异紫杉脂素

仪器信息网异紫杉脂素专题为您提供2024年最新异紫杉脂素价格报价、厂家品牌的相关信息, 包括异紫杉脂素参数、型号等,不管是国产,还是进口品牌的异紫杉脂素您都可以在这里找到。 除此之外,仪器信息网还免费为您整合异紫杉脂素相关的耗材配件、试剂标物,还有异紫杉脂素相关的最新资讯、资料,以及异紫杉脂素相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

异紫杉脂素相关的资料

异紫杉脂素相关的论坛

  • 那位能帮忙从制剂中分离出紫杉醇?

    我有一些紫杉醇制剂,是实验室中试生产时做的,但现在做课题需要原料药,所以想从制剂中分一些出来,但是了一些方法(主要是硅胶柱层析),都弄不好。制剂中成分为:聚氧乙烯蓖麻油(表面活性剂HLB13.6)、无水乙醇、紫杉醇。哪位能给个建议,不胜感激!

  • 【转帖】整合代谢工程和合成生物学大肠杆菌合成紫杉醇重要前体

    众所周知,紫杉醇是重要的抗癌药物,其作用机制是抑制癌细胞的有丝分裂。紫杉醇对包括乳腺癌在内的多种癌症有很好的治疗效果,其最高销售额曾超过10亿美元。虽然随着专利的到期,其售价有了较大幅度的降低,但是其价格仍然相当昂贵,一个疗程的价格超过1万美元。 紫杉醇是植物来源的抗癌药物,最初治疗一个病人需要4-5棵太平洋红豆杉的树皮。由于太平洋红豆杉数量非常有限,生长周期很长,并且剥去红豆杉树皮后回导致红豆杉的死亡,因此使用红豆杉树皮来提取紫杉醇治疗癌症病人面临很强的伦理困境。面对此两难境地,科学家发挥科学创新精神,开发出了红豆杉植物细胞培养技术来获取紫杉醇,随着研究是深入,科学家发现可将使用decorative yew的树叶提取紫杉醇的前体,使用化学合成的方法合成紫杉醇。由于decorative yew树叶来源很广,使用树叶也不会杀死树木本身,加之后续合成的高效性,这种提取加合成的方法称为紫杉醇的主要来源。化学全合成是获得化合物的主要手段之一,科学家经过努力也成功地合成了紫杉醇,由于紫杉醇结构复杂,化学合成需要35-50步,得率很低,因此紫杉醇的化学全合成科学意义很大,实际应用的价值不大。  微生物具有底物利用广泛,生长速度快,研究深入,大规模生产容易等优点,非常适合药物的生产,与紫杉醇同为萜类化合物的青蒿素已经通过精确的途径改造和优化,已经实现了工业化生产,这表明通过代谢工程和合成生物学手段在微生物中合成宿主本身不产生的复杂小分子是可行的,也为后续的相关研究提供可供借鉴的策略和经验。 美国麻省理工大学和Tufts大学科学家沿着这个思路,合成紫杉醇的前体taxadiene和 taxadiene-5-alpha-ol。虽然大肠杆菌并不能够产生这两种物质,但是合成他们的前体IPP是大肠杆菌生理代谢过程中的一个中间产物,IPP能够通过两部的酶促反应合成taxadiene。催化后续两部反应的酶类已经从植物中克隆出来。  美国科学家首先优化了IPP的生物合成,以大量生成IPP为后续的酶促反应提供底物。 IPP的生物合成有8个步骤,研究发现其中的四个步骤是限速步骤,通过提高限速步骤的酶量,控制整个催化的效率,大量的合成了IPP。接着讲植物的催化酶引入到工程菌株中,优化催化酶的密码子和表达水平,产生了大量的taxadiene。与只加入催化酶没有进行相关优化相比,其产量提高了1500倍,也比已有的文献报道的产量提高了1000倍。接着科学家有加入能够催化taxadiene合成 taxadiene-5-alpha-ol的酶类,将合成紫杉醇的途径有往前迈了一步。  虽然离合成能够化学转化的前体浆果赤霉素(baccatin III)还有比较远的距离,但是本研究表明在弄清楚紫杉醇的合成途径后,使用大肠杆菌合成紫杉醇很有潜力。 本研究中使用的平台技术和手段对合成其他化合物具有通用性,因此使用代谢工程结合合成生物学手段将开启动植物来源的活性小分子微生物表达的大门。  Source: “Isoprenoid Pathway Optimization for Taxol Precursor Overproduction in Escherichia coli” by Parayil Kumaran Ajikumar, Wen-Hai Xiao, Keith E. J. Tyo, Yong Wang, Fritz Simeon, Effendi Leonard, Oliver Mucha, Too Heng Phon, Blaine Pfeifer, Gregory Stephanopoulos. Science, 1 October, 2010. Funding: Singapore-MIT Alliance, National Institutes of Health and a Milheim Foundation Grant for Cancer Research

  • 44.10 紫杉醇PLGA口服纳米粒的制备及生物利用度的研究

    44.10 紫杉醇PLGA口服纳米粒的制备及生物利用度的研究

    【作者】 吉顺莉;【导师】 戈延茹;金一;【作者基本信息】 江苏大学, 药剂学, 2010, 硕士【摘要】 紫杉醇(Paclitaxel,TAX)是抗肿瘤药物,在临床上已得到广泛应用,特别是对乳腺癌、卵巢癌的治疗作用明显。由于其水溶性差,临床使用的紫杉醇注射液中的紫杉醇是靠聚氧乙烯蓖麻油(CremophorEL)与无水乙醇以1:1的混合液来稳定和溶解。但聚氧乙烯蓖麻油可促进组胺释放,常引起严重的过敏反应和其他不良反应。为了解决上述问题,研究不含Cremophor EL并能提高紫杉醇生物利用度的制剂成为当前的热点。把紫杉醇制备成口服纳米给药系统后,则不仅能减少毒副作用,增加其稳定性,而且方便储存和运输。本文制备了紫杉醇纳米粒(TAX-NPs),优化了其处方和制备工艺,并对其进行了体内外评价。主要内容和结果如下:1.建立了紫杉醇样品HPLC测定方法,并对其线性范围、精密度、回收率等进行了验证,结果表明该方法符合分析要求。以生物可降解聚合物——聚丙交酯乙交酯共聚物(PLGA)为载体,采用乳化-分散法制备了TAX-NPs;以纳米粒的粒径和包封率为评价指标,考察了处方及其工艺因素对制剂质量的影响;对TAX-NPs的基本性质,体外稳定性和释药特征进行了考察;用差示扫描量热法(DSC)及X射线粉末衍射(X... 更多还原http://ng1.17img.cn/bbsfiles/images/2012/08/201208131346_383475_2379123_3.jpg

异紫杉脂素相关的方案

异紫杉脂素相关的资讯

  • 我国科学家突破“抗癌明星药”紫杉醇生物合成难题
    素有“植物大熊猫”之称的红豆杉是我国一级珍稀濒危保护植物,其生长速度极慢,一般成树需要几十年甚至上百年,人工种植也非常不易。但这一树种却是全球知名抗癌药物紫杉醇的提取来源。中国农业科学院深圳农业基因组研究所闫建斌团队近日牵头发现紫杉醇生物合成途径中关键的未知酶,设计并重构了紫杉醇生物合成新路线,为开发我国自主的紫杉醇提取生产技术提供重要抓手,从而为中国的紫杉醇绿色制造产业化铺平道路。相关研究成果于北京时间1月26日在国际期刊《科学》上发表。中国科学院院士赵国屏对此评价:该研究成功解析了紫杉醇合成途径中尚未被发现的若干关键催化酶,并利用植物底盘实现了合成路线的人工重构,结束了阐明紫杉醇生物合成途径的漫长研究历史,也生动代表着我国一批中青年科学家,在合成生物学领域探索奋斗近二十年所达到的里程碑式新高度。闫建斌研究员介绍,紫杉醇是一种结构异常复杂且独特的四环二萜类天然产物,由红豆杉中提取,在世界上被广泛应用于多种癌症的临床治疗。在我国,紫杉醇原料药主要依靠从人工种植的红豆杉中提取紫杉醇前体分子——巴卡亭Ⅲ,再通过简单的化学合成修饰,实现大规模生产。但这高度依赖于珍稀而有限的红豆杉资源,使得紫杉醇药物生产成本高昂,还可能引发生态破坏和耕地占用等问题。因此,如何提高紫杉醇的生物合成效率、开发绿色可持续的新型生产策略,以替代天然提取,成为亟待解决的焦点、难点问题。长期以来,世界各国都在积极推动紫杉醇相关研究与产业发展。特别是美国,自20世纪60年代开始至今,一直主导着紫杉醇的科技前沿。当前,最先进的紫杉醇前体巴卡亭Ⅲ等的提取技术、核心的红豆杉细胞生产技术和基因工程技术等,依然掌控在欧美制药公司手中。中国农业科学院深圳农业基因组研究所(岭南现代农业科学与技术广东省实验室深圳分中心)组织国内外多家单位,开展了多年攻关。研究人员从58个关键候选基因中,发现了一个关键的蛋白酶。这种酶的发现与反应机制的阐明,重塑了科学界对于紫杉醇内部独特结构的分子反应机制的理解。随后,研究团队证明了巴卡亭Ⅲ分子可由9个核心基因合成,绘制出了巴卡亭Ⅲ的完整生物合成过程。以上发现突破了合成生物学技术实现紫杉醇绿色可持续生物制造的关键瓶颈,将为紫杉醇合成生物学制造提供关键基因。
  • 诺华赛与instrAction将合作拓展紫杉烷类药物纯化解决方案
    两家公司将开发解决方案来改变新型和仿制抗癌化合物的制造模式   面向生命科学行业提供制造解决方案的领导者诺华赛 (Novasep) 和供活性药物成分 (API) 纯化工艺使用的创新性色谱固定相制造商 instrAction 今天宣布,他们已经拓展了其全球战略联盟,使之囊括了知名抗癌化合物紫杉烷类药物的纯化。   通过这项扩大的合作,诺华赛能开发和操作或提供最优化大规模色谱工艺,实现紫杉烷类活性药物成分及中间体的具有成本效益的纯化。这两家公司于2010年7月公布了一项非手性色谱战略联盟协议。拓展后的协议使诺华赛能通过紫杉醇类产品的工艺能力进一步加强其在生命科学行业广泛制造解决方案的能力。诺华赛的客户将受益于该合作,因为他们将能获得用于其紫杉烷类活性药物成分的经济型一步式纯化解决方案。   instrAction 根据其专有技术,在其拥有的3000种固定相中合成了 API 选择性固定相,该技术展现了对于紫杉烷类化合物纯化的巨大潜力。利用 instrAction 紫杉烷类选择性色谱固定相系列,诺华赛能开发多步式合成并优化纯化步骤。诺华赛接着能扩大优化工艺并生产用于临床和商业用途的活性药物成分。诺华赛还能选择性地向其客户提供具有性能保障、融合了诺华赛领先 Prochrom(R) 高效液相色谱 (HPLC) 柱及系统和 基于instrAction 选择性固定相的成熟工艺。对于成熟药物活性分子或仿制药,诺华赛和 instrAction 能额外提交与许可应用专利,以扩大对其客户产品的保护。   诺华赛在其经过美国食品及药物管理局 (FDA) 检查并获得 SafeBridge 认证的法国勒芒厂址开发并制造紫杉烷类 API 和高级中间体,专注于高效活性药物成分 (HPAPI) 的合成与纯化。   负责诺华赛合成业务开发的执行副总裁 Rene De Vaumas 表示:“由于 instrAction 的高度选择性色谱固定相和诺华赛在紫杉烷类合成与纯化方面20年的经验,我们正是通过这次合作为我们全球客户寻求解决方案的模式转变。”   instrAction GmbH 首席执行官 Thomas Schwarz 博士说:“我们很高兴能与紫杉烷类合成与纯化的领导者诺华赛扩大合作。这是在行业下游工艺中实施 instrAction 技术的另一个重要里程碑。我们坚信它未来将广泛应用于活性药物成分的工业纯化。”   诺华赛简介   诺华赛开发、营销并管理各种创新技术,这些技术使生命科学行业活性分子的制造不仅安全而且具有成本效益。诺华赛在全球提供的制造解决方案包括工艺研发服务、分离纯化设备和系统、合同生产服务以及复杂的活性分子。诺华赛产品的应用范围包括医药、生物制药、食品、功能活性成分和生物技术市场。   instrAction 简介   instrAction 由 Klaus Gottschall 博士于1997年创建,位于路德维希港的巴斯夫 (BASF) 所在地,致力于开发和生产 "InstrAction(R) Receptor Phase",作为新颖的 API-选择性色谱树脂。InstrAction(R) 技术实现了聚合物网络上广泛功能配合物的固定化,这些配合物表面覆盖着大相径庭的多孔骨架材料。小分子以及大分子被高选择性的可逆相互作用分离开来。instrAction 固定相的高选择性通过目标分子和固定相功能配合物之间的多价-多式相互作用实现,原理和锁-钥匙类似。
  • 沃特世经典Symmetry色谱柱适用于中国药典方法紫杉醇及其注射液含量测定
    紫杉醇(Paclitaxel)最初是从红豆杉科红豆杉属(Taxus)植物的树皮中提取得到的二萜类化合物,具有独特抗癌活性,曾被美国国立癌症研究所认为是近15~20年来肿瘤化疗的最重要的进展。紫杉醇注射液功效主治:卵巢癌和乳腺癌及NSCLC的一线和二线治疗;头颈癌、食管癌,精原细胞瘤,复发非何金氏淋巴瘤等。 中国药典对紫杉醇[1]以及紫杉醇注射液[2]规定了有关物质检测及含量测定方法。 有关物质检测方法要求使用C18柱,以水-乙腈进行梯度洗脱,检查三杉尖宁碱(杂质I)与7-表-10-去乙酰基紫杉醇(杂质II)等杂质。使用沃特世经典高纯硅胶色谱柱Symmetry C18(5um, 4.6x250mm, PN WAT054275)按药典方法可得如下谱图,充分满足紫杉醇峰与杂质II峰之间的分离度大于1.2的药典方法系统适应性要求: 对于实际样品检测杂质的效果图: 药典方法要求,维持初始流动相乙腈-水(40:60)不变,待紫杉醇主峰洗脱完毕后再进行梯度洗脱,时间较长,使用沃特世UPLC技术可以帮助提高通量效率并节约样品耗量及溶剂消耗量。 含量测定要求使用C18柱,以甲醇-水-乙腈(23:41:36)为流动相等度洗脱。使用同上Symmetry C18柱进行分离,得到谱图如下,充分满足紫杉醇峰与杂质I峰及杂质II峰的分离度均大于1.0的药典方法系统适应性要求。 药代研究参考:中国新药研究者也已经使用UPLC技术开展了对红豆杉属植物根须的代谢轮廓分析[3]以及对紫杉醇衍生物(NPD-103)和紫杉醇脂质体的药物动力学分析[4-5]。 关于沃特世Symmetry系列色谱柱产品: 1994年以来的制药行业内标杆产品,高纯度、高品控,全程依从cGMP生产规范! 质优价中,优惠后仅为三千,帮助您平衡对数据品质和对成本的双重要求! 具有最广泛的文献引用,多达百余个USP方法使用(可垂询),多达170多个应用的应用手册,即索即得 [1][2]中国药典2010版,二部,1007-1008页。 [3] 红豆杉属植物根须的UPLC-ESI-MS代谢轮廓分析。沃特世液相色谱质谱通讯,第47期,23-28页。 葛广波等。 [4] Determination of a novel paclitaxel derivative (NPD-103) in human plasma by ultra-performance liquid chromatography-tandem mass spectrometry. Biomed Chromatograr. 2009 May 23(5): 510-5. Zhang SQ, et al. [5] Clinical pharmacokinetics of paclitaxel liposome with a new route of administration in human based on the analysis with ultra performance liquid chromatography. J Pharm Sci. 2010 Nov 99(11): 4746-52. Wang X, et al.

异紫杉脂素相关的仪器

  • 到梅特勒托利多公司官网详细了解 Flash DSC 2+闪速差示扫描量热仪Flash DSC 2+ 是完全创新型的超高速扫描量热仪(中文名称为闪速DSC),是对传统 DSC 的完美补充,是目前世界上扫描速率最快的商品化DSC扫描量热仪,升温速率达到2,400,000K/min,降温速率达到240,000K/min。该仪器能分析之前无法测量的结构重组过程。极快的降温速率可制备明确定义的结构性能的材料,例如在注塑过程中快速冷却时出现的结构;极快的升温速率可缩短测量时间从而防止结构改变。Flash DSC扫描量热仪也是研究结晶过程动力学的理想工具,不同的降温速率的应用可影响试样的结晶行为和结构。Flash DSC2+扫描量热仪的心脏是基于MEMS(Micro-Electro-Mechanical Systems微机电系统)技术的芯片传感器(UFS1)。MEMS芯片传感器安置于稳固的有电路连接端口的陶瓷基座上。全量程UFS1传感器有16对热电偶,试样面和参比面各8对。Flash DSC扫描量热仪基于功率补偿测试原理,专利注册的动态功率补偿电路可使超高升降温速率下的测试噪声最小化。传感器的试样和参比面各有热阻加热块,一起生成需要的温度程序。加热块由动态功率补偿控制。热流由排列于样品面和参比面的热电偶测量。 Flash DSC 2+扫描量热仪为快速扫描 DSC 带来了变化。 该仪器可分析以前无法测量的结构重组过程。 Flash DSC 2+ 扫描量热仪是对传统 DSC 的完美补充。 现在,升温速率范围已超过 7 个数量级。它的升温与降温速率极高,为研究热物理转变(如聚合物的结晶与结构重组)和化学过程提供全新的视角。超高降温速率 &mdash 可以制备特定结构的的材料超高升温速率 缩短测量时间、抑制重排过程温度范围宽 可在 -95 至 1000℃ 的范围内测量 扫描量热仪技术参数:温度范围: -95~1000℃升温速率:30~2,400,000℃/min降温速率:6~240,000℃/min最大热流信号: 20mW热流信号噪声: 0. 5&mu W扫描量热仪主要特点:极快的降温速率&ndash 可制备明确定义的结构性能的材料超高的升温速率&ndash 缩短测量时间、防止结构改变极速响应的传感器&ndash 可研究极快反应或结晶过程的动力学超高灵敏度&ndash 可使用低升温速率,测量范围与常规DSC交迭温度范围宽&ndash &ndash 95至450 ° C友好的人体工程学设计和功能&ndash 试样制备快速、容易扫描量热仪应用领域:聚合物等物质的结构形成过程的详细分析、测量快速结晶过程、测定快速反应的反应动力学、研究接近生产条件下的添加剂机理等。扫描量热仪主要型号:Flash DSC 2+到梅特勒托利多公司官网详细了解 Flash DSC 2+闪速差示扫描量热仪查看更多信息 咨询电话:4008-878-788
    留言咨询
  • 主要应用:◆阿霉素脂质体 ◆ 两性霉素 B 脂质体 ◆ 紫杉醇脂质体 ◆ 奥沙利铂脂质体 ◆ 伊立替康脂质体◆ SiRNA 脂质体 ◆ 白蛋白紫杉醇纳米粒 ◆ 核酸类脂质体 ◆ mRNA脂质体 挤出原理:挤出原理图:◆样品经过水化形成脂质体后,一般会通过高压均质或者超声的方式对样品进行初步均质处理,处理后样品粒径和分布都会有所提高,但往往还不能达到所需要的理想要求。此时,将均质后样品由下图中进料口进入,通过高压氮气将样品从滤膜中挤出,挤出后的样品粒径和分布都会进一步提高。 支撑板◆支撑板和滤板主要起到支撑滤膜的作用。 由于磷脂有一定的相变温度,所以在挤出之前需要对挤出器夹套通入恒温水进行预热至一定温度(如70℃),且在使用过程中需保持在此温度。通常的脂质体品种挤出之后粒径能达到 100nm以下,PDI 能控制在 0.1 以下。◆动力源:氮气技术特征◆核心部件 支撑板(SS316L不锈钢)滤板(SS316L不锈钢)滤膜:PC材质(聚碳酸酯)密封系统:PU材质/聚四氟乙烯温控系统:夹套控温 ◆技术特点 所有部件包括“O”型圈,垫圈均通过FDA 认证 操作便捷,可重复使用 严格控制产品粒径,可单次操作或循环操作 装卸方便,便于清洗和灭菌 所有数据可直接放大 预设压力保护阀 可用于高浓度样品处理 可放在洁净室中使用,符合 GMP 标准 技术参数:
    留言咨询
  • Genizer系列在线脂质体挤出器可用于制备批量在10mL-5000mL 脂质体,脂质体粒径50-200nm之间. 可以配合手工泵,电动泵, 高压均质机,气泵后使用,使用压力从1500-5000psi。 可以制备阿霉素,紫杉醇,两性霉素B,多柔比星,柔红霉素,阿糖胞苷,长春新碱,顺铂,益康唑 脂质体生产。清洗方便容易灭菌,符合GMP和FDA制药厂规范。Genizer系列在线脂质体挤出器 产品特点:1 卫生级别:物料接触材料是经FDA&GMP认可的316L不锈钢。2 处理样品量:脂质体样品处理量10ml-10000ml,生产型脂质体制备处理量 10L, 20L, 50L, 100L。样品处理量可低至10ml。3 工作压力: 1,500-5,000PSI(100-345Bar)。4 温度控制:带夹套可外接冷却液控制样品温度在合适范围。5 兼容性:在线式可配接均质机或高压泵使用。6 可选滤膜:孔径为50nm, 80nm, 100nm, 200nm, 400nm, 800nm。7 适制样品:可以制备阿霉素,紫杉醇,两性霉素B,多柔比星,柔红霉素,阿糖胞苷,长春新碱,顺铂,益康唑 脂质体生产。Genizer系列在线脂质体挤出器 优点:采用微米打孔挤出膜支撑板(肉眼可见规则的孔),无金属颗粒,适合药物生产使用时仅需要安装1片聚碳酸酯膜,无需另外安装Drain Disc 或者 Filter Support,操作更简便,长期使用可节约一大笔买辅助膜的资金气瓶动力源,无需手动来回推挤,相比手动挤出器具有更高广的样品处理体积范围Genizer系列在线脂质体挤出器型号参数:型号GOE-5mL/minGOE-50mL/min0.4L/minGOE-1L/minGOE-4L/min压力0-5,000psi0-5,000psi0-5,000psi0-5,000psi0-5,000psi容量2-50mL10-200mL0.2L-2L1L-10L2L-40L尺寸10cm × 10cm × 8cm (1kg) - 45cm × 40cm × 30cm (90kg)特点压力流量自由调节, 卫生级不锈钢, 控温夹层控制, 接压缩气体, 安全阀, 多种接口选配接高压泵, 接均质机, 2-8个脂质体挤出器并联
    留言咨询

异紫杉脂素相关的耗材

  • 紫杉醇Silicycle正相硅胶
    北京绿百草科技专业提供分离紫杉醇Silicycle正相硅胶。紫杉醇(Paclitaxel)是从紫衫的树皮中提出的一种化合物,Silicycle正相硅胶适合分离紫杉醇,货号为R12030B,粒径40-63&mu m,孔径60Å 。绿百草科技现货供应Silicycle正相硅胶填料。
  • 液相色谱柱 SUPELCOSIL LC-F( 紫杉醇的专用分析柱)
    液相色谱柱 SUPELCOSIL LC-F( 紫杉醇的专用分析柱)货号59158 产品描述 SUPELCOSIL LC-F 色谱柱键合有五氟苯基官能团/封尾。对卤代化合物、酯类、酮类、碱和紫杉烷类包括紫杉醇的分离,该色谱柱具有与传统反相色谱柱不同的特殊选择性。 应用特点 紫杉醇的专用分析柱 型号规格 250*4.6mm,5&mu m
  • 五氟苯基柱,紫杉醇分析专用色谱柱
    用氟原子取代反相固定相碳链上的氢原子,含氟固定相除了对含氟和含卤素化合物有较高的选择性外,也可作为普通的反相固定相使用,用于分离不含氟或卤素的化合物,提供与C-H烷基固定相不同的选择性。在生物制药、天然产物和环境分析中近年来应用广泛。 氟代固定相比烷基固定相有更强的离子交换和极性作用的分离特性,对一些极性的代谢产物有很好选择性。另外含氟固定相有很强的几何尺寸和立体形状选择性,能分离一些结构相似、用烷基固定相很难分离的物质。 用于含氟化合物以及紫杉醇类的天然产物的分离,由于苯环的存在,和其它氟烷基固定相不同,PFP对芳香族化合物也有很高的选择性。

异紫杉脂素相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制