二苯甲基硅烷

仪器信息网二苯甲基硅烷专题为您提供2024年最新二苯甲基硅烷价格报价、厂家品牌的相关信息, 包括二苯甲基硅烷参数、型号等,不管是国产,还是进口品牌的二苯甲基硅烷您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二苯甲基硅烷相关的耗材配件、试剂标物,还有二苯甲基硅烷相关的最新资讯、资料,以及二苯甲基硅烷相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

二苯甲基硅烷相关的资料

二苯甲基硅烷相关的论坛

  • 关于HP-5(5%苯甲基硅酮)色谱柱?

    请问HP-5(5%苯甲基硅酮)色谱柱与HP-5(5%二苯基聚硅氧烷共聚物)的柱子有什么不同吗?一般HP-5柱子不是都指后者吗?一药典要求用前者做一物质的内标含量,我用了后面的,打出峰来难看的很

  • 求助质谱-三苯甲基碳正离子

    [size=18px]目前在用AB的[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]测三苯基氯甲烷,Q1 MI模式扫243.1的离子[font=-apple-system, BlinkMacSystemFont, &](应该是三苯甲基碳正离子)[/font],发现基线非常高(30万-50万之间),且不稳定,时高时低,导致峰面积也 不稳定,打电话问客服,几个人几种说法,“液相部分污染了”“这个是正常现象,多走走就稳定了”,尝试用MRM模式去做,打出一个165.2的碎片,基线不到1000,做了线性和回收也都挺好,但是,这个碎片离子是怎么打出来的比较困惑,就怕以后再做的时候重现不出来……[/size][size=18px]流动相是90%甲醇,溶剂是正丁醇:乙腈(80:20)[/size][size=18px]请教一下各位大神,AB的仪器用SIM模式选择Q1 MI还是Q3 MI好呢?基线高且时高时低,除了污染还有什么原因呢?[font=-apple-system, BlinkMacSystemFont, &]三苯甲基碳正离子在质谱里能被打碎吗?会裂解成什么碎片离子?[/font][/size][size=18px][font=-apple-system, BlinkMacSystemFont, &][/font][/size]

  • 【原创】苯基甲基硅油苯甲基硅油耐高温硅油

    300℃。含5mo1%苯基硅油的凝固点低达-70℃,表面张力约在2.1×10-4~2.85×10-4N/cm,相对密度1.00-1.11,折射率1.425~1.533。热稳定性好,250℃热空气中的凝胶化时间为1750h,还具有良好的耐辐照性能及高的氧化稳定性、耐热性、耐燃性、抗紫外性和耐化学性。可由八甲基环四硅氧烷、二甲基四苯基二硅氧烷、甲基苯基二乙氧基硅烷的水解物在催化剂存在下进行调聚反应来制取。用作润滑油、热交换液、绝缘油、气液相色谱的载体等。用于绝缘、润滑、阻尼、防震、防尘及高温热载体等,是电子仪表的理想液态阻尼介电液。http://www.zhongbaohg.cpooo.com/

二苯甲基硅烷相关的方案

二苯甲基硅烷相关的资讯

  • 【CEM】Fmoc-His(Boc)-OH在基于Fmoc的固相肽合成中的应用
    一、组氨酸的差向异构化对映体纯度极大地影响肽的生物活性;因此,避免D-异构体含量的增加至关重要。1在固相肽合成(SPPS)的偶联过程激活阶段,组氨酸特别容易发生差向异构化。组氨酸倾向于差向异构化(图1)是一种分子内的副反应,这是由于咪唑Nπ上的孤对电子与酸性α碳氢的接近性所导致。当氨基酸被激活时,1号位的孤对电子具有足够的碱性以进行去质子化,从而形成一个无立体选择性的酯烯醇盐22。此时,转化为L-或D-异构体3并没有热力学上的优先途径。当反应位点聚集,且组氨酸在激活状态保持较长时间的期间,差向异构化的可能性增加。图1:Fmoc-His(PG)-OH在激活过程中高差向异构化水平的机制解释二、组氨酸侧链保护对咪唑环的保护(图2)通常采用在Nτ位置使用三苯甲基(Trt)基团的方式实现4。Trt基团因其体积大和具有吸电子性,能够有效抑制诸如环上N-酰化等副反应,然而在控制差向异构化方面效果有限。其他侧链保护基团,尤其是那些提供Nπ保护的,例如Fmoc-His(π-Mbom)-OH(5),通过阻断α-氢的接触途径来减少差向异构化。但这些衍生物的缺点在于它们本身的高成本和因多步骤合成策略导致的低批量供应,这种策略需要在连接Mbom基团时对Nα位置进行互斥保护。3,4,5,6此外,在肽切割过程中还需添加额外的清除剂,以防止新暴露的氨基功能团上发生羟甲基化。 本文中,Fmoc-His(Boc)-OH(6)被证实是Fmoc SPPS中组氨酸并入的宝贵替代物,因为它在高温下对差向异构化具有较高的稳定性,成本低,且比其他任何市场上可购买的衍生物具有更好的批量供应能力。 图2:Fmoc-SPPS用的组氨酸衍生物:Fmoc-His(Trt)-OH(4),Fmoc-His(π-Mbom)-OH(5)和Fmoc-His(Boc)-OH(6)三、Fmoc-His(Boc)-OH的优势Fmoc-His(Boc)-OH 能够以游离酸和环己胺(CHA)盐的形式大量购买。对于盐形式,需要通过提取过程来移除CHA基团。鉴于这一过程相对繁琐,我们的研究便专注于游离酸的应用。根据先前的报告,与His(Trt) 相比,His(Boc)在差向异构化方面的倾向性更低。7这一现象可以归因于氨基甲酸酯基团较强的吸电子效应,它有效地从π子中抽取电子云密度,从而降低了其碱性。四、讨论一项采用利拉鲁肽和1-42Beta淀粉样蛋白的可行性研究评估了-Boc基团在微波(MW)辅助固相肽合成(SPPS)过程中对差向异构化的抑制效果及侧链的稳定性。肽段是在HE-SPPS条件下制备的,具体操作包括1分钟90°C的去保护和2分钟90°C使用DIC和Oxyma Pure进行的偶联。8与基于尿嘧啶的激活策略相比,DIC/Oxyma Pure激活在偶联效率和抑制差向异构化方面提供了更优的结果。后者的表现归因于碳二亚胺活化所固有的酸性环境。9,10在室温或稍高的条件(例如50°C)下并入组氨酸能进一步降低D-异构体的形成,但这样的条件对于His(Trt)仍然不够理想。我们比较了His(Trt)和His(Boc)在使用两种常见协议时的偶联条件:(1)10分钟50°C和(2)2分钟90°C。最后,我们研究了溶液中的稳定性,以确定其在Liberty BlueTM HT12上的高通量自动化应用的可行性。利拉鲁肽的合成利拉鲁肽具有一个N端的组氨酸,这在与肽链的偶联中存在一定难度,因此,通过微波加热来增强酰化作用是有益的。使用三苯甲基保护在50°C下偶联组氨酸10分钟,结果显示D-异构体的形成增加到了6.8%(如表1所示)。在相同条件下,Fmoc-His(Boc)-OH显著减少了差向异构化,仅为0.18%。 Fmoc-His(Boc)-OH在90°C时的表现也相当出色,观察到的差向异构化水平为0.81%,相比之下His(Trt)则大于16%。Fmoc-His(Trt)-OH和Fmoc-His(Boc)-OH都以相当的粗纯度获得了目标肽(图3)。Fmoc-His(π-Mbom)-OH在纯度和D-His方面提供了与Fmoc-His(Boc)-OH相似的结果。 图3:使用(a) Fmoc-His(Trt)-OH或(b) Fmoc-His(Boc)-OH的利拉鲁肽UPLC色谱图。组氨酸偶联条件 = 50°C,10分钟。总合成时间 = 2小时55分钟 表1:利拉鲁肽中组氨酸在不同偶联条件下的D-异构体形成情况1-42Beta淀粉样的合成之前的研究表明,在长时间的哌啶处理过程中,Nτ-Boc侧链基团显示出不稳定性。11为了测试高温去保护过程中–Boc的稳定性,我们合成了包含三个组氨酸残基的1-42Beta淀粉样蛋白。1-42Beta淀粉样蛋白的合成序列是出了名的困难,需要使用特殊的偶联试剂,即使在严苛条件下,产物纯度通常也过低,无法进行分析和纯化。12与常规合成方法不同,HE-SPPS即便在未优化的条件下也能获得木及高的粗纯度。我们比较了His(Trt)和His(Boc)在50°C下偶联10分钟以及90°C下偶联2分钟的情况。His(Boc)将总合成时间从4小时24分钟缩短到3小时58分钟,并且将差向异构化的比例从2.88%降低至1.29% D-异构体(表2)。UPLC分析表明,这两种合成方法得到的目标产物在粗纯度上具有可比性(图4)。 表2:BA中His(Trt)和His(Boc)的差向异构化情况图4:使用(a) His(Trt)和(b) His(Boc)的1-42 Beta淀粉样蛋白的UPLC色谱图溶液中的稳定性在自动化高通量SPPS应用中,要求底物能在溶液中保持溶解状态长达10天。通常,像组氨酸这样的反应物由于保护基团的降解/丢失而导致变色和沉淀,其溶液寿命仅限于5天。在这项研究中,我们测试了组氨酸溶液(DMF,0.2 M)在大气条件下存放10天的稳定性(图5)。所有样品都迅速溶解,得到无色溶液。Fmoc-His(Trt)-OH的变色在短短24小时内就开始出现,并在10天的时间里加剧。10天后,Fmoc-His(π-Mbom)-OH溶液略呈黄色,而Fmoc-His(Boc)-OH溶液在研究期间保持无色。UPLC分析表明,Fmoc-His(Boc)-OH和Fmoc-His(π-Mbom)-OH保持了99%的纯度。基于强烈的变色,预计在10天的研究期间Fmoc-His(Trt)-OH样品中形成了几种杂质(图6)。然而,使用质谱对这些杂质进行定性未能成功。 图5:不同组氨酸衍生物溶液中的稳定性颜色测试 图6. 10天后DMF中组氨酸衍生物(0.2 M)的UPLC分析;(a) = Fmoc-His(Trt)-OH (b) = Fmoc-His(π-Mbom)-OH (c) = Fmoc-His(Boc)-OH五、结论上述数据表明,His(Boc)是一种强大的组氨酸衍生物,可以在90°C下高效偶联,提供优良的粗纯度,同时缩短偶联时间并显著降低差向异构化。与其他抑制差向异构化的N保护衍生物相比,Fmoc-His(Boc)-OH更易获得,同时保持相当的合成性能。总之,Fmoc-His(Boc)-OH的核心优势包括: &bull 商业批量可用性强,价格相对于Fmoc-His(Trt)-OH更具竞争力&bull 在高温下具有低水平的差向异构化;50°C及以下的偶联温度使得Fmoc-His(Boc)-OH适用于活性药物成分的合成,无需复杂的偶联试剂和条件13 &bull 优异的溶液稳定性;与Fmoc-His(π-Mbom)-OH相当,且优于Fmoc-His(Trt)-OH六、材料与方法试剂以下Fmoc氨基酸和树脂购自位于Matthews,NC的CEM公司,包含所示的侧链保护基团:Ala, Arg(Pbf), Asn(Trt), Asp(OMpe), Gln(Trt), Gly, His(Boc), His(Trt), Ile, Leu, Lys(Boc), Lys(palmitoyl-Glu-OtBu), Phe, Pro, Ser(tBu), Tyr(tBu), Val。Rink Amide ProTideTM LL, Cl-MPA ProTideTM LL, 以及Fmoc-Gly Wang PS LL树脂也购自CEM公司。二异丙基碳二亚胺(DIC),哌啶,三氟乙酉夋(TFA),3,6-二氧杂-1,8-辛二硫醇(DODT)和三异丙基硅烷(TIS)购自Sigma-Aldrich(St. Louis, MO)。二氯甲烷(DCM),N,N-二甲基甲酰胺(DMF),无水二乙酉迷(Et2O),乙酸,高效液相色谱级水,以及乙腈购自VWR(West Chester, PA)。液相色谱-质谱级水(H2O)和液相色谱-质谱级乙腈(MeCN)购自Fisher Scientific(Waltham, MA)。D-异构体通过手性GC-MS(C.A.T. GmbH)进行测定。肽合成:利拉鲁肽在CEM Liberty Blue自动化微波肽合成器上,以0.10 mmol的规模合成了该肽。使用了0.313克Fmoc Gly Wang PS LL树脂(0.32 meq/g置换)。去保护作用采用20%哌啶和0.1 M Oxyma Pure在DMF中执行。偶联反应使用5倍过量的0.2 M Fmoc-AA、1.0 M DIC和1.0 M Oxyma Pure在DMF(CarboMAX)中进行。切割则应用CEM Razor&trade 高通量肽切割系统,配比为92.5:2.5:2.5 TFA/H2O/TIS/DODT。切割后,肽通过Et2O沉淀并过夜冻干。肽合成:1-42Beta淀粉样蛋白采用CEM Liberty Blue自动化微波肽合成器,以0.10 mmol的规模在0.512g Cl-MPA ProTide树脂(0.19 meq/g置换)上合成了该肽。去保护作用使用20%哌啶和0.1 M Oxyma Pure在DMF中进行。偶联反应用5倍过量的0.2 M Fmoc-AA、1.0 M DIC和1.0 M Oxyma Pure在DMF(CarboMAX)中进行。切割采用CEM Razor&trade 高通量肽切割系统,配比为92.5:2.5:2.5 TFA/H2O/TIS/DODT。切割后,肽通过Et2O沉淀并过夜冻干。稳定性研究在50毫升离心管中,制备了0.2摩尔浓度的组氨酸溶液(总共5毫升DMF),并对管进行了密封。这些溶液在实验室环境下保持在室温,持续10天。为了准备用于超高效液相色谱-质谱分析的样品,将10微升的组氨酸溶液稀释到5毫升的50/50(体积比)乙腈和水的混合溶剂中。调整进样量,直至吸光度达到35 – 55单位。七、参考文献(1) Kusumoto, S. Matsukura, M. Shiba, T. Biopolymers, 1981, 20,1869 --1875.(2) Kates, S. A. Albericio, F. Solid-Phase Synthesis – A Practical Approach Kates, S. A Albericio, F. Eds. Marcel Dekker Inc: New York, New York, 2000 Chapter 4. Van Den Nest, W. Yuval, S. Albericio, F. J. Pept. Sci. 2001, 7, 115.(3) Colombo, R. Colombo, F. J. Chem. Soc., Chem. Commun. 1984, 0, 292 – 293. Mergler, M. Dick, F. Sax, B. Schwindling, J. Vorherr, Th. J. Pept. Sci. 2001, 7, 502 – 510.(4) Okada, Y. Wang, J. Yamatot, T. Mu, Y. Yokoi, T. J. Chem. Soc., Perkin Trans. 1 1996, 17, 2139 – 2143.(5) Hibino, H. Nishiuchi, Y. Tetrahedron Lett. 2011, 52, 4947 – 4949.Hibino, H. Miki, Y. Nishiuchi, Y. J. Pept Sci. 2012, 18, 763 – 769.(6) Suppliers: EMD/Sigma-Aldrich = $1338 per 5g bottle Peptide Institute = $400.5 per 5gbottle.(7) Clouet. A Darbre, T. Reymond, J. L. Biopolymers, 2006, 84, 114.(8) Collins, J. M. Porter, K. A. Singh, S. K. Vanier, G. S. Org. Lett. 2014, 16, 940 – 943.(9) Patent: US20160176918(10) CEM Application Note (AP0124). “CarboMAX – Enhanced Peptide Coupling at Elevated Temperature.”(11) Sieber, P. Riniker, B. Tetrehedron Lett. 1987, 28, 6031 –6034.(12) Tickler, A. K Clippingdale, A. B Wade, J. D. Protein Peptide Lett. 2004, 11, 377 – 384.(13) Bacem Application Note. Mergler, M. Dick, F. Vorherr, Th. Methods for Fmoc-His(Trt)-OH Resulting in Minimal Racemization.(14) CEM Technical Note (P/N: 600837) - “Cl-MPA ProTide and Cl-TCP(Cl) ProTide Resin Loading and Protected Cleavage Procedures.
  • Sigma-Aldrich SPME + GCMS 快速、灵敏检测邻苯二甲酸酯
    SPME + GCMS 快速、灵敏检测邻苯二甲酸酯 &mdash &mdash Sigma-Aldrich/Supelco 应对方案 下载详细资料请至: http://www.instrument.com.cn/netshow/SH101420/down_170241.htm 关键词:起云剂 邻苯二甲酸酯 SPME 固相微萃取 气相色谱 前言 邻苯二甲酸酯类物质常被用于增塑剂、起云剂等添加到柔软的聚氯乙烯类产品中,从而增加塑料材质的韧性、通透度、强度和寿命。近期研究发现,邻苯二甲酸酯类物质主要会引起内分泌紊乱(女孩性早熟,男性生殖损害),致癌(乳腺癌)和肝毒性等方面的健康危害。出于公众健康方面的考虑,邻苯二甲酸酯类已经在美国、加拿大和欧盟等地域的部分产品中禁用。 最为常见的邻苯二甲酸酯类物质为:邻苯二甲酸(2-乙基己基)酯(DEHP),邻苯二甲酸二异癸酯(DIDP),邻苯二甲酸二异壬酯(DINP),邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP) 、邻苯二甲酸二丙酯(DPrP)、邻苯二甲酸丁基苄基酯(BBP)、邻苯二甲酸二丁酯(DBP) 、邻苯二甲酸二戊酯(DPP)、邻苯二甲酸二环己酯(DCHP )、邻苯二甲酸二己酯(DHP)。 Sigma-Aldrich公司的Supelco SPME 摈弃传统前处理的两大缺点:较长时间的样品前处理及大量的溶剂耗费,带给您更快速、灵敏及方便的分析检测方案。 检测方法: SPME 萃取头:7 &mu mPDMS (货号:57302) 萃取方式:直接浸没,15分钟,快速搅拌 载气:氦气 流速:40 cm/sec; 质谱:45 - 465 m/z 进样口温度:280 ° C 色谱柱:PTE-5, 30 m × 0.25 mm I.D × df0.25 &mu m (货号:24135-U) 柱温:60 ° C (3 min) -320 ° C(10 ° C/min) 检测结果: 结论: 通过使用7 &mu m 聚二甲基硅烷(PDMS)纤维萃取头的样品前处理,对加标样品浓度10~200ppb进行考察(方法625和8060)。实验结果数据中,稳定的响应因子和浓度值表现出良好的线性,多点加标(n=5)相对方差(RSD)和标准方差反映了实验卓越的重现性和SPME令人满意的表现。 (表1. 使用7 &mu m 聚二甲基硅烷(PDMS)纤维萃取头实验结果相应因子) 订购信息: 产品描述 货号 SPME 萃取手柄(初次购买需要购置手柄,手柄非耗材,可反复使用) 适用于手动进样 57330-U 适用于自动进样器或SPME/HPLC 接口 57331 SPME萃取头套装#3 100 &mu m PDMS(适合分析挥发性物质)   用于手动进样 57300-U 适用于自动进样器或SPME/HPLC 接口 57301 30 &mu m PDMS(适合分析非极性半挥发物质) 用于手动进样 57308 适用于自动进样器或SPME/HPLC 接口 57309 7 &mu m PDMS(适合分析中等极性到非极性的半挥发物质) 用于手动进样 57302 适用于自动进样器或SPME/HPLC 接口 57303 65 &mu m PDMS/DVB (适合分析极性物质) 用于手动进样 57310-U 适用于自动进样器或SPME/HPLC 接口 57311 60 &mu m PDMS/DVB (适合分析不挥发性物质)   适用于自动进样器或SPME/HPLC 接口 57317 75 &mu m Carboxen&trade /PDMS (适合分析气体样本和小分子类物质) 用于手动进样 57318适用于自动进样器或SPME/HPLC 接口 57319 85 &mu m PA (聚丙烯酸酯,适合分析极性半挥发物质) 适用于手动进样 57304 适用于自动进样器或SPME/HPLC 接口 57305 SPME萃取头套装#1 (其它套装请查询目录) 85 &mu m PA,100 &mu m 和7 &mu m PDMS各一支   用于手动进样 57306 适用于自动进样器或SPME/HPLC 接口 57307 SPME/HPLC 进样装置和Rheodyne® 阀 57353 气相色谱柱 PTE-5,30 m× 0.25 mm I.D × df 0.25 &mu m 24135-U SLB&trade -5ms,30 m× 0.25 mmI.D × df 0.25 &mu m 28471-U SLB&trade -5ms,30 m× 0.25 mm I.D × df 1.00 &mu m 28476-U 气相附件耗材(衬管、隔垫、石墨压环、石英棉、微量进样器、气体净化设备等)请垂询热线 标准品 英文名 货号 包装 邻苯二甲酸二甲酯DMP Dimethyl phthalate 36738-1G 1g 邻苯二甲酸二乙酯DEP Diethyl phthalate 36737-1G 1g 邻苯二甲酸二异丁酯DIBP Diisobutyl phthalate 152641-1L 1L 邻苯二甲酸二丁酯DBP Dibutyl phthalate 36736-1G 1g 邻苯二甲酸二(2-甲氧基)乙酯DMEP Bis(2-methoxyethyl) phthalate 36934-250MG 250mg 邻苯二甲酸二戊酯DPP Dipentyl phthalate 442867 1g 邻苯二甲酸丁基苄基酯BBP Benzyl butyl phthalate 442503 1g 邻苯二甲酸二环己酯DCHP Dicyclohexyl phthalate 36908-250MG 250mg 邻苯二甲酸二(2-乙基)己酯DEHP Bis(2-ethylhexyl) phthalate 36735-1G 1g 邻苯二甲酸二苯酯 Diphenyl phthalate 36617-1G-R 1g 邻苯二甲酸二正辛酯DNOP Di-n-octyl phthalate 31301-250MG 250MG 邻苯二甲酸二壬酯DNP Dinonyl phthalate 80151-25ML 25ML 邻苯二甲酸二异壬酯DINP Diisononyl phthalate 376663-1L 1L 邻苯二甲酸异癸酯DIDP Diisodecyl phthalate 80135-10ML 10ML 47643-U 11种邻苯二甲酸酯类混标 2000&mu g/ml溶于二氯甲烷 1ml BBP 双-(2-氯乙氧基)甲烷 双(2-氯乙基)醚 DEHP 4-溴联苯醚 4-氯二苯醚 双(2-氯异丙基)醚 DBP DEP DMP DNOP 48741 6种邻苯二甲酸酯类混标 200 &mu g/ml 溶于甲醇 1ml BBP DEHP DBP DEP DMP DNOP 47973 7种邻苯二甲酸酯类混标 500 &mu g/mL 溶于甲醇 1ml BBP 己二酸二(2-乙基己)酯 DEHP DBP DEP DMP 五氯苯酚 48223 6种邻苯二甲酸酯类混标 500 &mu g/ml溶于甲醇 1ml BBP 己二酸二(2-乙基己)酯 DEHP DBP DEP DMP 48805-U 6种邻苯二甲酸酯类混标 2000 &mu g/ml溶于甲醇 1ml DEHP BBP DBP DNOP DEP DMP 48231 6种邻苯二甲酸酯类混标 2000 &mu g/ml溶于己烷 1ml DEHP BBP DBP DNOP DEP DMP 110 7种邻苯二甲酸甲酯定制混标 1000 ppm 溶于二氯甲烷 1 ml 邻苯二甲酸二异壬酯 68515-48-0 DINP 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二异癸酯 26761-40-0 DIDP 邻苯二甲酸丁基苄基酯 85-68-7 BBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二异丁酯 84-69-5 DIBP 110 16种邻苯二甲酸酯类混标 1000ug/ml 溶于正己烷 1 ml 邻苯二甲酸二甲酯 131-11-3 DMP 邻苯二甲酸二乙酯 84-66-2 DEP 邻苯二甲酸二异丁酯 84-69-5 DIBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二(2-甲氧基)乙酯 117-82-8 DMEP 邻苯二甲酸二(4-甲基-2-戊基)酯 146-50-9 BMPP 邻苯二甲酸二(2-乙氧基)乙酯 605-54-9 DEEP 邻苯二甲酸二戊酯 131-18-0 DPP 邻苯二甲酸二己酯 84-75-3 DHXP 邻苯二甲酸丁基苄基酯 85-68-7 BBP 邻苯二甲酸二(2-丁氧基)乙酯 117-83-9 DBEP 邻苯二甲酸二环己酯 84-61-7 DCHP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二苯酯 84-62-8 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二壬酯 84-76-4 DNP 41F/ K. Wah Centre / 1010 Huai Hai Zhong Road / Shanghai 200031 / China Ordering Email: orderCN@sial.com Toll-Free(免费订购电话): 400 620 3333, 800 819 3336
  • 西南大学唐超课题组MME:硅烷偶联剂接枝hBN对绝缘纸纤维素的热性能和力学性能的提升
    摘要:西南大学工程技术学院唐超课题组通过使用不同硅烷偶联剂接枝纳米氮化硼掺杂绝缘纸纤维素,发现KH550接枝氮化硼能显著提升绝缘纸纤维素的散热性、热稳定性和材料的力学特性(热导率提升了114%,延展性和抗形变能力提升了50%以上),为提升变压器内部绝缘材料的使用寿命和抗热老化性能提供了理论指导。关键词:硅烷偶联剂,氮化硼,变压器绝缘纸纤维素,热力学性能图1 KH550接枝hBN原理图。图2 不同改性的纤维素模型,(a)纯纤维素,(b)hBN/纤维素,(c)KH550 hBN/纤维,(d)KH560-hBN/纤维素和(e)KH570-hBN/纤维素。电力设备运行寿命的提升,与其内部绝缘材料性能的提升有着重要关联。以变压器为例,利用新兴的纳米技术来修饰纤维素绝缘纸能较为高效、显著地提升材料的性能。然而,现有的纤维素绝缘纸的纳米改性研究,往往局限在纤维素力学性能的分析上,较少关注其热性能的改进。因此,利用一种新型的纳米颗粒对纯纤维素进行改性,以同时提高纤维素绝缘纸的力学性能和热性能成为大家关注的热点。针对这一问题,西南大学工程技术学院唐超教授课题组采用了分子模拟的方法,将三种不同硅烷偶联剂接枝到氮化硼表面,并与纤维素混合,得到了具有相对较高热稳定性和力学特性的改性绝缘纸纤维素(KH550 hBN/纤维),相关结果发表在Macromolecular Materials and Engineering上。氮化硼具有较高的固有导热性和良好的介电性能,是一种常用的导热填料。由于其结构与石墨烯相似,氮化硼也具有较高的机械强度和优良的润滑性,可以显著提高聚合物的热稳定性。然而,氮化硼在纤维素内部容易发生团聚,这使得它无法直接用于改善聚合物的性能。因此,本研究将硅烷偶联剂与氮化硼接枝,对传统绝缘纸纤维素进行改性。通过分析比较得出,硅烷偶联剂氮化硼对纤维素的改性使得纤维素链间的空隙得到填充,纤维素与硅烷偶联剂间形成了更多的氢键,连接更为紧密,从而在聚合物内部形成了导热网络,改性纤维素的导热性能显著提高,热稳定性显著增强。同时,硅烷偶联剂的增加使得纤维素材料的韧性、抗形变能力、延展性增加,便于其在高温高压条件下有更长的使用寿命。图3 (a)CED、(b)力学性能、(c)热导率图4 均方位移图5 玻璃转变温度论文信息:Enhancement on thermal and mechanical properties of insulating paper cellulose modified by silane coupling agent grafted hBNXiao Peng, Jinshan Qin, Dong huang, Zhenglin Zeng, Chao Tang*Macromolecular Materials and EngineeringDOI: 10.1002/mame.202200424

二苯甲基硅烷相关的仪器

  • 三甲基氯硅烷工艺装置主要由溶解釜、加料釜、反应釜、接收罐、碱液釜和渣浆釜等组成。 其主要仪表及管阀件均采用高性能产品,装置非标采用耐腐蚀材质。PLC 系统采集确保操作人员安全。 装置的整体水平要求自动化程度高,数据精确度及重复性好,安全可靠 并能长周期稳定运行
    留言咨询
  • MERCK默克Supelco色谱科固相微萃取萃取头sigma西格玛SPME纤维组件二乙烯基苯/羧基/聚二甲基硅氧烷 (DVB/CAR/PDMS 50/30UM)SPME纤维头57328-U手柄57329-U自动DVB/CAR/PDMS 50/30UM SPME纤维头组件二乙烯基苯/羧基/聚二甲基硅氧烷固相微萃取头探针名称:SPME固相微萃取萃取头规格:DVB/CAR/PDMS 50/30μm 3支/盒品牌:MERCK默克Supelco色谱科sigma西格玛货号:57328-U/57329-U※产品详细说明※:一、SPME固相微萃取技术概述SPME是一种集采样、萃取、浓缩和进样于一体的样品前处理技术,它利用涂有高分子薄膜的熔融石英纤维来吸附样品中的挥发性或半挥发性有机物,然后直接进行气相色谱(GC)或液相色谱(HPLC)等分析。这种技术具有操作简便、无需溶剂、灵敏度高、选择性好等优点,被广泛应用于环境分析、食品安全、药物检测等领域。二、SPME固相微萃取纤维头57328-U和57329-U的详细信息1. 产品型号与品牌型号:57328-U和57329-U品牌:Supelco(MERCK默克Supelco色谱科sigma西格玛)2. 涂层与规格涂层:两者均采用二乙烯基苯(DVB)/羧基(CAR)/聚二甲基硅氧烷(PDMS)复合涂层,涂层厚度为50/30μm。这种复合涂层结合了DVB的高吸附能力、CAR的选择性和PDMS的通用性,适用于多种化合物的萃取。规格:纤维头长度通常为1cm(除非特别注明为2cm),可伸缩于不锈钢细管内。3. 使用方式57328-U:手动式,适用于与手动进样手柄配合使用,进行气相色谱分析。57329-U:自动式,适用于与自动进样系统配合使用,实现自动化分析。4. 应用范围两者均广泛用于香味物质(挥发性和半挥发性C3-C20)的分析,包括但不限于以下领域:生物药物分析:如血清、血液、血浆、尿液等生物样本中的药物和代谢产物分析。饮品分析:果汁、酒等饮品中的风味成分和添加剂分析。农残分析:烟草、蔬菜、水果、谷物等农产品中的农药残留分析。环境分析:水样中的有机物、气体硫化物和挥发性有机化合物(VOCs)的检测。毒物分析:血、尿、体液中的药物和毒V品分析。三、注意事项选择合适的纤维头:根据样品的极性和吸附能力选择合适的纤维头,以确保分析结果的准确性。操作规范:在使用过程中应严格遵守操作规程,避免纤维头受损或污染。存储条件:纤维头应存放在干燥、避光、无尘的环境中,以保持其性能和稳定性。综上所述,SPME固相微萃取纤维头57328-U和57329-U是两款性能优越、应用广泛的固相微萃取工具,适用于多种化合物的分析和检测。在选择和使用时,应根据具体需求进行考虑和操作。※固相微萃取(SPME)整套装置及选配耗材※:序号、货号、名称描述①、57330-U SPME手柄(手动或自动)②、2637505 SPME专用进样插件,可选,用于HP6890 (岛津不可用)③、57333-U SPME专用采样台用于4ml瓶④、57357-U SPME专用采样台用于15ml瓶⑤、PC-420D SPME专用磁力加热搅拌装置⑥、Z118877 SPME磁力搅拌子⑦、57332 SPME专用温度计⑧、57356-U SPME专用进样导管(岛津不可用)⑨、27136 SPME专用专用采样瓶 4ml ⑩、27159 SPME专用专用采样瓶 15ml (11)固相微萃取头(SPME萃取头), (具体信息参见SPME萃取头订购信息)※Supelco SPME萃取头(固相微萃取头)订货信息※:订货号产品名称描述产品应用手动式自动式57330-U57331SPME手柄和萃取头连用573185731975um Carboxen/PDMS 固相微萃取头,3支(MW30-225)用于气体和小分子量化合物57334-U57335-U85um Carboxen/PDMS 固相微萃取头,3支(高保留)用于气体和小分子量化合物57302573037um PDMS 固相微萃取头,3支 (MW 125-600)用于非极性大分子量化合物573085730930um PDMS 固相微萃取头,3支用于非极性半挥发性化合物57300-U57301100um PDMS固相微萃取头,3支(MW 60-275)用于挥发性物质57310-U5731165um PDMS/DVB固相微萃取头,3支(MW 50-300)用于挥发性物质、胺类、硝基芳香类化合物57326-U57327-U65um PDMS/DVB固相微萃取头(不含弹簧2cm),3支用于挥发性物质、胺类、硝基芳香类化合物(MW 50-300)573045730585um,Polyacrylate, 固相微萃取头,3支 (MW 80-300)用于极性半挥发性化合物57328-U57329-U50/30um,DVB/CAR/PDMS,Stableflex固相微萃取头,3支用于香味物质(挥发性和半挥发性C3-C20)(MW40-275)/5731760um PDMS/DVB 固相微萃取头(用于HPLC),3支用于胺类或极性化合物57348-U/50/30um DVB/Car on PDMS固相微萃取头(2cm),3支用于香味物质(挥发性和半挥发性C3-C20)(MW40-275)5730657307SPME萃取头套装1用于挥发性和半挥发性物质85umPA,100um PDMS,7umPDMS各一支57320-U57321-USPME萃取头套装2用于水中挥发性或极性有机物75umCAR/PDMS.65umPDMS/DVB,85um PA各一支57323-USPME萃取头套装3用于SPME/HPLC分析60um PDMS/DVB,85um PA,100um PDMS各一支57324-U57325-USPME萃取头套装4用于香味物质分析100um PDMS,65um PDMS/DVB,75um CAR /PDMS各一支萃取头符号说明:CAR Carboxen CW CarbowaxDVB Divinylbenzene (二乙烯苯) PA Polyacrylate (聚丙烯酸酯)PDMS Polydimethylsiloxane (聚二甲基硅烷)※SPME固相微萃取的典型应用※:* 表面活性剂* 环境水样* 食品、香精、香料* 法庭样品* 血、尿和体液中药物* 聚合物和固样中痕量杂质(顶空方式)* 药物中残留溶剂* 气体硫化物及挥发物(VOC)美国Supelco公司专=利产品-固相微萃取(Solid Phase Micro Extraction),1994年获美国匹兹堡分析仪器会议R&D100项革新大奖,是一种应现代仪器的要求而产生的样品前处理新技术,几乎克服了以往一些传统样品处理技术的所有缺点,集采样、萃取、浓缩、进样于一体,便于携带,真正实现样品的现场采集和富集,能够与气相、气相-质谱、液相、液相-质谱仪联用,有手动或自动两种操作方式,让更多的分析工作者从重复、烦琐的操作中解脱出来。广泛应用于环保及水质处理、临床药理、公=安案件分析、制药、化工、国防等领域。 美国Supelco/Merck/Sigma/色谱科固相微萃取萃取头(DVB/CAR/PDMS 50/30um)57328-U/57329-U C3-C20大范围分析固相微萃取(SPME)非常小巧,状似一只色谱注射器,由手柄(Holder)和萃取头或纤维头(Fiber)两部分构成。萃取头是一根外套不锈钢细管的1cm长、涂有不同色谱固定相或吸附剂的熔融石英纤维头,纤维头在不锈钢管内可自由伸缩,用于萃取、吸附样品。
    留言咨询
  • 四氯硅烷分析氦离子色谱仪适用电子工业用气体中痕量杂质的检测,小检测浓度可达5ppb。仪器配备高灵敏的氦离子化检测器,采用华爱公司的中心切割技术,进样阀均带有吹扫保护气路;整机采用多柱箱设计,并配备进样压力自动校正系统,不同底气的样品的进样量。产品先后荣获上海市成果转化A级项目。硅(SiHCl3)含量(体积分数)/l0-6 ≤40025二氯硅烷(SiH2Cl2)含量(体积分数)/l0-6 ≤40025甲基二氯硅烷(SiCl2CH4)含量(体积分数)/l0-6 ≤20050金属元素及其他元素含量(硼+铝)(B+Al)含量/(μg/kg) ≤——0.1(磷+砷)(P+As)含量/(μg/kg) ≤——0.3镓(Ga)含量/(μg/kg) ≤——0.5锑(Sb)含量/(μg/kg) ≤——0.5铟(In)含量/(μg/kg) ≤——0.5钙(Ca)含量/(μg/kg) ≤10.5铬(Cr)含量/(μg/kg) ≤10.5铁(Fe)含量/(μg/kg) ≤10.5钾(K)含量/(μg/kg) ≤10.5钠(Na)含量/(μg/kg) ≤10.5镍(Ni)含量/(μg/kg) ≤10.5钼(Mo)含量/(μg/kg) ≤10.5锰(Mn) 含量/(μg/kg) ≤10.5铜(Cu)含量/(μg/kg) ≤10.5镉(Cd) 含量/(μg/kg) ≤10.5钴(Co)含量/(μg/kg) ≤10.5锌(Zn)含量/(μg/kg) ≤10.5钒(V)含量/(μg/kg) ≤10.5
    留言咨询

二苯甲基硅烷相关的耗材

  • TMSI 硅烷化试剂 | 三甲基硅咪唑| 三甲基碘硅烷
    产品特点:N-Trimethylsilylimidazole (TMSI) UN1993, 25 grams三甲基硅咪唑, 三甲基碘硅烷SKU: 140-25 Categories: 硅烷化试剂 ,Tag: TMSI三甲基硅咪唑 用途硅烷化试剂三甲基硅咪唑是硅烷化羟基的最强的硅烷化试剂;能够快速、平顺地与羟基和羧基发生反应。不与胺或酰胺发生反应,所以可以用于制备既含有羟基又含有氨基的化合物的多重衍生物。在存在少量水的情况下可用于硅烷化糖;当需要将糖作为糖浆剂来分析的时候是硅烷化糖的理想选择。能够衍生不被阻碍和被严重阻碍的大多数的甾类羟基。用途 用作抗菌素中间体、特强的硅烷化剂用途 高效硅烷化试剂,特别适合用于醇、酰基咪唑类的合成,在氨基存在的条件下保护羟基基团。抗菌素中间体。用途 用于合成各种酰基咪唑的重要中间体,也是合成吡藜酰胺的重要中间体;在胺功能化条件下,保护羟基的硅烷化试剂;强有力的硅烷化试剂、特别针对醇类;酰基咪唑啉的合成用途 甲硅烷基化试剂,在氨基存在的条件下保护羟基基团。抗菌素中间体。特点● UN Number: 1993
  • TMSI 硅烷化试剂 | 三甲基硅咪唑 | 三甲基碘硅烷
    产品特点:Trimethylsilylimidazole (TMSI) UN1993, 100 grams三甲基硅咪唑 | 三甲基碘硅烷SKU: 140-100Categories: TMSI 硅烷化试剂三甲基硅咪唑 性质熔点 -42 °C沸点 93-94 °C14 mm Hg(lit.)密度 0.957 g/mL at 20 °C折射率 n20/D 1.475(lit.)闪点 42 °F储存条件 2-8°C形态Liquid颜色Clear colorless to yellow水溶解性 decomposes敏感性 Moisture SensitiveBRN 606148CAS 数据库18156-74-6(CAS DataBase Reference)NIST化学物质信息1h-Imidazole, 1-(trimethylsilyl)-(18156-74-6)EPA化学物质信息1H-Imidazole, 1-(trimethylsilyl)-(18156-74-6)三甲基硅咪唑 用途硅烷化试剂三甲基硅咪唑是硅烷化羟基的最强的硅烷化试剂;能够快速、平顺地与羟基和羧基发生反应。不与胺或酰胺发生反应,所以可以用于制备既含有羟基又含有氨基的化合物的多重衍生物。在存在少量水的情况下可用于硅烷化糖;当需要将糖作为糖浆剂来分析的时候是硅烷化糖的理想选择。能够衍生不被阻碍和被严重阻碍的大多数的甾类羟基。用途 用作抗菌素中间体、特强的硅烷化剂用途 高效硅烷化试剂,特别适合用于醇、酰基咪唑类的合成,在氨基存在的条件下保护羟基基团。抗菌素中间体。用途 用于合成各种酰基咪唑的重要中间体,也是合成吡藜酰胺的重要中间体;在胺功能化条件下,保护羟基的硅烷化试剂;强有力的硅烷化试剂、特别针对醇类;酰基咪唑啉的合成用途 甲硅烷基化试剂,在氨基存在的条件下保护羟基基团。抗菌素中间体。特点● UN Number: 1993
  • 1,1,1,3,3,3-六甲基二硅烷 for gas chromatography
    1,1,1,3,3,3-六甲基二硅烷 for gas chromatography
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制