材料计量提供了强有力的量值溯源保障,具有较大的社会效益和经济效益。
  • 恒泰尚合高温高压等温吸附仪顺利交付使用
    日前,由恒泰尚合能源技术(北京)有限公司代理的GAI-100型进口高温高压等温吸附仪顺利交付甲方使用。甲方研究院院长、实验室主任等领导高度重视,亲临安装培训现场,并与公司技术人员进行了广泛的交流和探讨。经过4天安装与培训,甲方对该设备的宽测试范围、高采集精度、高稳定温控、人性化操作与方便快捷的数据处理、以及完善的售后服务给予了高度的评价和认可。 (现场安装与培训) GAI-100型进口高温高压等温吸附仪技术参数:1)材料: 316 不锈钢;2)工作压力:达 10,000 psi,精度0.01%;3)工作温度:达 350°F (177°C),精度0.01%;4)电源: 110 VAC 60 Hz 单相或 220/240 VAC 50 Hz 单相;5)尺寸: 36” x 36” x 72”(宽 x 深 x 高);6)供应要求: 最低 80 psig、最高 120 psig 的气体,每次一种;7)测试气体最低为 125 psig;8)用于油槽的油; 标准配置:1)油槽;2)3 个测试室;3)气体升压泵;4)地面安装的仪器架,带历新 (Lexan) 防溅保护装置;5)工具包;6)笔记本电脑
  • 色谱法化学吸附仪在催化剂行业中的应用
    摘自石油化工科学研究院《色谱法多功能催化研究装置》 在以往工作的基础上,提出了用气象色谱(GC)对催化反应、化学吸附和气体扩散进行联合研究的设计,建立了相应的装置,并拟投入定型化仪器生产。根据要求,可以使用脉冲法、连续流动法、迎头法,以及程序升温脱附技术,在一套设备上逐个测定催化剂的反应速度、金属分散性或其它活性中心、表面酸碱度和质量传递性能等,以便参照催化全过程的多种原位数据,有效地改进催化剂的活性、选择性及寿命。一、序言 在多相催化中,由于反应体系的复杂性,使得再解释催化活性及其机理上遇到了困难,因而妨碍了对特定化学过程最佳催化剂的选择。在近代,虽然有着各种能谱,光谱,磁学方法,场发射技术等应用于催化精细结构的研究,但由于各自在仪器和理论方面的限制,它们存在以下主要缺点:1、由于价格昂贵,不是所有的研究者都能得到所希望的仪器设备;2、由于催化材料的多样性,不是每种仪器都能获得所希望的数据;3、多数物理方法在“非原位“条件下所得到的数据,很难与催化行为直接关联。 近十多年来,随着色谱理论和技术的日臻成熟,并且由于它没有以上缺点和具有简便、快速、定量准确等优点,因而在催化研究中得到了广泛的应用。则是在接近于反应的条件下,研究固体催化剂的大多数表面化学性质,并在同时测定他们的催化性能,以便关联这些数据,加深对某特定过程催化作用本质的了解,并控制它的最佳催化剂的选择。为此,在综合以前工作的基础上,笔者提出了利用气相色谱技术,对催化行为进行联合研究的设计,并建立了可以作为定型化仪器的示范装置。现将该方法的基本原理和操作要点介绍如下。二、在催化研究中的应用GC技术通常按两种方式用在催化研究中,一种是将催化剂直接填充在色谱柱中,另一种是附加一个微型反应器与GC。用此可以测定物理表面积,传递参数,化学吸附和表面行为,反应速度等催化过程所需要的几乎全部数据。由于使用物理吸附法进行总表面积和孔分布的测定熟为人知,因而将不予涉及。在此,仅介绍笔者及其同事曾经进行和较感兴趣的几个方面。应用GC技术研制的程序升温化学吸附仪PCA-1000系列可进行以下催化剂性能分析:1. 催化剂活性表面积或金属分散性 催化剂的活性表面积仅占物理总表面积的一小部分。这一数据对于考虑催化反应的结构敏感性行为和计算转换数是不必可少的。通常,它也可以用在催化剂上的活性中心数目来表示。并且,通过用用脉冲色谱技术测定不可逆化学吸附,能够获得这一结果。金属和负载的金属催化剂,是研究的最多的对象。我们曾对重整过程中的各种催化剂和双金属催化剂进行研究。吸附质可以使用氢气、氧气、一氧化碳等。最优越的是化学吸附氧的氢脉冲滴定法。吸附体积的测量,按催化剂上消耗的吸附质数量来计算2. 程序升温脱附(TPD)技术 当吸附的质点被提供的热能活化,以至能够克服为了它的逸出所需越过的势垒时,便产生脱附。由于脱附速度随着温度的升高而指数地增加,同时,又因覆盖度的减小而减小,因此,正比于脱附物质浓度的信号,即脱附速度曲线呈TPD谱。 我们曾用氢气的TPD法,对国内外工业和实验室重整催化剂,发现在以Pt为主要组分,以氧化铝为载体的单、多金属催化剂上,存在着两类主要的活性中心。其低能中心是Pt的某种结构所特有的,它主要与加氢-脱氢反应活性有关;而第二或第三组元的引入,则只改变了高能中心的结构特征,它主要与异构化和环化反应有关。两类中心的相对数量和谱图的形状,决定着各基元反应的选择性;而催化剂的稳定性,则可由谱图的值估价。由此向我们提供了改进催化剂活性、选择性,以及使用寿命的方向。3. 固体材料表面酸碱性能的研究 在多相酸碱催化或双功能催化反应中,催化剂或者在体表面的酸碱度、酸碱中心类型,以及强度,对其活性、选择性、甚至寿命,都有着十分重要的作用。田部浩三曾系统的介绍了这一催化现象和对其进行实验测定的各种方法。特别是应用GC技术的气相酸碱物质的化学吸附法,在快速、准确、简便等方面,具有明显的优越性。 例如,当气体碱在酸性中心上吸附时,与强酸的结合将较在弱酸中心上更稳定,因此,随着温度的上升,吸附在后者上的碱性物质将优先的因热能激发而逸出。于是,在各种温度下逸出的吸附碱的份数,能够作为酸强度的量度;而从气相中所吸附的碱量,则作为表面酸度的量度;如果选择适当的吸附质,也有可能对表面Bronsted酸和 Lewis酸中心加以区分。4. 微型催化反应器技术 将微型催化反应器与GC相结合,提供了一个节省催化反应性能、动力学参数。特别是研究起始速度。中毒效应、催化剂失活等缓慢现象的手段。而且,它也容许方便地获得有关反应机律的情报。 笔者所给出的这种实验设计,可以按两种方式操作:一种是所谓的尾气技术,它与一般的连续流动法没有什么区别;一种是脉冲技术,它更能体现出GC法的优点。特别适合于在各种条件之下快速筛选和评价催化剂的情形。结合选择加氢催化剂的研制,我们曾有效地使用了环己烯、噻吩、异戊二烯模型化合物的微型脉冲催化反应研究法。考察了在许多催化剂上的活性、选择性,以及在某些工业催化剂上的吸附竞争性、反应机理,并计算了主要过程的反应活化能。在本文报道的装置上,还用类似方法研究了环戊二烯在各种类型催化剂上的选择加氢行为。 在非稳态脉冲条件下反应动力学的理论研究指出,只有在一级反应的情形中,或者在脉冲宽度远大于床层高度的条件之下,才能得到与连续流动法反应一致的结果。因此在进行动力学测量时,仔细的把握这一条件是十分重要的。5. 催化剂有效扩散系数的测定 质量传递作用,即扩散效应在使用多孔固体催化剂的工业过程中,对于产品的生产率有着巨大的影响。因此关于催化剂有效扩散性的测定是十分重要的。利用我们给出的装置,还可以按照另外一种途径进行这方面的研究。方法的基本点是在各种流速上,用测定非化学作用气体脉冲加宽的办法,来计算有效扩散系数。
  • 一文带你走入物理吸附的天地
    p style=" text-align: justify text-indent: 2em " 在工作中,我们经常会遇到比表面积这个概念。比表面积的测定对粉体材料和多孔材料有着极为重要的意义,它可能会影响材料很多方面的性能。例如催化剂的比表面积是影响其性能的主要指标;药物的溶解速度与比表面积大小有直接关系;物理吸附储氢材料多为比表面积较大的多孔材料,土壤的比表面积会影响其湿陷性和涨缩性。 /p p style=" text-align: justify text-indent: 2em " 影响材料比表面积的因素主要有颗粒大小、颗粒形状以及含孔情况,其中孔的类型和分布对比表面积影响是最大的。常规测定材料比表面积和孔径的方法有气体吸附法、压汞法、扫描电镜以及小角X光散射等等,其中气体吸附法是最普遍也是最佳的测试方法,尤其是针对具有不规则表面和复杂的孔径分布的材料。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 500px height: 325px " src=" https://img1.17img.cn/17img/images/201906/uepic/d35f3ecb-de71-46ec-ad8f-94fe24a2882c.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 500" height=" 325" border=" 0" vspace=" 0" / & nbsp & nbsp & nbsp & nbsp & nbsp /p p style=" text-align: justify text-indent: 2em " 气体吸附有物理吸附和化学吸附两类,由分子间作用力(范德华力)而产生的吸附为物理吸附,化学吸附则是分子间形成了化学键。物理吸附一般情况下是多层吸附,而化学吸附是单层吸附。 /p p style=" text-align: justify text-indent: 2em " 在物理吸附中,发生吸附的固体材料我们称之为吸附剂,被吸附的气体分子为吸附质,处于流动相中的与吸附质组成相同的物质称为吸附物质。 /p p br/ /p p style=" text-align: justify text-indent: 2em " & nbsp /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/184f6781-8d9a-4823-94c9-62247baceeb6.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: justify text-indent: 2em " 根据材料的孔径,材料可分为微孔材料(孔径小于2nm)、介孔材料(孔径在2nm到50nm)以及大孔材料(孔径大于50nm)。 /p p style=" text-align: justify text-indent: 2em " 在吸附过程中,随着压力从高真空状态逐渐增加,气体分子总是先填充最小的孔,再填充较大的孔,然后是更大一点的孔,以此类推。& nbsp 以即含有微孔又含有介孔的样品为例,在极低压力下首先发生微孔填充,低压下的吸附行为主要是单层吸附,中压下发生多层吸附,当相对压力大于0.4时,可能会出现毛细管凝聚现象,直到最后达到吸附饱和状态。 /p p style=" text-align: justify text-indent: 2em " 多孔材料的表面包括不规则表面和孔的内部表面,它们的面积无法从颗粒大小等信息中得到,但是可以通过在吸附某种不活动的或惰性气体来确定。我们用已知截面积的气体分子作为探针,创造适当的条件,使气体分子覆盖于被测样品的整个表面,通过被吸附的分子数目乘以分子截面积即认为是样品的比表面积。因此比表面积值不是测出来的,而是计算得到的。 /p p style=" text-align: justify text-indent: 2em " 物理吸附仪测试吸附量主要通过以下几种方式:静态体积法(测定吸附前后的压力变化),流动法(使用混合气体通过热导池测定热导系数的变化)以及重量法(测定吸附前后的质量变化)。其中静态体积法应用最为广泛。 /p p style=" text-align: justify text-indent: 2em " 下面是静态体积法的物理吸附仪器示意图:真空泵、一个或多个气源、连接样品管的金属或玻璃歧管、冷却剂杜瓦、样品管、饱和压力测定管、压力测量装置(压力传感器)。其中歧管的体积经过校准,并含有温度传感器。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/0a23586e-b60b-4eb0-bb98-11447a4bcf39.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center text-indent: 2em " 1 :样品管 & nbsp 2:低温杜瓦 & nbsp 3:真空泵 & nbsp 4:压力传感器 & nbsp 5: 歧管 /p p style=" text-align: center text-indent: 2em " 6: 饱和蒸汽压测定管 & nbsp 7 : 吸附气体 & nbsp 8 :死体积测定气体He /p p style=" text-align: justify text-indent: 2em " 静态体积法测试主要流程(以氮气吸附为例):首先将样品进行脱气净化处理,之后测量死体积(样品池)空间,然后将样品冷却到液氮温度,将氮气注入到已知体积的歧管中,记录压力与温度,之后样品池与歧管之间的阀门打开,氮气扩散到样品池,由于空间体积增大和样品对氮气的吸附作用,压力下降,通过压力的下降来计算气体吸附量。计算过程基于克拉柏龙方程:PV = nRT。其中P是气体的压强,V为气体的体积,n表示气体物质的量,而T则表示理想气体的热力学温度; R为理想气体常数。吸附量由下面公式得到: /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/81d0c349-bbb5-414a-ad42-095759c73754.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: justify text-indent: 2em " 如果温度和压力恒定,气体(吸附质)和表面(吸附剂)的作用能是不变的,在一个特定表面的吸附量也是不变的,因此在恒定温度下,可以用平衡压力对单位重量吸附剂的吸附量作图。而这种在恒定温度下,吸附量对压力变化的曲线就是特定气-固界面的吸附等温线。 /p p style=" text-align: justify text-indent: 2em " 气体是作为吸附探针来分析材料比表面积和孔径分布的,它应该满足几个条件: 1) 气体相对惰性,不与吸附剂发生化学反应; 2) 物理吸附一般是弱的可逆吸附,为了使足够气体吸附到固体表面,测量时固体须冷却到吸附气体的沸点; 3) 符合或满足理想气体方程的使用条件。 /p p style=" text-align: justify text-indent: 2em " N2(77 K)是最常见的吸附气体,可满足常规分析;Ar(87 K)为微孔分析提供更准确的分析结果、更快的分析速度、更高的起始压力;CO2(273 K)对微孔碳材料具备最快的分析速度,分析孔径可低至0.35 nm;Kr (77 K)适用于超低比表面积分析;Kr(87 K)适用于薄膜样品的孔径分析。我们可根据样品特点来选择最合适的吸附气体。 /p p style=" text-align: justify text-indent: 2em " 在进行比表面积分析时,我们经常会用到Langmuir 和BET方程,其中Langmuir 方程是基于单分子层吸附理论,而BET 方程式基于多层分子吸附理论,也是目前最流行的比表面分析方法,适合于大部分样品。 /p p style=" text-align: justify text-indent: 2em " 在进行孔径孔容分析时,可选择的理论模型会更多,不同的理论模型假设条件不同,给出的计算结果也是不同的,所以我们应选择最适合样品性质的理论模型。根据经验,BJH、DH模型适用于介孔材料分析, DA、DR、 HK、SF模型适用于微孔材料分析,NLDFT、QSDFT适用于微孔/介孔材料分析。NLDFT 是非定域密度泛函理论,研究表明,NLDFT 计算出的比表面值最接近真实值,并且该理论适用于微孔和介孔材料。 /p p style=" text-align: right text-indent: 2em " strong 作者:安东帕研发团队 /strong /p p style=" text-align: left text-indent: 2em " (注:本文由安东帕供稿,不代表仪器信息网本网观点) /p
  • 计量院成功研制疲劳试验机动态力校准装置 填补国内空白
    记者22日从中国计量科学研究院获悉,我国自主研制成功疲劳试验机动态力校准装置,经专家鉴定填补该领域国内空白。   不仅人类会产生疲劳,汽车零部件、航空工程结构材料经过多次循环使用后也会产生疲劳——在无显著外观变形情况下而发生断裂,从而导致灾难性的设备或人身伤亡事故。   据统计,汽车零部件的破坏中85%是由疲劳引起的,航空工程中有60%—80%的断裂是由结构材料的疲劳破坏引起的。相关行业主要通过疲劳试验机来测量试件材料的疲劳极限和疲劳寿命等,而动态力值误差是疲劳试验机的一个主要性能指标。目前,受技术水平和研究能力的限制,国内对疲劳试验机检定或校准,通常只针对静态力值,明显降低了疲劳试验机动态力值计量的准确度,并增大了测量不确定度。此次研制的疲劳试验机动态力校准装置就可解决这一难题。   课题负责人、中国计量科学研究院副研究员胡刚告诉记者,此套疲劳试验机动态力校准装置,由电阻应变式力传感器及动态应变信号数据采集系统两部分组成,静态准确度达到0.1级,在500Hz频率范围内,归一化动态灵敏度优于1%,实现了高准确度的动态力测量,可实现校准装置动态特性测试、疲劳试验机动态力校准,主要技术指标达到国际先进水平。   该装置的成功研制,为疲劳试验机校准、检定和定型鉴定提供了高准确度的计量标准和科学合理的装置和方法。为航空航天、汽车、船舶、冶金、建筑等行业的材料可靠性与使用寿命测试提供有力的技术支撑,并为材料计量提供强有力的量值溯源保障,具有较大的社会效益和经济效益。
  • 关于物理吸附行业“吸附速度”与“吸附速率”的区别
    在物理吸附行业,经常有不少学生、老师甚至业内的专家,不确定自己要测试的物理量该叫“吸附速度、脱附速度、解吸速度”还是“吸附速率、脱附速率、解吸速率”;不少硕士、博士论文中,甚至较专业的一些技术文章,也经常出现不统一的叫法。由于“速度”相对“速率”偏口语化,”速率“比”速度“更显“学术”,因此经常发现不少专业的人,把本该叫“吸附速度、脱附速度、解吸速度”等的参数,叫成了“吸附速率、脱附速率、解吸速率”。要搞清楚到底该叫“吸附速度”还是“吸附速率”,首先要搞清楚“速度”和“速率”的区别。速度为矢量,有方向和大小;速率为标量,只有大小,没有方向。举例说明:对于位于边长为100m的等边三角形3个角的A、B、C 3点,某物体以匀速10m/秒的速度大小从A经C到达B点,耗时20秒;对于这个情况,该物体从A到B的速度为5m/秒,整个过程其移动速率为10m/秒。再例如,对于悬浮于气体中一个做布朗运动的气体分子或灰尘,其不规则运动的即时速度大小或速率是很大的,但是,在我们我们讨论其从A点运动到B点的速度时,我们是用AB的直线距离除以时间来表示,而速率就不需要考虑其方向性,“只看大小”。在我们讨论吸附质在吸附剂表面的物理吸附现象中,由于吸附和脱附时同时并存发生的两种现象。大家都知道,当处于吸附平衡状态,吸附速率和脱附速率都不是零,只是相等,但吸附速度和脱附速度是零。再比如,对于其它所有条件都相同只是温度不同的两个吸附平衡状态下,温度高的状态的吸附速率或脱附速率有可能相对温度低的都大,但是吸附速度或脱附速度都是零。“吸附速率”或“脱附速率”,更多的偏向于表征吸附质分子单纯聚集于吸附剂表面或单纯离开固体表面的速度大小;而“吸附速度”或“脱附速度”,则更多的偏向于表征在一定时间内由于吸附速率和脱附速率差造成的“净聚集”或“净离开”吸附剂表面的吸附质的量,由于有“方向性”,偏向于表征“效果”。在目前市面的大多数涉及“吸附速度、解吸速度”测试的仪器,测试的其实是一段时间内吸附剂表面吸附质的增加量或减少量,那么,此类仪器就应该叫做吸附速度测试仪或解吸速度测试仪是更恰当的,而不应该叫做吸附速率测试仪或解吸速率测试仪、分析仪等,因为其分析的不是“速率大小”。其实,关于类似这些“专有”名词或概念的普及,主要一方面来自课本,也有不小一部分来自于相关商家或研究单位。假若理解不对的人过多,且一时没有权威单位给予纠正和说明时,商家就有可能从商业利益出发,跟随“潮流”而“被迫”舍弃“严谨”;像“吸附速度”这个词,可能不少国内外商家其实是明白应该怎么个叫法,但是从商业角度考虑,为了更好的可接受性和被认识被发现,而跟随大众。尤其在网络搜索占主要推广方式的当下,这种情况更明显。不少通俗易懂但又不严谨的词语,就是这么产生的。贝士德仪器作为从事气体吸附、蒸汽吸附类分析仪器的制造商和研究单位,有责任给出科学的说明,并倡导正确使用“吸附速度”和“吸附速率”等此类名词。
  • 中国科学技术大学理化科学实验中心热分析与吸附组在用设备简介
    p    strong 本文转载自微信公众号热分析与吸附,作者为中国科学技术大学丁延伟老师,并已获转载授权。 /strong /p p   目前热分析与吸附组在用的分析仪器主要包括热分析仪、吸附仪和粒度粒形分析仪,这些仪器与常规的结构和成分分析仪器不同,主要侧重于材料的性质表征。热分析仪是在程序控温和一定气氛下测量材料的物理性质(主要包括质量、热量、尺寸、电学性质、光学性质、磁学性质等)随温度或时间连续变化关系的一大类仪器,而吸附仪则通过测量材料在不同条件下(主要指压力、浓度、温度、时间等)对于某种或某几种气体的吸附能力来获得材料的结构、性质等方面的信息的一类仪器,主要分为物理吸附仪和化学吸附仪两大类,粒度粒形分析系统可以得到材料的粒径分布、粒形和Zeta电位等信息。和以下将分类进行介绍。 br/ /p p style=" text-align: center "    strong I热分析仪 /strong /p p    a href=" https://www.instrument.com.cn/zc/62.html" target=" _self" strong 1.热重仪 /strong /a /p p   热重仪(Thermogravimeter),是一种利用热重法检测物质温度-质量变化关系的仪器。按其结构形式可以分为下皿式(即吊篮式)、上皿式和水平式三大类。目前的商品化仪器中,上皿式和水平式结构的热重仪通常与差热分析和差示扫描量热技术联用,通常称为同步热分析仪(SimultaneousThermal Analyzer)。下皿式结构的仪器通常为单一的热重仪。在用的热重仪主要有日本岛津公司TGA-50H热重仪(图1)、美国TA公司Q5000IRTGA热重仪(图2)、美国TA公司DiscoveryTGA热重仪(图3)和德国Netzsch公司TGA209F1四台仪器。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/7cc54975-2e83-4193-afbe-9362093fddab.jpg" title=" 图1 Shimadzu TGA-50H热重仪.png" alt=" 图1 Shimadzu TGA-50H热重仪.png" / /p p style=" text-align: center " 图1 Shimadzu TGA-50H热重仪 br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/202006/uepic/60fcd219-634a-4501-b236-0c8383beb3f5.jpg" title=" 图2 TA Q5000IR TGA热重仪.png" alt=" 图2 TA Q5000IR TGA热重仪.png" style=" max-width: 100% max-height: 100% " / /p p style=" text-align: center " 图2 TA Q5000IR TGA热重仪   /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C259642.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/3cc6fee1-5c9e-42d8-b072-1cf2aa19198b.jpg" title=" 图3 TA Discovery TGA热重仪.png" alt=" 图3 TA Discovery TGA热重仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C259642.htm" target=" _self" 图3 TA Discovery TGA热重仪 /a    /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C143328.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/62aaf285-e5ee-4ded-9d8f-68c63487286c.jpg" title=" 图4 德国Netzsch公司TGA209F1热重仪.png" alt=" 图4 德国Netzsch公司TGA209F1热重仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C143328.htm" target=" _self" 图4 德国Netzsch公司TGA209F1热重仪 /a /p p   其中,TGA-50H热重仪购于1993年,经过多次的加热炉、热电偶、吊篮以及软件的升级改造,这台仪器至今各项指标都可以满足检测要求。目前该仪器主要用于完成一些特殊条件下(主要指耗时特别长、水蒸气、还原气氛等可能会对仪器带来潜在损害的实验)的热重实验。美国TA公司的Q5000IRTGA和DiscoveryTGA可以实现温度调制(MTTGA)和速率超解析(HRTGA)实验。德国Netzsch公司TGA209F1带有200位自动进样器,可以实现真空条件下的TG实验。Q5000IR TGA和DiscoveryTGA主要用于常规测试,这两台仪器均带有25位自动进样器,可以高效率地完成各种常规测试需求。另外,由于其红外加热的优势,可以实现快速的升降温和准确的等温,可以用来研究高加热速率和等温下的热解行为。 /p p    a href=" https://www.instrument.com.cn/zc/469.html" target=" _self" strong 2.同步热分析仪 /strong /a /p p   同步热分析仪是在程序控温和一定气氛下,对一个试样同时采用两种或多种热分析技术,是一种常见的热分析技术。通常特指热重-差热分析仪或热重-差示扫描量热仪。在用的热重仪主要有日本岛津公司DTG-60H热重-差热分析仪(图5)、美国TA公司SDTQ600热重-差热分析仪(图6)、美国PE公司STA-6000同步热分析仪(图7)、美国PE公司STA-8000同步热分析仪(图8)和德国耐驰公司STA449F3同步热分析仪(图9)。这五台仪器中除STA-8000最高温度为1000℃外,其余四台仪器的最高温度均为1500℃。其中,STA-6000和STA449F3带有自动进样器,可以高效率地完成各种常规测试需求。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/9bf825ec-6e41-4322-a420-e5f38d3601ee.jpg" title=" 图5 Shimadzu DTG-60H热重-差热分析仪.png" alt=" 图5 Shimadzu DTG-60H热重-差热分析仪.png" / /p p style=" text-align: center " 图5 Shimadzu DTG-60H热重-差热分析仪 br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/202006/uepic/2892e4a4-5470-4edf-a2fe-9dd437fd5c40.jpg" title=" 图6 TA SDT Q600热重-差热分析仪.png" alt=" 图6 TA SDT Q600热重-差热分析仪.png" style=" text-align: center max-width: 100% max-height: 100% " / /p p style=" text-align: center " 图6 TA SDT Q600热重-差热分析仪 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C32191.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/97dabaf9-0bbb-4f90-afb6-2f726f88a4c9.jpg" title=" 图7 PerkinElmer STA-6000同步热分析仪.png" alt=" 图7 PerkinElmer STA-6000同步热分析仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C32191.htm" target=" _self" 图7 PerkinElmer STA-6000同步热分析仪 /a /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/f7d5b2c6-6263-4064-a733-1ef18dbaa4d3.jpg" title=" 图8 PerkinElmer STA-8000同步热分析仪.png" alt=" 图8 PerkinElmer STA-8000同步热分析仪.png" / /p p style=" text-align: center " 图8 PerkinElmer STA-8000同步热分析仪 br/ /p p    /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C53007.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/9831667e-4650-43cb-97bf-36dc8d2341dd.jpg" title=" 图9 Netzsch STA 449F3同步热分析仪.png" alt=" 图9 Netzsch STA 449F3同步热分析仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C53007.htm" target=" _self" 图9 Netzsch STA 449F3同步热分析仪 /a /p p    a href=" https://www.instrument.com.cn/zc/68.html" target=" _self" strong 3.热重/红外光谱/(气相色谱/质谱联用)联用仪 /strong /a /p p   在用的两台热重/红外光谱/(气相色谱/质谱联用)联用仪(图10)分别购于2012年(热重部分为Pyris1TGA、红外光谱部分为Frontier红外光谱仪、GC为Clarus680、MS为ClarusSQ 8T)和2018年(热重部分为TGA8000、红外光谱部分为Frontier红外光谱仪、GC为Clarus690、MS为ClarusSQ 8T),主要用来研究材料随着温度的变化材料由于分解等引起的质量减少产生的气体的种类和含量的信息,是一种常用的联用技术。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C166944.htm" target=" _self" img src=" https://img1.17img.cn/17img/images/202006/uepic/66e27249-e41c-489f-aff5-843ec2e531a7.jpg" title=" 图10 PerkinElmer TL-9000热重-红外光谱-(气相色谱-质谱联用)联用仪.png" alt=" 图10 PerkinElmer TL-9000热重-红外光谱-(气相色谱-质谱联用)联用仪.png" style=" max-width: 100% max-height: 100% " / br/ /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C166944.htm" target=" _self" 图10 PerkinElmer TL-9000热重/红外光谱/(气相色谱/质谱联用)联用仪 /a /p p   该仪器可以实现热重/红外光谱联用、热重/红外光谱/质谱联用、热重/红外光谱/(气相色谱/质谱联用)联用等实验,是研究材料的热解机理的一种很强大的分析手段。另外,这两套联用系统分别配置了捕集阱顶空(型号为TurboMatrix40 Trap)和热脱附(型号为TurboMatrix300)附件,通过切换,可以实现室温~300℃下的逸出气体的组成分析。 /p p    a href=" https://www.instrument.com.cn/zc/63.html" target=" _self" strong 4.差示扫描量热仪 /strong /a /p p   差示扫描量热仪(differential scanning calorimeter,简称DSC仪)是在程序控温和一定气氛下,测量输给试样和参比物的热流速率或加热功率(差)与温度或时间关系的仪器。DSC仪通过测量试样端和参比端的热流速率或加热功率(差)随温度或时间的变化过程来获取试样在一定程序控制温度下的热效应信息。与DTA仪相比,DSC仪具有较高的灵敏度和精确度。常用的DSC仪主要有热流式和功率补偿式两种类型。在用的差示扫描量热仪主要有日本岛津公司DSC-60差示扫描量热仪(图11)、美国TA公司Q2000差示扫描量热仪(图12)、美国PE公司DSC8500差示扫描量热仪(图13)、美国TA公司MC-DSC多池差示扫描量热仪(图14)和德国耐驰公司DSC204F1差示扫描量热仪(图15)。其中DSC-60、Q2000、DSC204F1和MC-DSC属于热流型DSC仪,DSC8500属于功率补偿型DSC仪。除MC-DSC外,仪器的工作温度范围为-180℃-725℃(DSC8500的最高温度为750℃)。Q2000带有紫外光源,可以用来研究光照条件下的热效应的变化。Q2000和DSC8500还可以分别实现MTDSC和DynamicDSC的功能。另外,Q2000和DSC8500带有自动进样器,可以高效率地完成各种常规测试需求。与常规DSC不同,MC-DSC可以用来测量大尺寸样品(通常可以用来测试的样品的体积在1mL以上)的热效应,该仪器可以同时测量三个样品。但工作温度范围比较有限,在-40-150℃范围内。该仪器还可以用来测量高压、混合等条件下的热效应变化。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/85f4eb27-c25a-4c14-9101-0d2911440760.jpg" title=" 图11 Shimadzu DTG-60H热重-差热分析仪.png" alt=" 图11 Shimadzu DTG-60H热重-差热分析仪.png" / /p p style=" text-align: center " 图11 Shimadzu DTG-60H热重-差热分析仪 br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/202006/uepic/066e1243-684f-422e-b8fb-9ee60db94cfd.jpg" title=" 图12 TA Q2000 DSC 差示扫描量热仪.png" alt=" 图12 TA Q2000 DSC 差示扫描量热仪.png" style=" max-width: 100% max-height: 100% " / /p p style=" text-align: center " 图12 TA Q2000 DSC 差示扫描量热仪  a href=" https://www.instrument.com.cn/netshow/C73752.htm" target=" _self" img src=" https://img1.17img.cn/17img/images/202006/uepic/2b5272a7-b5f4-448f-b74e-9cd33c5f9447.jpg" title=" 图13 Perkin Elmer DSC 8500 差示扫描量热仪.png" alt=" 图13 Perkin Elmer DSC 8500 差示扫描量热仪.png" style=" max-width: 100% max-height: 100% " / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C73752.htm" target=" _self" 图13 Perkin Elmer DSC 8500 差示扫描量热仪 /a br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/202006/uepic/63c667fb-8897-4c0f-b75f-4b728311c955.jpg" title=" 图14 TA MC-DSC 差示扫描量热仪.png" alt=" 图14 TA MC-DSC 差示扫描量热仪.png" style=" text-align: center max-width: 100% max-height: 100% " / /p p style=" text-align: center " 图14 TA MC-DSC 差示扫描量热仪 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C10143.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/30fa6369-9982-48be-bdb6-bf29b1f1f914.jpg" title=" 图15 Netzsch DSC 204F1差示扫描量热仪.png" alt=" 图15 Netzsch DSC 204F1差示扫描量热仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C10143.htm" target=" _self" 图15 Netzsch DSC 204F1差示扫描量热仪 /a br/ /p p    strong 5.微量差示扫描量热仪 /strong /p p   与常规的DSC仪相比,微量差示扫描量热仪(microDSC)具有更高的灵敏度。其工作原理属于功率补偿型。我组在用的microDSC主要有美国Microcal公司(现已并入美国马尔文公司)的VP-DSC微量差示扫描量热仪(图16)和美国TA公司的NanoDSC微量差示扫描量热仪(图17)。由于该仪器的研究对象主要为大分子溶液体系,其工作温度范围为-5℃-130℃。与常规DSC实验中样品加入可移动的坩埚中不同,microDSC的样品池为固定池。实验时溶液通过进样器加入具有一定体积的固定池中,实验结束后再将待测溶液移除,然后清洗样品池。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C216024.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/4d2ed8ad-c2d8-470e-9794-3029a265cd3f.jpg" title=" 图16 Microcal VP-DSC微量差示扫描量热仪.png" alt=" 图16 Microcal VP-DSC微量差示扫描量热仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C216024.htm" target=" _self" 图16 Microcal VP-DSC微量差示扫描量热仪  /a   /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/5d86b323-37aa-4a09-903b-0e4c5912c60f.jpg" title=" 图17 TA Nano DSC微量差示扫描量热仪.png" alt=" 图17 TA Nano DSC微量差示扫描量热仪.png" / /p p style=" text-align: center " 图17 TA Nano DSC微量差示扫描量热仪 /p p    strong 6.闪速差示扫描量热仪 /strong /p p   闪速差示扫描量热仪(FlashDSC 2+)(图18)可以用来研究许多亚稳态材料如半结晶聚合物、多晶型材料、复合材料以及合金等的结构变化过程,可以实现常规的DSC无法实现的超高加热/降温速率下的实验。借助其UFS1传感器可以实现最高加热速率为3000000K/min(300万度每分钟)和最快加热速率为2400000K/min(即240万度每分钟)的超高温度扫描速率下的实验,实验温度范围为-100-1000℃。仪器采用嵌于陶瓷基体之上的微型芯片式传感器。该传感器基于MEMS 技术并且像常规DSC 一样拥有两个独立的量热组件(样品池及参比池)。两个量热组件所在的传感器主体由两个相同的正方形氮化硅薄膜构成。薄膜边长为1.6mm、厚度为2μm,嵌于300μm厚的硅框架内。用于闪速DSC 的典型样品为薄膜、块状材料或者粉末。块状材料在制样时首先从基体材料上切下一些小圆片。然后在显微镜下用刀片在传感器的附件将小圆片切成更小的小片。利用尖端带有一根细毛的专用毛笔将制备成的样品直接放置于传感器上。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C207263.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/79f58b82-4ab2-44d7-9216-fb9b56bdde39.jpg" title=" 图18闪速差示扫描量热仪(FlashDSC 2+).png" alt=" 图18闪速差示扫描量热仪(FlashDSC 2+).png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C207263.htm" target=" _self" 图18 闪速差示扫描量热仪(FlashDSC 2+) /a br/ /p p    strong 7.等温微量量热仪 /strong /p p   在用的美国TA公司的TAMIV等温微量热仪(图19)是一种非常灵敏、稳定和灵活的微量热系统,能够直接测量所有的热信号、从而定量得到一个过程热力学和动力学信息。四个独立的量热通道可以在相同的实验条件下同时进行不同样品的实验,目前该仪器配置了等温滴定量热计、溶解热量热计、气体灌注量热计和六通道微瓦级量热计和纳瓦级量热计。可用于反应过程中向系统内添加反应试剂或是精确控制添加试剂的时间及用量。该系统可用来测量反应热,材料稳定性,材料寿命预测,工艺安全性评价,配方筛选等。通过等温滴定量热检测,可以对含有不同基团分子的两者液体材料在相互滴加时,根据产生测量产热情况,计算两种基团的结合情况,从而评估两者物质的相容情况 通过气体灌注/吸附热量检测,可以在一定温度下,得到材料对气体吸附过程的吸/放热测量 可以实现材料体与不同气氛(或湿度)作用下的吸/放热测量 通过溶解量热检测,可以在实际应用中,需要检测固体材料溶解到液体或者两者液体混合时所产生的溶解热。如含能材料溶解于水时的热量检测。通过纳瓦级量热计可以很容易实现此应用 通过多通道量热检测,可以在实际应用中用于同种样品材料的目标性筛选,极大地提高工作效率。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C243410.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/c4f50435-e361-4d77-8f17-b10c95be8972.jpg" title=" 图19 美国TA公司TAMIV等温微量热仪.png" alt=" 图19 美国TA公司TAMIV等温微量热仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C243410.htm" target=" _self" 图19 美国TA公司TAMIV等温微量热仪 /a br/ /p p    strong 8.等温滴定量热仪 /strong /p p   等温滴定量热仪为生物分子结合的研究提供了最高的灵敏度和灵活性。仪器采用固态热电偶加热和冷却系统,实现了精确的温度控制,同时具有同样灵活性的注射器附件可确保准确有效地输送滴定剂。在用的美国TA公司的NanoITC等温滴定量热仪(图20)的工作温度范围为2℃~80℃,注射针筒体积为50µ L 和250µ L,检测热量范围是0.1µ J~5000µ J。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C33992.htm" target=" _self" img src=" https://img1.17img.cn/17img/images/202006/uepic/f44de75d-a260-4a1c-b0c1-3aff5dcf91a5.jpg" title=" 图20 美国TA公司的NanoITC等温滴定量热仪.png" alt=" 图20 美国TA公司的NanoITC等温滴定量热仪.png" style=" max-width: 100% max-height: 100% " / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C33992.htm" target=" _self" 图20 美国TA公司的NanoITC等温滴定量热仪 /a /p p    a href=" https://www.instrument.com.cn/zc/66.html" target=" _self" strong 9.热膨胀仪 /strong /a /p p   热膨胀仪是在程序控温和一定气氛下,负载力接近于零的条件下测量材料的尺寸(通常为长度)随温度和时间变化关系的一类技术。可测量固体、熔融金属、粉末、涂料等各类样品,广泛应用于无机陶瓷、金属材料、塑胶聚合物、建筑材料、涂层材料、耐火材料、复合材料等领域。通过材料的尺寸变化可以测量与研究材料的线膨胀与收缩、玻璃化温度、致密化和烧结过程、热处理工艺优化、软化点检测、相转变过程、添加剂和原材料影响、反应动力学研究等方面的信息。在用的热膨胀仪为德国耐驰公司的DIL-402C热膨胀仪(图21),该仪器可以用来测量材料在室温-1600℃范围内的尺寸变化信息。  /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/35f4cc01-6a98-4340-a275-1bf96127b13b.jpg" title=" 图21 Netzsch DIL-402C热膨胀仪.png" alt=" 图21 Netzsch DIL-402C热膨胀仪.png" / /p p style=" text-align: center " 图21 Netzsch DIL-402C热膨胀仪 /p p   strong   a href=" https://www.instrument.com.cn/zc/65.html" target=" _self" 10.静态热机械分析仪 /a /strong /p p   静态热机械分析仪(ThermalMechanical Analyzer,简称TMA仪)是在程序温度控制下(等速升温、降温、恒温或循环温度),测量物质在受非振荡性的负荷(如恒定负荷)时所产生的形变随温度变化的一种技术。热机械分析虽然涉及的材料对象非常广泛,包括金属、陶瓷、无机、有机等材料,但用它来研究高分子材料的玻璃化温度Tg、流动温度Tf、相转变点、杨氏模量、应力松弛等更具有特殊的意义。在用的热机械分析仪为美国TA公司的Q400TMA 热机械分析仪(图22),该仪器可以用来测量材料在-150-1000℃范围内的尺寸变化信息。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/d5b4ef1a-0f74-4262-909d-c4255d0aa8e7.jpg" title=" 图22 TA Q400 TMA热机械分析仪.png" alt=" 图22 TA Q400 TMA热机械分析仪.png" / /p p style=" text-align: center " 图22 TA Q400 TMA热机械分析仪 br/ /p p    a href=" https://www.instrument.com.cn/zc/65.html" target=" _self" strong 11. 动态热机械分析仪 /strong /a /p p   与TMA相比,动态热机械分析仪(DynamicMechanical Analyzer,简称DMA仪)是在程序温度控制下测量物质在承受振荡件负荷(如正弦负荷)时模量和力学阻尼随温度变化的一类仪器。它在测量分子结构单元的运动,特别在低温时比其他分析方法更为灵敏、更为有用。在用的DMA仪为美国TA公司DMAQ800动态热机械分析仪(图23)和DiscoveryDMA Q850动态热机械分析仪(图24)。该仪器可以用来研究材料在拉伸、压缩、单/双悬、三点弯曲、剪切条件下的动态受力下的形变,工作温度范围为-160~600℃。最大力为18N,频率范围0.001~200Hz。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/9d52c1f2-8b54-4933-bf5f-3a948bfe6abc.jpg" title=" 图23TA Q800 DMA热机械分析仪.png" alt=" 图23TA Q800 DMA热机械分析仪.png" / /p p style=" text-align: center " 图23TA Q800 DMA热机械分析仪 br/ /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C290026.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/ca2ea5ba-9a29-4ff3-8766-fd29bb8c78d1.jpg" title=" 图24TA Discovery DMA 850热机械分析仪.png" alt=" 图24TA Discovery DMA 850热机械分析仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C290026.htm" target=" _self" 图24 TA Discovery DMA 850热机械分析仪 /a br/ /p p    a href=" https://www.instrument.com.cn/zc/84.html" target=" _self" strong 12.流变仪 /strong /a /p p   流变仪(rheometer),即用于测定聚合物熔体、聚合物溶液、悬浮液、乳液、涂料、油墨和食品等流变性质的仪器。分为旋转流变仪、毛细管流变仪、转矩流变仪和界面流变仪。在用美国TA公司的DiscoveryDHR-2 流变仪(图25)属于旋转流变仪。通过改变不同的外界调节(如温度,压力,频率,应变,时间等)作用于材料,得到材料的回馈信号分析出其工艺过程和结构特性,研究材料或样品的性能(如零剪切粘度,凝胶点,固化点等等),计算材料的物理化学参数(如分子量,分子量分布,粘弹松弛谱,非线性行为,分子结构等)。流变仪测量时将样品置于特定的上下测量夹具之间,夹具的一端对样品施加一个力或变形,相应的传感器测量样品回馈对所施加的力或变形的响应,通过对该响应分析就得到样品粘弹性的总和特性曲线(如零剪切黏度,凝胶点,固化点等),计算样品的物理化学参数(如分子量,分子量分布,粘弹松弛谱,非线性行为,分子结构等)。流变仪的测试模式包括:流动(稳态测量)、振荡(动态测试)、蠕变和应力松弛(瞬态测量)等模式。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C140433.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/4d195ae8-9c9a-4152-af09-be48efbe3c42.jpg" title=" 图25 美国TA公司DiscoveryDHR-2 流变仪.png" alt=" 图25 美国TA公司DiscoveryDHR-2 流变仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C140433.htm" target=" _self" 图25 美国TA公司DiscoveryDHR-2 流变仪 /a br/ /p p   strong   a href=" https://www.instrument.com.cn/zc/530.html" target=" _self" 13.热流法导热仪 /a /strong /p p   导热仪广泛应用于包括石墨、金属、陶瓷、聚合物、复合材料等领域,具有样品制备简易,测量速度快,测量精度高等众多优点。在用的热流法导热仪为德国耐驰公司的HFM446热流法导热仪(图26),平板温度范围:-20~90℃,可用于直接测量低导热与绝热材料的导热系数,如膨胀聚苯乙烯(EPS)、挤出聚苯乙烯(XPS)、PU坚硬泡沫、矿物棉、膨胀珍珠岩、泡沫玻璃、软木塞、羊毛、天然纤维材料,包含相变材料、气凝胶、混凝土、石膏或聚合物的建筑材料等。测试时将待测材料置于两块平板之间,平板间维持一定的温度梯度。通过平板上两个高精度的热流传感器,测量进入与穿出材料的热流。在系统达到平衡状态的情况下,热流功率为常数,在样品的测量面积与厚度已知的情况下,使用傅立叶传热方程可以计算导热系数。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C265677.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/bb1690a8-cac7-4943-b3b8-a2c41658a514.jpg" title=" 图26 德国耐驰公司HFM446热流法导热仪.png" alt=" 图26 德国耐驰公司HFM446热流法导热仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C265677.htm" target=" _self" 图26 德国耐驰公司HFM446热流法导热仪 /a br/ /p p    a href=" https://www.instrument.com.cn/zc/530.html" target=" _self" strong 14.激光导热仪 /strong /a /p p   激光热导法直接测量的是材料的热扩散系数,其基本原理为:在炉体控制的一定温度下,由激光源发射光脉冲均匀照射在样品下表面,使试样均匀加热,通过红外检测器连续测量样品上表面相应温升过程,得到温度(检测器信号)升高和时间的关系曲线。应用计算机软件的数学模型对理论曲线和试验温度上升曲线进行计算修正,从而测出样品的热扩散系数,再测出比热已知的标样的热扩散系数,利用数学模型计算出样品的比热,系统根据计算公式自动计算出样品的导热系数。在用的德国耐驰公司的LFA467 HyperFlash 闪射法激光导热仪(图27),工作温度范围:-100~500℃,可在整个温度范围内连续测量16 个样品 德国耐驰公司的LFA467 HT HyperFlash 闪射法激光导热仪(图28),工作温度范围:室温~1250℃,这两款仪器都拥有极高的采样频率2MHz,特别适合于薄膜样品和高导热材料。  /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C245188.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/5ef34d77-68dd-4c81-8f7f-00ebd4b8e95a.jpg" title=" 图27 德国耐驰公司LFA467 HyperFlash 闪射法激光导热仪.png" alt=" 图27 德国耐驰公司LFA467 HyperFlash 闪射法激光导热仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C245188.htm" target=" _self" 图27 德国耐驰公司LFA467 HyperFlash 闪射法激光导热仪  /a   /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C265759.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/3e96ba5b-542f-4218-b48a-3e3625c3ed0f.jpg" title=" 图28 德国耐驰公司LFA467HT HyperFlash 闪射法激光导热仪.png" alt=" 图28 德国耐驰公司LFA467HT HyperFlash 闪射法激光导热仪.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C265759.htm" target=" _self" 图28 德国耐驰公司LFA467HT HyperFlash 闪射法激光导热仪 /a /p p br/ /p p style=" text-align: center "    strong II 吸附仪 /strong /p p   在用的吸附仪主要有以下几种: /p p    strong 15.物理吸附仪(比表面积介孔分析仪) /strong /p p   在用的比表面积和介孔分析仪为美国MicromeriticsTristar II 3020全自动比表面积和孔径分析仪(图29)。该仪器可同时实现三个样品的测试,得到的信息主要有吸脱附等温线、比表面积(包括BET比表面积、Langmuir比表面积等)、孔径分布(BJH、DFT等模型)、孔容积等信息。采用脱气站与分析站分离的工作模式。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/614b0dc7-11e4-4252-9812-9630ab61d87b.jpg" title=" 图29 美国MicromeriticsTristar II 3020全自动比表面积和孔径分析仪.png" alt=" 图29 美国MicromeriticsTristar II 3020全自动比表面积和孔径分析仪.png" / /p p br/ /p p style=" text-align: center " 图29 美国MicromeriticsTristar II 3020全自动比表面积和孔径分析仪 /p p    strong 16. 物理吸附仪(比表面积和微孔、介孔分析仪) /strong /p p   在用的比表面积和微孔、介孔分析仪为美国QuantachromeAutisorb iQ3M全自动气体吸附仪(图30)和美国Micromeritics2460全自动物理吸附仪(图31)。 /p p   该仪器可同时实现三个样品的测试(可以同时进行两个微孔或三个介孔的分析),得到的信息主要有吸脱附等温线、比表面积(包括BET比表面积、Langmuir比表面积等)、孔径分布(HK、BJH、DFT等模型)、孔容积等信息。仪器同时带有4个脱气站和3个分析站。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/fc642a87-dad4-4e50-9127-7f5177ae6865.jpg" title=" 图30 Quantachrome Autisorb iQ3M全自动物理吸附仪.png" alt=" 图30 Quantachrome Autisorb iQ3M全自动物理吸附仪.png" / /p p style=" text-align: center " 图30 Quantachrome Autisorb iQ3M全自动物理吸附仪 br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/202006/uepic/50880f2e-b073-4094-8018-74727f86a979.jpg" title=" 图31 美国Micromeritics2460全自动物理吸附仪.png" alt=" 图31 美国Micromeritics2460全自动物理吸附仪.png" style=" max-width: 100% max-height: 100% " / br/ /p p style=" text-align: center " 图31 美国Micromeritics2460全自动物理吸附仪 /p p    strong 17.物理化学吸附仪(比表面积、微孔、介孔和静态化学吸附分析仪) /strong /p p   在用的比表面积和微孔、介孔分析仪为美国MicromeriticsASAP 2020 M+C全自动微孔物理化学吸附仪(图32)。该仪器可以实现对材料的物理吸附(得到比表面积、孔径分布、孔容积等信息)和静态化学吸附实验。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/07938ed4-1570-479c-ad92-01e2921cd925.jpg" title=" 图32 美国MicromeriticsASAP 2020 M+C全自动微孔物理化学吸附仪.png" alt=" 图32 美国MicromeriticsASAP 2020 M+C全自动微孔物理化学吸附仪.png" / /p p style=" text-align: center " 图32 美国MicromeriticsASAP 2020 M+C全自动微孔物理化学吸附仪 br/ /p p    strong 18.化学吸附仪(静态和动态化学吸附分析仪) /strong /p p   在用的美国QuantachromeAutosorb iQ3MVC全自动气体吸附仪(图33)除了可测比表面积、介孔、微孔等,还可以测量蒸汽吸附、静/动态化学吸附,全方位表征样品的催化特性。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/4367c8af-bc74-4539-b2a7-1f2200dabd17.jpg" title=" 图33 美国QuantachromeAutosorb IQ3MVC全自动气体吸附仪.png" alt=" 图33 美国QuantachromeAutosorb IQ3MVC全自动气体吸附仪.png" / /p p style=" text-align: center " 图33 美国QuantachromeAutosorb IQ3MVC全自动气体吸附仪 /p p    strong 19.压汞仪 /strong /p p   在用的压汞仪为美国康塔公司的PoreMaster60GT全自动压汞仪(图34),可同时分析2个高压样品。可用于介孔和大孔的总孔体积、孔体积分布、孔表面积及其分布测定,也可用于测定空心玻璃微珠的压碎强度和防水材料的水侵入研究。该仪器利用汞对材料不浸润的特性,采用人工加压的方式使汞进入材料内部孔隙,通过高精度压力传感器和标准体积膨胀计测量样品的注汞和退汞曲线,结合相关模型计算样品的孔径结构、孔隙度及真密度等参数。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/4e82d57e-86b9-49c2-a473-686d65fa88f7.jpg" title=" 图34 PoreMaster 60GT全自动压汞仪.png" alt=" 图34 PoreMaster 60GT全自动压汞仪.png" / /p p style=" text-align: center " 图34 PoreMaster 60GT全自动压汞仪 br/ /p p br/ /p p style=" text-align: center " strong III 粒度粒形分析仪 /strong /p p   目前,常用的颗粒粒度表征方法主要有筛分法、沉降法、电阻法、颗粒跟踪法、激光衍射法、动态光散射法、静态图像法、动态图像法等。其中,激光衍射法因为准确性高、重复性好、测试速度快、自动化程度高、大量成熟的测试方法标准,成为微米级颗粒粒度的主流方法。动态光散射法对于纳米级颗粒具有准确、快速、可重复性好等优点,还具有测量Zeta电位等能力,已经为纳米材料中非常常规的一种表征方法。动态图像法采样数据多、无取向误差、颗粒分散度高、无粘连重叠现象,在粒形分析方面得到了广泛应用,除了给出30多种颗粒的粒形参数,还能对测试颗粒的分散情况进行分析。在用的Microtrac粒度粒形测量系统可以实现颗粒以上的表征,该测量系统在催化剂、能源、环境、化工、金属粉体、工业矿物、陶瓷、玻璃珠、油气、涂料/颜料、制药、涂层、水泥、3D打印等领域中有着广泛的应用。颗粒的粒度和粒形与材料的性能密切相关,例如药品颗粒的粒度决定着人体的吸收程度,水泥颗粒的粒度决定了水泥的凝结时间,调色剂颗粒的球形度决定了其在打印材料上的粘附力等等。通过测量这些颗粒的粒度粒形参数(如粒径、球形度、长宽比、周长、面积等),可以优化材料的相关特性。该测量系统主要包括测量范围为0.01-4000µ m的Sync测量单元(图35)和测量范围为0.8nm-6.5µ m的NanoTrac测量单元(图36)。其中,Sync测量单元除可以实现粒度分布测量功能外,还可以得到粒形信息 NanoTrac测量单元除可以实现粒度分布测量功能外,还可以得到Zeta电位信息。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/b4fe743a-36c8-4df3-9ef2-dea228d3cac9.jpg" title=" 图35 Sync测量单元.png" alt=" 图35 Sync测量单元.png" / /p p style=" text-align: center " 图35 Sync测量单元 br/ /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/7b0f6ad0-04c2-428a-bba6-87bb587dd984.jpg" title=" 图36 NanoTrac测量单元.png" alt=" 图36 NanoTrac测量单元.png" / /p p style=" text-align: center " 图36 NanoTrac测量单元 /p p   Sync测量单元由2个镜头、2块检测系统(共151个检测单元)和三个激光系统组成,可以实现高效、准确的颗粒度表征。其采用静态激光衍射技术测量微米级粒度,采用动态图像分析技术测量粒形数据,可以使用多于30种大小和形态的参数。仪器可以实现湿法和干法测量模式,满足多种样品的各种测量要求。由Sync的动态图像分析功能可以得到的散点图,由此可以得到不同尺寸范围的不同形状的颗粒的分布信息。NanoTrac测量系统采用采用先进的动态光背散射技术,180° 检测异相多普勒频率的变化,稳定性好、重现性高。采用电泳法技术测量Zeta电位数据。通过温控装置可以实现0-80℃范围内的粒度和Zeta电位测量。 br/ /p p br/ /p
  • 大昌华嘉“吸附仪在新材料上的应用”全国巡讲
    2011年3月22日大昌华嘉商业(中国)有限公司在广州中山大学举办了“吸附仪在新材料上的应用”研讨会。来自高校和科研院所的专家和技术人员100余人出席研讨会。此次研讨会主讲人是日本拜尔BEL公司Keita Tsuji博士。   在研讨会之前,王磊经理首先向大家介绍了大昌华嘉公司的历史及发展现状。大昌华嘉是一家具有200年历史的瑞士国际集团,作为BEL比表面分析仪,Kruss接触角测量仪,Microtrac激光粒度产品在中国总代理,负责其所有产品、技术的推广销售和服务。   日本BEL公司专业研究生产容量法气体吸附分析仪的专业制造厂商,推出一批又一批吸附领域的前沿技术。多站式蒸汽吸附仪系统和多站式化学吸附仪系统,将仪器测定的高效率和高精度完美结合起来。     会上Tsuji博士介绍了国际上第一双站微孔吸附仪在2006年面试,唯一一个使用0.1Torr压力传感器系统,多站式蒸汽吸附仪系统和多站式化学吸附仪系统,将仪器测定的高效率和高精度完美结合起来。固体电解质膜水分吸附和质子传导分析仪,燃料电池综合评价装置等,极大地丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。   物理吸附同步连接XRD、GC、磁悬浮天平   化学吸附仪链接质谱、红外、低温脉冲和TPR   高压吸附仪在储氢材料的应用
  • 10010万!华中科技大学动态核极化磁共振装置采购项目
    一、项目基本情况项目编号:HW20240291、HBT-15124192-244109项目名称:华中科技大学动态核极化磁共振装置采购项目预算金额:10010.000000 万元(人民币)最高限价(如有):10010.000000 万元(人民币)采购需求:华中科技大学动态核极化磁共振装置:主要包含5T分子极化增强系统、11.7T超灵敏代谢微成像系统、14T波谱增强检测系统等;具体要求见本项目招标文件第三章内容。合同履行期限:交货期:合同签订后48个月;质保期:自验收合格之日起5年。本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年09月10日 至 2024年09月14日,每天上午8:30至12:00,下午14:00至17:00。(北京时间,法定节假日除外)地点:线上网络获取方式:符合资格的投标人应当在规定的获取时间内按以下步骤获取文件:登陆“数智云采”官网(https://cjyc.hbbidding.com.cn/hubeiyth/),进入“云采购平台”,按照“帮助中心--业务操作指南--数智云采供应商操作手册”完成获取(网络报名及电子发票问题请咨询窗口电话:027-87273107)。标书费300元/包,售后不退。售价:¥300.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:华中科技大学     地址:湖北省武汉市洪山区珞喻路1037号        联系方式:李老师,电话:027-87540659,邮箱:hustcgzx@hust.edu.cn      2.采购代理机构信息名 称:湖北省招标股份有限公司            地 址:湖北省武汉市武昌区中北路108号兴业银行大厦五层            联系方式:龙琳、阳世昌、叶雄威、周丹娜、方勇、杨洵,电话:027-87273661,邮箱:31848804@qq.com            3.项目联系方式项目联系人:龙琳电 话:  027-87273661
  • vocs冷凝吸附回收法设备安全使用建议
    vocs冷凝吸附回收法是目前vocs气体处理比较多的方法,无锡冠亚vocs冷凝吸附回收法的设备——vocs气体冷凝回收装置专门处理各种有机废气,那么,在使用vocs冷凝吸附回收法的时候的安全建议要注意哪些呢?  在vocs冷凝吸附回收法中,压缩机质量的好坏决定着vocs冷凝吸附回收法的工作效率是否优良,同时压缩机在vocs冷凝吸附回收法的今后售后维修中也占有很重要的位置,一旦出现故障,将会提高企业维修冷水机的费用提高。  正常工作情况下,vocs冷凝吸附回收法制冷压缩机应该吸入制冷工质的干蒸汽,若是制冷工质流量大、热负荷变化太快、操作不当都可能吸入湿蒸汽,或者液体工质,如果进入的液体太多,来不及从排气阀排出,高压形成的液击会造成气缸、气阀、活塞、连杆等零件损坏。  如果vocs冷凝吸附回收法排气压力超过给定值,高压控制部分切断压缩机电源,压缩机停机;吸气压力低于给定值,低压控制部分切断压缩机电源,使其停机,并发出报警信号。为防止制冷剂泄漏至大气,一般采用闭式安全阀,安全阀设置在vocs冷凝吸附回收法压缩机排气腔和吸气腔之间的管路上。  vocs冷凝吸附回收法安全膜片安装在吸气、排气腔之间,吸排气压力差超过规定值时,膜片破裂,排气压力降低(需在吸气腔侧装滤网,防止破碎膜片落入吸气腔)。vocs冷凝吸附回收法把液压泵入口与液压泵出口分别和润滑油压差控制器上的低压入口、高压出口接通,当液压泵出、入口之间的压力差过高或过低时,控制器就会切断压缩机电源,电动机停止运转,保护压缩机。  vocs冷凝吸附回收法内置电动机的保护,为更进一步确保电动机不过热,除了正确使用,注意维修外,建议可以安装过热继电器。vocs冷凝吸附回收法常用的三相电动机缺相的话会导致电动机无法起动或过载,可采用过载继电器避免电动机因缺相损坏。  vocs冷凝吸附回收法在环保严查的当下是比较好的方法之一,无锡冠亚在不断在行业趋势下不断生产研发新的设备,促进行业发展。
  • 康塔仪器发布首台吸附穿透曲线分析仪
    2015年9月,全球粉体及多孔材料分析检测仪器领导者,美国康塔仪器正式发布dynaSorb BT系列吸附穿透曲线分析仪。这款开创性的仪器,凭借其独特的安全性设计,可以便捷地研究任意复杂的吸附过程。在宽泛的温度和压力范围内,可以调节气体流速并很好地定义气体组分。这样,就可以调查或研究在真实工艺条件下的吸附剂技术状况。dynaSorb BT系列吸附穿透曲线分析仪可广泛应用于: 穿透曲线的测定对吸附剂的动力学性能研究共吸附和位移现象的调查选择性吸附测定技术分离工艺的合理比例缩小动态吸附和解吸实验单一和多组分吸附数据的测定沿吸附床层的温度分布曲线调查 完整地理解发生在固定床反应器的复杂过程是获得最佳分离性能的关键,穿透曲线的预测是固定床吸附过程设计与操作的基础。 dynaSorb BT系列动态吸附穿透分析仪具备强实的吸附器设计,防护门,工作区照明和结构清晰的PC控制界面,确保安全和方便的仪器操作。吸附器压力是永久性测量的,即使仪器关机,压力也会显示在仪器的前面板上。当加热包温度超过用户设定值时,信号灯将亮起。在所有dynaSorb BT仪器上,检测可燃气体的安全保护传感器是标准配置。在气体泄漏的情况下,仪器会跳回到空闲状态,并自动关闭。 除卓越的安全设计外,dynaSorb BT系列还具备诸多无与伦比的优点:穿透(突破)曲线测定, 单和多组分吸附数据测定顺序吸附与解吸实验的自动化流程, 逆向气流能力自动吸附器压力调控可高达10bar, 沿吸附器轴向监测压降自动内置气体混合,可配置最多4个高精度质量流量控制器入口和出口气体组分测量, 入口气体温度监测吸附床内的热谱测定(用四个温度传感器)沿吸附器轴向监测压降 美国康塔仪器美国康塔仪器(Quantachrome Instruments)被公认为是对样品权威分析的优秀供应商,它可为实验室提供全套装备及完美的粉末技术,及最佳的性能价格比。康塔公司不仅通过了ISO9001及欧洲CE认证,也取得了美国FDA IQ/OQ认证。作为开发粉体及多孔材料特性仪器的世界领导者,美国康塔仪器产品涵盖比表面、物理吸附、化学吸附、高压吸附、蒸汽吸附、真密度、堆密度、开/闭孔率、粒度粒形、Zeta电位、孔隙率、压汞仪、大孔分析 、微孔分析、滤器分析等诸多领域。 康塔仪器不仅受到科学界的青睐,装备了哈佛、耶鲁、清华等世界各个著名大学,而且已经向全世界的工业实验室发展,以 满足那里开发和改进新产品的研究与工艺需求。工厂中也依靠康塔仪器的颗粒特性技术更精确地鉴别多孔材料,控制质量,或高效率查找生产中问 题的根源 通过颗粒技术使产品上一个台阶,在当今工业界已成为一个不争的事实。 康塔克默仪器贸易(上海)有限公司作为美国康塔仪器公司在中国的全资子公司。集市场开发、仪器销售、备件供应、售后服务和应用支持于一体,它拥有国际水准的标准功能、形象和硬件配套设施,包括上海和北京的应用实验室和应用支持专家队伍。 康塔克默仪器贸易(上海)有限公司使美国康塔仪器几千家中国用户同步享受国际品质的产品和服务,将掀开美国康塔仪器公司在中国及亚太地区的全新篇章!
  • 清明节追思:深切缅怀中国氮吸附仪开拓者钟家湘教授
    2021年3月26日下午,北京理工大学教授、中国知名材料科学家、精微高博科学技术有限公司创始人钟家湘先生因病医治无效,与世长辞,享年83岁。钟家湘教授开拓了国产仪器的新领域并成功产业化,改变了我国微纳米材料表面测试仪器完全依赖进口的局面。近日,仪器信息网通过采访钟教授生前挚友、精微高博另一位创始人古燕玲女士,回顾其退休后的创业奋斗史。20世纪90年代末,因纳米材料科研工作的需要,钟教授联合北京橡胶研究院葛雄章等人,开启了国产氮吸附仪的研制工作,在老一代科技工作者打下的基础上,于2000年主持完成了新型动态氮吸附仪的改造升级工作。该动态比表面仪样机很快引起了当时的焦作冰晶石厂的极大兴趣,随即被其购买。接下来其团队调研发现,随着超细粉体,尤其是纳米材料的发展,粉体材料表面特性的表征与测量越来越重要,比表面及孔径分布分析测试仪的需求日益增大,而当时国内比表面仪市场还是一片空白,只能依赖国外进口仪器,且价格昂贵。为填补国内市场空白,让科技工作者可以用上国产比表面仪,钟家湘教授决定承担起这份重任,将自主研发的产品推向市场。历经两年多的技术积累,2003年新一代动态比表面仪成品进入市场,开启了中国氮吸附仪产业化的新里程;2004年,钟家湘带领仅5人的团队,租用一间约20平方的办公室,成立了北京精微高博科技开发中心(现北京精微高博科学技术有限公司),同年推出动态BET比表面仪,在测试方法上开始与国际接轨;2005年,研制成功动态常压单气路孔径分析仪,至此形成了具有我国特色的动态氮吸附仪的系列产品,产业化速度快速提高,打破了国外氮吸附仪在中国一统天下的局面。相比动态比表面仪,静态比表面仪技术门槛要高很多,当国外不断推出静态比表面仪产品时,国内还未起步。为了追赶国际先进水平,钟家湘带领团队在努力研发动态氮吸附仪的同时,又致力于研发静态比表面仪,经过近两年千百次的实验,攻克一个又一个的技术难关,于2007年研发成功静态介孔分析仪;之后陆续推出静态微孔分析仪、静态超微孔分析仪,推动中国氮吸附仪的技术向国际先进水平靠近。由于市场的空白,没有成熟的产品和现成技术可供参考,钟教授经常到国家图书馆查阅资料,只能从基础原理开始不断尝试、完善,最终凭借其深厚的学识基础、丰富的实践经验与严密的科学精神,带领精微高博屡创佳绩。在研发过程中,钟教授坚持走产学研道路,积极同高校密切合作,组建该领域权威的专家顾问团队,为公司良好持续发展打下坚实基础。2013年与国内知名教授合作,成功将非定域密度函数(NLDFT)理论应用于国产孔径分析仪,取得可喜的突破;2014年,又研发成功高压吸附仪、真密度仪等。为了帮助用户理解仪器理论模型和技术参数背后的物理意义,以便将仪器的作用发挥到最大化,钟教授还对这些理论模型逐个进行深入研究,多次到国内多所高等院校深入浅出地介绍比表面及孔径分析的原理、方法和应用,为提高中国微纳米材料表面测试水平,推动国产仪器产业化做出了突出贡献,被誉为中国氮吸附仪的开拓者。2015年4月,钟教授荣获第二届“科学仪器行业研发特别贡献奖”。2017年,80岁高龄的钟教授壮心不已,仍身处一线岗位,本是功成身退的年纪,又为何仍在坚持?80大寿之日,钟教授接受仪器信息网采访并给出了自己的答案,“第一,我是为了真正解决国产仪器在这个领域的问题,推动国产仪器发展,我是把它当成事业来做,而不是为了挣钱;第二,科学仪器是一个跨学科的产物,需要团队共同发挥智慧,就我本人来讲,我年纪比较大一点,知识面更广一些,研究的思路方法更丰富一些,能为团队提供帮助,最重要的是我要保持团队的凝聚力。”为进一步提升公司综合实力,更快、更好地与国外仪器竞争,2017年10月,精微高博进行了融资改组,开启了新的征程。至此,钟教授为我国氮吸附仪产业化所做的贡献有目共睹,其创业史代表了中国氮吸附仪技术的发展轨迹,国外同行也给予高度评价,“用十年走过了国外该类仪器五十年的发展道路”。当故人远去,留给后人的是无尽的伤感与思念。在这吹面不寒杨柳风的清明时节,谨以此文纪念刚刚逝去的钟家湘先生。清明将至,行业纷纷表达缅怀之情精微高博总经理马志远:我和钟老师于三年前相识,有幸可以合作,将精微高博品牌传承下去。我非常喜欢精微高博这四个字,也赋予了新的“精深微妙,高远博大”之意,老先生的愿景是:创中国知名品牌,争世界一流产品。这个愿景没有变,被完整继承下来,我们所有人都认可并且为之努力。去年十一月探望老先生时,我说两年多来,精微高博已经有10%多的销售额来自海外了。海外布局已经初具规模,我们这么积极开拓海外,就是希望把这个品牌从中国知名创成国际知名,从中国品质塑造成世界品质。老先生很高兴,这是他老人家的心愿,是我接手时给我的任务。在给老先生的挽联中我是这样写的:工匠精神永存精微,科学素养铸就高博。老先生做科研跟随特种合金泰斗师昌绪先生13年,为国家军事力量的强大贡献了青春。在理工大学带着实践经验,做学术培养人才,理论突出,桃李满园,16年兢兢业业。60岁创业,一次创业做纳米材料研发生产,历时五年,以失败告终,然斗志不减,二次创业成立精微高博,发展至今,开拓了氮吸附仪器之先河。可以说老先生一生奋斗,科研有成、治学有果、创业有功,80年奋斗不止,人虽年迈,壮心不已,实为我辈楷模,当之无愧的榜样。斯人已逝,精神永存!原精微高博员工:钟老师专注认真、待人平和、友善关爱,拥有老一辈科学家坚韧、执着、奉献的精神,是我遇到过的最接近我心目中大师模样的人。他教会我的、带给我的影响,就像是一束光,像一个方向,温暖又清晰地告诉我就应该如此做事,这样去活。谢谢钟老师,您带给这个世界的都正在发扬光大。仪器信息网编辑:仪海钩沉,科匠情更笃;桃李馥郁,木铎声尤闻。三年前得闻教诲,受益不尽,您是那么和蔼乐观,眼神那么明亮,充满了对世间万物最诚挚的热爱,如今念兹,音容笑貌仿佛昨昔。愿钟老一路走好,在彼岸仍是一派锦绣天地。美国麦克仪器许人良博士:科研半世创建精微业,勤奋一生增辉国仪楼。
  • 儒亚科技(北京)有限公司 中标西南石油大学磁悬浮天平高压等温吸附仪
    儒亚科技(北京)有限公司中标西南石油大学磁悬浮天平高压等温吸附仪 2020年9月14日,中机国际招标有限公司受西南石油大学委托,拟对西南石油大学2020年石工院双一流学科第二批设备采购项目进行国内公开招标,并邀请符合本次招标要求的投标人参加投标。儒亚科技(北京)有限公司在全面研究了“西南石油大学2020年石工院双一流学科第二批设备采购项目”招标文件后,决定参加中机国际招标有限公司组织的项目投标工作。经过竞标,我司以雄厚的技术实力在2020年11月3日赢得这次政府采购合同。中标主要信息如下:一、招标编号:510201202074502 二、采购项目名称:西南石油大学2020年石工院双一流学科第二批设备采购项目三、中标金额:397.2万 本次中标产品是基于Rubolab的新一代磁悬浮天平的重量法高压等温吸附仪,能够完成高达700大气压下的煤岩和页岩的高压等温吸附曲线的测试,并且可以完成多组分的竞争吸附测试,广泛服务于煤层气、页岩气、致密砂岩气等非常规油气的储量评估和开发利用。 儒亚科技(北京)有限公司提供完整系列的吸附产品解决方案,产品涵盖磁悬浮天平重量法高压气体和蒸汽吸附分析仪、磁悬浮天平高压热重分析仪、全自动多样品PCT储氢分析仪、全自动多样品高压气体和蒸汽吸附仪、变压吸附分析仪、竞争吸附分析仪、动态物理吸附和穿透曲线分析仪、高压化学吸附分析仪、红外法快速吸附能力评价分析仪、液体挥发速率分析仪、固体和液体饱和蒸汽压分析仪、激光粒度粒形分析仪、CPS高精度纳米粒度分析仪等优秀的产品。 更多产品信息,请参考: https://www.instrument.com.cn/netshow/SH100498/C319082.htm
  • 理化联科发布理化联科iChem 700全自动程序升温化学吸附仪新品
    iChem 700全自动程序升温化学吸附仪可用于对催化剂材料进行TPD、TPR、TPO、TPRx、脉冲化学吸附、催化剂处理、脉冲校准和动态BET比表面分析等,以对催化剂材料的酸碱度、酸碱分布、活性金属分散度、金属与载体的相互作用等进行分析,此外,可配置在线色谱仪以连续对TPRx产物进行定性和定量监测以及对脱附气体的浓度的检测。 主机具体配置: l 高温加热炉:温度可至1200℃,并有良好的升温速率和保温效果。冲温小于2-3℃,恒温波动小于1℃。l 3个独立的气源:载气,处理气,分析气。l 6个高精度的质量流量计MFC:流量间隔可以在0-100sccm(标准),其他范围可根据用户要求制造。l 15个气体进气口:载气,处理气和分析气各有5个进气口,共15个进气口。 l TCD热导池检测器:热导检测器最高恒温200℃,恒温波动小于0.5℃。用于测量气体的吸附量,采用四臂热导池具有四根相同的金/钨丝,具有良好的稳定性、精度、线性度、敏感性,最大限度地满足试验灵敏度和化学兼容性。l 冷阱:仪器下游配置一个装满干燥剂的陷阱防止样品在TCD前冷凝。冷阱上配备自动升降电梯,在需要冷阱工作的时候电梯会根据软件设定的信号指示自动升降。l 4个电磁六通阀:用于切换气路走向,切换过程中不会产生热电,确保系统中的气体恒温。l LOOP环(分析)可供选择:14种LOOP可供选择,仪器标配三种LOOP环(35微升, 500微升, 1毫升)l 饱和蒸汽瓶:可进行蒸汽吸附分析,且仪器内部整体保温,确保蒸汽不会冷凝。蒸汽发生器最高恒温150℃,恒温波动小于0.5℃。l 降温组件:炉底装配电动风扇的方式进行炉体半开启状态风冷技术,风扇转速可根据降温信号程序控制。使得降温更迅速,减少了两次实验之间的间隔时间。l iChem 700全自动化学吸附仪后可连接质谱仪MS、气相色谱仪GC、火焰离子检测器FID,红外光谱IR等,可将数据导入EXCEL等数据处理软件,同步温度信号频率。 软件部分:iChem 700的操作软件是由计算机控制的多功能全自动化软件。安全级别高,智能化程度高,实现真正的全自动化运行。仪器即可以在手动模式下运行也可以全自动化运行,手动模式下可以很快的检测仪器给部件的操作性和稳定性,软件界面可以实时的显示温度值,阀门的切换位置,气流的走向,TCD检测器的稳定和电压值,基线的稳定性,程序升温的线性状态,质量流量计的流速,相关数据的采集,以及和质谱联用时,质谱的控制和信号的同步触发。数据处理功能强大,可以对峰进行编辑和分峰处理,显示峰值温度,计算峰面积,积分和数据平滑处理等,并能手动标注相关数据。自动保存运行日志和实验数据;多视角窗口同时显示(当前测试页面图谱实时绘制、查看以往测试图谱、多图谱同时比较)。创新点:iChem 700全自动程序升温化学吸附仪可用于对催化剂材料进行TPD、TPR、TPO、TPRx、脉冲化学吸附、催化剂处理、脉冲校准和动态BET比表面分析等,以对催化剂材料的酸碱度、酸碱分布、活性金属分散度、金属与载体的相互作用等进行分析,此外,可配置在线色谱仪以连续对TPRx产物进行定性和定量监测以及对脱附气体的浓度的检测。 理化联科iChem 700全自动程序升温化学吸附仪
  • 吸附等温线及典型吸附理论浅析
    p style=" text-align: justify text-indent: 2em " strong 编者按: /strong 本文对气体吸附研究中最常用到的概念——吸附等温线进行了科普和分类,并对Langmuir吸附等温理论、BET理论给出了自己的分析和见解,深入浅出的专业文章即将到来,以飨读者。 /p p style=" text-align: justify text-indent: 2em " strong 吸附等温线小科普 /strong /p p style=" text-align: justify text-indent: 2em " 对于给定的固体-气体体系,在温度一定时,可以认为吸附作用势一定,这时候,吸附量是压力的函数,这个关系叫做吸附等温线。 /p p style=" text-align: justify text-indent: 2em " 气体在固体表面的吸附状态多种多样,目前,把等温线分为六类,实际的各种吸附等温线大多是这六类等温线的不同组合。设固体表面与第一层(单分子层)吸附分子的吸附作用能为E1,第n层与第n+1层的作用能为En。 /p p style=" text-align: justify text-indent: 2em " (1)I型等温线 /p p style=" text-align: justify text-indent: 2em " I-A型(E1& gt & gt En) /p p style=" text-align: justify text-indent: 2em " 由于单分子层的吸附作用力很大,表面吸附位的反应活性高,属电子转移型吸附互相作用,这时候的吸附大多数不可逆,我们认为是化学吸附。在金属与氧气、金属与一氧化碳、金属与氢气的表面反应体系中常见,这种等温线是由Langmuir研究,所以也叫做Langmuir型。等温线如下图所示。 span style=" text-indent: 2em " & nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/91952d99-a96e-444f-b86b-f98a78a8e437.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span br/ /p p style=" text-align: justify text-indent: 2em " I-B型 /p p style=" text-align: justify text-indent: 2em " 活性炭和沸石常呈现这种类型,这些固体具有微孔,外表面积比孔内表面积小很多。在相对压力较低时,吸附曲线迅速上升,发生微孔内吸附。如上图所示。 /p p style=" text-align: justify text-indent: 2em " (2)II型等温线(E1& gt En) /p p style=" text-align: justify text-indent: 2em " 这种类型的等温线一般为非多孔性固体表面发生多分子层吸附,比如非多孔性金属氧化物粒子吸附氮气或者水蒸气,此外,发生亲液性表面相互作用时也为此类型。在相对压力约为0.3时,第一层吸附大致完成,随着相对压力增大,开始形成第二层,在饱和蒸气压时,吸附层数无限大。Brunauer、Emmet和Teller从理论导出这种等温线,故这种类型的等温线也被称作BET等温线。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/11476386-c8ca-4d9f-a9b2-bd2c87e56d2c.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: justify text-indent: 2em " (3)III型等温线(E1& lt En) /p p style=" text-align: justify text-indent: 2em " 在憎液性表面发生多分子层吸附,或者固体和吸附质的吸附相互作用小于吸附质之间的相互作用时呈现这种类型。比如,水蒸气在石墨表面上吸附,或者,水蒸气在进行过憎水处理的非多孔性金属氧化物上的吸附。因此,这种吸附在低压区的吸附量较少,相对压力越大,吸附量越多。如下图。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/931c7ce4-fbdd-4933-bf7a-3a53890d9de5.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: justify text-indent: 2em " (4)IV型等温线(E1& gt En) /p p style=" text-align: justify text-indent: 2em " 氮气、有机蒸汽和水蒸气在硅胶上吸附属于这一类型。在相对压力约为0.4时,吸附质发生毛细凝聚,等温线迅速上升,脱附等温线与吸附等温线不重合,脱附等温线在吸附等温线的上方,产生吸附滞后,形成一个“吸附滞后环”。在相对压力较大时,由于中孔内的吸附已经结束,吸附只在外表面上发生,曲线平坦,在相对压力接近1时,在大孔上吸附,曲线上升。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/f555414b-be52-465d-9be6-977a773a7321.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-align: justify text-indent: 2em " (5)V型等温线(E1& lt En) /p p style=" text-align: justify text-indent: 2em " 发生在多孔固体上,表面相互作用同III型,例如水蒸气在活性炭或憎水化处理过的硅胶上的吸附。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/2900e13b-5186-4bfc-90dc-13e79adb4bdd.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: justify text-indent: 2em " (6)VI型等温线 /p p style=" text-align: justify text-indent: 2em " 这种类型的等温线又称为阶梯型等温线。非极性的吸附质在化学性质均匀的非多孔固体上吸附时较为常见。如将炭在2700℃以上进行石墨化处理后,再吸附氮气、氩气、氪气。这种阶梯型等温线是先形成第一层二维有序的分子层后,再吸附第二层,第二层显然受第一层的影响,因此成为阶梯型。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/2f1b1b14-d591-4786-98e0-0eef916902cd.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p style=" text-align: justify text-indent: 2em " strong 典型吸附理论浅析 /strong /p p style=" text-align: justify text-indent: 2em " 不同的固体表面与吸附质组合得到各种不同的吸附等温线,这些等温线的形状反映了固体表面结构、孔结构和固体-吸附质的相互作用,通过解析这些等温线就能知道吸附相互作用和表征固体表面。对于常见的等温线,提出许多吸附相互作用的理论。下面仅介绍目前具有代表性的理论。 /p p style=" text-align: justify text-indent: 2em " Langmuir方程是常用的吸附等温线方程之一,是由物理化学家朗格缪尔于1916年根据分子运动理论和一些假定提出的。这个理论认为,在固体表面的分子或原子存在向外的剩余价力,可以吸附分子,吸附位可以均匀的分布在整个表面,但是只是吸附在表面的特定位置,称之为特异吸附。 /p p style=" text-align: justify text-indent: 2em " Langmuir吸附等温方程如下式: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/81e08f48-a1ad-4e98-9589-7ca91cac2197.jpg" title=" a.png" alt=" a.png" / /p p style=" text-align: justify text-indent: 2em " 其中,P为氮气压力、V为实际吸附量、Vm为单层饱和吸附量、b为与吸附热相关的常数。在不同的氮气压力P下测出氮气的实际吸附量V,用Langmuir方程作图得到一条直线,该直线的斜率的倒数即为单层吸附量Vm,进而计算出比表面,称为Langmuir比表面,Langmuir比表面对于微孔具有重要的意义。 /p p style=" text-align: justify text-indent: 2em " 布鲁诺(Brunauer)、埃麦特(Emmet)和泰勒(Teller)于1938年在Langmuir方程基础上提出的描述多分子层吸附理论,通过对气体吸附过程的热力学与动力学分析,推出氮吸附量随氮气分压而变的BET方程: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/e4e4e5d7-cb69-473d-84f0-ceda0cf74951.jpg" title=" b.png" alt=" b.png" / /p p style=" text-align: justify text-indent: 2em " 分析得出,P/P0在0.05~0.35范围中,BET是一个线性方程,该直线的斜率与截距之和的倒数是单层饱和吸附量,从而算出比表面积。通过BET方程求出比表面积成为目前国际通用的方法,被称为BET比表面。 /p p style=" text-align: justify text-indent: 2em " 根据材料不同,特别是微孔材料,由于在很低的压力下就完成了单层吸附,因此,BET方程的线性范围会向低压方向移动。对于孔径极小的分子筛,线性范围应取0.005~0.01;微孔材料的线性范围应取0.005~0.1;介、微孔复合材料线性范围应取0.01~0.2;介孔、大孔材料的线性范围取0.05~0.35。但是根据实际材料的不同,线性范围的取点应根据实际情况进行调整,使BET直线的线性良好才具有一定的参考价值。对于微孔材料,更接近于单层吸附的特征,Langmuir比表面值应具有更大的参考意义。 /p p style=" text-align: right " strong 作者:精微高博 /strong /p p style=" text-align: justify text-indent: 2em " (本文由精微高博团队供稿,不代表仪器信息网本网观点) /p
  • Nature重磅:用透射电子显微镜追踪液体中单个吸附原子!
    表面上的单个原子或离子,影响从成核到电化学反应以及多相催化的多个过程。透射电子显微镜(TEM)是一种主要的方法,可用来可视化的各种衬底上的单个原子。它通常需要高真空条件,但已被开发用于液体和气体环境中的原位成像,其结合的空间和时间分辨率是任何其他方法所无法比拟的,尽管有电子束对样品的影响。当使用商业技术在液体中成像时,包裹样品的窗口和液体中的电子散射,通常将可达到的分辨率限制在几个纳米。另一方面,石墨烯液体电池,实现了液体中金属纳米颗粒的原子分辨率成像。在此,来自英国曼彻斯特大学的Roman Gorbachev&Sarah J. Haigh等研究者展示了一个双石墨烯液体电池,其由中心的二硫化钼单分子层组成,再用六方氮化硼间隔层与两个封闭的石墨烯窗口隔开,这使得在盐溶液中以原子分辨率监测单分子层上铂吸附原子的动力学成为可能。相关论文以题为“Tracking single adatoms in liquid in a Transmission Electron Microscope”于2022年07月27日发表在Nature上。石墨烯,具有极薄、高机械强度、低原子序数、化学惰性、不渗透性和清除侵略性自由基的能力,是原位TEM电池的理想窗口材料。初始的石墨烯液体电池(GLC)设计,依赖于两个石墨烯薄片之间液体囊的随机形成,因此,在长时间的电子暴露下,其产率较低,稳定性较差。更先进的设计,包括了SiNx或六方氮化硼(hBN)的图案间隔层来定义液体袋,从而改善了GLC几何形状和实验条件的控制。在此,研究者开发了一种双石墨烯液体电池(DGLC),用于在透射电镜中研究原子薄膜上单个溶剂化金属原子的运动。这是由于非原位STEM研究表明,液体环境的选择,可以改变金属原子从纳米团簇到单个原子的分布,但原位实验探测这种行为是不可行的,甚至在早期的研究中,单个原子在液体中的成像被证明是难以捉摸的。研究者的重点是MoS2上的Pt,已有的丰富数据使其成为探索原子分辨率液体电池显微镜的局限性和潜力的理想模型系统。DGLC如图1a所示,由两个hBN间隔层组成,每层数十纳米厚,中间夹有二硫化钼(MoS2)单层。两种hBN间隔都包含用电子束光刻和随后的反应离子蚀刻预图纹的空洞。利用堆栈顶部和底部的几层石墨烯(FLG)将液体样品困在空隙中。原子平面的hBN晶体与石墨烯和MoS2形成密封;如果电池局部破裂,这可以防止渗漏,单个细胞之间的液体转移和液体的完全损失。研究表明,通过对70000多个单吸附原子吸附位点的成像,研究者比较了吸附原子在完全水合和真空状态下的位置偏好和动态运动。研究发现,与真空相比,吸附原子在液相中的吸附位分布有所改变,扩散系数也有所提高。这种方法,为单原子精度的化学过程原位液相成像铺平了道路。图1. 双液电池的设计图2. 水溶液环境中单Pt吸附原子在MoS2上的吸附位点图3. 在液槽和真空中的首选吸附位点图4. 使用最近邻链接的单原子跟踪综上所述,尽管强调了理解电子束效应和对复杂水合体系中原子行为进行补充理论研究的重要性,但本文的结果表明了测量固液界面上吸附原子运动的能力。该实验技术广泛适用于不同的材料系统,并提供了一种在不同环境中获得以前无法获得的原子解析、动态、结构信息的途径,适用于物理科学中的许多不同系统。文献信息Clark, N., Kelly, D.J., Zhou, M. et al. Tracking single adatoms in liquid in a Transmission Electron Microscope. Nature (2022). https://doi.org/10.1038/s41586-022-05130-0
  • 粒度仪、吸附仪“双打”生风 麦奇克拜尔亮相IPB2018
    p style=" text-align: justify text-indent: 2em " strong 仪器信息网讯 /strong 在2018年2018年10月17日-10月19日,第十六届中国国际粉体加工/散料输送展览会(IPB2018)上,麦奇克拜尔携两款重量级产品亮相,一款是比表面和孔隙分析仪BELSORP-max II(下简称max II),另外一款是激光粒度粒形分析仪Sync(下简称Sync)。展会上,麦奇克拜尔的中国代理商,大昌华嘉销售经理严秀英接受了仪器信息网的采访。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201810/uepic/574b39fc-032b-4a6b-a9bb-9aa4b81ffeaf.jpg" title=" 图片5.jpg" alt=" 图片5.jpg" / /p p style=" text-align: center text-indent: 0em " strong 麦奇克销售经理严秀英 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201810/uepic/053c7e83-d13f-4d7e-b034-3166adef0b99.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center text-indent: 0em " strong 激光粒度粒形分析仪Sync /strong /p p style=" text-align: justify text-indent: 2em " Sync是2018年3月21日刚刚才中国隆重首发的新产品,自上市以来销售成绩可圈可点,在2018上半年,仅环境监测总站一家单位就采购了6台sync仪器。该仪器采用动态光散射技术原理,测量范围可达0.01-4000um,量程广阔,准确性为0.6%,重现性为0.5%,同时支持干法分散和湿法分散,几项重要指标都性能良好。 /p p style=" text-align: justify text-indent: 2em " 严秀英告诉笔者,Sync最大的亮点就是可在同一仪器,同一样品,一次进样,同一样品池,一次测量,同时得到粒径粒形结果。而其粒形检测技术结合了挪威AnaTec公司的研发成果和丰富经验。“AnaTec从1985年就开始研发出第一台动态图像分析仪,拥有30余年的经验。2013年,该公司被麦奇克收购,老板本身也加盟了麦奇克公司,成为了我们的粒度粒形专家。因此Sync的粒形分析能力值得信赖。”严秀英说。 /p p style=" text-align: justify text-indent: 2em " 另外,Sync另一个突出特点,就是其激光衍射法测量和动态图像法检测是在仪器中智能化自动切换,同步轮流进行的,因此既有激光衍射法的测试数据又有动态图像法的测试数据,并且检测速度很快,该仪器在进样后,只需要10-30秒的测量时间,就可以同时得到粒度、粒度分布和各项粒形结果分析。该仪器在高校科研院所、3D打印、电池、化妆品、油墨、制药、环境等行业有着广泛的应用。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201810/uepic/d9f49f8c-7790-4860-b752-9fb368143614.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center text-indent: 0em " strong BELSORP-max II比表面和孔隙分析仪 /strong /p p style=" text-align: justify text-indent: 2em " 另一款亮相IPB的仪器是max II。“我们的max II是吸附仪中的战斗机,很受市场的欢迎。”严秀英自信地说,该仪器比表面积测量范围为0.0005m2/g-无上限,孔径分析范围为0.35nm-500nm。绝大部分有机溶剂的蒸汽吸附和水蒸气吸附可升级到高压吸附系统,最高压力1MPa。相比于前代产品max,max II新增了一个分析站,可支持4站分析,并配有0.1torr的传感器,测试速度也提高了约1/3。另外,max II还采用了内部独有的保温技术。 /p p style=" text-align: justify text-indent: 2em " 据严秀英介绍,max II相比与市面上的其他仪器,主要有以下几方面的优势,一个是仪器采用静态容量法蒸汽吸附原理,这是麦奇克拜尔吸附仪最大的特色,max II可以做有机蒸汽吸附、水蒸气吸附、甲苯吸附等等,能够满足个性化科研工作的需要;其二具有出色的内部温控系统,控温最高可达80摄氏度左右。除此之外,可以与核磁共振、质谱、XRD等多种仪器联用,满足一条龙式科研表征的要求。最后,该仪器还采用气动阀进行密封,密封性优良,保证了测量下限的准确性。 /p p style=" text-align: justify text-indent: 2em " 正因为具有这样的特点,max II的用户群体主要集中在高校/科研院所,在MOF、催化剂、石化系统等方面都有广泛应用,在已购用户名单中清,也不乏清华大学、南京大学、中山大学,南京工业大学、苏州大学等重磅客户。 /p p style=" text-align: justify text-indent: 2em " 麦奇克针对粒度仪和吸附仪,布置了10多人的售后服务团队,在北京、上海、广州、成都、西安等地都设有售后中心,在北京和上海还设立了为用户提供免费支持的应用技术支持中心。“这几天在IPB展会上,已经有很多用户主动提出来想用我们的仪器进行试样检测,进一步交流对接,我们有信心在粒度仪和比表面领域获取更大的市场份额。”严秀英说。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制