当前位置: 仪器信息网 > 行业主题 > >

电化学显微镜

仪器信息网电化学显微镜专题为您提供2024年最新电化学显微镜价格报价、厂家品牌的相关信息, 包括电化学显微镜参数、型号等,不管是国产,还是进口品牌的电化学显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电化学显微镜相关的耗材配件、试剂标物,还有电化学显微镜相关的最新资讯、资料,以及电化学显微镜相关的解决方案。

电化学显微镜相关的仪器

  • 主要功能及特点 Bsae-SECM 是一套致力于研究的扫描电化学显微镜,技术源于德国波鸿鲁尔大学Schuhmann 教授课题组。Base-SECM 标准配置的功能已然十分强大,能满足绝大多数研究的需要。在这基础上,用户还可以购置不同的功能模块,以满足特殊的研究需要。 主要技术参数定位系统:XYZ 步进控制系统动态范围:25x25x25 mm(其他范围可选)最大线扫速率:10mm/s分辨率:20nm扫描模式Feedback Mode 反馈模式GC Mode 产生收集模式Direct Mode 直接模式AC-SECM 微区阻抗模式4D 模式Shearforce剪切力模式探针扫描:2D 扫描3D 扫描等间距扫描快速等间距扫描预设扫描自编辑电化学程序扫描 应用领域电化学动力学研究吸附/脱附现象和溶解过程的研究液/液界面,液/气界面,液/固界面以及重要的生物过程局部腐蚀过程观测催化剂活性评价传感器表面活性成像局部阻抗分析生物膜酶活性研究微纳米尺度的金属颗粒沉积(恒电流或无电沉积)在水或有机溶液中材料表面上导电聚合物局部沉积电化学刻蚀
    留言咨询
  • 电化学由于其在电池、燃料电池、腐蚀、合成和催化等各个领域的广泛应用而受到越来越多的关注。在电化学系统中,会发生各种复杂的过程,包括物质的吸附、解吸和扩散,表面重建,电荷转移,表面和物种之间化学键的形成或断裂以及发生在电化学界面化学反应等。因此,电化学界面的结构决定了整个电化学系统的电化学响应以及材料的性质和性能电化学的研究主要涉及电化学界面的结构、性质和性能之间的内在关系,以促进电化学设备的合理设计。电化学表征技术主要基于电信号的测量,包括电流和电势,这些方法可以根据电化学理论分析电信号来获得丰富的信息,包括界面性质的热力学和动力学信息、表面上反应物的数量以及电极的反应性。然而,由于反应物的化学指纹信息缺乏,很难在没有经验的情况下确定化学结构。另外,从整个电极表面的响应测量得到的电信号,是针对整个电极的,对于非均匀电极的结构和性能无法进行研究。因此,需要开发具有丰富化学信息和高空间分辨率(低至几个纳米)的原位表征方法,以全面了解电化学界面和过程。 电化学-针尖增强拉曼光谱( EC-TERS)是一种具有纳米尺度空间分辨率分子指纹信息的技术,可以用于实现上述目标。 EC-TERS联用优势● 分子水平的一致性:拉曼光谱可以提供分子水平的信息,可以检测到电化学界面上的单个分子。这使得我们能够研究电化学反应的瞬间变化。● 高空间分辨率:通过使用针尖增强拉曼光谱(TERS)技术,可以在纳米探针上实现高空间分辨率。这使得我们能够研究界面的局部结构。● 可以在液体环境下工作:拉曼光谱可以在液体环境下进行测量,这对于研究电化学修饰过程非常重要。传统的电化学表征技术通常需要在干燥的条件下进行测量,而拉曼光谱可以在多孔溶液中直接进行测量。● 化学指纹信息:拉曼光谱可以提供化学指纹信息,通过分析拉曼光谱的峰位和强度,可以研究反应的中间体、吸附物和反应产物。● 非破坏性测量:拉曼光谱是一种非破坏性测量技术,不需要对样品进行特殊处理或标记。这使得我们能够对电化学界面进行实时监测。EC-TERS方案电化学-针尖增强拉曼光谱测试系统系统采用倒置显微镜结构,底部激发,底部拉曼信号收集。兼容常规拉曼测试、常规电化学拉曼测试,针尖增强拉曼测试。电化学池位于XY压电位移台上,可以进行纳米级的步进移动; 探针链接XYZ压电位移台,可进行三维精细调节;从而实现探针-激光-样品三位一体。 电化学-针尖增强拉曼光谱测试系统技术参数 光谱分辨率2cm-1激发光源532nm激光器,100mW633nm激光器,15mW光谱仪焦距320mm,配置3块光栅探测器≥2000*256像素,300-1000nm响应,峰值效率高于90%,芯片深度制冷到-60℃常规拉曼空间分辨率1um@XY方向
    留言咨询
  • 产品简介:纳尺度扫描电化学分析系统基于扫描电化学池显微镜(SECCM)、离子电导显微镜(SICM)和扫描电化学显微镜(SECM)基本原理,结合自主研发的高灵敏电流检测、高分辨压电陶瓷移动及高精准反馈模块一体化设计,可以对材料的电化学性能、光学性能及三维形貌等进行高空间分辨成像,从而为理解电化学过程机理,遴选电化学材料等提供研究工具;还可以对单个活细胞在生理过程下多种物理参数(形貌、体积、表面电荷分布、模量等)及电生理信息的变化进行高空间分辨成像。技术参数:
    留言咨询
  • Park NX12 SECCM可提供多功能原子力显微镜平台满足纳米级测量的需求- 原子力显微镜(AFM)有纳米级分辨率成像以及电,磁,热和机器性能测量的能力。- 纳米管扫描系统可用于高分辨率扫描电化学池显微镜和扫描离子电导电显微镜。- 倒置光学显微镜(IOM)便于透明材料研究和荧光显微镜一体化。通过验证的NX10性能通过倒置光学显微镜样品平台,Park NX12将Park原子力显微镜的多功能性和准确性相结合。这使得使用者更容易的使用纳米管技术去研究透明,不透明,或软或硬的样品。电化学测试的绝佳平台电池,燃料电池,传感器和腐蚀等电化学研究是个快速增长的领域,然后许多原子力显微镜不能直接满足其特殊的需求。Park NX12的人性化设计,为快速操作提供便利,从而达到化学研究人员要求的功能性和灵活性。这主要包括:多功能易用电化学池惰性气体和湿度的环境控制选项双恒电位仪的兼容性研究人员可利用NX12平台实现各种电化学应用:扫描电化学显微镜(SECM)扫描电化学池显微镜(SECCM)电化学原子力显微镜(EC-AFM)和电化学扫描隧道显微镜( EC-STM)多用户设备Park NX12完全重新构建,以适应多用户设备需求。其他原子力显微镜解决方案缺乏必要的多功能性,难以满足该设备中用户的多重需求,很难合理控制设备成本。然而,Park NX12旨在能够容纳标准环境原子力显微镜成像,液体扫描探针显微镜,光学和纳米光学成像,使其成为最灵活的原子力显微镜之一。多功能应用Park NX12功能广泛,包括液体中的PinPoint &trade 和纳米力学,倒置光学显微镜定位透明样品,离子电导显微镜超软样品成像,以及改善透明样品光学性能的可视性。综合性的力谱方法Park NX12提供了一种在液态和空气中的纳米力学表征的完整解决方案,使其成为广泛应用中的理想选择。模块化NX12模块化设计不仅安装简单且兼容性强,可以满足研究人员的各种实验需求。Park NX12可用于任何一个项目NX系列的众多扫描模式和模块化设计使它可轻松地适应任何一个扫描探针显微镜的需求。- 标准成像非接触模式成像接触模式成像侧向力显微镜(LFM)相位成像轻敲模式成像-化学性能扫描电化学池显微镜(SECCM)扫描电化学显微镜 (SECM)电化学显微镜(EC-STM和EC-AFM)功能化探针的化学力显微镜扫描离子电导显微镜(SICM)-热性能扫描热感显微镜(SThM)
    留言咨询
  • ElProScan扫描电化学显微镜 HEKA ElProscan是一台扫描电化学显微镜,用于研究样品的电化学活性表面。它属于扫描探针显微镜(AFM, STM, SECM)家族的一员。2005年HEKA公司创立了ElProscan品牌,它包括传统的SECM实验方法及扩展功能。整个系统包括三个主要部分,定位系统,双恒电位仪,数据采集系统。 定位系统控制微电极在溶液中电化学活性样品表面上进行三维扫描,因此ElProscan可用作传统的SECM仪器并且具有更多的功能。ElProscan与传统的SECM不同之处在于它不仅仅记录针尖的电流信号,而且在针尖上可实现任何电化学实验方法的应用(用可编程脉冲发生协议Programmable Pulse Protocol来完成)。在脉冲发生协议运行过程中,在样品上应用独立的电化学实验方法并同时在针尖上应用不同的方法。因此ElProscan还具有电化学活性表面修饰的功能。 ElProscan系统设计具有多种应用领域的、多用处的特点,如:表面分析功能、金属沉积、导电聚合物沉积、酶活性成像、催化材料表面活性等仅仅是其中的少数应用。ElProscan是一套集成系统,可用一个软件程序实现所有功能的控制运行,而且还包括科学研究等级的硬件使仪器功能最佳化。ElProscan系统是唯一、可测量从超微电流到2A电流范围的电化学仪器,它还可以用作双恒电位仪/电流仪,使其具有多种电化学应用。微电流前置放大器可以在pA级的范围内实现高精度、低噪声的测量。 HEKA ElProscan系统具有多种独特的性能:1. 闭环控制用于所有的坐标轴(X,Y,Z)和Z轴压电驱动。2. 超微电流测量的低噪声小于1pA。3. 集成计算机实时系统以实现真实的等速扫描和实时斜率补偿。4. 实时控制的等间距扫描具有全部集成在一起的剪切力装置5. 3D阵列扫描具有电化学技术自由可编程功能。6. 模板扫描在自定义的平面结构上进行。
    留言咨询
  • EC AFM电化学显微镜 400-860-5168转1876
    EC AFM是在原子力显微镜样品台上安装电化学池,可以在纳米尺度进行电化学性能的研究。在电化学发生的同时,进行样品表面的形貌测试。1.安装电化学池非常便捷。2.开放的设计,允许用户进行改变。3.电化学池的设计,可以用于很宽范围样品的测试,包括不同样品的厚度,形状。可以配加热台和冷却台。4.可以用绝缘的介质防止电解液被污染。5.样品跟压电陶瓷扫描管分离,避免扫描器损坏。6.很宽的电极类型。 7.高分辨率(可以达到原子级别)。
    留言咨询
  • 产品简介:可通过电化学反应产生的发光信号来实现微观物体的显微成像和分析。产品由一体化箱式设计的成像系统、电化学系统和自主开发软件系统组成,其中成像系统包括倒置显微镜、科学型CMOS(sCMOS)相机和外封闭箱等,用于高效地捕捉微弱的电化学发光信号。ECLM不需要外部激发光源,具有高灵敏度、低背景值和高时空分辨率的特点,已被应用于单细胞或单颗粒、生物组织切片、化学传感检测和纳米材料等研究,在生物医学、化学分析和材料科学等领域都由重要前景。技术参数:
    留言咨询
  • 一、超分辨电化学显微镜的关键作用当前,超高时间&空间分辨率的化学反应测量已经成为能源、材料、催化、环境与生命科学等众多领域的关注焦点。这些被测量的化学反应一般发生在界面上,但有些发生在材料体相以及溶液中。超分辨电化学显微镜(SRECM)技术对物理高分辨表征技术(微观物理信息—结构&成分)实现了不可或缺的有益补充(微观化学信息—反应动力学&速率),建立了之前难以获得的精准构效关系。以扫描电化学液池显微镜(SECCM)技术为例,它能够直接绘制二维材料、表面缺陷及晶界等不同位置的催化活性差异(参见Nature, 2023, 620, 782;Nature, 2021, 593, 67;Science, 2017, 358, 1187;Nat. Mater., 2021, 20, 1000等)。同样,扫描电化学显微镜(SECM)技术能够实现催化反应中间体、动力学速率以及催化剂活性位点密度的定量测量(参见Nat. Catal., 2021, 4, 654;Nat. Catal., 2021, 4, 615等)。(见第六部分—超分辨电化学显微镜应用案例)这些先进的SRECM技术为我们提供了在微观尺度上理解化学反应的窗口,同时也为精确设计和优化催化剂、材料以及理解反应动力学机制提供了有力工具。二、系统组成 以超分辨电化学显微镜为核心,通过一站式完整解决方案&完全自主研发产品,实现化学反应的高分辨测量(也称化学高分辨)。包含以下五个单元:测量&控制单元、屏蔽&防震单元、操作&观测单元、理化实验单元、探针制备单元。三、六大主力型号最强型号MT-SRECM600——超分辨电化学显微镜与共聚焦拉曼显微镜联用四、电化学显微镜技术SRECM技术支持(√)选配(●) 基于电化学工作站(双通道)循环伏安(CV)√线性扫描伏安(LSV)√电流-时间曲线(i-t)√多电位阶跃(ESTEP)√开路电位-时间曲线(OCPT)√iR降补偿√探针渐进(PAC)√探针渐远(PWC)√跳跃成像√跳跃成像+局部CV√跳跃成像+局部LSV√ 跳跃成像+局部i-t√跳跃成像+局部ESTEP√跳跃成像+局部多参数(电位-阻抗-电容)测量●表面探寻扫描电化学显微镜(SI-SECM)√恒高度成像√ 恒电流成像√基于膜片钳放大器(单通道) 循环伏安(CV)√线性扫描伏安(LSV)√电流-时间曲线(i-t)√多电位阶跃(ESTEP)√探针渐进(PAC)√探针渐远(PWC)√跳跃成像√跳跃成像+局部CV√跳跃成像+局部LSV√ 跳跃成像+局部i-t√跳跃成像+局部ESTEP√恒高度成像 √恒电流成像√五、电化学工作站技术电化学技术支持(√)选配(●)电位扫描循环伏安(CV)√多扫速循环伏安(MVCV)√分段循环伏安(MSCV)√线性扫描伏安(LSV) √塔菲尔曲线(TAFEL)√电位阶跃/脉冲 阶梯波伏安(SCV)√计时电流(CA)√计时电量(CC)√差分脉冲伏安(DPV)√常规脉冲伏安(DNPV)√ 方波伏安(SWV)√多电位阶跃(ESTEP)√恒电流技术 计时电位(CP)√电流扫描计时电位(CPCR)√多电流阶跃(ISTEP) √电位溶出分析(PSA)√基于时间 电流-时间曲线(i-t)√差分脉冲电流检测(DPA)√双差分脉冲电流检测(DDPA)√三脉冲电流检测(TPA)√积分脉冲电流检测(IPAD)√扫描-阶跃混合方法(SSF)√开路电位-时间曲线(OCPT)√交流技术 交流(含相敏)伏安(ACV)√二次谐波交流(相敏)伏安(SHACV)√傅里叶变换交流伏安(FTACV)√交流阻抗测量(IMP)●交流阻抗-时间曲线(IMPT)●交流阻抗-电位测量(IMPE)●其他技术电化学噪声测量(ECN) √外部信号记录√任意波形输入√外部电位输入√第三方开发√六、超分辨电化学显微镜应用案例七、代表作Accelerating the Discovery of Efficient High-Entropy Alloy Electrocatalysts: High-Throughput Experimentation and Data-Driven Strategies, Nano Lett. 2024 (https://doi.org/10.1021/acs.nanolett.4c03208).Modulating the Surface Concentration and Lifetime of Active Hydrogen in Cu-Based Layered Double Hydroxides for Electrocatalytic Nitrate Reduction to Ammonia, ACS Catel. 2024, 14, 12042.Accelerating the Discovery of Oxygen Reduction Electrocatalysts: High‐Throughput Screening of Element Combinations in Pt‐Based High‐Entropy Alloys, Angew Chem. Int. Ed. 2024, e202407116.Benchmarking the Intrinsic Activity of Transition Metal Oxides for the Oxygen Evolution Reaction with Advanced Nanoelectrodes, Angew Chem. Int. Ed. 2024, e202404663(hot paper).Thermally Enhanced Relay Electrocatalysis of Nitrate-to-Ammonia Reduction over Single-Atom-Alloy Oxides, J. Am. Chem. Soc. 2024, 146(11), 7779.Electrochemical Visualization of an Ion-Selective Membrane Using a Carbon Nanoelectrode, ACS Sens. 2023, 8(7), 2713.Nanoscale electrochemical approaches to probing single atom electrocatalysts, Curr Opin Electroche. 2023, 39, 101299.Combination of Rapid Intrinsic Activity Measurements and Machine Learning as a Screening Approach for Multicomponent Electrocatalysts, Acs Appl. Mater. Inter. 2023, 15(36), 42532.The Microstructure-Activity Relationship of Metal-Organic Framework-Based Electrocatalysts for the 0xygen Evolution Reaction at the Single-Particle Level, Acs Mater Lett. 2023, 5(7), 1902.Precise Polishing and Electrochemical Applications of Quartz Manopipette-Based Carbon Nanoelectrodes, Anal Chem. 2022, 94(41), 14092.Nitrogen-skinned carbon nanocone enables non-dynamic electrochemistry of individual metal particles, Sci China Chem. 2022, 65(10), 2031.
    留言咨询
  • HEKA ElProscan是一台扫描电化学显微镜,用于研究样品的电化学活性表面。整个系统包括三个主要部分,定位系统,双恒电位仪,数据采集系统。定位系统控制微电极在溶液中电化学活性样品表面上进行三维扫描,因此ElPro- scan可用作传统的SECM仪器并且具有更多的功能。ElProscan与传统的SECM不同之处在于它不仅仅记录针尖的电流信号,而且在针尖上可实现任何电化学实验方法的应用还具有电化学活性表面修饰的功能。ElProscan系统设计具有多种应用领域的、多用处的特点,如:表面分析功能、金属沉积、导电聚合物沉积、酶活性成像、催化材料表面活性。产品特点1、高精度定位系统具有全部坐标轴闭环控制和Z轴压电闭环控制,所有的定位系统部件全部由计算机控制。2、3D阵列扫描同时具有电化学测量自由编程功能。3、模板扫描,按照自定义图形进行扫描(CAD生成图形)。4、配备倒置显微镜,可以测试“透明”和“非透明”样品。技术参数分辨率:XY轴10nm,Z轴1.5nm移动范围:XY轴100mm,Z轴50mm补偿电压:±20V(针尖和样品相对于对电极之间的电压)扫描电位:±10V(针尖和样品相对于参比电极之间的电位)电流范围:±100pA-±2A电位分辨率:305μV电位精度:1mv
    留言咨询
  • 仪器简介:NANONICS IMAGING LTD. (以色列NANONICS有限公司)是业界将近场光学显微镜(NSOM)技术和原子力显微镜(AFM)相技术相结合的领头羊之一。公司成立于1997年,NANONICS是业界成立最久并且对此类系列产品经验最丰富的公司之一,其产品荣获过许多国际大奖。在强大的NSOM/AFM的整合操作系统的推动下,今天NANONICS继续以强大的优势和全面的系统热销市场。NANONICS凭借着实力和品质,其产品涉足的领域从科研到工业,从生物学到半导体,从化学制品到无线电通讯,应用范围极其广泛。 低温NSOM/AFM拥有先进的系统设备、环境友好的样品反应室、化学药品和气体自动传送系统;还有nano-印刷术系统,给消费者提供一个全面的系统配置选择。加上有AFM/NSOM/SEM的整合与AFM/NSOM/micro-Raman的整合系统这样强大的成象结合,可以让用户拥有一个实验平台来完成多个的材料表征应用。探针包括NSOM探针,micro-pipettes是检测热、电性能的,同时探针还可以提供气体和液体加样,这是Nanonics系列产品的特色功能,可以为提供用户在很小的范围内做原位反应等。NAONICS系统可兼容其他供应商提供的SPM探针。 Nanonics仪器设计的特点就是将不同的表征手段整合到一个平台,包括spm、微拉曼光谱、电镜、共聚焦显微镜、离子束、热分析、SHG等等都能实时或一起使用。技术参数: 系统包含了AFM反馈扫描功能? 探针使用中空玻璃纳米移液管包裹Pt纳米线电极电极尺寸50-1000nm? 分辨率形貌XY方向:250nm形貌Z方向:1-2nm? 灵敏度(Amps/V) 10-12到0.1(取决于恒电位仪的型号)? 包含样品扫描和探针扫描模式扫描范围XYZ都可达80微米? 液体样品池材料PEEK,耐受多种溶液环境Counter\reference电极, 最多可达四个。这些电极可以从样品池侧面连接。直径约2mm,长度75px。标准的微型Ag/AgCl电极可以固定在样品池上方。? 提供保护圈,防止样品飞溅到样品扫描台上? 上下都可提供完全开放的光路。? 可根据需要选配背面接线。? 可选配环境腔体,输入惰性气体等(如N2或者Ar)? 恒电压仪:-10V到10V,电流0到±0.25A,灵敏度(Amps/V) 10-12到0.1主要特点:1. Nanonics的SECM功能建立于AFM反馈的基础上,如此可以解决电化学测试中常遇到的探针撞到样品损坏的问题.探针在样品表面扫描的过程中,恒电压仪提供电压并测量电流.2. Nanonics具有专利的悬臂式弯曲玻璃探针设计.玻璃探针的设计可以提供垂直方向的开放光路,便于放置观察样品和探针位置的CCD.3. 因为光路的开放性,Nanonics的SECM功能还可以扩展到与Raman或其他光谱仪的联用.4. Nanonics的探针由玻璃包覆Pt丝组成,Pt丝尺寸约50-100nm.而常见的电化学探针的尺寸约25um. 探针越小, 探针和样品之间的距离也需要更小才能探测到反馈电流的变化,所以传统SECM测试如果用很小尺寸的探针会使探针非常容易撞倒样品表面.而Nanonics的SECM功能因为基于AFM反馈基础,可以确保探针和样品不会发生碰撞,即使在样品具有一定斜率时也可以安全的扫描.5. Nanonics提供SECM cell可以有效地防止液体喷溅,可以提供侧面四个电极和样品的背面电极接线.6. 如果测试需要在惰性气体环境下完成,Nanonics也可以提供Chamber进行环境控制.7. 设备还可以升级到与拉曼光谱仪的联用,完成AFM-SECM-Raman的联合测试功能.
    留言咨询
  • 极高性能电化学原子力显微镜(EC-AFM)实时研究电化学反应—Cypher ES原子力显微镜如今支持电化学功能 牛津仪器Asylum Research Cypher ES电化学单元是用原子力显微镜原位研究电化学过程的优质解决方案。受益于简单的模块化设计,它具有强大的多功能性,能够兼容广泛的材料类别。尤为突出的是,它基于一款有着市场上极高分辨率、出众环境控制能力、超高扫描速度、简易操作性的Cypher ES原子力显微镜。 适用于电化学原子力显微镜功能的牛津仪器Asylum Research 电化学单元:牛津仪器Asylum Research全密封电化学单元套件包含独立设计的探针固定器,用于在流体中成像的液体杯,电化学样品固定器和标准电极。适用于任意一款稳压器,稳压器的选择取决于电化学应用适用于大多数常用溶剂,电解质和电极材料易于清洗和组装,即便带着手套操作可选具有局部加热和制冷功能的样品台来观察电化学热力学可选手套箱来实现最严格的环境控制,而又不会降低系统的性能电化学单元的应用电沉积 能量存储 腐蚀表征偏置电压下的储能材料,例如电池极板,薄膜和溶液-电极界面金属的电沉积和溶出腐蚀动力学研究监测附着电极的生物催化剂和微生物随着时间的形貌变化,以及其他生物物理研究纳米粒子的成核以及生长
    留言咨询
  • 多功能原子力显微镜,电化学测试的绝佳平台? 多功能原子力显微镜平台,满足纳米级显微镜需求 原子力显微镜(AFM)有纳米级分辨率成像以及电,磁,热和机器性能测量的能力。 纳米管扫描系统可用于高分辨率扫描离子电导显微镜(SICM). 倒置光学显微镜(IOM)便于透明材料研究和荧光显微镜一体化。? 通过验证的NX10性能通过倒置光学显微镜样品平台,Park NX12将Park原子力显微镜的多功能性和准确性相结合。这使得使用者更容易的使用纳米管技术去研究透明,不透明,或软或硬的样品。? 电化学测试的绝佳平台电池,燃料电池,传感器和腐蚀等电化学研究是个快速增长的领域,然而许多原子力显微镜不能直接满足其特殊的需求。Park NX12的人性化设计,为快速操作提供便利,从而达到化学研究人员要求的功能性和灵活性。这主要包括: 多功能易用电化学池 惰性气体和湿度的环境控制选项 双恒电位仪的兼容性? 研究人员可利用Park NX12平台实现各种电化学应用: 扫描电化学显微镜(SECM) 扫描电化学池显微镜(SECCM) 电化学原子力显微镜(EC-AFM)和电化学扫描隧道显微镜( EC-STM)? 考虑建立多用户设备Park NX12完全重新构建,以适应多用户设备需求。其他原子力显微镜解决方案缺乏必要的多功能性,难以满足该设备中用户的多重需求,很难合理控制设备成本。然而,Park NX12旨在能够容纳标准环境原子力显微镜成像,液体扫描探针显微镜,光学和纳米光学成像,使其成为最灵活的原子力显微镜之一。? 模块化设计Park NX12是专门针对专业电化学研究人员需求量身定制的原子力显微镜平台。它基于化学和电化学性质,气体和液体中介质的特性,为扫描探针显微镜提供了一个通用的解决方案,可用于广泛的不透明和透明材料。 Park NX12基于其广泛的可视光投置到扫描探针的扫描探针显微镜技术的纳米管,易用性强。 Park NX12准确度无与伦比,是多用户设备和职业研究人员的理想平台。? 多功能应用Park NX12功能广泛,包括液体中的PinPoint ™ 和纳米力学,倒置光学显微镜定位透明样品,离子电导显微镜超软样品成像,以及改善透明样品光学性能的可视性。? 综合性的力谱方法Park NX12提供了一种在液态和空气中的纳米力学表征的完整套餐,使其成为广泛应用中的理想选择.? 模块化NX12模块化设计,安装简单,兼容性强,可以满足您的多种实验需求。? 适合早期职业研究人员的有竞争力的价格和灵活性早期职业研究人员通常没有足够的预算购买价格高昂的原子力显微镜。Park NX12不仅是经济实惠的入门之选,同时还提供了可随着职业发展而不断壮大的模块化平台。它不同于其他价格相近的原子力显微镜,Park NX12配有先进的研究级精度和功能,可为在空气和液体中的透明和不透明材料提供其表面形态纳米级分辨率。这使得新的化学,材料科学或生物化学实验室的最佳投资回报成为可能。? Park SmartScan™ 自动模式下的单击成像Park NX12配备了我们的SmartScan™ 操作系统,使其成为市场上最易使用的原子力显微镜之一。其界面直观给力,即使是未经培训的用户也可以无需监控,快速扫描样品。这使得高级研究人员能够将他们的经验专注在解决更大的问题和开发更好的方案。? 易使用性共享实验室的用户通常背景各异,经验水平各异。NX12为每个用户提供简单的点击界面和自动化SmartScan™ 模式。? 功能高级,价格亲民NX12的功能和精度通常仅在较高价格的方案中可见,包括:l 电动对焦平台完全集成的原子力显微镜光学器件伴随针尖减少监管的需要。l 智能扫描使自动化的多重高质量扫描变得简单。Park的创新SmartScan™ 自动化功能允许用户点击按钮进行扫描并创建自动化脚本。NX12同样为离子电导显微镜提供SmartScan™ 。l 倒置光学显微镜(IOM)NX12的倒置光学显微镜使用户能够轻松使用纳米管技术测量透明样品。l PinPoint™ 化学品(扫描电化学显微镜)NX12的PinPoint™ 模式使用户通过高分辨率原子力显微镜针尖来操作扫描电化学显微镜,并且具有极高的精确度。l 双恒电器兼容性允许扫描隧道显微镜,原子力显微镜和离子电导显微镜之间的简单转换。l 多功能湿度和温度控制选项Park NX12能在测量之前和测量过程中控制湿度和温度。l 灯光可轻易投射到驱动聚焦平台该系统在测量期间可以从各个角度,顶部,侧面以及底部光纤接入探针。这种可以大范围投置灯光的方式与设备模块设计相结合,还可添加光学或纳米学附件。l 综合力谱方案Park NX12为液体和空气中的纳米机械表征提供完整封装,使其成为广泛应用的理想选择。? 规格l 扫描器Z扫描器AFM 扫描头柔性引导高推动力扫描器扫描范围:15μm(可选 30μm)SICM 扫描头多层压电叠层驱动器驱动的柔性引导结构扫描范围:15μm(可选 30μm)XY 扫描器闭环控制的柔性引导XY扫描器扫描范围:100μm ×100μml 驱动台XY 驱动台行程范围: 50 mm x 50 mm Z 驱动台行程范围: 25 mm 聚焦驱动台行程范围: 15 mml 影像样品表面和悬臂的直观同轴影像视野: 840 μm × 630 μm (10倍物镜)摄像头:5 M Pixel (默认), 1M Pixel (可选)物镜10倍 (NA. 0.23) 超长工作距离镜头20倍 (NA. 0.35) 高分辨率,长工作距离镜头l 电子信号处理ADC: 18 通道 24-bit ADC 的 X, Y 和 Z 扫描器位置传感器 DAC: 17 通道 20-bit DAC的 X, Y 和 Z 扫描器定位集成功能3通道数字锁相放大器弹性系数校准(热方法) 数据Q 控制l 选项/模式标准成像:真正的非接触模式, 接触模式, 侧向摩擦力显微术(LFM), 相位成像模式, 轻敲模式, Pinpoint™ 模式:Pinpoint成像化学性能:扫描电化学池显微镜(SECCM), 扫描电化学显微镜(SECM), 电化学原子力显微镜(EC-AFM)和电化学扫描隧道显微镜(EC-STM), 功能化探针的化学力显微镜介电/压电性能:静电力显微镜, 动态接触式静电力显微镜(EFM-DC), 压电力显微镜 (PFM), 高电压PFM力测量:力-距离(F-D)光谱, 力谱成像磁性能:磁力显微镜(MFM), 可调外加磁场MFM热性能:扫描热显微镜(SThM)电性能:导电AFM(CP-AFM), Pinpoint™ 导电AFM, I-V谱线, 扫描开尔文探针显微镜(SKPM/KPM), 高电压SKPM, QuickStep™ 扫描电容显微镜(SCM), 扫描电阻显微镜(SSRM), 扫描隧道显微镜(STM), 扫描隧道光谱(STS), 光电流测绘(PCM), Current-distance(I/d) Spectroscopy (with SICM)机械性能: Pinpoint™ 纳米力学模式, 力调制显微镜(FMM), 纳米压痕, 纳米刻蚀, 高电压纳米刻蚀, 纳米操纵l 软件Park SmartScan™ AFM系统控制和数据采集的专用软件自动模式的快速设置和简易成像手动模式的高级使用和更精密的扫描控制XEIAFM数据分析软件独立设计-可独立安装和分析数据能够生成采集数据的3D绘制l 配件控温台、手套箱、磁场发生器、液态选项、隔音罩
    留言咨询
  • 电化学反应可视化共聚焦显微镜系统(Electro-Chemical Reaction Visualizing Confocal System)ECCS B320是一台可对锂电池充放电过程中的电化学反应进行Operando观测的系统。由Lasertec公司基于实时共聚焦光学技术以及专门设计的测试夹具组成,可对嵌锂、膨胀、收缩、枝晶产生的机理进行可视化、量化分析。基本信息产品概述实时充放电过程中电池横截面Operando观测以及量化分析电极厚度方向反应的分布实时观察测量电极的膨胀和收缩量实时锂枝晶产生和生长过程观测应用电池整体性能枝晶形成机制可视化分析不同C-Rates下的电化学反应 循环引起的容量衰减分析温度特性分析钠离子电池、固态电池、锂金属阳极、金属-空气电池等下一代电池的评估适用于全电池和半电池阳极夹层/插层可视化各种充放电状态下石墨阳极颜色分析膨胀和收缩量的测量枝晶形成机制可视化阴极锂离子吸附与解吸分析膨胀收缩量的测量电解质产生气体的可视化和其来源的识别添加剂效果的评估导电添加剂通过电极颜色和亮度的变化间接评估色散状态碳纳米管效果的评估 粘合剂核实活性材料之间的结合核实收集器与活性物质之间的结合用结合特性评估循环特性分离器核实所选分离器材料对反应分布的影响核实陶瓷和其他涂层对反应分布的影响技术介绍共聚焦光学系统共聚焦光学系统用于收集来自焦平面(电极上活性材料表面)的反射光,而不受玻璃表面或电解质的影响,提供具有良好分色的高分辨率的彩色图像。观察单元基础款夹具:适用于扣式电极观察的基础款复杂款夹具:叠加式观察复杂款温度控制系统带有观察孔的恒温槽进行温控温度控制范围:-30℃~80℃ 应用电化学反应分布分析1)阳极石墨阳极在充电过程中经历了几个不同的阶段,当锂离子在所有层之间嵌入时,石墨阳极达到SOC100%。在这个过程中,活性物质的颜色从灰色变成蓝色、红色,然后变成金色。从这些颜色,可以定量地分析电化学反应的分布。2)阴极在石墨阳极中看到的颜色变化通常不会发生在阴极中,但您可以通过测量充电/放电期间亮度的微小变化来定量分析阴极中的反应分布。3)同时分析阴极和阳极的反应分布摘自2017年日本电池研讨会上的演讲(2A14)同时分析阴极和阳极的反应分布是可能的——前者基于亮度的变化,后者基于色调的变化。 4)膨胀和收缩的分析使用ECCS进行膨胀/收缩分析可以实现微小变化测量和实时分析,这是千分尺或位移计无法实现的。ECCS可以通过在用户指定的分析线上对捕获的图像进行切片,并按时间顺序对齐连续切片的图像,从而创建“线图像”。您可以选择混合层并对线图像进行测量。5)枝晶形成的观察枝晶形成机制的评估ECCS可以观察到在电池充放电曲线中不可见的小枝晶形成。6)电极电压的测量ECCS B320具有显微镜功能,可用于测量电极的表面粗糙度和电压。7)其他案例用途: 解析项目:-全电池 -正负极反应分布解析 -金属异物相关解析-半电池 -正负极膨胀解析 -Gas产生解析 -Stack型 -锂枝晶解析 -新材料评估-卷绕型 -循环老化解析 -其他-软包 -Rate特性解析-全固态电池 -温度特性解析
    留言咨询
  • 【(广东)鼎诚科技】SECM扫描电化学显微镜 详情
    留言咨询
  • 【(广东)鼎诚科技】SECM扫描电化学显微镜 详情
    留言咨询
  • 微区电化学测试系统 400-860-5168转0858
    仪器简介: VersaScan微区扫描电化学工作站是一个建立在电化学扫描探针的设计基础上的,进行超高测量分辨率及空间分辨率的非接触式微区形貌及电化学微区测试系统。它是提供给电化学及材料测试以极高空间分辨率的一个测试平台。每个VersaSCAN都具有高分辨率,长工作距离的闭环定位系统并安装于抗震光学平台上。不同的辅助选件都安装于定位系统上,辅助选件包括,如电位计,压电振动单元,或者激光传感器,为不同扫描探针试验,定位系统提供不同的功能。VersaSTAT恒电位仪和Signal Recovery 7230锁相放大器和定位系统整合在一起,由以太网来控制,保证小信号的精确测量。它 是一个模块化配置的系统,可以实现如下现今所有微区扫描探针电化学技术以及激光非接触式微区形貌测试:Scanning Electrochemical Microscopy (SECM) 扫描电化学显微镜Scanning Vibrating Electrode Technique (SVET) 扫描振动电极测试Scanning Kelvin Probe (SKP) 扫描开尔文探针测试Localized Electrochemical Impedance Spectroscopy (LEIS) 微区电化学阻抗测试Scanning Droplet Cell (SDC) 扫描电解液微滴测试Non-Contact Surface Profiling (OSP) 非触式光学微区形貌测试以上每项技术使用不同的测量探针,且安装位置与样品非常接近,但是不接触到样品。随着探针测试的进行,改变探针的空间位置。然后将所记录的数据对探针位置作图,针对不同技术,该图可以呈现微区电化学电流,阻抗,相对功函或者是表面形貌图。应用: 不锈钢和铝等材料的点蚀检测、成长过程在线监测等; 有机和金属涂层缺陷和完整性研究; 金属/有机涂层界面的腐蚀的机制与检测; 有机涂层的剥离和脱落机制; 钝化处理的不锈钢焊接热影响区的电位分布;  干湿循环的碳钢和不锈钢的阴极区和阳极区的分布行为; 薄液层下氧还原反应和金属的腐蚀过程的特征; 模拟不同大气环境的腐蚀电位在线监测; 铝合金等材料在大气环境中局部腐蚀敏感性; 铝合金的丝状腐蚀(filiform corrosion); 硅烷L-B膜修饰金属表面的结构和稳定性; 锌-铁偶合金属界面区的电位分布特征; 磷化处理锌表面的碳微粒污染检测; 检测微小金属表面的应力分布和应力腐蚀开裂; 检测金属和半导体材料微小区域的表面清洁度,缺陷,损伤和均匀程度; 研究和评价气相缓蚀剂性能; 电化学传感器;
    留言咨询
  • 原位电化学池 400-860-5168转2560
    原位电化学池 产品描述 原位电化学池为研究电极材料在电化学充放电中的原位光谱和形貌变化而设计。因此,工作电极(WE)被放置在透视窗口的正下方,并于一个带孔的集流片相连。工作电极下面叠放着玻璃纤维隔离层和相应的对电极。从而使光学仪器能够从上面的玻璃窗“看到”工作电机材料的背面。常用的设备包括光学显微镜、红外显微镜、X射线光谱仪、共聚焦拉曼光谱仪等。工作电极最大直径为10mm,观测孔一般为1mm。测试池配有参比电极,可供3电极实验使用。 特点 ? 带透视窗口的3电极测试池用于质子惰性的电化学中。水溶液电化学类型可协商获得。? 接触介质材料为不锈钢1.4404,PEEK和EPDM(也可配备其他材料)? 工作电极材料的背面可以经带孔的集电极及其上的透视窗口观测。观测区域直径为1mm,可提供其他尺寸。? 一般与光学显微镜或反射式拉曼光谱仪联用,也可与X射线光谱仪联用。? 工作电极可以为单一晶体或颗粒、粉末样品,应为黏合好的电极(自支持或者采用延展的金属/如集电极那样带孔的金属片)。电极最大直径为10mm。? 通过真空(注射器)法可简洁的填充电解液。内含所有必要设备。? 测试池封装要在手套箱中进行。封装完成后,测试池可以移出在大气中进行测试。? 快速组装和拆卸,简易的测试池部件清洗。? 电极便于进行事后分析? 除封装部分外,部件可以重复使用? 由于要减少死体积,电解液体积被限制到0.3cm3? 施加于电堆上的机械压力是可调的,可重现的,均一的? 通过2mm插孔与恒电位仪/电池测试仪相连? 测试温度范围-20 到 +70 °C? 尺寸(含支架):46 mm x88 mm x 63mm (高x 宽 x 长)? 重量约210g
    留言咨询
  • 仪器简介: VersaScan微区扫描电化学工作站是一个建立在电化学扫描探针的设计基础上的,进行超高测量分辨率及空间分辨率的非接触式微区形貌及电化学微区测试系统。它是提供给电化学及材料测试以极高空间分辨率的一个测试平台。每个VersaSCAN都具有高分辨率,长工作距离的闭环定位系统并安装于抗震光学平台上。不同的辅助选件都安装于定位系统上,辅助选件包括,如电位计,压电振动单元,或者激光传感器,为不同扫描探针试验,定位系统提供不同的功能。VersaSTAT恒电位仪和Signal Recovery 7230锁相放大器和定位系统整合在一起,由以太网来控制,保证小信号的精确测量。它 是一个模块化配置的系统,可以实现如下现今所有微区扫描探针电化学技术以及激光非接触式微区形貌测试:Scanning Electrochemical Microscopy (SECM) 扫描电化学显微镜 -AC-SECM 无氧化还原介质扫描电化学显微镜 -Stylus-Probe 柔性探针技术-等距离扫描电化学显微镜Scanning Vibrating Electrode Technique (SVET) 扫描振动电极测试Scanning Kelvin Probe (SKP) 扫描开尔文探针测试Localized Electrochemical Impedance Spectroscopy (LEIS) 微区电化学阻抗测试Scanning Droplet Cell (SDC) 扫描电解液微滴测试Non-Contact Surface Profiling (OSP) 非触式光学微区形貌测试 Ion Selective Probe (ISP) 表面离子浓度成像系统以上每项技术使用不同的测量探针,且安装位置与样品非常接近,但是不接触到样品。随着探针测试的进行,改变探针的空间位置。然后将所记录的数据对探针位置作图,针对不同技术,该图可以呈现微区电化学电流,阻抗,相对功函或者是表面形貌图。应用: 不锈钢和铝等材料的点蚀检测、成长过程在线监测等; 有机和金属涂层缺陷和完整性研究; 金属/有机涂层界面的腐蚀的机制与检测; 有机涂层的剥离和脱落机制; 钝化处理的不锈钢焊接热影响区的电位分布;  干湿循环的碳钢和不锈钢的阴极区和阳极区的分布行为; 薄液层下氧还原反应和金属的腐蚀过程的特征; 模拟不同大气环境的腐蚀电位在线监测; 铝合金等材料在大气环境中局部腐蚀敏感性; 铝合金的丝状腐蚀(filiform corrosion); 硅烷L-B膜修饰金属表面的结构和稳定性; 锌-铁偶合金属界面区的电位分布特征; 磷化处理锌表面的碳微粒污染检测; 检测微小金属表面的应力分布和应力腐蚀开裂; 检测金属和半导体材料微小区域的表面清洁度,缺陷,损伤和均匀程度; 研究和评价气相缓蚀剂性能; 电化学传感器;
    留言咨询
  • M370扫描电化学工作站在扫描探针电化学领域中是一个全新的概念,以超高分辨率,非接触式,空间分析电化学测量的特点而设计。M370是一个模块化的系统,可实现当今所有微区扫描探针电化学技术以及激光非接触式微区形貌测试:- 扫描电化学显微镜(SECM)- 扫描振动电极测试(SVET)- 扫描开尔文(Kelvin)探针测试(SKP)- 微区电化学阻抗测试(LEIS)- 扫描电解液微滴测试(SDS)- 非触式微区形貌测试(OSP) M370利用纳米级分辨率的快速精确,闭环x,y,z定位系统,并连同一个便捷的数据采集系统使用户依据自己的实验选择配置。此系统设计灵活且人体工程学设计方便确保池体,样品和探针的进入。 1.扫描电化学显微镜系统SECM370SECM370是一款精密的扫描微电极系统,具有极高空间分辨率,在溶液中可检测电流或施加电流于微电极与样品之间。用于检测,分析,或改变样品在溶液中的表面和界面化学性质。 应用* 研究通过膜的流量* 监测生物活性* 动力学参数确定* 影像固定化酶* 活细胞监测* 流体-流体界面* 化学成像的生物系统* 燃料电池材料的研究* 微区ISE* 表面改性* 腐蚀科学 2.扫描卡尔文探针测试系统SKP370扫描卡尔文探针系统SKP370,是一种无接触,无破坏性的仪器,可以用于测量导电,涂膜,或半导体材料,与样品探针之间的功函差。这种技术是用一个振动电容探针来工作的,通过调节一个外加的前级电压测量样品表面和扫描探针的参比针尖之间的功函差。功函和表面状况相关。SKP的独特性质使在潮湿环境甚至是气态环境中也可以测量,将不可能研究变为现实。 应用- 能量系统- 偶极层形成- 显示技术- 电荷分析- 费米能级测定- 光电压光谱- 腐蚀- 涂层- 传感器- 太阳能蓄电池 3.扫描振动电极测试系统SVP370SVP370(SVET)扫描振动电极技术是一种非破坏性扫描,利用振动探针,测量电化学化学样品表面产生的电特性。确保用户可以实时测定和定量局部电化学反应以及腐蚀。 应用* 生物活性监测* 镀膜/涂层研究* 表面污染* 表面应力腐蚀* 丝状腐蚀* 传感器 4.微区电化学阻抗测试系统LEIS370微区电化学阻抗测试系统结合了电化学阻抗EIS技术和微区扫描技术,可以精确的测试局部微区的阻抗以及相应参数。 应用* 薄膜阻抗复杂成像* 池生长介质直接成像* 光点化合反应特征化* 电池* 传感器* 金属以及合金的钝化* 燃料池* 腐蚀 5.电解液微滴扫描系统SDS370电解液微滴系统可以限定液体与样品的接触面,从而对于液滴与样品直接接触面内的电化学和腐蚀反应进行测量。这样就可以在空间分辨率上提供电化学活性,并使其限定在样品特定量化表面。 应用* 表征表面氧化物* 涂层研究* ISFET特征化* 点腐蚀* 流速对局部腐蚀的影响 6.非触式微区形貌测试系统OSP370使用非接触式激光位移传感器,OSP370模块可快速准确地对非触表面进行高精度测量。在不接触样品表面的情况下,它可以在10mm的高度范围内提供小于1微米高度分辨率的3D表面特写影像。 配件各种可选配件,包括各种可选探针,可选池体(Environmental TriCellTM,&mu TriCellTM,和Shallow &mu TriCellTM),长工作距离光学视频显微镜(VCAM2)和3D表面阴影渲染软件(3DlsoPlotTM)。能配置到一个特定的应用程序并升级,使M370独特灵活,同时保持顶端的性能。
    留言咨询
  • PicoFemto透射电镜原位MEMS液体电化学测量系统,关于价格请咨询(微信同号) 采用全新的O圈辅助密封设计,更易封装液体。实验中,样品被密封在超薄氮化硅薄膜覆盖的液体池内,池内可以承载一个大气压。芯片电极联通外接电路,从而在电镜中搭建一个液体-电化学测试环境。性能指标:● 兼容TEM真空度;● 液体池间隔层厚度最小100 nm;● 液体池内可载入气体或液体,池内可承载1个大气压,池外满足电镜真空要求;● 电压输出最大±200 V,最小分辨率±100 nV;● 电流测量最大±1.5 A,最小分辨率±100 fA;● 恒压或者恒流模式。● 自动电流-电压(I-V)测量、电流-时间(I-t)测量,自动保存。 以上就是泽攸科技对PicoFemto透射电镜原位MEMS液体电化学测量系统的介绍,关于整套系统价格价格请咨询(微信同号)原文:安徽泽攸科技有限公司,是一家具有完全自主知识产权的先进装备制造公司。公司集研发、生产和销售业务于一体,向客户提供原位电镜解决方案、扫描电子显微镜等设备,立志成为具有国际先进水平的电子显微镜及附件制造商。    公司有精通机械、光学、超高真空、电子技术、微纳加工技术、软件技术的团队,我们为纳米科学的研究提供的设备。公司团队于20世纪90年代投入电镜及相关附件研发中,现有两个系列核心产品:     (1)PicoFemto系列原位TEM/SEM测量系统;     (2)ZEM15台式扫描电子显微镜。     PicoFemto系列原位TEM/SEM测量系统自问世以来,获得了国内外研究者的高度关注,并且已外销至澳洲、美国、欧洲等地。我们协助用户做出大量研究成果,相关成果发表在Nature及其子刊/JACS/AM/Nano. Lett./Joule/Nano. Energy/APL/Angewandte/Inorg. Chem.等高水平刊物上。 目前在国内使用我公司产品的课题组/实验平台多达八十余个,遍布五十余所大学/研究机构,包括中科院过程所、北京大学、清华大学、浙江大学、中科院硅酸盐研究所、厦门大学、电子科大、苏州大学、西安交通大学、武汉理工大学、上海大学、中科院大连化物所等等。国外用户包括澳洲昆士兰科技大学、英国利物浦大学、美国休斯顿大学、美国莱斯大学等。
    留言咨询
  • 产品综合介绍: 公司介绍:浙江祺跃科技有限公司主要从事纳米分辨可视化系列仪器的设计、研发、生产和销售,以及基于扫描电子显微镜的材料结构与性能一体化原位表征解决方案输出、材料检测等服务。公司为国家级高新技术企业、浙江省”院士工作站”优秀单位、国家科技型中小企业、浙江省级研发中心,承担杭州市领军型创新团队项目等公司秉承发展先进仪器,服务高端制造的理念,致力于研制具有自主知识产权的可视化仪器,旨在将材料性能的优化建立在显微结构调控的科学基础上,同时引入材料大数据、AI等智能技术,为高端制造赋能,为前沿科技研究提供先进仪器。 产品功能介绍:原位电化学测试系统适用于固态电池、动力电池、锂离子电池等样品在真空或保护气氛环境下的充、放电测试。结合扫描电镜,可观察样品在充、放电过程中的成分、形貌、结构等微观结构演变与电学性能的对应关系;也适用于易氧化、污染等样品在扫描电子显微镜原位观察,手套箱制样转移等实验环节。 产品的优势与特点1. 直流电机驱动,任意压差开合;2. 样品转移过程中,真空环境保护,避免测试样受到杂质的污染;3. 预留电化学工作站接头:对锂电池、动力电池进行充放电测试;4. 外观尺寸及内部尺寸、电化学信号接头可定制。 产品应用领域 应用研究内容:显微结构、相变行为、取向变化、裂纹萌生与扩展、材料疲劳机制、断裂机制、热-力耦合行为、微结构或构件力学性能、高温蠕变、疲劳、高温氧化腐蚀、固溶时效、等…… 服务领域:航空航天、国防、汽车制造、石油化工、钢铁冶金、有色金属、船舶制造、生物医学、微型传感器、大型装备制造、微机电系统、高分子复合材料、绿色新能源产业等领域。
    留言咨询
  • PicoFemto扫描电镜原位液体-电化学测量系统,关于价格请咨询(微信同号) 扫描电镜原位液体-电化学测量系统采用全新的O圈辅助密封设计,攻克了以往原位液体解决方案装样困难的问题。实验中,样品被密封在超薄氮化硅薄膜覆盖的液体池内,池内可以承载一个大气压。芯片电极联通外接电路,从而在扫描电镜中搭建一个液体-电化学测试环境。性能指标:● 兼容指定型号SEM;● 保证SEM真空度; ● 液体池间隔层厚度最小100 nm;● 液体池内可载入气体或液体,池内可承载1个大气压,池外满足电镜真空要求;● 电压输出最大±200 V,最小分辨率±100 nV;● 电流测量最大±1.5 A,最小分辨率±100 fA;● 恒压或者恒流模式;● 自动电流-电压(I-V)测量、电流-时间(I-t)测量,自动保存。以上就是泽攸科技对PicoFemto扫描电镜原位液体-电化学测量系统的介绍,关于价格请咨询(微信同号)原文: 安徽泽攸科技有限公司,是一家具有完全自主知识产权的先进装备制造公司。公司集研发、生产和销售业务于一体,向客户提供原位电镜解决方案、扫描电子显微镜等设备,立志成为具有国际先进水平的电子显微镜及附件制造商。   公司有精通机械、光学、超高真空、电子技术、微纳加工技术、软件技术的团队,我们为纳米科学的研究提供的设备。公司团队于20世纪90年代投入电镜及相关附件研发中,现有两个系列核心产品:     (1)PicoFemto系列原位TEM/SEM测量系统;     (2)ZEM15台式扫描电子显微镜。     PicoFemto系列原位TEM/SEM测量系统自问世以来,获得了国内外研究者的高度关注,并且已外销至澳洲、美国、欧洲等地。我们协助用户做出大量研究成果,相关成果发表在Nature及其子刊/JACS/AM/Nano. Lett./Joule/Nano. Energy/APL/Angewandte/Inorg. Chem.等高水平刊物上。 目前在国内使用我公司产品的课题组/实验平台多达八十余个,遍布五十余所大学/研究机构,包括中科院过程所、北京大学、清华大学、浙江大学、中科院硅酸盐研究所、厦门大学、电子科大、苏州大学、西安交通大学、武汉理工大学、上海大学、中科院大连化物所等等。国外用户包括澳洲昆士兰科技大学、英国利物浦大学、美国休斯顿大学、美国莱斯大学等。
    留言咨询
  • Interface 1010™ 广泛用在电化学领域,是研究级水平的高端恒电位仪/恒电流仪/ 零 电阻电流仪(ZRA)。非常适合于腐蚀测量、电池测试与研究、传感器发展和物理电化 学测量等研究领域。具备了高质量的特征。 四种型号: Interface 1010T - 针对教学目的和基础电化学研究而设计的电化学工作站。恒电位阻抗测量的频 率范围为100 mHz – 10 KHz。 Interface 1010B - 针对电化学研究, 脉冲伏安技术和基础电化学工具开发研究而设计的电化学工 作站。 Interface 1010A –这种先进型号包括了基本型号的功能,还包括直流腐蚀测量,电化学能源软 件,电化学噪声,电化学信号分析处理,点蚀温度,频率调制和基础电化学直流工具开发研究而设计 的电化学工作站。 Interface 1010E -这种型号包括了先进型号的所有功能,还包括交流阻抗和电化学交流工具开发研 究而设计的电化学工作站。} 灵活性和高性能总共有9个电流量程,从1A 到10 nA。 } 浮地功能Interface 1000的设计包括接地到真正的浮地功能。Interface 1000可以测量接地的工作电极或者在同一个溶液里的多个电极的电化学性能。} 可便携重量仅为2公斤,象携带一本书一样容易。Interface 1010™ 继续发扬高性能和高携带 性的优点。 } 低噪声Gamry是恒电位仪领域内世界领先的低噪音设计专家。Interface 1010™ 具备这个优越的传统,20μV的低 噪音参数。} 卓越性能Gamry多通道电化学工作站提供了最大的便利。每个通道可以单独操作,不受单通道控制。 } 独立性每个通道是独立的和浮地的,可以进行接地电极和多个工作电极的测试。 } 高带宽Gamry多通道可以允许每个通道靠近电解池,缩短电极导线长度,提高带宽。 } 扩展性Gamry多通道电化学工作站可以拆开任何一个通道,轻松地把电化学仪器带到现场或者另外一个实验室进行电化学测量。 取出任何的双通道,可以扩展为旋转圆盘环电极电化学测试系统、光电化学测试、扫描电化学显微镜、氢 扩散测量系统等等。
    留言咨询
  • 主要功能及特点Interface 1010E是通用型电化学工作站,例如:物理电化学,电化学腐蚀,电池测试,燃料电池测试,太阳能电池测试和传感器发展等应用。电化学阻抗谱Interface1010E配备了内置式FRA技术执行EIS测量,无需外置式FRA或扩展模块,采用Garmy电化学阻抗谱软件,完成从10μHz-2MHz的阻抗测量,宽电流测试范围准确测量从1010Ω到0.001Ω的阻抗。灵活配置Interface 1010E可以用于单通道,双通道,或者多通道组合。灵活配置,可扩展薇旋转圆盘/环盘电极电化学测试系统、光电化学测试、扫描电化学显微镜、氢扩散测量系统等等。 Interface1010E 的多通道每个通道可以单独操作,通道间互不干扰,每个通道独立、浮地,允许每个通道靠近电解池,缩短电极导线长度,提高带宽。产品优势灵活性和高性能浮地功能便携性低噪声扩展性高带宽
    留言咨询
  • CHI400C系列时间分辨电化学石英晶体微天平(EQCM)是CH Instruments与武汉大学合作的产品(武汉大学专利)。石英晶体微天平(QCM)可进行极灵敏的质量测量。在适当的条件下,石英晶体上沉积的质量变化和振动频率移动之间关系呈简单的线性关系(Sauerbrey公式): Df = -2fo2 Dm / [A · sqrt(mr)] 式中是fo晶体的基本谐振频率,A是镀在晶体上金盘的面积,r是晶体的密度(=2.684g/cm3),m是晶体切变系数(= 2.947´ 1011 g/cm· s2)。对于我们的晶体(fo = 7.995MHz, A = 0.196 cm2),每赫兹的频率改变相当于1.34 ng。QCM和EQCM被广泛应用于金属沉积,高分子膜中离子传递,生物传感器,以及吸附解吸动力学的研究等等。 CHI400C系列电化学石英晶体微天平含石英晶体振荡器,频率计数器,快速数字信号发生器,高分辨高速数据采集系统,电位电流信号滤波器,信号增益,iR降补偿电路,以及恒电位仪/恒电流仪(440C)。电位范围为± 10V,电流范围为± 250mA。电流测量下限低于50pA。石英晶体微天平和恒电位仪/恒电流仪集成使得EQCM测量变得十分简单方便。CHI400C系列采用时间分辨的方式测量频率的改变。传统的方法是采用频率直接计数的方法,要得到1Hz的QCM分辨率,需要1秒的采样时间。要得到0.1Hz的QCM分辨率,需要10秒的采样时间。我们是将QCM的频率和一标准频率的差值作周期测量,从而大大缩短了采样时间,提高了时间分辨。我们可在毫秒级的时间里得到1Hz或0.1Hz或更好的频率分辨。当和循环伏安法结合时,可允许在0.5V/s的扫描速度下获得QCM的信号。这对需要较快速的测量(例如动力学测量)尤为重要。允许与QCM结合的电化学实验技术包括CV,LSV,CA,i-t,CP。 400C系列在测量QCM频率变化的同时,还能测量晶体谐振网络的电阻变化。 400C系列也是相当快速的仪器。信号发生器的更新速率为10MHz,数据采集速率为1MHz。循环伏安法的扫描速度为1000V/s时,电位增量仅0.1mV。又如交流伏安法的频率可达10KHz。仪器可工作于二,三,或四电极的方式。四电极对于大电流或低阻抗电解池(例如电池)十分重要,可消除由于电缆和接触电阻引起的测量误差。由于仪器集成了多种常用的电化学测量技术,使得仪器可用作通用电化学测量,也可单独用作石英晶体微天平的测量(不同时进行电化学测量)。 CHI400C系列EQCM还包括一个特殊设计的电解池,如图1(a)所示。电解池由三块圆形的聚四氟乙烯组成。直径为35mm,总高度为37mm。最上面的是盖子,用于安装参比电极和对极。中间的是用于放溶液的池体。石英晶体被固定于中间和底下的部件之间,通过橡胶圈密封,并用螺丝固定。石英晶体的直径为13.7mm,晶体两面的中间镀有5.1mm直径的金盘电极(其它电极材料需特殊定做)。新晶体的谐振频率是7.995 MHz。 硬件参数指标: 恒电位仪恒电流仪 (Model440C)电位范围: -10to10V电位上升时间: 2微秒槽压: ± 12V三电极或四电极设置电流范围: 250mA参比电极输入阻抗: 1´ 1012欧姆灵敏度: 1´ 10-12-0.1A/V共12档量程输入偏置电流: 50pA电流测量分辨率: 1pACV的最小电位增量: 0.1mV电位更新速率: 10MHz数据采集: 16位分辨@1MHz自动及手动iR降补偿 CV和LSV扫描速度: 0.000001-5000V/s电位扫描时电位增量: 0.1mV@1000V/sCA和CC脉冲宽度: 0.0001-1000secCA和CC阶跃次数: 320DPV和NPV脉冲宽度: 0.0001-10secSWV频率: 0.1-100kHzACV频率: 0.1-10kHzSHACV频率: 0.1-5kHz自动电位和电流零位调整电流测量低通滤波器,自动或手动设置,覆盖八个数量级的频率范围旋转电极控制输出: 0-10V(430C以上型号)电解池控制输出: 通氮,搅拌,敲击最大数据长度: 256K-1,384K点可选仪器尺寸: 37cm (宽) x 23cm (深) x 12cm (高)仪器重量: 3.3kg CHI400C系列仪器不同型号的比较: 功能400C410C420C430C440C循环伏安法(CV)lllll线性扫描伏安法(LSV)#lllll阶梯波伏安法(SCV)# llTafel图(TAFEL) ll计时电流法(CA)l lll计时电量法(CC)l lll差分脉冲伏安法(DPV)# llll常规脉冲伏安法(NPV)# llll差分常规脉冲伏安法(DNPV)# l方波伏安法(SWV)# lll交流(含相敏)伏安法(ACV)# ll二次谐波交流(相敏)伏安法(SHACV)# ll电流-时间曲线(i-t) ll差分脉冲电流检测(DPA) l双差分脉冲电流检测(DDPA) l三脉冲电流检测(TPA) l控制电位电解库仑法(BE)l lll流体力学调制伏安法(HMV) l扫描-阶跃混合方法(SSF) l多电位阶跃方法(STEP) l计时电位法(CP) l电流扫描计时电位法(CPCR) l多电流阶跃(ISTEP) l电位溶出分析(PSA) l开路电压-时间曲线(OCPT)lllll 恒电流仪 lRDE控制(0-10V输出) ll任意反应机理CV模拟器 ll预设反应机理CV模拟器lll 注: #:包括相应的极谱法和溶出伏安法.用于极谱法时需要特殊的静汞电极或敲击器. *:价格不包括计算机.仪器的保修期为一年.
    留言咨询
  • 扫描电化学显微系统(SECM)交流扫描电化学显微镜系统(ac-SECM)间歇接触扫描电化学显微镜系统(ic-SECM)微区电化学阻抗测试系统(LEIS)扫描振动点击测试系统(SVET)电解液微滴扫描系统(SDS)交流电解液微滴扫描系统(ac-SDS)扫描开尔文探针测试系统(SKP)非触式微区形貌测试系统(OSP) 出色的性能快速准确的闭环定位系统为电化学扫描探针纳米级研究的需求而特别设计。结合Uniscan 独特的混合型32-bit DAC技术,用户可以选择合适实验研究的最**佳配置先进和灵活的工作平台系统可提供9种探针技术,使得M470成为全球最**灵活的电化学扫描滩镇工作平台。全面的附件7种模块可选,3种不同电解池,各式探针,长距显微镜以及后处理数据分析软件。 M470新产品特征SECM自动处理曲线SECM用户自定义处理曲线步长变化高分辨率读取手动或自动调节相位M470同时具备如下特点:倾斜校正X或Y曲线相减(5阶多项式)2D或3D快速傅里叶变化实验,探针移动和区域绘图的自动排序图形实验测序引擎(GESE)支持多区域扫描所有实验多个数据视图峰值分析M470是由Uniscan仪器开发的第四代扫描探针系统,具有更高规格和更多探针技术。M470技术参数工作站(所有技术)扫描范围(x,y,z) 大于100mm扫描驱动分辨率 高达0.1nm闭环定位 线性零滞后编码器,直接实时读出x,z和y位移轴分辨率(x,y,z) 20nm最**大扫描速度 12.5mm/s测量分辨率 32-bit解码器@高达40MHz压电(ic-和ac-扫描探针技术)振动范围 20nm~ 2μm峰与峰之间1nm增量最小振动分辨率 0.12nm(16-bit DAC,4μm)压电晶体伸展 100μm定位分辨率 0.09nm(20-bit DAC ,100μm)机电扫描前端 500×420×675mm(H×W×D)扫描控制单元 275×450×400mm(H×W×D)功率 250W
    留言咨询
  • 原子力显微镜 400-860-5168转3714
    标准成像真正的非接触模式AFM接触模式AFM侧向力显微镜(LFM)相位成像轻敲式AAFM电性能导电AFMI-V谱线扫描开尔文探针显微镜(SKPM/KPM)高电压SKPM扫描电容显微镜(SCM)扫描电阻显微镜(SSRM)扫描隧道显微镜 (STM)扫描隧道光谱 (STS)时间分辨的光电流测绘 (Tr-PCM)磁性能磁力显微镜 (MFM)可调外加磁场MFM 化学性能扫描电化学池显微镜(SECCM)扫描电化学显微镜 (SECM)电化学显微镜(EC-STM和EC-AFM)功能化探针的化学力显微镜热性能扫描热感显微镜(SThM)光学性能探针增强拉曼光谱 (TERS)时间分辨的光电流测绘 (Tr-PCM)介电/压电性能静电力显微镜 (EFM)动态接触式静电力显微镜(DC-EFM)压电力显微镜 (PFM)高电压PFM机械性能Pinpoint纳米力学映射力调制显微镜 (FMM)纳米压痕纳米刻蚀高电压纳米刻蚀纳米操纵压电力显微镜 (PFM)力测量力-距离(F-D)光谱力-体积成像热噪声法标定弹性系数
    留言咨询
  • Poseidon Ax是透射电镜原位液相材料分析解决方案,被广泛应用于油漆、化妆品、油墨、生物材料、电催化剂、电池等各类研究中,能够在静态、流动、电化学或加热的液体环境中研究材料原位结构、成分等分析,并致力于发现更可靠、更具成本效益和效率材料研发。Poseidon AX原位液体/加热/电化学解决方案能够让用户对各种材料在不同的液相环境、加电、加热等条件下进行结构、成分分析。该原位系统由AXON基于机器学习科技实现智能控制,使用各种基于MEMS的电子芯片和配件,以最满足您的研究需求,并且所有这些系统都得到了主要显微镜制造商的全面支持和授权,能够满足该原位系统在安全、兼容性和可靠性方面都严格满足电镜要求标准。原位液体加热示意图 原位电化学分析示意图 产品应用生物科学生理过程原位研究使用Poseidon AX原位液体系统可以在纳米尺度上观察病毒、聚合物、脂质体及其他生命科学样品生理过程中结构变化情况,左图为使用我们专门的微孔液体芯片观察轮状病毒颗粒的流动性原位过程。 数据来源:VARANO, A.C. ET AL. (2015) CHEM. COM. (51) 16176–16179生物矿化过程研究Poseidon AX原位液体系统配有2个液体输入通道,可在样品杆前端实现最佳液相混合,左图这段视频展示了使用蛋白质通过混合介导生长形成方解石的过程。 数据来源:PEROVIC, I. ET AL. (2014) BIOCHEM. (53) 7259–7268.液相纳米颗粒合成研究Poseidon AX原位液体/加热系统可以原位将液体加热至100°C的温度,左图在本中观察到金纳米颗粒在不同温度下的生长过程,在高度控制下形成了各种纳米颗粒形状和尺寸。 数据来源:KHELFA, A. ET AL. (2021) J. VIS. EXP. (168) 62225电催化研究使用Poseidon AX原位液相电化学系统可以实现在三电极设置中向样品施加电化学偏压,左图为原位电化学实验中使用循环伏安法观察到CuSO4溶液生长枝晶的过程。 锂电池研究对电池中的充放电行为以及可能发生不利的枝晶生长机制的研究尚不完善,通过使用Poseidon AX原位液相电化学系统可以在纳米尺度上研究这些充电过程枝晶生长机制。 数据来源:PU, S.D. ET AL. (2020) ACS ENERGY LETTERS, 5, 2283–2290金属腐蚀研究腐蚀是结构金属稳定性的一个重要问题,也是影响实际使用工况下功能纳米材料性能的一个潜在问题,Poseidon AX原位液相电化学系统可用于研究纳米颗粒或FIB薄片样品的原位腐蚀机理。 数据来源:DU, J.S. ET AL. (2021) ADV. FUNCT. MATER. (31) 2105866催化剂液相合成研究催化剂直接在纳米尺度上作为催化媒介将反应物转化为产物,原位研究催化剂合成过程能够有效指导合成的催化剂材料具有良好的活性、选择性和稳定性。左图为利用PoseidonAx原位液体分析系统通过将液体中的氧化铁胶体添加到碳纳米管载体上来实时合成费-托催化剂材料原位过程。 数据来源:KRANS, N.A. ET AL. (2019) MICRON, (117) 40–46
    留言咨询
  • 主要功能及特点Gamry电化学工作站Interface 1010B是一种通用的电化学工作站,可以进行循环伏安法,计时安培法,和计时电位法,脉冲伏安法和方波伏安法测量。针对循环伏安法,或用于类似的基础研究,如确定氧化还原电位,反应机理,扩散系数,速率常数和电化学活性面积而设计。还可以运行电化学镀和电镀试验或测定溶液中痕量分析物的浓度。除了上述功能,也会得到一个介绍性的软件开发工具包,可以开发自己的程序或与其他仪器的接口能力。Gamry电化学工作站Interface 1010B 还可以扩展为更先进的机型。例如Interface 1010E提供Interface 1010B的所有功能,并且还包括电化学阻抗谱测试能力。 Interface 1010B可以升级到更先进的电化学测试系统。联系GAMRY, 关于Interface 1010B升级至1010E, 获取升级的更多信息。物理电化学-循环伏安法,线性扫描伏安法, 计时安培,计时电位, 计时库仑法, 多步计时安培法, 以及多步计时电位技术。脉冲伏安法-微分脉冲伏安法,常规脉冲伏安法, 反向脉冲伏安法, Osteryoung方波伏安法以及诸如阳极溶出伏安法相关的技术。基本控制和用户定义信号的应用。简单恒电位和恒电流型实验可以执行。定义数组执行线性扫描和循环伏安法。灵活配置Interface 1010B可以用于单通道,双通道,或者多通道组合。灵活配置,可扩展薇旋转圆盘/环盘电极电化学测试系统、光电化学测试、扫描电化学显微镜、氢扩散测量系统等等。 Interface1010B 的多通道每个通道可以单独操作,通道间互不干扰,每个通道独立、浮地,允许每个通道靠近电解池,缩短电极导线长度,提高带宽。其他细节2,3,4和5电极的测量电气隔离 浮地:用于高压釜,机械应力设备或管线。DSP(数字信号处理)模式过采样模式提高信噪比和精确的电容测量。电流中断IR补偿模拟电压输出,模拟电流输出,辅助A / D输入和数字I / O连接器。
    留言咨询
  • 原位电化学质谱仪(电催化DEMS)产品详情QAS 100 PlusQAS 100微分电化学质谱仪(Differential Electrochemical Mass Spectrometry,简称DEMS)是一种原位电化学方法,通过检测挥发性产物,可以获得界面的定性、定量信息,成为研究电化学反应机理不可或缺的重要工具之一。DEMS系统将电化学反应装置与质谱仪连用,由电化学反应产生的挥发性产物从疏水透气的膜接口进入质谱仪的真空系统管路中,通过质谱仪获得不同质荷比离子的电流随时间的变化。在电化学反应机理研究中,循环伏安法(CV)是一种较为常用的电化学手段,从获得的CV图形中可以获得丰富的电化学信息,因此,CV被频繁地用于DEMS研究中。利用DEMS进行电化学研究时,由质谱仪检测 CV 扫面过程中所生成的挥发性产物的离子电流信号随时间的变化,再通过时间轴向电势轴的变换即获得离子电流随电势变化的图形 (MSCV),为电催化反应机理研究提供更全面更深入的信息。图1:探针式原位微分电化学质谱仪原理图结构组成:质谱采样探针和玻璃电化学池组成。工作原理:质谱采样探针正对着玻璃电化学池中的工作电极,工作电极上产生的产物经由探针端部滤膜进入到质谱仪从而被检测到。配置视频显微镜精确调节采样探针与工作电极之间的距离。 具体应用如:1. CO2电催化还原气相产物(CO,CH4,C2H4,CH3OH等)瞬时检测,相对法拉第效率测定2. 硝酸根电催化还原中NO,N2O,NH2OH,NH3,N2等中间产物或最终产物原位检测3. 电解水OER同位素标记18O,LOM或AEM反应机理确认4. 甲醇电氧化反应中间产物或最终产物(HCHO,HCOOH,CO等)瞬时检测及各产物电流效率计算5. 氢同位素标记,氢气析出反应(HER)机理解析6. 碳材料稳定性评估(高电位下CO,CO2检测)7. 其他(光催化,光电催化,氧还原,氢氧化,氯气析出,有机电合成等)应用案例:1. 硝酸根电还原中间体检测 Angew. Chem. Int. Ed. 10.1002/anie.201915992 2. 电解水OER同位素标记18O,LOM或AEM反应机理确认 J. Am. Chem. Soc. 2021, 143, 17, 6482-6490 3. 甲醇电氧化反应 Journal of Power Sources 509 (2021) 230397 4. 氢同位素标记,氢气析出反应(HER)机理解析 Nature catalysis, 2022,5,66-73 5. CO2电还原 ACS catal. 2019,9,1383-1388 部分客户论文清单Nature Catalysis. 2022, 5, 66-73Nature Catalysis. 2021, 4, 1012-1023J. Am. Chem. Soc. 2021, 143, 6482-6490J. Am. Chem. Soc. 2019, 141, 9444-9447Angew. Chem. Int. Ed. 2020, 59, 5350-5354Angew. Chem. Int. Ed. 2019, 131, 4670-4674Angew. Chem. Int. Ed. 2021, 60, 7297-7307Angew. Chem. Int. Ed. 2021, 60, 22933-22939Angew. Chem. Int. Ed. 2021, 60, 26177-26183Angew. Chem. Int. Ed. 2022, e202204541Joule. 2021, 5, 2164-2176Nat. Commun. 2022, 13, 2191Nat. Commun. 2021, 12, 2164Adv. Mater. 2020, 32, 2002297Adv. Energy Mater. 2020, 10, 2001289Appl. Catal. B. 2021, 280, 119393ACS Energy Letters. 2022, 7, 1187-1194ACS Energy Letters. 2022, 7, 284-291Chem. Eng.J. 2022, 435, 134969Chem. Eng.J. 2022, 433, 133495Environ. Sci. Technol. 2022, 56, 614-623ACS Catal. 2021,11, 840-848ACS Catal. 2019, 9, 4699-4705Nano Energy. 2021, 86, 106088NanoEnergy. 2019, 60, 43-51ACS Catal. 2021, 11, 14032-14037ACS Catal. 2020, 10, 3533-3540ACS Appl. Mater. Interfaces. 2022, 14, 12257-12263J. Mater. Chem. A. 2021, 9, 239-243Cell Reports Physical Science. 2021, 2, 100378J. Mater. Chem. A. 2021, 9, 9010-9017Journal of Catalysis. 2021, 397, 128-136Journal of Power Sources. 2021, 509, 230397Science China Chemistry. 2020, 63, 1469-1476Adv. Sustainable Syst. 2020, 4, 2000227Science China Chemistry.2021, 64, 1493-1497J. Colloid Interface Sci. 2022, 614, 405-414 Angew. Chem. Int. Ed. 2022, 61, e20211563Nat. Commun. 2022, 13, 2577 J. Mater. Chem. A. 2022, 10, 6448–6453 J. Mater. Chem. A. 2021, 9, 14741–14751ACS Sustainable Chem. Eng. 2022, 10, 5958–5965J. Mater. Chem. A. 2022, 10, 5430-5441Appl. Catal. B. 2022, 301, 120829 Adv. Mater. 2020, 2202523Adv. Mater. 2020, 2202874ACS Catal. 2022, 12, 14, 8658–8666Energy Environ. Sci. 2022,15, 3912-3922Adv. Mater. 2022, 2209307Angew. Chem. Int. Ed. 2023, e202217071ACS Nano. 2022, 16, 6, 9095–9104Angew. Chem. Int. Ed. 2022, 61, e202212341J. Am. Chem. Soc. 2022, 144, 35, 16006–16011Adv. Energy Mater. 2022, 12, 2103960 Nature Energy. 7, 978–988 (2022) Energy Environ. Sci. 2022, 15, 4175Nat. Commun. (2022) 13:7958
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制