二氯二羰基双

仪器信息网二氯二羰基双专题为您提供2024年最新二氯二羰基双价格报价、厂家品牌的相关信息, 包括二氯二羰基双参数、型号等,不管是国产,还是进口品牌的二氯二羰基双您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二氯二羰基双相关的耗材配件、试剂标物,还有二氯二羰基双相关的最新资讯、资料,以及二氯二羰基双相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

二氯二羰基双相关的资料

二氯二羰基双相关的论坛

  • 二甲双胍可提高卵巢癌患者生存率

    新华社华盛顿12月4日电 (记者任海军)美国研究人员日前发表报告称,他们的研究显示,常用的糖尿病药物二甲双胍能提高卵巢癌患者的生存率。 明尼苏达州梅奥诊所研究人员比较了61名服用二甲双胍的卵巢癌患者和178名未服用二甲双胍的卵巢癌患者的数据。他们发现,服用二甲双胍组患者的5年生存率为67%,而对照组患者的5年生存率为47%。如剔除身高体重指数、癌症严重程度、化疗方式、手术质量等因素的影响,服用二甲双胍组患者的5年生存率比对照组患者要高4倍。 相关研究报告本周发表在美国《癌症》杂志网络版上。研究负责人桑吉夫·库马尔表示,研究结果“令人鼓舞”,但由于研究中有很多因素不可控,二甲双胍与卵巢癌患者生存率的提高是否具有直接关系仍不能下定论。库马尔表示,卵巢癌是一种死亡率很高的癌症,找到治疗卵巢癌的有效方式非常迫切,他们的研究可望为二甲双胍应用于卵巢癌治疗临床研究铺平道路。 二甲双胍是一种具有长期用药安全记录的药品。此前曾有研究显示,二甲双胍可以抑制肺部和乳腺肿瘤的生长,降低糖尿病患者患乳腺癌的风险。

  • 【分享】甲基环戊二烯三羰基锰(MMT)气相色谱法检测方法

    甲基环戊二烯三羰基锰(MMT)气相色谱法检测方法本标准规定了甲基环戊二烯三羰基锰的分类、要求、试验方法、检验规则、标志、包装、运输、贮 存和安全。本标准适用于用作汽油抗爆剂的甲基环戊二烯三羰基锰。 分子式:C9H7MnO3 相对分子质量:218.09(根据2007年国际相对原子质量) 甲基环戊二烯三羰基锰含量的测定:在选定的工作条件下,样品经气化通过毛细管色谱柱,使其中各组分得到分离,用氢火焰离子化检 测器检测,用面积归一化法或内标法计算甲基环戊二烯三羰基锰的含量。 试剂:二乙二醇二甲醚。 无水乙醇。氢气:体积分数不低于 99.99%。 空气:经活性炭和分子筛净化。氦气:体积分数不低于 99.999%。仪器设备 :GC5890气相色谱仪,配氢火焰离子化检测器(FID),灵敏度和稳定性符合 GB/T9722 中的有关规定, 可进行毛细管色谱分析。N2000色谱工作站。色谱仪器型号GC5890型色谱仪 配有FID检测器毛细管色谱柱HP-5 30*0.32*0.25专用毛细管柱色谱工作站N2000 (电脑1台自备)气体装置氮氢空发生器 HGT300E1台或高纯氮、氢气、空气钢瓶各一瓶分析天平:感量 0.0001g。 5.8.3.4 进样器:5μL [font=

  • 【转帖】化妆品中六氯酚,双二氯酚硫醚、二氯酚和三溴水杨酞替苯胺的定性(薄层色谱法)

    卤代酚卤代酚是含酚的卤代化合物,对革兰氏阳性菌有强杀菌作用,用在化妆品中的卤代酚有六氯酚 等多种化合物。这类化合物通常是光敏物质。我国化妆品卫生标准规定为限用物质,限用量见表2-3-17。表 2-3-17 化妆品卫生标准中卤代酚的限用量品名 序号 最大使用量(%) 溴氯双酚 4-4 0.1 双氯酚 4-7 0.2 2,4-二氯二甲苯酚 4-8 0.1 三氯生 4-21 0.3 六氯酚 4-24 0.1 4-溴邻甲苯酚 4-31 0.3 苄氯酚 4-42 0.2 4-氯2-甲苯酚 4-55 0.2 4-氯3,5-二甲苯酚 4-56 0.2 * 指化妆品卫生标准(GB7916-87)中的序号,4-42即表4的序号42(一)薄层色谱法(TLC)1 适用范围本方法适用于化妆品中六氯酚,双二氯酚硫醚、二氯酚和三溴水杨酞替苯胺的定性。2 原理样品经预处理后,样液中的卤代酚用的薄层色谱法进行分离、呈色,然后与标准斑点比较,进行定性。3 试剂3.1 乙醇:分析纯。3.2 己烷:分析纯。 3.3 丙酮:分析纯。3.4 无水硫酸钠:分析纯。3. 5硫酸(lmol/L)。3.6 六氯酚标准溶液(1):准确称取用苯重结晶的六氯酚50.0mg,加丙酮溶解后移入50ml容量瓶中并定容至刻度,避光保存。此溶液1ml含1.0mg六氯酚。3.7 双二氯酚硫醚(2):准确称取用苯重结晶的双二氯酚硫醚50.omg,用丙酮溶解,移入50ml容量瓶中并定容至刻度,避光保存。此溶液lml含1.0mg二氯酚硫醚。3.8双氯酚标准溶液(3):准确称取用甲苯重结晶的双氯酚50.0mg,用丙酮溶解,移入50ml容量瓶中,定容至刻度。此溶液1.0ml含1.0mg二氯酚,避光保存。3.9三溴水杨酞替苯胺(4):准确称取用丙酮重结晶的三溴水杨酞替苯胺50.0mg,用丙酮溶解,移入50ml容量瓶中并定容至刻度。此溶液1.0ml含1.0mg三溴水杨酞替苯胺,避光保存。3.10 乙醇一己烷(1 9)。3.ll离子交换纤维素(5):将DEAE(二乙基氨基乙醇)纤维素,(交换量约0.9meg/g),浸泡于50倍量的0.lmol/L的盐酸中,用玻璃漏斗过滤,用20倍量的丙酮,30倍量的0.lmo1/L氢氧化钠溶液淋洗至OH-型后,用水洗成中性,再用20倍量的丙酮淋洗,弃去丙酮。空气中干燥。保存在乙醇十己烷(l+9)溶液中。3.12 硅胶:薄层用硅胶中加有荧光剂。3.13碱性氧化铝。3.14展开剂:石油醚 冰乙酸(89 12)3.15显色剂。3.15.1 浓氨水。3.15.2 2%4-氨基安替比林溶液:称取2g4-氨基安替比林用乙醇溶解稀释至100ml。3.15.3 8%铁氰化钾溶液(K3[Fe(CN)6])。3.15.4 2%三氯化铁溶液(FeCl36H20):称取2g三氯化铁用乙醇溶解稀释至100ml。3.15.5 2%铁氰化钾溶液。3.16 盐酸 丙酮溶液:9.5ml盐酸加丙酮至100ml(临用前配制)。4 仪器 4.1 层析柱:、内径10mm、高200mm的具塞玻璃管的下端熔接玻璃过滤器或塞有玻璃棉,4.2 紫外灯,具有8W功率,254nm波长。4.3离子交换柱(6):将离子交换纤维素用乙醇 已烷(3.11)配成混悬液,:用湿式填充法缓慢倾入层析柱中,以防止产生气泡,填充高度80mm。5 分析步骤5.1样品预处理(7)(8)称取含卤化酚0.5mg的样品(扑粉,除臭砂芯、香波约10g,膏霜约0.5g),置于100ml玻璃瓶中,连接好回流冷凝器:加50ml乙醇 已烷(1 9)溶液,2ml 1mol/L硫酸,于水浴上加热3min,冷却后用3号玻璃砂芯漏斗过滤,用乙醇 己烷(1 9)溶液5ml洗沉淀,滤液移入分液漏斗中静置分层。取己烷层用10ml水洗涤,无水硫酸钠脱水后以0.5ml/min的流速注入离子交换柱(10)。用50ml己烷洗涤。去除油脂等干扰物质,弃去淋洗液,依次用10ml丙酮、2ml丙酮 盐酸溶液(3.16),20ml丙酮洗脱(11)。溶出液在水溶上加热蒸去有机溶媒,加5ml乙醇,加热使盐酸挥发,重复此操作2次。残渣加2.0ml丙酮溶解,作为样品待测溶液。5.2 制备薄层板5.2.1硅胶薄层板:硅胶30g,加水约65ml,搅拌均匀,涂布成厚度0.25~0.3mm的薄层板,105~l10℃干燥30min,置干燥器中保存。 5.2.2含硝酸银的氧化铝薄层板:0.12g AgNO3,加少量水溶解,加30ml乙醇、20g氧化铝,调成浆状物,涂布厚度为0.25~O.3mm的薄层板,空气中干燥、于干燥器中避光保存。5.3 点样距薄层板底边2cm处将5~20μl待测溶液从左到右点样(12),两点间隔约1cm,薄员板.的右边点2μl标准溶液,空气中干燥。5.4 展开取适量展开剂(3.14)倾人展开槽中,将薄层板放入展开剂中,待溶剂上升约10cm,取出薄层板,空气中干燥。5.5显色(13)在薄层板上顺序喷雾显色剂3.15.1~3.15.3或3.15.4~3.15.5,六氯酚在显色剂3.15.1~3.15.3中为红色,在3.15.4~3.15.5中为蓝色斑点。二氯酚硫醚和三溴水杨酞替苯胺在3.15.1~3.15.5中为紫色,在3.15.4~3.15.5中呈现蓝色斑点。用加荧光剂的硅胶薄层板测定时,各种卤代酚在紫外线照射下,在各自的Rf 值位置上以荧光为背景呈现出暗黑色的斑点。

二氯二羰基双相关的方案

二氯二羰基双相关的资讯

  • 核磁技术揭示丝光沸石分子筛孔道酸性位催化二甲醚羰基化机制
    近日,中科院大连化物所催化基础国家重点实验室催化反应化学研究组(501组)展恩胜副研究员、申文杰研究员等与中科院精密测量科学与技术创新研究院徐君研究员、邓风研究员等合作,在丝光沸石(MOR)催化二甲醚羰基化反应的活性位点鉴别和调控方面取得新进展。  MOR是二甲醚羰基化反应的重要催化剂,其活性与8-MR孔道的总酸量相关。尽管理论计算表明,T3-O9是唯一活性位点,但实验上鉴别和定量描述不同T位点酸性特征和催化机制仍面临挑战。  本工作中,科研人员首先通过分步晶化法合成了片状结构MOR,该MOR表现出优异的催化活性,醋酸甲酯收率达到0.72gMAgcat.-1h-1(473K、2MPa)。随后,科研人员利用二维固体核磁技术和DFT计算确定了骨架铝原子在T1至T4分布,发现该片状结构丝光沸石8-MR孔道的铝原子富集在T3位,动力学研究发现该酸性位的反应速率高达7.2molMAmolT3-Al-1h-1(473K、1MPa)。随后,科研人员调变不同MOR样品的T1至T4位分布,发现位于8-MR窗口的T4酸性位也具有催化作用,但其活性只有T3位的1/4,从实验上证明T3位在催化二甲醚羰基化反应中的主导作用。该工作从原子尺度定量描述了丝光沸石分子筛8-MR孔道T位的催化反应化学,也深化了对沸石分子筛催化剂活性位结构的认知。  相关研究成果以“Experimental Identification of the Active Sites over a Plate-Like Mordenite for the Carbonylation of Dimethyl Ether”为题,于近日发表在Chem上。该工作的共同第一作者是中科院大连化物所501组博士研究生熊志平和中科院精密测量科学与技术创新研究院齐国栋副研究员。上述工作得到了国家自然科学基金等项目的支持。
  • 上海有机所等揭示糖基化修饰调控阿尔茨海默病beta淀粉样蛋白病理性聚集机制
    在阿尔茨海默病(AD)进展中,存在beta淀粉样蛋白(β-Amyloid,Aβ)的积累。Aβ在受影响的脑组织区域形成病理性聚集,被认为与AD的发生、进展和表型密切相关。多种翻译后修饰(如磷酸化、硝基化、糖基化等)对Aβ的病理性聚集及体内生物活性具有重要且不同的调控作用。在AD患者脑内,多种病理相关蛋白的糖基化位点、数量和水平都发生了显著性改变,表明了糖基化修饰在AD发生和发展中的重要意义。2011年,科学家对AD病人脑脊液中的Aβ片段进行鉴定,检测到之前未在哺乳动物中发现的酪氨酸O-糖基化修饰,然而由于天然来源的翻译后修饰蛋白丰度低、微观不均一等困难,Aβ糖基化修饰的生物学功能及在疾病中的作用尚未能得以阐释。  近日,中国科学院上海有机化学研究所生物与化学交叉研究中心刘聪课题组与北京大学药学院董甦伟课题组合作,在J. Am. Chem. Soc.上发表题为O-Glycosylation Induces Amyloid-β to Form New Fibril Polymorphs Vulnerable for Degradation的研究论文,利用化学合成策略构建了一系列含不同O-糖基化修饰的均一结构Aβ,并系统研究了糖基化修饰对Aβ病理性聚集的调控作用及其构效关系。  该研究中,研究人员首先合成了三种O-糖修饰的酪氨酸砌块,糖基分别是α-GalNAc, Galβ1-3GalNAc和Neuα2,3Galβ1-3GalNAc。然后,通过固相多肽合成策略将上述三种酪氨酸砌块制备相应的Aβ糖肽。然而,Aβ含有较多大位阻氨基酸,且自身疏水性强、容易聚集,再加上糖基的引入,给Aβ糖肽的合成带来了不少困难。为了克服这些合成难题,研究人员利用微波辅助的合成策略以及多赖氨酸亲水标签等方法,以较高效率获得了结构均一、含有不同O-糖修饰的Aβ糖肽。他们进一步对三种Aβ糖肽和不含糖链的Aβ多肽进行性质表征,发现糖基化修饰能够显著抑制Aβ的聚集,并且抑制效果与糖链结构相关。通过对Aβ聚集/解聚动力学的进一步研究,表明糖基修饰可以降低纤维结构的稳定性。在酶解实验中,糖基修饰的Aβ纤维表现出了更差的酶解稳定性。  为进一步阐述糖基化修饰降低Aβ纤维稳定性的分子机理,研究人员通过冷冻电镜技术(Cryo-EM),获得了Galβ1-3GalNAc糖型Aβ纤维的3.1埃近原子级分辨率结构。糖基修饰的Aβ组装形成了一种全新的淀粉样纤维结构,其纤维核心由6-42位氨基酸残基组成,并且在Tyr10残基侧链附近可以观察到修饰糖基的电子密度。通过与未修饰的Aβ纤维核心结构进行比较,研究发现Tyr10的糖基化会增大其与相邻氨基酸残基的空间位阻,从而导致整个Aβ纤维核心结构的重排。相较而言,糖基化Aβ纤维的结构具有更小的原纤维间交互界面,且仅由两对盐桥(Asp23和相邻原纤维的Lys28)所维持。这为糖基化修饰降低Aβ纤维稳定性提供了分子层面的解释。  该工作首次发现糖基化修饰在动态调控Aβ病理性聚集方面的重要功能,为后续研究不同糖基修饰对神经退行性疾病病理蛋白聚集的生物活性及病理毒性的调控作用,提供了有利的研究工具及新的研究思路。该工作得到了国家自然科学基金委、北京市自然科学基金委和中科院稳定支持基础研究领域青年团队计划的资助。  论文链接
  • 黄超兰与高福团队描绘新冠刺突蛋白糖基化图谱, 揭示“O-Follow-N”糖基化新规律
    CellRes. | 突破!黄超兰与高福团队描绘新冠刺突蛋白糖基化图谱,揭示“O-Follow-N”糖基化新规律  蛋白质糖基化修饰是生物体内最重要的翻译后修饰之一,发生在细胞50%-70%的蛋白上。病毒囊膜蛋白的糖基化修饰具有广泛的功能,包括调控蛋白质稳定性、病毒的趋向性、和保护潜在的抗原表位免受免疫监视等。深入了解新型冠状病毒(SARS-CoV-2)刺突蛋白(Spike, S)的糖基化修饰对于新型冠状病毒肺炎(COVID-19)发病机制的探索,疫苗和治疗药物的设计开发,以及检测试剂盒的生产具有重要意义。此前研究者在体外纯化表达的S蛋白胞外域和从病毒颗粒中提取的S蛋白中共鉴定到了22个N-糖基化修饰位点1,2。而由于技术和样本来源的限制,已有研究仅在纯化的S蛋白上鉴定到了一些O-糖基化修饰位点,截止目前,尚未进行病毒颗粒上S蛋白的O-糖基化修饰的研究。近日,北大-清华生命科学联合中心黄超兰团队,和中国科学院院士高福团队,中国科学院天津工业生物技术研究所高峰团队等开展合作研究,采用基于质谱的糖基化鉴定技术,首次揭示了病毒颗粒上提取的S蛋白O-糖基化修饰图谱,并提出了“O-Follow-N”的O糖基化修饰规律。该研究以“O-glycosylation pattern of the SARS-CoV-2 spike proteinreveals an “O-Follow-N” rule”为题于2021年8月2日线上发表在Cell Research期刊上。为获得天然状态下S蛋白的N-和O-糖基化修饰完整图谱,研究者从SARS-CoV-2病毒颗粒上获得S蛋白,用多种蛋白酶酶解成肽段,采用纳升液相色谱以及具有超高分辨率的Orbitrap Eclipse Tribrid三合一质谱联用仪,利用阶梯能量HCD (stepped collisional energy SCE),HCD (Higher-energy collisional dissociation) 以及HCDpdEThcD三种碎裂方法进行质谱分析。本研究中,研究者不但成功鉴定到了此前已报道的22个N-糖基化修饰位点,还首次从SARS-CoV-2病毒颗粒中提取的S蛋白上鉴定到了17个O-糖基化修饰位点。值得注意的是,研究者发现在这17个位点中,有11个位点位于糖基化的天冬酰胺(Asn)附近。研究者将NxS/T共有基序内糖基化的Asn每一侧的3个氨基酸定义为“N±1-3”。分析结果显示,11个O-糖基化修饰位点分布在“N±1-3”的位置上,位点信息确定的位点数有10个,其中7个位点分布在“N+2”的位置上。研究者还通过开展定点突变实验进一步证实Asn糖基化修饰的存在是“N±1-3”的位置上出现O-糖基化修饰的先决条件。综上,研究者提出SARS-CoV-2病毒S蛋白的糖基化修饰存在O-糖基化修饰追随N-糖基化修饰发生的现象,并将这一现象命名为“O-Follow-N”规律。  图. SARS-CoV-2病毒S蛋白的糖基化修饰遵循“O-Follow-N”规律 本研究基于前沿的质谱鉴定技术,揭示了S蛋白的O糖基化修饰谱,提出了O糖基化修饰的“O-Follow-N”规律,这一规律可能适用于其它蛋白,提示O-糖基化修饰具有潜在的新机制,特别是N-和O-糖基化修饰之间可能存在的协同作用,未来有望在极大程度上推动糖生物学领域的研究。此前,黄超兰主任领衔的多组学中心团队还与高福院士领衔的多学科团队紧密合作,揭示早期的新冠感染患者存在显著的免疫抑制,并首次提出COVID-19的发病机制或存在“两阶段”模式3。多组学中心在黄超兰教授的带领下,将继续基于临床,前沿技术和基础学科的深度交叉融合,深耕前沿技术方法开发,为推动基础生物学和临床领域的创新研究提供最有质量保证的蛋白质组和质谱技术手段。中国科学院微生物研究所高福院士,北大-清华生命科学联合中心、北京大学医学部精准医疗多组学研究中心黄超兰教授,北京大学医学部精准医疗多组学研究中心陈扬副研究员,中国科学院天津工业生物技术研究所高峰教授为本文的共同通讯作者 北京大学医学部精准医疗多组学研究中心田文敏博士,中国科学院天津工业生物技术研究所李德林博士,北京大学医学部精准医疗多组学研究中心博士研究生张楠,中国科学院天津工业生物技术研究所博士研究生白桂杰、原恺博士为本文的共同一作。 原文链接:https://www.nature.com/articles/s41422-021-00545-2

二氯二羰基双相关的仪器

  • GASTEC快速气体检测管无论何时由于不用分析仪器和化学药剂,省略了测量前的准备工作,无论何时都可以进行测定。无论何地极为小巧便于携带,只要有微量的空气就可以进行测定,最适合于现场测定。无论何人测定的操作非常简单,无论专业人士或非专业人士。多种气体GASTEC快速气体检测管可以检测多达300余种气体。检测快速测定的结果几分钟就可得到,可以立即转入下一步操作。过程安全日本GASTEC快速气体检测管不用电源,热源,不产生火花,即使有易燃易爆的气体存在,也可以确保操作安全。选型指南型号被测物质分子式可检测范围 ppm19LA砷化氢AsH30.04-1021羰基硫COS5-20021LA2-12522乙硼烷B2H60.02-5.023M二氧化氯ClO20.1-1023L0.025-1.2
    留言咨询
  • TE-423 羰基采样器–甲醛等醛和酮属于羰基化合物。空气中最常见的羰基化合物是甲醛,乙醛和丙酮。一般通过酸化的,4二硝基苯(二硝基苯肼)收集空气中的羰基化合物,然后回到实验室通过液相色谱和气相色谱进行测量。该仪器使用美国沙漠所(DRI)推荐的标准方法。技术参数: 3个通道,1个或2个筒来支持使用挥发性有机物采样器技术 触摸屏控制面板 带LCD的前面板 温度控制的臭氧溶蚀器 臭氧溶蚀器总运行时间计时器 可远程控制3个通道的采样 19英寸机架安装和桌面橡胶脚 与前面板一起工作的PLC控制中心来控制采样器 前操作面板,可操作控制系统采样时间和运行时间。 结构坚固,可运行多年并且可进行移动操作 118VA/C 50/60 Hz. / 3安培 样品流速从1-ML/MIN. 到2-SLPM 仪表的背景照明,功率灯和通道灯来显示采样器的工作情况
    留言咨询
  • MIRA OCS羰基硫分析仪 400-860-5168转2145
    MIRA OCS羰基硫分析仪——亚ppb级、中红外激光、超便携产品介绍MIRA OCS羰基硫分析仪使用创新的多通道吸收室与固态中红外激光技术相结合,检测室无反射镜,坚固和小巧,在60ml 的小空间里取得15m 的光程,同时测量OCS和H2O,使用独特的专有微分方法,可以消除温度引起的漂移,可实现亚ppb级别灵敏度,在1 分钟内达到35 ppt 的灵敏度,并且通过多次平均可以提升至10 ppt。用户能够自定义校准间隔,以实现特定应用的更高精度测量。分析仪可选配GPS,以输出.kml 格式的位置和浓度数据文件,可以很方便地在 Google Earth 中查看。MIRA OCS羰基硫分析仪可以实时高精度OCS 浓度测量,从而在土壤室研究或环境监测等一系列应用中进行现场测量。 OCS 是用于量化生物系统中光化学诱导的碳吸收的已知代理。传统上,OCS 使用更昂贵的系统来测量的,这些系统通常比MIRA OCS羰基硫分析仪大10倍,还有更高的功耗需求,使现场测量变得困难或不可能。作为一种基于中红外吸收的测量方法,MIRA OCS羰基硫分析仪在宽动态范围内实现了高精度和线性度,是一款真正意义上的便携式、高精度 OCS 分析仪,可实现实验室质量的测量。低成本,超紧凑,布放方式灵活,可便携、车载、机载、机架式安装。工作原理MIRA OCS羰基硫分析仪采用中红外波段,OCS在中红外的吸收是近红外的数千倍,从而显著提高了系统的测量精度和灵敏度。检测室无反射镜,坚固和小巧,在极小的体积 (60cc) 内实现了 15m 的吸收路径长度,从而实现了超高灵敏度、快速响应时间和低功耗。1min和10min间隔下的测量序列使用 MIRA Pico OCS 分析仪对旧金山海湾湿地OCS 水平进行自主监测。仪器以用户定义的时间间隔自动执行内置的定期校准,从而优化系统精度,通过30分钟内的信号平均获得10ppt级别的精度,数据显示了昼夜光化学诱导的 OCS 吸收循环,这在许多情况下与 CO2 吸收有关。产品选型MIRA OCS羰基硫分析仪共有4种型号可选,但其核心测量室都是一样的。MIRA pico OCS羰基硫分析仪MIRA Pico便携式OCS羰基硫分析仪为基础款,可移动式、车载测量,极低的功耗(15W),电池续航5-6h,亦可12-15V DC: 2A或110-220V AC: 0.5A供电 MIRA Ultra便携式&机架式OCS羰基硫分析仪MIRA Ultra系列OCS羰基硫分析仪相比于pico系列的不同为,Ultra系列升级为带有温控的(恒温42℃)检测室,具有毫开尔文级稳定性,以实现高灵敏度和超低漂移并避免样品冷凝,在许多情况下显著降低或完全消除校准要求。 图 Ultra便携式 图 Ultra机架式MIRA Strato机载式OCS羰基硫分析仪MIRA Strato 系列机载式OCS羰基硫分析仪,带电池重量仅为 2kg,内置GPS传感器,旨在在不牺牲性能的情况下打造更轻的气体分析仪。可搭载于无人机上用于OCS羰基硫监测,可使用电池供电(续航90min)或无人机供电。通信通常通过 RS-232 端口实现,该端口可以以高达 10Hz 的数据速率进行传输。 产品特征&bull ppt级灵敏度和精确度,1s响应速率,1min预热即用&bull 同时高精度测量CO2和H2O&bull 1Hz测量频率&bull 内置自动零点校准,免维护传感器&bull 30秒生成ppt级OCS气体的浓度报告&bull 优秀的线性响应,覆盖ppb到 ppm的浓度量级&bull 媲美DNPH-HPLC精度,无需样品制备和耗材&bull 数据通讯WIFI、RS-232、USB&bull 同步检测水汽背景,获取摩尔分数(干燥),无需干燥样气和数据修正。&bull 轻便小巧,野外应用可选配GPS组件,获取OCS “卫星图”&bull 超低功耗,内置锂电池可持续工作6小时,内置采样泵技术参数 测量方法 中红外激光吸收光谱技术 灵敏度 35ppt/min, 10ppt/15 minutes漂移 (σ) 50ppt (30s) 温度/湿度 10 ~ 40°C/10 to 95% RH (无冷凝) 浓度范围<1ppb-100ppm 尺寸(W*D*H) Pico: 11.5” x 8” x 3.75” Ultra便携:15” x 12” x 7”Ultra机架:17” x 11” x 5-3/8”Strato:7.5” x 7.5” x 3.5” 重量 Pico: 2.75kg Ultra便携:6.5kgUltra机架:9kgStrato:2kg 功耗Pico: 15W Ultra便携:25WUltra机架:25WStrato:17W 电源 直流电:12 ~ 15V,1.5A;交流电:110 ~ 220V,0.2A 数据通讯 WiFi, USB, RS232, 模拟输出 (可选) 内存 32GB(可扩展) 数据更新速率 1 or 2 Hz,最高10Hz
    留言咨询

二氯二羰基双相关的耗材

  • 快速气体检测管 21 羰基硫
    产品信息:快速气体检测管系列检测范围5-10 ppm10-100 ppm100- 200 ppm抽气次数211/2修正系数1/212取样时间3 分钟/次检测限度1 ppm (n=2)颜色变化蓝色 → 黄色反应原理COS + I2O5 + H2SO4 → SO2 + CO2SO2 + BaCl2 + H2O → BaSO3+ HClHCl + 指示剂→ 黄色产物误差10% (10- 30 ppm), 5% (30 -100 ppm)有效期2 年温湿度修正不需修正10oC (50oF) 以下冷藏保存.干扰及影响物质浓度影响本身变化二硫化碳+黄色二氧化硫+黄色丁烷5000 ppm无丙烷5000 ppm无订货信息: 被检物质型号及名称检测范围抽气次数颜色变化保存期限(年)备注羰基硫COS21 羰基硫100-200ppm1/2蓝色→黄色2年冷藏双管 10-100ppm①5-10ppm221La 羰基硫50-125ppm1/2兰紫色→白色2年冷藏双管/温度校正 5-50ppm①2-5ppm2碳酰氯见光气
  • 用于羰基镍的活性炭A/B管
    使用硝酸过夜浸泡酸化的活性炭管可增强对羰基镍的吸附,再使用硝酸进行解析与离心,可实现羰基镍的测定。 ?Use for? ? NOISH METHOD:6007 Issue 2: 15 Auguest 1994 羰基镍 填料与克重:100mg/50mg 目数:20-40 外径×长度:6×80 最小包装:100支/盒
  • 用于羰基镍的活性炭A/B管
    使用硝酸过夜浸泡酸化的活性炭管可增强对羰基镍的吸附,再使用硝酸进行解析与离心,可实现羰基镍的测定。 ?Use for? ? NOISH METHOD:6007 Issue 2: 15 Auguest 1994 羰基镍 填料与克重:100mg/50mg 目数:20-40 外径×长度:6×80 最小包装:100支/盒

二氯二羰基双相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制