蛋白磷酸酯酶

仪器信息网蛋白磷酸酯酶专题为您提供2024年最新蛋白磷酸酯酶价格报价、厂家品牌的相关信息, 包括蛋白磷酸酯酶参数、型号等,不管是国产,还是进口品牌的蛋白磷酸酯酶您都可以在这里找到。 除此之外,仪器信息网还免费为您整合蛋白磷酸酯酶相关的耗材配件、试剂标物,还有蛋白磷酸酯酶相关的最新资讯、资料,以及蛋白磷酸酯酶相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

蛋白磷酸酯酶相关的资料

蛋白磷酸酯酶相关的论坛

  • 【每周读报】毛细管区带电泳测定酪蛋白磷酸肽方法的研究

    【题名】毛细管区带电泳测定酪蛋白磷酸肽方法的研究【期刊名】中国食品学报【年、卷、页】2002年2卷第二期【作者】牟光庆【正文】摘要:用毛细管区带电泳(CZE )时酪蛋白磷酸肤(CPP)进行了分离和测定。研究出的适宜电泳操作条件为:工作电压30KV、柱温259C、毛细管长度50cm、内径70prn、进样量5sec(气压进样)、紫外检测波长200nm,缓冲液pH值9.20测定不同N/P样品的CPP含量分别为42.2%, 50.0%, 51.0%.见附件主要问题:1、毛细管区带电泳法测蛋白质含量是否准确?2、一般都可以测什么类型的蛋白质?

蛋白磷酸酯酶相关的方案

  • 人脂蛋白磷脂酶A2(Lp-PL-A2)检测试剂盒
    人脂蛋白磷脂酶A2(Lp-PL-A2)检测试剂盒人脂蛋白磷脂酶A2(Lp-PL-A2)检测试剂盒使用说明书本试剂盒仅供研究使用。检测范围: 规格:96T/48T使用目的:本试剂盒用于测定人血清,血浆及相关液体样本中人脂蛋白磷脂酶A2(Lp-PL-A2)含量。实 验 原 理 本试剂盒应用双抗体夹心酶标免疫分析法测定标本中人脂蛋白磷脂酶A2(Lp-PL-A2)水平。用纯化的抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入人脂蛋白磷脂酶A2(Lp-PL-A2)抗原、生物素化的人脂蛋白磷脂酶A2(Lp-PL-A2)抗体、HRP标记的亲和素,经过彻底洗涤后用底物TMB显色。TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的人脂蛋白磷脂酶A2(Lp-PL-A2)呈正相关。 使用酶标仪在450nm波长下测定吸光度(OD值),计算样品浓度
  • 磷酸酯抗燃油的闪点测试方法及标准要求
    抗燃油由磷酸酯组成,外观透明、均匀,新油略呈淡黄色或桔红色,无沉淀物,挥发性低,抗磨性好,安定性好,物理性稳定,发电厂电液控制系统所用抗燃油是一种抗燃的纯磷酸酯液体,难燃性是磷酸酯最突出特性之一,在极高温度下也能燃烧,但它不传播火焰,或着火后能很快自灭,磷酸酯具有高的热氧化稳定性。按照标准DLT571-2007电厂用磷酸酯抗燃油运行与维护导则,抗燃油磷酸酯的闪点:≥235℃。按GB/T 3536方法进行试验。运行磷酸酯抗燃油的闪点降低,说明油中混入了易挥发可燃性组分或发生了分解变质,应同时检测自燃点、黏度等项目,分析闪点降低的原因。全自动开口闪点仪SH106B严格按照GB/T3536这个标准设计制作的,全自动触摸屏操作,自动电子点火,自动判定,自动出结果,自动打印。
  • 微波消解磷酸酯
    磷酸酯是磷酸的酯衍生物,用作含磷农药、难燃液压油、润滑油等。利用特殊的催化酯化方法,能够制备长链磷酸酯,广泛应用于金属加工业领域,在高载荷引起边界润滑条件下减少摩擦和磨损。水性和油性磷酸酯常用于铝轧制液,钢板轧制液,拉削液,冲压油,超精研,磨削液,冷轧液等产品中。对于磷酸酯中磷含量的检测可以判断产品的优劣,采用微波消解法对磷酸酯进行前处理,该方法具有快速、简便、节省试剂、消解完全等特点,测定结果的精密度和准确度良好,有利于对磷元素的分析检测。

蛋白磷酸酯酶相关的资讯

  • 我国磷酸化蛋白质组分析技术获得新进展
    在国家自然科学基金的大力支持下(项目资助号:21021004),中国科学院大连化学物理研究所邹汉法研究员在磷酸化蛋白质组分析技术方面获得新进展,相关成果发表在最近一期的Nature Protocols上(2013,8,461-480)。(http://www.nature.com/nprot/journal/v8/n3/abs/ nprot.2013.010.html)。   固定化金属离子亲和色谱(IMAC) 是磷酸化蛋白质组学研究中最常用的磷酸化肽段富集技术之一,常规的IMAC使用的螯合基团有三羧甲基乙二胺、次氨基乙酸、亚氨基二乙酸等,在螯合铁、镓等金属离子后可用于磷酸肽的富集。其缺点是特异性不高,在富集磷酸肽的同时也富集了一些酸性肽。研究人员发现了磷酸酯锆或钛表面与磷酸肽之间的高特异性相互作用,并利用这一相互作用建立了以磷酸基团为螯合配体的新一代固定化金属离子亲和色谱技术。实验表明,该新型IMAC对磷酸肽富集的特异性优异,可以有效避免酸性肽段的非特异性吸附。与传统的IMAC相比较,其对磷酸肽的富集能力提高3-10倍,从而大大提高了蛋白质磷酸化分析的检测灵敏度和鉴定覆盖率。该新型IMAC方法自2006年发表首篇论文以来,已在Mol. Cell. Proteomics, J. Proteome Res., Anal. Chem.等蛋白质组学与分析化学权威期刊发表论文20余篇,其中2007年发表在Mol. Cell. Proteomics的一篇论文已经被引用110余次。采用该方法为核心技术进行了人类肝脏蛋白质磷酸化的规模化分离鉴定,建立了迄今为止国际上人类肝脏蛋白质磷酸化的最大数据集 (Mol. Cell. Proteomics,2012,11,1070-1083)。
  • ​整合结构质谱法和计算模拟法探究糖原磷酸化酶中磷酸化介导的蛋白变构调控和构象动态性
    大家好,本周为大家介绍一篇本课题组发表在ACS Chem. Biol.上的文章,Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics of Glycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling1。变构调节在自然界中广泛存在,可以用于调控细胞过程。糖原磷酸化酶(GP)是第一个被鉴定出的与变构调节相关的磷酸化蛋白。GP是一个分子量约196kD的同源二聚体蛋白,是糖代谢中重要的组分,也是2型糖尿病及癌症的靶点。AMP结合以及Ser14的磷酸化介导了GP的变构调节,使其构象从非活化的T-state GPb(未磷酸化状态)转变为活化的R-state GPa(磷酸化状态)。即使目前X-射线晶体学法解析出了GP的原子级蛋白结构,但受限于较大分子量,其结构动态性的检测较为困难,因此与GP变构调节相关的结构动态变化过程仍较为模糊。核磁共振(NMR)谱及分子动力学(MD)模拟等是探究蛋白质结构动态性的常用方法,但NMR分析存在分子量上限,且样品消耗量大,MD模拟的时间尺度和力场准确度有限。质谱(MS)法具有快速、灵敏的特点,是蛋白质结构、动态性以及构象变化分析中强有力的一款技术。氢氘交换质谱(HDX-MS)通过监测蛋白骨架酰胺氢原子与溶液中氘的交换来反映蛋白质构象动态性,因此适用于探究由配体、蛋白结合或共价修饰引起的蛋白质构象变化。同时,多个软件实现了由HDX-MS数据计算保护因子(PFs)和吉布斯自由能,从而提取残基水平的蛋白动态性信息。此外,在先前的工作中2, 3,我们整合了native MS和top-down方法(native top-down,nTD-MS技术),成功实现了多个蛋白复合物的一级序列到高阶结构等多方面信息的检测(包括测序、翻译后修饰、配体结合、结构稳定性、朝向等)。整合多种结构质谱法(整合结构质谱法)可以有效填补传统生物物理法中结构到动态性联系中的空缺,更好地表征变构调控现象。本文整合了HDX-MS、nTD-MS、PF分析、MD模拟以及变构信号分析检测了磷酸化介导的GP变构调控的结构和动态性基础,为GP的变构调控过程提供了见解。根据X-射线晶体学结构报道(图1a),T-state GPb转变为R-state GPa时,二聚体界面中N-末端尾部、α2、cap’(图1b)以及tower-tower helices区(图1c)发生了明显的结构重排,导致催化位点开放,从而底物磷酸吡哆醛(PLP)可以结合。尽管有晶体学报道,但与变构调控关联的构象动态性仍有待探寻。图1.(a)磷酸化介导T-state GPb(PDB:8GPB)向R-state GPa(PDB:1GPA)的构象转变;亚基相互作用界面:(b)C端区域和(c)tower-tower helices,GPb为蓝色,GPa为绿色。首先我们通过nTD-MS进行了检测。如图2a、b,谱图中观察到了GPb的单体和二聚体信号,其中二聚体为主要形式;GPa除了单体和二聚体外,谱图中还存在少量四聚体,但仍以二聚体为主要形式。当增加sampling cone(SC)电压时,GPb、GPa保留了其二聚体形式(图2c、d)。随后我们选择离子(29+)并在trap池中进行了碎裂(图2e、f、g、h),谱图低质荷比区GPa的碎片相对峰强度较GPb高,说明GP的二聚体互作界面较为稳定,且GPb亚基结构较GPa稳定。nTD-MS不仅能够探究GPb、GPa的结构差异,也能够为接下来的HDX-MS实验做好前期样品质量检查工作。图2.不同活化条件下GPb、GPa的nTD-MS谱图。(a、b)SC=40V;(c、d)SC=150V;(e、f)SC=150V、trap=100eV;(g,h)SC=150V、trap=200eV。左侧为GPb,右侧为GPa。随后我们进行了HDX-MS实验。图3a中展示了五个时间点的HDX heat map。图3b为通过PyHDX软件计算产生的PF值。其中N-端(1-22)以及tower helix前的loop区域(256-261)的氘代值较高、PF值较低,说明这些区域较为柔性或是结构较为无序。此外我们发现,tower-tower helices(262-276)区域的氘代值较低、PF值较高,表明helices的旋转可能是由前端可塑性铰链区触发的,而非helices本身的变形和重塑引起的,这些发现在晶体结构数据中均有吻合之处。除这两个区域外,GPa和GPb基本保持了稳定的整体结构。而从1μs原子级MD模拟计算得到的均方根波动(RMSF)和溶剂可及表面(SASA)中我们也发现(图3c),这两个区域数据与HDX-MS信息有所吻合,但MD模拟中部分区域未和HDX-MS相吻合的区域可能跟序列覆盖不足相关。图3. (a、d)GPb和GPa在不同标记时间下的氘代热图并映射到结构中(PDB: 1GPA)。(b、e)基于HDX-MS数据计算得到的PF值并映射到晶体结构中。(c、f)MD模拟中RMSF和SASA值并映射到结构中。从氘代差异图(图4a)中可以看出,4个区域呈氘代降低趋势(红色方框),多个区域呈氘代上升趋势(蓝色方框)(GPa-GPb)。而PF差的变化趋势与氘代变化趋势基本一致(图4b)。由数据可知,N-端和tower-tower helices的变化说明磷酸化介导的变构稳定了这两个区域,α1-cap-α2区域的动态性轻微下降。除此之外多个区域(尤其是tower-tower helices序列后的区域)均表现为PF值下降,说明相比于GPb,GPa催化位点附近的区域动态性增强了。接下来我们根据HDX kinetic plot特征将其进行了分类,并详细讨论了所属区域的变化。图4.(a)GPa-GPb HDX-MS的氘代差异图。(b)GPb到GPa PF的变化。 首先是N-端和C-端的变化(图5)。N-端残基1-22表现氘代下降,这说明N-端具有一定可塑性。受N-端区域磷酸化和结构变化影响,C-端区域也产生了一定的变化。此外,残基30-50(cap区)和残基111-117(α4back-loop)区表现氘代下降,而103-109(α4front)表现氘代上升。根据晶体结构推测,cap区和α4back-loop的氘代变化受N-末端变化影响,原有的残基相互作用被打破,形成新的残基间相互作用,同时这两个区域也经历了结构重排,因此表现出较明显的氘代变化。残基88-99(β2-α3)和残基125-141(β3-L-α6)氘代上升。总的来说,磷酸化使得cap′/α2界面互作增强了,同时磷酸化基团和精氨酸残基的静电相互作用是cap区产生变化的主要原因,而α1和α2起到锚定作用,其相对位置基本保持不变。图5.GPb(a)和GPa(b)的N-端和C-端区域的局部结构和HDX动力学曲线(c)。 此外,tower-tower helices(α7,残基262-278)区的变化同样值得关注(图6)。250s loop是表面暴露区域,未与其他区域发生接触,其氘代下降可能是因为自身结构的收缩。而肽段262-267和268-274氘代下降提示该区域可能发生了低周转率或强互作的结合反应。280s loop区氘代值上升。这些变化均说明,tower-tower helix的角度的改变不仅影响了二聚体界面结构,而且还影响了其靠近催化位点的周围区域。因此我们结合晶体结构推测,磷酸化和N-端相对位置的改变,使250s loop自身结构收缩,从而打破了Tyr262' -Pro281和Tyr262-Tyr280′之间的相互作用,导致两个亚基的tower helices发生相对滑动,倾斜角度增加。图6.GPb(a)和GPa(b)tower helix区域的局部结构和HDX动力学曲线(c)。 最后是催化位点、PLP结合位点和糖原存储位点的变化情况(图7)。催化位点周围多数区域均表现氘代上升趋势。我们推测,随着Pro281、Ile165和Asn133间的相互作用被打破,Arg569与Ile165、Pro281、Asn133间的互作也随之打破,因此催化位点和PLP结合位点周围的残基溶剂可及性上升,局部区域结构变得更为灵活,催化位点开放并转变为活化构象。糖原储存位点位于GP表面,距离催化位点30Å,除了α23(残基699−708)外,HDX-MS在糖原存储区没有观察到明显的变化。图7.GPb(a)和GPa(b)的催化位点和PLP(橙色)结合位点的局部结构和HDX动力学曲线(c)。结合以上所有数据,我们对磷酸化调节的动态机制进行了推测(流程图1)。磷酸化后,N-端尾部残基与acidic patch的互作被打破,也导致N-端尾部的有序化以及C-端尾部的无序化以及伴随的其他结构变化。通过在pSer14和Arg69和Arg43′之间形成新的盐桥,N-端残基被重定位,随之带来的是Asp838和His36′间的盐桥断裂。随着三级和四级结构的转变,250s loop收缩并发挥类似“门环”的作用,当其收缩时,Tyr262′-Pro281与Tyr262-Tyr280′之间的相互作用、276-279区与162-164区之间的氢键也被打破,导致tower helix发生相对滑动,tower-tower helices之间的作用被打破,同时将结构变化传递到催化位点。最后,280s loop和催化位点以及PLP结合位点附近的残基松动,通往催化位点和底物磷酸盐识别位点的通道打开,酶得以活化。流程图1.GP变构调节过程中,被打破(蓝色)或新形成的(红色)关键残基相互作用。 本文整合nTD-MS、HDX-MS、PF分析和MD模拟检测了GP磷酸化变构调节过程的结构和动态基础,通过该整合结构手段揭示了GP构象柔性、局部动态性以及长程变构调控构象变化中值得关注的信息。各个方法具有各自的优势,但也在一定层面存在局限,我们期待将HDX-MS信息与计算模拟信息进行更深度的整合以实现二者对蛋白质结构更精确的分析。撰稿:罗宇翔编辑:李惠琳原文:Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics of Glycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling李惠琳课题组网址:https://www.x-mol.com/groups/li_huilin参考文献1. Huang, J. Chu, X. Luo, Y. Wang, Y. Zhang, Y. Zhang, Y. Li, H., Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics ofGlycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling. ACS Chem. Biol. 2022.2. Li, H. Nguyen, H. H. Ogorzalek Loo, R. R. Campuzano, I. D. G. Loo, J. A., An integrated native mass spectrometry and top-down proteomics method that connects sequence to structure and function of macromolecular complexes. Nat. Chem. 2018, 10 (2), 139-148.3. Li, H. Wongkongkathep, P. Van Orden, S. L. Ogorzalek Loo, R. R. Loo, J. A., Revealing ligand binding sites and quantifying subunit variants of noncovalent protein complexes in a single native top-down FTICR MS experiment. J. Am. Soc. Mass Spectrom. 2014, 25 (12), 2060-8.
  • 磷酸化蛋白,液体活检全新维度——访北美华人质谱学会主席陶纬国教授
    p    span style=" font-family: 楷体,楷体_GB2312, SimKai " 回顾2017年,基于质谱的临床研究有一项突破性发现。普渡大学陶纬国教授团队在2017年3月20日的《美国国家科学院院刊》(PNAS)杂志上发表文章称,他们从人体血液中发现2400多种磷酸化蛋白。该发现首次证明了磷酸化蛋白可以作为基于液体活检的疾病标志物,能用于对癌症等重大疾病更早、更精准的非侵入性诊断,为 “液体活检”提供了全新的检测维度。近日,仪器信息网专访了陶纬国。 /span /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/a21a903c-0479-4776-9e2a-5b5c719f76fc.jpg" / /p p style=" text-align: center " strong 普渡大学 陶纬国教授 /strong /p p    span style=" color: rgb(255, 0, 0) " strong 磷酸化蛋白突破性发现 /strong /span /p p   通过液体活检来诊断肿瘤和癌症等疾病一直是临床科学家关注的焦点,研究对象多集中在循环肿瘤细胞(CTC)和循环肿瘤DNA(ctDNA),但是二者都有局限性:由于CTC在血清中的浓度非常低,取少量血液对其检测难度很大 癌症有很多基因突变,而这些突变不一定会显现出来,因此基于ctDNA进行的液体活检的诊断结果只能预测患病的概率,并不能确诊。 /p p   蛋白质磷酸化是调节和控制蛋白质活力和功能的最基本,最普遍,也是最重要的机制,同时,与许多疾病的发生密切相关。在众多肿瘤致病机理中,当前学术界对蛋白质磷酸化机理的研究最为清楚,80%-90%的癌症都跟蛋白质磷酸化有关。因此,许多抗肿瘤药物的研制都着眼于磷酸化蛋白。理论上,磷酸化蛋白作为相关基因突变的表达,在临床上能够帮助医生做出更明确的诊断。但是,有关基于液体活检的磷酸化蛋白研究还很少。此前,有个别报道在血液中发现几十种磷酸化蛋白,均是高丰度蛋白,生物学意义不大。“原因就是磷酸化蛋白一旦从细胞进入血液中就被肝脏分泌的磷酸酶水解了。”陶纬国解释说,“所以虽然磷酸化蛋白跟癌症关系非常密切,但人们无法对其进行检测。” /p p   陶纬国团队是如何从人体血液中检测到大量磷酸化蛋白的呢?这要从三年前的一篇文献报道说起,当时陶纬国从这篇文章中了解到外泌体和微囊的结构,“当我看到类似于纳米微粒的外泌体、微囊结构时,我认为可能会有磷酸化蛋白被包裹在外泌体中,然后进入血液。如果真是这样,被外泌体包裹的磷酸化蛋白可能会避免被血液中的磷酸酶水解。”于是陶纬国团队对血液中的外泌体、微囊进行了超速离心分离、提取,然后用质谱进行检测。一周以后,实验结果让所有人都惊呆了,他们从中发现了几千个磷酸化蛋白。这个突破性的发现使得临床科学家们今后可以在1毫升血浆里找到几千个磷酸化的位点,并从中筛选出不同疾病的生物标志物。之后,陶纬国团队对乳腺癌病人血清中的磷酸化蛋白做了研究,发现乳腺癌病人体内的磷酸化蛋白与其病症密切相关。 /p p   那么,磷酸化蛋白液体活检何时能够应用临床呢?陶纬国回答说:“虽然现在还不好断言,但我认为3-5年内都有可能。”他进一步解释,随着质谱技术的显著提升,一些原来检测不到的生物标志物现在能够检测了,后面的工作主要是考察重复性有多好,假阳性有多低。 /p p   谈及未来的工作,陶纬国表示,一方面会继续做乳腺癌的磷酸化蛋白生物标志物确认的工作 另一方面也会做其他疾病磷酸化蛋白生物标志物找筛的工作,“还有很多其它疾病,比如阿尔茨海默病、帕金森综合征等,也都是蛋白磷酸化有关。” /p p    span style=" color: rgb(255, 0, 0) " strong 质谱用于生物大分子检测的思考 /strong /span /p p   陶纬国教授做蛋白组学研究至今已有十几年,用到的研究工具主要是质谱。在攻读博士期间,陶纬国师从普渡大学著名质谱专家Graham Cooks教授。博士毕业后,陶纬国加入了西雅图系统生物研究所,在Leroy Hood教授(自动DNA测序仪发明人)和Ruedi Aebersold教授(著名蛋白质组学专家)课题组继续博士后研究。从那时起,陶纬国就开始了他的磷酸化蛋白质组学检测的研究,“重回普渡教书以后,我的工作基本上是围绕着怎么去提高磷酸化蛋白分析手段来开展的。质谱在我的工作扮演着中心角色,包括方法开发,蛋白生物标志物早筛,全靠质谱来做。”首先是早筛,用质谱(Orbitrap)筛选出相关的生物标志物(磷酸化蛋白) 然后对病人的样本进行检测,用统计学的方法对检测结果进行分类 最后,分析统计学上有意义的、跟病人相关的磷酸化蛋白。 /p p   在过去二三十年里,质谱在生物大分子检测方面有几个重要的技术突破。首先,80年代末90年代初, ESI和MALDI的出现,使质谱能够用于分析生物样品 第二,近十几年来,高分辨质谱的飞跃发展,大大提升生物大分子的分析效率。“我读博士后时(2002年),很多仪器还是低分辨的,生物样品还是挺难做的,做完一个磷酸化的蛋白,单是数据库检索就要三天,而且,相对来说,得到的数据假阳性高。现在的高分辨质谱解谱很容易,差不多半个小时就够了,假阳性也降低很多。”此外,陶纬国还说到,“UPLC与质谱的结合在技术上是很大的进步,使色谱的分离效率赶上了质谱的速度,现在一个小时能检测到几千个蛋白,非常快。” /p p   同时,陶纬国也指出了目前利用质谱来检测生物大分子的难点。第一,生物样品基体复杂。“像我们实验室做磷酸化蛋白,它本身丰度就很低,假如样本不经过任何分离的话,谱图上将会只能看到高丰度蛋白。”第二,质谱检测假阳性比较高。“其实还是需要统计学算法方面的开发,来解决假阳性率高的问题,这也是现在很多质谱开发者在做的工作。” /p p   现如今质谱产品更新迭代非常快,对于质谱工作者来说,是好,也是坏。“新产品的确扫描速度更快了,精度更高。但是,也给质谱工作者带来了不小的压力。特别是像我们这种使用高分辨大仪器的,没有那么多钱换来换去。可是如果你想要紧跟前沿,这些新仪器又十分必要。”陶纬国说,这是目前质谱工作者普遍面临的两难境地。 /p p    span style=" color: rgb(255, 0, 0) " strong 整合临床大数据 /strong /span /p p   2017年,陶纬国作为海外高层次人才被东南大学引进回国。谈及回国的初衷,陶纬国表示,国内拥有更多、更丰富的病人样本,这是他选择回国的原因之一。此外,国内对于高分辨质谱等大型仪器的投入力度也更大,有助于前沿研究的开展。谈到选择东南大学的原因,陶纬国说到:“东南大学的生物医学工程学院有转化医学,有生物,然后又有工程,包括产业化,比较适合我。” /p p   现在国内,整合医学大数据来服务大健康的概念很热,“在全国,包括南京,都已经有相关工作在开展”。从临床检测这个角度来说,陶纬国希望找到办法来整合DNA检测,microRNA检测,磷酸化蛋白检测几个维度的数据,从而获得更为精准的临床诊断结果。“比如检测一个肿瘤,通过对DNA、mRNA、磷酸化蛋白、糖基检测多维度数据的不断积累,数据会越来越多,结合人工智能、计算机算法,检测结果会越来越精准。 我回来能赶上这个机会也是不容易。”陶纬国如是说到。 /p p   目前,医学大数据的采集方式主要为第二代、第三代测序。“但是,质谱也是很重要的一块儿。”陶纬国指出,“比如乳腺癌,基因突变仅仅代表一种患病的可能性,但是到底有没有癌症还是要通过蛋白检测来确定,所以用质谱来检测蛋白的存在、活性、功能,比基因层面更可靠。所以,质谱检测肯定会慢慢跟上来。” /p p   陶纬国在东南大学生物医学工程学院的新实验室是电子生物国家重点实验室。对于自己的工作重心,陶纬国表示,现在是过渡时期,未来会逐步将重心转至国内。“国内实验室刚刚开始,看起来前途光明。” /p p   span style=" color: rgb(255, 0, 0) " strong  热衷学界公益事务 出任CASMS主席 /strong /span /p p   作为质谱生物大分子检测方面的专家,陶纬国于2017年6月份当选北美华人质谱学会(CASMS)主席。该学会汇聚了众多顶尖的华人质谱学者,已经成为质谱学界重要的华人力量。在一年一度的“美国质谱年会(ASMS)”期间举行“北美华人质谱学术会议”已经成为CASMS的传统。据陶纬国介绍,CASMS已有二三十年的历史,目前注册人数在800人左右,覆盖了北美地区绝大部分优秀的华人质谱学者。ASMS每年参会人数6000-7000人,相当一部分是华人,中国面孔越来越多。“在美国,有很多华人学者做了非常出色的工作,但他们并没有获得相匹配的影响力和威望。” 陶纬国说,“我们学会的宗旨就是提升华人质谱学者在世界质谱领域的影响力。当然, 中国本身的国际地位的重要性是显而易见的。” /p p   CASMS的另一个宗旨是促进世界华人质谱界的互相交流。每两年召开一次的“世界华人质谱学术研讨会”是全世界华人的质谱盛会,汇聚了中国内地、台湾、香港、新加坡和北美地区的质谱学者,CASMS是该会议4个主办方之一。2016年,CASMS主办了第六届“世界华人质谱学术研讨会”,这是该会议首次在美国召开,恰逢该会议召开十周年。“我认为非常有意义,促进了两岸三地华人质谱学者的交流合作。我的亲身体会是通过这个会议结识了很多优秀学者,而在此前很多同仁相互间是不认识的。” /p p   未来,除了重要的线下会议组织工作,陶纬国希望通过加强线上日常交流,来使学会内部联系更为紧密。 /p p    span style=" font-family: 楷体,楷体_GB2312, SimKai " strong 后记: /strong 临床质谱技术被认为是医学诊断的下一个“基因测序”,应用前景被普遍看好。质谱用于临床检验具有灵敏度高、特异性高、重现性好的优点,可在临床多个领域对传统诊断方法学进行替代。陶纬国教授团队的磷酸化蛋白研究进一步提升了临床质谱应用的含金量。基于该研究,临床科学家们将会找到更多可靠的疾病标志物,从而实现癌症等重大疾病的早期发现和精准诊断。 /span /p p style=" text-align: right " 采访编辑:李博 /p

蛋白磷酸酯酶相关的仪器

  • 仪器简介:作为全球最大的实验室过滤及超滤产品供应商,Millipore 可为您提供l. 0.5mL至1000L处理量的实验室除菌过滤装置,可用于血 清、组织培养基及其他溶液的除菌过滤。高通量,低吸附的除菌滤膜,使蛋白质损失最少。可选择即用式过滤器或可更换膜的过滤装置。2. 0.5mL至3000mL处理量的实验室超滤装置,用于蛋白质,核酸的分离、纯化、浓缩和脱盐,专利 的结构设计和新型的超滤膜,使超滤速度更快,产物回收率更高。单片超滤膜和膜包可清洗并反复使用。3. 高通量纯化系统,特别适合大规模样品纯化实验室的应用,可快速有效地同时处理多达96个样品,大大减轻了实验室的负担。主要产品包括:* Amicon 系列超滤离心装置: 浓缩,脱盐一部到位,* DNA Extraction Kit: 从琼脂糖凝胶中回收DNA,只需10分钟即可回收100bp-10,000kb DNA* Micropure -EZ:从DNA中去除常用的42种限制性内切酶,可与Amicon超滤离心装置连用,一步离心即可完成去酶,浓缩及脱盐。* Immobilon 系列转印膜: Ny+ 用于Southern和Northern Blotting PVDF 用于Western Blotting* ZipTip 微量固相萃取吸嘴:只需数秒即可纯化fmol至pmol的蛋白质样品,提高质谱分析的灵敏度* Montage Plasmid kit:用于质粒DNA纯化2 Montage BAC kit:用于BAC DNA纯化2 Montage SEQ kit:用于测序反应后PCR纯化* Montage In-Gel Digest Kit: 同时处理96个1-D或2-D胶中的蛋白质样品* Millex GP33: 超大面积,超高流速的针头式除菌过滤器。技术参数:1.96孔PCR 纯化板---纯化96个样品只需10分钟2.无须离心,只需真空抽干3.不需要使用任何有机试剂及任何盐溶液,也无须洗涤步骤4.纯化后的PCR样品回收率90%(500bp以上)5.纯化后的DNA纯度极佳--Primer的去除率98%主要特点:1.Albumin Deplete Kit--有效去除人血清中65%以上的白蛋2.预装好亲和层析小柱,只需15分钟离心,洗脱操作3.非特异性蛋白吸附极低4.提高低峰度蛋白质在电泳,层析及质谱分析中的解析度5.此Kit同样可适合于其他多种哺乳动物
    留言咨询
  • timsTOF Pro 2由平行累积连续碎裂技术( PASEF )驱动,使得 4D-蛋白质组学和 4D-脂质组学为无偏向性细胞和血浆蛋白质组学、液体活检多组生物标志物发现,以及整合基因组学、蛋白质组学和表观蛋白质组学拓宽了道路。4D-组学时代 —— 解锁第四维度的价值4D-组学的重大突破速度:PASEF 技术实现了在不影响分辨率情况下达到超过 120 Hz 扫描速度。深度:额外一维离子淌度提高了数据完整性。高通量:超快数据采集速度使其可以使用短梯度实现生物样本的高通量分析。耐用性:独特的仪器设计使得其可以连续分析数千个样品,仪器保持稳定的性能而无需清洁。4D-Proteomics&trade 的新标准:更快速度实现蛋白质组全覆盖基于质谱( MS )的蛋白质组学一次可实现样本里成千上万蛋白的定性和定量。然而,受到目前质谱仪的扫描速度、灵敏度和分辨率的影响,实现蛋白质组的全覆盖仍然具有挑战性。timsTOF Pro 2 使用平行累积连续碎列( PASEF )的技术可实现极高的扫描速度和灵敏度,只需要少量样本就可以达到蛋白质组学鉴定新深度。双 TIMS 和 CCS 的分析捕集离子淌度谱( TIMS )首先是一项重要的气相分离技术,它是在高效液相色谱( HPLC )和质谱分离的基础上,带来额外一个维度的分离,可大大降低样品分析复杂度,极大提高峰容量和分析物鉴定可靠性。同样重要的是,TIMS 离子淌度管能对离子实现时间和空间上的聚焦,从而独特地提高灵敏度和扫描速度。双 TIMS 技术可以实现近乎 100% 的离子利用率,离子在前一根淌度管内累积,在后一根淌度管内根据离子淌度值分批释放。这种平行累积连续碎裂( PASEF )的过程能够实现碰撞横截面( CCS )的分析。CCS 额外一个维度信息能够提供很多进一步的分析可能性,可以从复杂数据库实现化合物的高可信度库匹配以及更低的错误发现率( FDRs )。4D-Proteomics&trade 的新标准:更快速度实现蛋白质组全覆盖基于质谱( MS )的蛋白质组学一次可实现样本里成千上万蛋白的定性和定量。然而,受到目前质谱仪的扫描速度、灵敏度和分辨率的影响,实现蛋白质组的全覆盖仍然具有挑战性。timsTOF Pro 2 使用平行累积连续碎列( PASEF )的技术可实现极高的扫描速度和灵敏度,只需要少量样本就可以达到蛋白质组学鉴定新深度。双 TIMS 和 CCS 的分析捕集离子淌度谱( TIMS )首先是一项重要的气相分离技术,它是在高效液相色谱( HPLC )和质谱分离的基础上,带来额外一个维度的分离,可大大降低样品分析复杂度,极大提高峰容量和分析物鉴定可靠性。同样重要的是,TIMS 离子淌度管能对离子实现时间和空间上的聚焦,从而独特地提高灵敏度和扫描速度。双 TIMS 技术可以实现近乎 100% 的离子利用率,离子在前一根淌度管内累积,在后一根淌度管内根据离子淌度值分批释放。这种平行累积连续碎裂( PASEF )的过程能够实现碰撞横截面( CCS )的分析。CCS 额外一个维度信息能够提供很多进一步的分析可能性,可以从复杂数据库实现化合物的高可信度库匹配以及更低的错误发现率( FDRs )。极高的稳定性和通量无需清洗许多用于蛋白质组学应用的 MS 仪器需要每月清洁一次,在大样本组中每天 24 小时运行。仪器性能下降即使在较短的时间段内也是显而易见的。timsTOF Pro 2 卓越稳定性意味着仪器可以全天运行很多周,而没有明显的信号和其它性能下降。PaSER Run & Done —— 加快4D-蛋白质组学的鉴定速度PaSER( 实时平行搜索引擎 )是一个结合硬件和软件的解决方案,能够实现基于样本序列管理的实时数据库搜索引擎。PaSER 以很快的速度就能提供结果,包括 PTM 搜索。通过使用基于 GPU 的搜索,PaSER 在实时或离线模式下可以提供相同的结果,而无需使用简化的算法或中间步骤。PaSER 极快的搜索速度使得在数据采集结束后数秒就能同步拿到搜库结果,真正实现运行并完成! PaSER 有效地打破了大队列样本数据分析通量壁垒。此外,实时蛋白组学的非标记定量也可以跨越 PaSER 获得的数据结果集,使其瞬间能过渡到定量蛋白质组学。通过 TIMS Viz 使得淌度偏移质量对齐( MOMA )变得可视化 ,从而用户可以鉴定和识别只有 4D-Omics 才能看到的共洗脱多肽。 dia-PASEF 增加鉴定可信度dia-PASEF比传统的 DIA 方法有更高灵敏度和选择性,是因为它将 PASEF 原理也应用进来,结合了 DIA 的优点和 PASEF 离子利用率高的优势。TIMS 分离提高了选择性,而且可以将单电荷母离子排除掉,从而降低本底噪音干扰。利用分子量和碰撞横截面 CCS 值的相关性,dia-PASEF 能够实现高可信度化合物鉴定。在 LC-MS/MS分析中, dia-PASEF 能够采集包含 m/z,离子淌度值( CCS ),保留时间和离子强度的 4D 数据。前所未有的蛋白质覆盖深度凭借强大的 SRIG( 不锈钢堆叠环形离子向导 )装置和新优化的 dda-PASEF 方法 ,timsTOF Pro 2 单针能够达到前所未有的蛋白组学覆盖深度。使用自制 HEK 酶切样本, 上样 200 ng,使用 Aurora - 25cm 色谱柱,在 60 分钟梯度下能够鉴定 超过 7,000个 蛋白和 60,000 条多肽。因此 timsTOF Pro 2 可以通过数据库搜索和运行之间的匹配,无需任何谱图库,在一些日常细胞系蛋白组定量实验中实现很高的蛋白覆盖深度。超高灵敏度的高通量靶向蛋白质组学和常规的靶向蛋白组学分析技术( SRM 和 PRM )相比,prm-PASEF 在单针中可极大提高监测多肽数目,同时不影响仪器选择性或灵敏度。靶向质谱( MS )技术是蛋白质组学实验中一种强大的技术,用来验证大队列样本中的候选生物标志物。与数据依赖采集( DDA )和数据非依赖采集( DIA )相比,这可以增加检测灵敏度。可是该技术受到在单针中监测离子数目和液相分离出峰时长以及整体灵敏度间的折中限制。只有通过更长的色谱分离时长或降低质谱的灵敏度和选择性,才能获得大量目标肽的完整数据。prm-PASEF 可以极大地提高单针中靶向监测的多肽数目,这得益于布鲁克 timsTOF Pro 2 的第四维分离可以极大提高选择性和灵敏度, PASEF 技术带来的速度可以增加靶向分析离子数量。超高灵敏度应对最困难的分析挑战随着某些特定细胞、少量细胞群或生物穿刺样本的生物研究越来越重要,低样本量蛋白组定量变得至关重要。而如此低的样本量对于质谱灵敏度提出了很高要求。使用高灵敏度的质谱仪对如此低的样本量进行原型定量至关重要。timsTOF Pro 2 上样 200 ng HeLa 样本,使用 Aurora - 25cm 色谱柱,在 30 分钟梯度下使用 PaSER 能够鉴定超过 74,200 个蛋白和接近 30,000 条多肽。dia-PASEF —— 高通量定量蛋白质组学中实现无与伦比的数据完整性和分析深度使用标准 dia-PASEF 方法多针测试结果有着很高重复性。三种不同的 dia-PASEF 窗口设置下使用 Aurora-25cm 柱在 60 分钟梯度下可实现接近 8,000 个蛋白定量和超过 70,000 条多肽,而且有极高的定量准确性。高灵敏度磷酸化蛋白组学分析和同分异构体分离支持 CCS 的近邻位磷酸化位点定量dia-PASEF 在 timsTOF Pro 2 上的高灵敏度、扫描速度和重现性甚至可以实现低样本量的磷酸化蛋白质组学分析。例如可以实现小鼠脑样本起始总蛋白仅为 25 μg 的磷酸化蛋白质组的非标记定量。使用 Evosep 每天 30 个样本的分析方法,三次重复可鉴定出多达 4,473 个 unique 磷酸化多肽。这些结果为针刺活检的应用带来了希望,可以用信号转导的信息补充癌症蛋白质基因组学数据。这些结果为针刺活检的应用带来了希望。此研究结果由 Stefan Tenzer 教授提供。分析样本量有限时的细胞信号传导当肽段在色谱上发生共洗脱时,由于等重性和信号重合,不能测量 CCS 值的传统蛋白质组学是不能实现磷酸化肽异构体的定量的。PASEF 技术使得基于 TiO2 富集时,使用 150 ug 蛋白富集起始量就能够鉴定 27,768 个磷酸化肽,展现了淌度偏离质量对齐( MOMA )的优点。1,946 条鉴定的共洗脱异构体中,20% 的异构体可以被TIMS 完全分离,这可以使得我们可以更好地理解邻位蛋白磷酸化位点信息。
    留言咨询
  • 蛋白组学样本前处理工作站是一款具备高通量、高回收率、安全性能强、抗干扰能力强,适用范围广等优势,适用大队列样本的高通量处理设备,可实现质谱蛋白样本前处理的全自动化和标准化操作。蛋白组学样本前处理解决方案适用于血浆、血清、尿液、细胞、组织等类型样本从蛋白到多肽混合物的质谱检测前处理工作,试剂盒利用新型固相烷基化试剂SPA材料与蛋白的特异性共价反应,实现蛋白质的高效捕获,通过清洗磁珠表面,快速去除干扰物质,并进行原位固相酶解,获得蛋白酶解产物,仪器整合制冷模块、磁吸附模块、加热振荡模块、抓扳手,进而实现蛋白质组提取、还原、烷基化、酶解等流程自动化操作,提高蛋白质样品的处理效率和回收率。 优势特点高通量■96通道移液头,一次可处理最多96个样本,高效完成实验流程中吸废等步骤;■兼具8通道移液功能,可以实现试剂的精准分装;■ 全流程4-5小时可完成96个蛋白样本的前处理(具体时间根据具体实验流程);自动化程度高■ 整合抓板手,用于对标准SBS板子的转移;■ 整合蛋白前处理所需的试剂制冷模块、磁吸附模块、加热振荡模块等功能模块;■均一化操作,减少实验过程中的误差,提高准确性和稳定性;灵活性强■ 盘面包含18个SBS标准盘位,除功能模块外,有15个盘位放置试剂和耗材;■开放式平台,配有多样化适配器,可适配多种不同品牌试剂耗材;■软件界面人性化设计,拖拽式布局,操作简单,每个步骤可独立进行参数设置,实验流程可进行存储,按键式启动运行;安全性■可配置避光外罩,搭配紫外消毒灯;■可根据实验需求选配正、负压HEPA过滤系统,有效避免交叉污染; 数据测试样本批内测试数据材料:293T 细胞实验方法:手工操作3 组,仪器操作3 组Q Exactive质谱结果如下:表1:手工操作和仪器操作后蛋白数及零漏切率对比图1 Venn diagram(蓝色:手工;绿色:仪器)试验总结手工操作和仪器操作蛋白样本预处理后可检测到的蛋白数及零漏切率基本一致,达到预期要求;手工操作与仪器操作蛋白种类皮尔斯相关系数大于0.97,与预期一致;样本批间测试数据图2 96孔板检测示意图如图2所示共处理96个样品,分三组进行实验,随机选取36个样品进行Q Exactive质谱检测,结果如下:图3 36个样本检测蛋白数(个)图4 36个样本零漏切率(%)图5 随机样品日间比较实验总结36个随机样本检测蛋白数3074±89个,零漏切率78.32±2.66%,样本预处理的结果正常且稳定;36个样品的皮尔斯相关系数及日间随机样品皮尔斯相关系数均介于0.955-0.989之间,达到指标要求,具有较好的均一性。 应用领域临床诊断/用药指导/病理机制研究/疾病标志物的发现/药物机理研究特别说明,此页面中所有展示的图片和信息仅供参考。
    留言咨询

蛋白磷酸酯酶相关的耗材

  • 人磷酸化Tau-181蛋白 (pTau-181)检测试剂盒
    国内外多项研究表明血浆pTau-181可以作为阿尔茨海默病(Alzheimer's disease,AD)的早期生物 标志物,有效区分AD痴呆与非AD痴呆的神经退行性疾病,但是由于受到血脑屏障的限制,外周血 中脑源性蛋白的浓度较低,且易受到血浆基质蛋白的干扰。彩科(苏州)生物科技有限公司所开发单分子免疫检测平台,使用彩科生物人磷酸化Tau181蛋白(pTau-181)检测试剂盒,在彩科生物AXL/SXL 单分子阵列免疫分析仪上可以定量检测血浆中pTau181的蛋白浓度
  • 色谱科 Hebrid SPE小柱(蛋白沉淀)货号:55261-U
    Hebrid SPE小柱(蛋白沉淀) 30mg/1ml,100支/盒 通过定向除去磷脂,融合了蛋白质沉淀的简单性和固相萃取的选择性,通过完全除去磷脂和沉淀蛋白质,降低离子抑制,2-3 步通用流程,方法开发最少,甚至不需要方法开发,可提供 96 孔和 1mL 萃取柱规格。 HybridSPE 沉淀 (HybridSPE-PPT) 技术为简单通用的样品制备平台,用于在 LC-MS 或 LC-MS/MS 分析之前,从生物血浆和血清中大体上除去内源性蛋白质和磷脂的干扰。首先在生物血浆或血清中加入并混合酸化乙腈进行蛋白质沉淀。然后通过离心分离除去沉淀蛋白质,将所得上清液装入 HybridSPE-PPT 96 孔板或萃取柱中,该孔板或萃取柱用作专门除去内源性样品磷脂的化学过滤器。磷脂的保留机理基于 HybridSPE-PPT 固定相上键合的独特锆离子和与磷脂上磷酸酯部分之间的高选择性 Lewis 酸碱作用。所得洗脱液可立即用于 LC-MS 或 LC-MS-MS 分析。 另一种"孔内沉淀"方法也用于 HybridSPE-PPT 96 孔,此时首先在 96 孔板中加入生物血浆/血清,然后加入酸化乙腈(沉淀剂)。在短时间混合/搅拌步骤之后,对 96 孔板施加真空。由于 96 孔包含一系列低孔隙度的疏水性过滤器/筛板,因此填充床过滤器/筛板组件作为深度过滤器使用,在萃取过程中便于同时除去磷脂和沉淀蛋白质。
  • 色谱科 Hebrid Ultra SPE小柱(色谱科蛋白沉淀)货号:55269-U
    Hebrid Ultra SPE小柱(蛋白沉淀) 30mg/1ml,100支/盒 通过定向除去磷脂,融合了蛋白质沉淀的简单性和固相萃取的选择性,通过完全除去磷脂和沉淀蛋白质,降低离子抑制,2-3 步通用流程,方法开发最少,甚至不需要方法开发,可提供 96 孔和 1mL 萃取柱规格。 HybridSPE 沉淀 (HybridSPE-PPT) 技术为简单通用的样品制备平台,用于在 LC-MS 或 LC-MS/MS 分析之前,从生物血浆和血清中大体上除去内源性蛋白质和磷脂的干扰。首先在生物血浆或血清中加入并混合酸化乙腈进行蛋白质沉淀。然后通过离心分离除去沉淀蛋白质,将所得上清液装入 HybridSPE-PPT 96 孔板或萃取柱中,该孔板或萃取柱用作专门除去内源性样品磷脂的化学过滤器。磷脂的保留机理基于 HybridSPE-PPT 固定相上键合的独特锆离子和与磷脂上磷酸酯部分之间的高选择性 Lewis 酸碱作用。所得洗脱液可立即用于 LC-MS 或 LC-MS-MS 分析。 另一种"孔内沉淀"方法也用于 HybridSPE-PPT 96 孔,此时首先在 96 孔板中加入生物血浆/血清,然后加入酸化乙腈(沉淀剂)。在短时间混合/搅拌步骤之后,对 96 孔板施加真空。由于 96 孔包含一系列低孔隙度的疏水性过滤器/筛板,因此填充床过滤器/筛板组件作为深度过滤器使用,在萃取过程中便于同时除去磷脂和沉淀蛋白质。

蛋白磷酸酯酶相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制