当前位置: 仪器信息网 > 行业主题 > >

氮化物校准器

仪器信息网氮化物校准器专题为您提供2024年最新氮化物校准器价格报价、厂家品牌的相关信息, 包括氮化物校准器参数、型号等,不管是国产,还是进口品牌的氮化物校准器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氮化物校准器相关的耗材配件、试剂标物,还有氮化物校准器相关的最新资讯、资料,以及氮化物校准器相关的解决方案。

氮化物校准器相关的资讯

  • 先进简单的多功能过程校准器
    Allerød, Denmark –过程信号在各个行业中都是至关重要的,从控制阀、开关或灯,到测量管道中的压力,再到校准烘焙烤箱中的温度。随着如此重要的参数被广泛使用,确保这些过程信号保持准确是至关重要的。用户对他们使用的校准设备有多种选择,但最重要的因素之一是易用性。因为可能会使用多个过程信号,包括伏特、毫伏、安培或毫安,而每一个都可能有很大的量程差异,大多数用户转向多功能校准以满足所有情况。然而,随着期权的增加,该工具的复杂性也趋于增加。对于新手来说,看似简单的连接接线任务可能都是困难的。JOFRA ASC-400 先进的校准仪具有连接助手的功能。ASC-400现在包括一个内置的帮助功能,提供了一个图形解决方案,根据当前设置提供精确的连接图示。如果测量参数发生变化(例如从V变为mA),连接辅助界面也会发生变化。使用新功能可以显著减少错误和浪费时间。ASC-400多功能过程校验仪读取和输出RTD,热电偶,电流,电压,频率,电阻,脉冲序列等信号。它整合了诸如百分比误差计算、缩放、泄漏测试和开关测试校准等功能到一个手持校准器。大型全彩显示器、带有光标的数字小键盘和功能键有助于简化使用。ASC-400结合APM CPF压力模块实现压力校准. ASC-400结合Jofra干体炉实现温度校准。关于AMETEK STC and JOFRA AMETEK STC 在JOFRA和Crystal品牌下制造和供应温度、压力和过程信号的校准仪器。JOFRA温度校准器以其准确性、稳定性和可靠性闻名于世。
  • 微波法合成氮化物荧光粉获突破
    近期,中科院宁波材料技术与工程研究所“结构与功能一体化陶瓷”研发团队的刘丽红和黄庆,成功实现低温常压下制备高质量氮化物荧光粉,并在8月份通过材料荧光特性测试。   氮化物荧光粉是LED(发光二极管)不可或缺的重要材料体系。据黄庆介绍,该项新技术将微波功率转变为热能,实现整体加热。相较传统气压合成方法的高温(1700℃~2000℃)和高压(1~10个大气压)条件,微波合成法能在常压和1600℃以下实现相同的合成结果。低温合成使荧光粉光学性能大幅提高,工业节能可达80%以上。   另外,在相同反应温度下获得的荧光粉量子效率,微波法与传统气压法相比提高1.6倍。在荧光粉产率上,一般气压炉一天只能生产100克左右,而微波法可以达到几十公斤量级。新技术还可实现材料大区域零梯度均匀加热,且升温速度快、合成时间短,有利于获得粒径分布均匀的粉体。
  • 刘忠范院士:我国石墨烯玻璃晶圆氮化物材料外延取得“0到1”的原创性突破
    近期中国科学院院士、北京大学/北京石墨烯研究院院长刘忠范、中科院半导体所研究员刘志强、北京大学物理学院研究员高鹏等合作,提出了一种纳米柱辅助的范德华外延方法,利用金属有机化学气相沉积(MOCVD),国际上首次在玻璃衬底上成功“异构外延”出连续平整的准单晶氮化镓(GaN)薄膜,并制备蓝光发光二极管(LED)。相关成果7月31日发表于《科学》子刊《科学进展》。半导体产业是科技自立自强的底层保障。在全球信息化、5G时代以及新冠肺炎疫情的影响下,以III族氮化物为代表的先进半导体迎来发展的高峰期。一直以来,我国氮化物核心材料、器件的原始创新能力较为薄弱,核心专利技术不足。同时,由于缺乏同质衬底,氮化物材料一直通过金属有机化学气相沉积(MOCVD)在蓝宝石、硅、碳化硅等单晶衬底上进行异质外延。单晶衬底的尺寸、成本、晶格失配、热失配、导热导电性等限制了氮化物材料的发展。因此,摆脱传统衬底限制是氮化物材料制备的瓶颈问题,也是通过自主创新引领先进半导体产业发展的的关键。研究人员巧妙地利用石墨烯解决了该问题。他们在生长初期,利用石墨烯的晶格来引导氮化物的晶格排列,在非晶玻璃上也实现了高质量氮化物的外延。通常,玻璃上生长的氮化物上是完全杂乱无序的多晶结构。石墨烯的晶格引导作用使得玻璃上的氮化物的面外取向完全一致,面内取向也由通常的随机取向被限制成三种,从而得到了高质量的准单晶薄膜。他们进一步生长了蓝光LED结构,其内量子效率高达48.7%。此外,他们充分利用界面处弱的范德华作用力,将生长的外延结构机械剥离并制备了柔性的LED样品。据悉,面向大规模产业应用,北京石墨烯研究院在玻璃衬底上采用化学气相沉积,发展了一系列石墨烯晶圆制备方法,为氮化物变革性制备技术的探索提供坚实基础。刘忠范表示,这一成果是典型的“从0到1”式的原创性突破,为石墨烯等二维材料的产业化应用提供了新思路,有望发展为氮化物变革性制备技术,解决先进半导体发展技术瓶颈,在新型显示、柔性电子学等领域具有重要应用前景。同时,该技术通过“异构外延”减弱了氮化物对单晶衬底的依赖,对于扩大半导体外延衬底选择范围、丰富半导体异质外延概念、实现面向后摩尔时代的片上物质组装和异构集成,具有重要意义。
  • 聚灿光电子与中科院半导体所共建新型氮化物智慧光电联合实验室
    p style=" box-sizing: border-box outline: 0px text-size-adjust: none -webkit-tap-highlight-color: rgba(0, 0, 0, 0) margin-top: 0px margin-bottom: 15px color: rgb(80, 80, 80) font-family: & quot Helvetica Neue& quot , Helvetica, Arial, sans-serif text-align: justify white-space: normal background-color: rgb(255, 255, 255) " 聚灿光11月2日晚间公告,子公司聚灿光电科技(宿迁)有限公司与中科院半导体研究所就建立“新型氮化物智慧光电联合实验室”达成合作协议。 /p p style=" box-sizing: border-box outline: 0px text-size-adjust: none -webkit-tap-highlight-color: rgba(0, 0, 0, 0) margin-top: 0px margin-bottom: 15px color: rgb(80, 80, 80) font-family: & quot Helvetica Neue& quot , Helvetica, Arial, sans-serif white-space: normal background-color: rgb(255, 255, 255) text-align: center " img src=" http://s.laoyaoba.com/jwImg/news/2020/11/03/16043727868213.png" style=" box-sizing: border-box outline: 0px text-size-adjust: none -webkit-tap-highlight-color: rgba(0, 0, 0, 0) border: 0px vertical-align: middle max-width: 100% " / /p p style=" box-sizing: border-box outline: 0px text-size-adjust: none -webkit-tap-highlight-color: rgba(0, 0, 0, 0) margin-top: 0px margin-bottom: 15px color: rgb(80, 80, 80) font-family: & quot Helvetica Neue& quot , Helvetica, Arial, sans-serif text-align: justify white-space: normal background-color: rgb(255, 255, 255) " 双方联合研究面向光通信领域的氮化物光电及集成技术,开发高性能高光功率氮化物发光及探测器件;以实验室为基地,共同开展前沿基础性科研工作和人才培养,推动双方在技术及人才方面的全面提升。联合实验室的合作有效期为3年。 /p p style=" box-sizing: border-box outline: 0px text-size-adjust: none -webkit-tap-highlight-color: rgba(0, 0, 0, 0) margin-top: 0px margin-bottom: 15px color: rgb(80, 80, 80) font-family: & quot Helvetica Neue& quot , Helvetica, Arial, sans-serif text-align: justify white-space: normal background-color: rgb(255, 255, 255) " 公告还提出,双方将建设国内一流、国际先进的新型氮化物智慧光电联合实验室,使之成为一个合作紧密、管理科学、互利共赢、创新发展的产学研联合创新平台。培养一支高质量的研发技术团队,为双方未来基于氮化物光电的新一代信息技术及相关应用领域的深入发展提供服务。 /p
  • 半导体所等在氮化物外延方法及新型器件研究中取得系列进展
    中国科学院半导体研究所研究员刘志强等与北京大学、北京石墨烯研究院等单位合作,在氮化物外延及热电能源器件领域取得系列研究进展,验证了氮化物异质异构单晶外延的可行性,提出了氮化物位错控制新思路,拓展了氮化物在高温热电领域的应用。相关成果分别以Continuous Single-Crystalline GaN Film Grown on WS2-Glass Wafer、Atomic Mechanism of Strain Alleviation and Dislocation Reduction in Highly Mismatched Remote Heteroepitaxy Using a Graphene Interlayer、Graphene-Assisted Epitaxy of High-Quality GaN Films on GaN Templates、High Power Efficiency Nitrides Thermoelectric Device为题,在线发表在Small、Nano Letters、Advanced Optical Materials、Nano Energy上。   实现不依赖于衬底晶格的氮化物材料外延,有望突破衬底限制,融合宽禁带半导体材料与其他半导体材料的性能优势,为器件设计提供新的自由度。研究团队于2021年利用石墨烯二维晶体作为缓冲层,借助纳米柱等底层微纳结构,实现了非晶衬底上的氮化物准单晶薄膜的异质异构外延。近期,研究团队在该领域取得进展,利用与氮化物晶格匹配的过渡金属硫化物为缓冲层,构筑人工生长界面,实现了非晶玻璃晶圆上的单晶薄膜制备,并实现了紫外发光器件的制备。该项工作以非晶衬底这一极端情况,验证了氮化物异质异构单晶外延的可行性。   刃位错是氮化物材料中的代表性缺陷类型,与另外一种典型缺陷——螺位错相比,通常情况下其浓度要高一个数量级。刃位错对氮化物发光、电子器件的性能均会产生重要影响。由于氮化物与异质衬底之间固有的晶格失配,刃位错的有效抑制手段非常有限。近期,研究团队采用远程外延,实现了氮化物外延层中刃位错的有效降低,在原子尺度上研究了应力释放和位错密度降低的物理机制。研究发现无极性的石墨烯缓冲层可以削弱源于衬底的晶格势场,使得外延层能够在晶体取向得到控制的同时,其晶格也能相对自由地生长。因此,异质外延中晶格失配引起的应力得到了释放,外延层刃位错密度降低近一个数量级。在这种低应力的GaN模板上,研究人员成功制备了高In组份的InGaN/GaN量子阱,实现了黄光波段LED器件。   氮化物材料由于生长方法的限制具有高密度的穿透位错,这些穿透位错会充当非辐射复合中心和漏电通道,对氮化物基光电器件和电力电子器件的性能有严重的负面影响。近期,研究团队采用二维材料石墨烯辅助外延的方法,实现了低应力、低位错密度的高质量GaN薄膜的外延生长,并揭示了石墨烯在界面处降低外延层中穿透位错密度的机制。研究发现石墨烯可以部分屏蔽衬底势场,衬底势场实现界面晶格调控的同时,其表面势场波动一定程度被削弱。因此外延层可以通过原子滑移释放部分应力,实现应力的自发驰豫。引入石墨烯二维晶体后,GaN模板中因穿透位错导致的晶格畸变在外延界面得以恢复,表现为石墨烯在界面处阻挡了穿透位错向上的扩散,因此获得了比相同衬底同质外延位错密度更低的GaN薄膜。   能源是社会经济发展永恒的主题,工业生产中消耗化石燃料产生能量的约70%以废热的形式被排放。热电转换技术能够可逆地将废热转换成电能,在提高能源利用效率和回收废弃能源方面具有重要的意义。与此同时,热电器件在太空等极端环境下具有重要的应用,热电发电机是旅行者2号的唯一能量来源,目前已经连续工作40余年。然而,传统的窄禁带半导体材料存在高温下少数载流子激发导致的温差电动势抑制效应,工作温度较低。以GaN为代表的III族氮化物具有较大的禁带宽度、优异的热稳定性、高的抗辐射强度,同时易实现可控调制的合金和异质结结构,在高温热电方面展现出巨大的应用潜力。由于决定热电性能的塞贝克系数S、电导率σ、热导率k之间相互耦合和制约的关系,合理设计材料结构、采取最优化方案提高ZT值,一直是热电研究的重要课题。研究团队探索了合金化和低维超晶格结构对载流子和声子输运的调控作用,实现了电子、声子输运的有效解耦,成功制备了热电器件。ZT值优于同类器件的文献报道。该工作拓展了III族氮化物在热电方面的应用,提供了一种非常有前途的高温热电器件解决方案。图1 WS2-玻璃晶圆上单晶GaN薄膜的生长图2 WS2-玻璃晶圆上的AlxGa1-xN成核及单晶GaN薄膜生长。(a) 低温AlxGa1-xN成核后WS2的拉曼光谱;(b) 拉曼测试点的示意图;(c) 成核生长后AlxGa1-xN/WS2/玻璃界面的HADDF图像;(d) AlxGa1-xN/WS2/玻璃界面的HADDF图像及对应的Ga、O、S和W元素的EDS面扫图像;(e) 薄膜生长后AlxGa1-xN/WS2/玻璃界面的高分辨TEM图像;(f) 薄膜生长后AlxGa1-xN/WS2/玻璃界面的HADDF图像;(g) 界面附近GaN的iDPC图像图3 基于石墨烯的远程异质外延与传统异质外延的界面对比。(a) AlGaN/蓝宝石界面的原子结构和GPA exx图像;(b) AlGaN/石墨烯/蓝宝石界面的原子结构和GPA exx图像;(c) 有无石墨烯时界面处氮化物与蓝宝石衬底的面内晶格失配对比;(d) 有无石墨烯时界面处氮化物与蓝宝石衬底的面外晶格失配对比;(e) 无石墨烯时氮化物在蓝宝石台阶上的原子排列;(f) 有石墨烯时氮化物在蓝宝石台阶上的原子排列;(g) 无石墨烯时靠近台阶处沿面外方向的氮化物原子偏移;(h) 有石墨烯时靠近台阶处沿面外方向的氮化物原子偏移;(i) 界面附近两个原子层面外方向原子偏移的线轮廓图4 石墨烯辅助外延中的应力驰豫和位错演化机制。石墨烯辅助外延生长和直接外延生长的GaN薄膜的(a) XRD摇摆曲线对比,(b) 刃位错和螺位错密度对比,(c) 应力对比;GaN/石墨烯/GaN界面处的(d) 暗场像图像,(e) GPA exx图像;(f) 石墨烯在界面处阻挡穿透位错向上扩散的示意图;(g) 空白GaN表面的电势场波动;(h) 石墨烯/GaN复合衬底表面的电势场波动;(i) 空白GaN表面和石墨烯/GaN复合衬底表面沿特定方向的电势波动对比图5 氮化物器件的热电性能。(a) 塞贝克测量装置示意图;(b) 不同温度梯度下的红外热成像图;(c) 开路电压随温差时间变化曲线;(d) 塞贝克系数拟合曲线
  • PNAS|高鹏课题组原子尺度揭示氮化物异质结界面声子输运机制
    当前,信息技术的高速发展对半导体器件的热管理提出了更高的要求:一方面需要使用更好的散热材料(如石墨烯、金刚石等),另一方面需要降低接触界面热阻。对于小尺寸的高功率器件而言,界面的导热能力实际上已经成为制约器件性能提升的瓶颈,因此,研究其界面导热机制尤其重要。在半导体器件中,界面热导主要是由异质结界面附近的几个原子层产生的界面声子决定的。但目前人们对于界面声子如何影响界面热导知之甚少,主要原因是缺乏有效实验测量界面声子的手段。图 (a) AlN/Si异质结界面处的原子分辨图;(b) AlN/Si异质结界面的EELS谱;(c) AlN/Si和AlN/Al异质结四种不同界面模式的声子态密度分布及对界面热导的贡献近来,北京大学物理学院量子材料科学中心、电子显微镜实验室高鹏教授课题组,发展了兼具空间分辨和动量分辨能力的四维电子能量损失谱技术(Nature Communications 2021, 12, 1179 发明专利:ZL202011448013.7),并展示了可应用于异质结界面声子色散的测量(Nature 2021, 559, 399)。最近,他们和清华大学、南方科技大学等合作,利用该谱学方法测量了第三代半导体氮化铝(AlN)与硅(Si)衬底、金属铝(Al)电极等界面的晶格动力学行为,并探索了不同界面的声子传输行为及其对界面热导的贡献。联合研究团队发现AlN/Si和AlN/Al的界面声子模式迥然不同,从而导致界面热导数倍的差异。通常,界面声子可以分为四类:扩展模式、局域模式、部分扩展模式和孤立模式。其中,扩展模式和局域模式与界面两侧的体态声子都有很强的关联,使得一侧的声子通过弹性/非弹性散射穿过界面到达另一侧,充当连接两侧体态声子的桥梁,从而有助于提升界面热导;而部分扩展模式和孤立模式对界面热导贡献很小。联合研究团队首先在AlN/Si异质结界面上观测到了界面模式具有明显的桥效应:界面存在原子尺度局域的声子模式,与界面两侧AlN和Si的不同能量的体声子都能发生非弹性散射从而交换能量;此外,也观察到了明显的界面扩展模式。这两种模式都能有效促进界面热量的传输。而在AlN/Al界面,并没有观察到明显的由局域模式或扩展模式构成的声子桥,其界面声子模式主要为部分扩展模式,对热量的传输效率较低。这些结果解释了为什么AlN/Al的界面热导要远小于AlN/Si。该工作深化了对界面声子传输和热输运的理解,尤其为基于氮化物的高电子迁移率晶体管和大功率发光二极管等高功率半导体器件的热管理提供了有价值的信息。2022年2月18日,相关成果以“原子尺度探测氮化物半导体异质结界面声子桥”(Atomic-scale probing of heterointerface phonon bridges in nitride semiconductor)为题,在线发表于《美国国家科学院院刊》(Proceedings of the National Academy of Sciences of the United States of America)。北京大学物理学院量子材料科学中心2017级博士研究生李跃辉为第一作者,高鹏为通讯作者,其他主要合作者包括北京大学物理学院的研究助理亓瑞时、2018级博士研究生时若晨,清华大学胡健楠博士、马旭村教授、罗毅院士,以及清华大学和南方科技大学薛其坤院士等。上述研究工作得到国家自然科学基金,以及量子物质科学协同创新中心、怀柔综合性国家科学中心轻元素量子材料交叉平台、北京大学高性能计算平台等支持。论文原文链接:https://www.pnas.org/content/119/8/e2117027119
  • 明华电子发布明华MH4031型 全自动流量/压力校准仪新品
    MH4031型全自动流量/压力校准仪(以下简称校准仪)采用孔口流量测量原理,内置高精度压力传感器。一机多用,可用于VOCs采样器、大气采样器、中流量环境空气颗粒物采样器、便携式烟尘采样器的流量校准,微压、表压的校准以及PT100部分温度的标定。 校准器内置自动校准协议,仅需一根数据线就可实现流量全自动校准的功能,如本公司生产的MH1200系列采样器,后续会陆续开放本公司MH1205恒温恒流大气颗粒物采样器和MH3300型烟气烟尘颗粒物浓度测试仪的自动校准功能,校准器同时也开放外部接口协议,其他公司生产的采样器若采用该协议,亦可实现流量的全自动校准。执 行 标 准HJ/T 368-2007《标定总悬浮颗粒物采样器用的孔口流量计》主 要 特 点功耗低,噪音小,重量轻,超小型化设计,结构紧凑,外形美观,携带方便;多路大范围流量校准,包括两路(10~300)mL/min,两路(0.3~3)L/min,一路(5~130)L/min,一路(200~1200)L/min;大范围自动加压,微压:(0~4000)Pa,表压:(-30.00~+30.00)Kpa;常用PT100烟温标定(包括0℃、80℃、100℃、120℃、200℃以及500℃);孔板集成于仪器内部,在进行流量校准时,不需要频繁的更换孔板;超大7寸触摸电容屏,触感更优,简单明了的界面风格,操作简单易学;内置电池,可供仪器连续工作4小时以上。应 用 领 域环境监测及环境评价卫生防疫及劳动安全科研院所采样分析大专院所教学仪器创新点:与同类产品相比,MH4031型全自动流量/压力校准仪采用孔口流量测量原理,内置高精度压力传感器。一机多用,可用于VOCs采样器、大气采样器、中流量环境空气颗粒物采样器、便携式烟尘采样器的流量校准,微压、表压的校准以及PT100部分温度的标定。而且本仪器体积小,便于携带。 明华MH4031型 全自动流量/压力校准仪
  • 中科院苏州纳米所:石墨烯调控的氮化镓远程外延机理新进展
    二维 (2D) 材料,特别是石墨烯和氮化物的异质集成,为半导体器件提供了新的机遇,在制备柔性可穿戴设备,以及可转移电子和光子器件领域有广泛的应用前景。由于石墨烯表面自由能低,氮化物在石墨烯表面不易成核,采用等离子体预处理或者生长缓冲层的方法难以获得高质量的单晶氮化物。最近,一种新的外延技术——远程外延有望解决这一难题。该技术是利用石墨烯的“晶格透明性”,衬底和外延层产生远程的静电相互作用,通过这种相互作用,外延层透过石墨烯可以“复制”衬底的晶格信息,从而保证外延层的晶格取向一致性。然而,关于氮化物远程外延的生长机制和界面作用关系的相关报道还较少。中国科学院苏州纳米技术与纳米仿生研究所研究团队在《ACS Applied Materials & Interfaces》期刊上发表了题为“Long-Range Orbital Hybridization in Remote Epitaxy: The Nucleation Mechanism of GaN on Different Substrates via Single-Layer Graphene”的文章。文章第一作者为博士研究生屈艺谱,合作者为徐俞副研究员、徐科研究员以及苏州大学曹冰教授。该团队采用金属有机物化学气相沉积法(MOCVD)在两种覆盖单层石墨烯(SLG)的极性衬底(Al2O3和AlN)上实现了氮化镓成核层(GaN NLs)的远程外延。研究发现,衬底极性对石墨烯上GaN的成核密度,表面覆盖率和扩散常数起着关键作用。考虑到表面覆盖和衬底污染引起的成核信息差异,通过缩放的成核密度校正了这种误差,得到了衬底极性和GaN成核密度的对应关系。结晶特性分析表明,衬底和外延层的界面外延关系不受单层石墨烯的影响,与传统外延的取向关系一致。为了揭示成核信息差异背后的物理机理,通过理论计算作者发现衬底增强了单层石墨烯上的Ga和N原子的吸附能,且极性较强的AlN相比Al2O3的吸附能更大,AlN和吸附原子Ga之间存在更高的差分电荷密度(CDD)。进一步通过分波态密度(PDOS)分析发现,尽管吸附原子Ga和衬底相距4-5Å,Al2O3和AlN中Al-3p和Ga-4p轨道在费米能级附近仍存在轨道杂化。作者认为在远程外延中,单层石墨烯的存在不影响衬底和吸附原子之间的化学相互作用,这种远程轨道杂化效应正是在极性衬底上远程外延GaN NLs的本质。通过导电胶带可以轻松剥离GaN NLs,而且剥离后的衬底表面没有机械损伤,有望发展一种高质量衬底的低成本制备技术。图1. SLG/Al2O3和SLG/AlN两种衬底的GaN NLs的SEM图,不同的量化指标分析了成核信息的差异 图2. GaN/SLG/Al2O3和GaN/SLG/AlN两种体系表面形貌的SEM图,面外和面内取向关系的XRD图 图3. GaN/SLG/Al2O3和GaN/SLG/AlN两种体系的界面微观特性的HR-TEM图图4. 吸附原子Ga和N在SLG、SLG/Al2O3和SLG/AlN三种体系上的吸附能,Ga在三种体系上的CDD和PDOS图5. 使用导电胶带剥离GaN NLs,剥离后GaN背部和衬底表面的石墨烯拉曼信号图综上,该研究工作讨论了在石墨烯调控的氮化镓远程外延机理,创新性的提出了远程轨道杂化的概念,充分探讨了GaN和衬底之间的界面关系和界面耦合特性,揭示了远程外延的物理和化学机理,为快速、大面积制备单晶GaN薄膜拓宽了思路。这项工作得到了国家自然科学基金国家重点项目(No. 61734008,No. 62174173)的资助。
  • 福禄克携5款温度、压力、电学计量校准产品亮相世界传感器大会
    仪器信息网讯 8月23日,为期三天的2022世界传感器大会在郑州国际会展中心完美落幕,此次传感器大会由中华人民共和国工业和信息化部、中国科学技术协会与河南省人民政府主办,郑州市人民政府、河南省工业和信息化厅、河南省科学技术协会、中国仪器仪表学会承办。福禄克(FLUKE)展位本次世界传感器大会,众多知名传感器公司携新品和主推产品参展,同时也吸引了多家仪器企业参加,福禄克(FLUKE)公司也携一系列计量校准产品亮相。据了解,福禄克早在2000年就收购了Wavetek Wandell Goltermann的精密测量部门,从而稳固了其在电气校准市场内已经获得的地位。近几年,福禄克公司又先后收购了以温度计量和校准著称的 HART公司,以及以压力计量和校准而著称的DHI公司,从而使福禄克公司的计量和校准技术和产品覆盖了电学、温度以及压力,成为全面提供计量和校准产品的仪器仪表公司。1586A高精度多路测温仪(下)和外置接线模块(上)1586A高精度多路测温仪可以扫描测量并记录直至40通道的直流电压和电流,电阻,扫描速度可达每秒10个通道。1586A可以配置为多通道的记录仪在现场使用,也可以配置为参考温度计连接方式用于实验室的温度传感器校准。1586A高精度多路测温仪可满足制药,生物,食品,航空航天以及汽车行业的大量的温度分布,传感器校准,温度测量的应用。2271A工业压力校准器这款仪器兼容两个不同精度级别的模块。PM200模块为大部分量程提供 0.02% FS。PM500模块提供0.01%的读数不确定度,确保2271A可用于测试或校准更高精度的变送器和数字仪表。2271A的压力量程达到-100 kPa至20MPa(-15 psi至3000psi),满足较宽范围的压力计和传感器需求。仪器内置支持HART功能的电学测量模块(EMM),因此能够对4-20 mA设备(例如,智能变送器、压力计和开关)进行闭环、全自动校准。此外,该仪器顶部的双测试端口可安装两台被测设备(DUT),提升工作效率。9173高精度干式计量炉干井炉是早期最传统的现场热源。而福禄克最早开发的干式计量炉,其不确定度要远远小于干井炉的不确定度。不确定度越低,客户就越有能力校准准确度更高的传感器。干式计量炉提供了接近恒温槽的性能,但是却不需要昂贵的恒温槽液体。干式计量炉达到预定温度点并且稳定的时间比恒温槽快5到10倍,这样即可节省技术人员的工作时间,提高检定速度。干式计量炉的便携性使其能够到现场进行校准的工作,从而解决了恒温槽在运输上的困难。而此次参展的福禄克9173高精度干式计量炉采用了双段控温技术。传统的炉子在轴向(垂直方向)的温度场很难做到均匀,越接近炉口温度变化就越大。所谓双段控温就是在垂直方向上使用上下两层双路控温的方式,这种新型的模拟和数字控制技术提供了高达±0.005 C的稳定性。而且利用两段控温技术,轴向(垂直方向)的均匀性在60 mm区域内可达到±0.02 ℃。7109A便携式恒温槽在制药、生物科技和食品生产等行业,过程制造工厂大量使用卫生型温度传感器,这些传感器需要定期校准,在校准时必须停止生产。因此,校准效率越高意味着工厂停工时间越短。此外,在有些生产过程中,0.1摄氏度的误差就会造成严重成本损失,温度准确度对于保证质量至关重要。而本次展出的这款7109A便携式校准恒温槽与市面上许多恒温槽相比,系统准确度提高了两倍,能在更短的时间内校准更多的卫生型传感器,工作效率提高四倍。用户可以将4支卡箍式卫生型传感器同时置于恒温槽中进行校准,温度显示准确度达±0.1°C。对于小法兰或没有法兰的卫生型热电阻,校准效率甚至更高。7109A恒温槽覆盖温度范围可达-25°C至140°C,内置测温仪直接用于连接外部参考探头以及被校温度探头。8588A八位半数字多用表8588A是一款八位半数字化标准多用表,专门为校准实验室量身打造,拥有直观的用户界面和彩色屏幕和超过12项的测量功能,包括新增的数字化电压、数字化电流、电容、射频(RF)功率,以及用于交/直流电流的外部分流器,帮助用户将实验室级别的系统测试成本统一整合到单台测量仪器中。8588A拥有1年期直流电压准确度(2.7μV/V@95%置信区间,或3.5μV/V@99%置信区间)和最佳的24小时稳定度(0.5 μV/V@95%置信区间,或0.65 μV/V @99%置信区间),使其能够傲视市场上其他标准数字多用表。8588A还能够在短短1秒内产生稳定的八位半读数,进一步提高速度覆盖范围。
  • 岛津EPMA超轻元素分析之六: 氮化处理工件表面缺陷的原因是什么?
    导读 氮化处理工艺应用广泛,但有时由于热处理工艺不正确或操作不当,往往造成产品的各种表面缺陷,影响了产品使用寿命。某氮化处理的工件表面出现了内氧化开裂,使用岛津电子探针EPMA对其进行了分析。 科普小课堂 氮化处理的特点:氮化处理是一种在一定温度下一定介质中使氮原子渗入工件表层的化学热处理工艺。工件进行氮化热处理可显著提高其表面硬度、耐磨性、抗腐蚀性能、抗疲劳性能以及优秀的耐高温特性,而且氮化处理的温度低、工件变形小、适用材料种类多,在生产中有着大规模应用。 氮化处理的原理:传统的气体渗氮是把工件放入密封容器中,通以流动的氨气并加热,氨气热分解产生活性氮原子,不断吸附到工件表面,并扩散渗入表层内,形成不同含氮量的氮化铁以及各种合金氮化物,如氮化铝、氮化铬等,这些氮化物具有很高的硬度、热稳定性和很高的弥散度,从而改变了表层的化学成分和微观组织,获得了优异的表面性能。 裂纹产生的原因是什么? 电子探针分析氮化后的内氧化裂纹:通过之前的系列,已经了解了超轻元素的测试难点以及岛津电子探针在轻元素和超轻元素分析方面的特点和优势。为了查明氮化工件开裂的问题,使用岛津电子探针EPMA-1720直接对失效件的横截面进行元素的分布表征。 岛津电子探针EPMA-1720 结果显示:裂纹内部主要富集元素C和O,工件表面存在脱碳现象,工件内部存在碳化物沿晶分布,氮化层有梯度地向内扩展趋势。氮化处理前工件是不允许出现脱碳现象的,如前期原材料或前序热处理环节中出现脱碳现象,需要机械加工处理掉。内部的沿晶碳化物会造成晶界结合力的减弱,容易造成沿晶开裂。 表1 表面微裂纹横截面元素C、O、N的分布特征 对另一侧的面分析显示,渗氮处理前,试样表面也存在脱碳层。脱碳层如未全部加工掉,将会致使工件表面脱碳层中含有较高浓度的氮,从而得到较厚的针状或骨状高氮相。具有这种组织形态的渗层,脆性及对裂纹的敏感性都很大。而且在表面也有尖锐的不平整凸起,这些都可能会造成后续工艺中的应力集中导致表面微裂纹。 同时也观察到某些合金元素存在些微的分布不均匀现象,不过这些轻微的成分变化,对性能的影响应该不大。 表2 另一侧面表面微裂纹横截面元素C、Mo、O的分布特征 试样腐蚀后进行金相分析。微观组织显示,近表层存在55~85μm的内部微裂纹,氮化后出现连续的白亮层,白亮氮化层并未在内部裂纹中扩散,所以微裂纹应该出现在表面氮化工艺后的环节。 结论 使用岛津电子探针EPMA-1720对某氮化工件表面微裂纹进行了分析,确认了表面的脱碳现象、基体的碳化物晶界分布、氮化过程中氮的近表面渗透扩展以及微裂纹中氧的扩散现象。工件原材料或工件在氮化前进行调质处理的淬火加热时,都要注意防止产生氧化脱碳;如果工件表面已产生了脱碳,则在调质后氮化前的切削和磨削加工中,须将其去除。同时在氮化工艺前需要加入并做好去应力热处理工艺,否则可能内应力过大造成氮化后的表面缺陷。
  • 有了校准平台,氡观测仪预测地震更准
    p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/c4daea1a-4bfe-48df-b7dd-8713187b4c4f.jpg" title=" 2.jpg" / & nbsp & nbsp & nbsp /p p & nbsp & nbsp 近日,科技日报实习记者随全国人大常委会防震减灾法执法检查小组赴江西考察,参观了2016年建成的地震行业首个氡平台。该平台由氡观测仪校准实验室和氡观测仪检测(比测)实验室两部分组成,分别设在江西省地震应急指挥中心和九江地震台。校准实验室以东华理工大学自主研制的氡室为检定装置,配备国际认可的PQ2000PRO作为传递溯源仪器,向上溯源至中国计量院的国家一级氡计量基准,向下传递到各观测点。检测实验室有氡平台团队自主设计的水气综合处理系统、豁免级测氡仪校准器、高低温湿热箱和步入式恒温恒湿箱等一整套检测系统。 /p p & nbsp & nbsp 记者了解到,校准实验室和比测基地在2017年专家验收过程中得到肯定。但这个系统的设计方案最初遭遇的几乎都是质疑:“建立一个这样的检测平台,在地震局系统尤其是地下流体学科还是首次,技术难度及工程难度非常大。” /p p br/ /p p 数百台测氡仪监测数据参差不齐 /p p & nbsp & nbsp 氡气是一种惰性气体。研究发现,地震前岩石中氡值会有明显变化,就此可对地壳活动作出研判。“假设地震前地下裂隙发生错动挤压,地下水随之冒上来,我们取出地下水,再使水中的氡气脱离并对氡值进行测量,最终可预测地震。”九江地震台负责人肖健接受记者采访时介绍了氡观测仪的原理。 /p p & nbsp & nbsp 氡观测是国际上普遍认可的地震监测手段之一,也是我国地震观测台网中最重要的测项之一。目前,我国地震前兆氡观测网有300多个氡测点,测氡仪数百台。地震行业氡观测仪主要采用固体氡源进行校准,其观测数据在监测区域地球物理场变化中发挥着重要作用。但固体氡源属国家严格监管的放射类源,存在运输不便、操作严格等问题,造成氡观测仪无法实现全国统一校准,严重影响观测资料质量。“地震行业监测仪器一直面临设备老化、稳定性和可靠性较差的问题,观测的数据都不准确,谈何地震预测呢?”肖健称,“由于监测仪器标准不统一,A地区测出的氡气含量100Bq/L可能跟B地区测出的50Bq/L是一回事。测出的数据应该形成一张氡观测网,能在标准一致的前提下相互比对,不然观测就没有意义。” /p p & nbsp & nbsp 仪器稳定可靠是获取准确数据的第一步,进而为地壳活动的研判提供依据。我国环保部门、国土资源部门、核工业等建有满足本行业需求的氡观测技术检测平台及相关标准氡室,主要服务于大气、环境、地表水或铀矿探测等非连续氡观测设备的检测与校准。而地震行业氡仪器主要是对深层地下水(或温泉)、断裂带气体等氡浓度连续观测,具有浓度高、量值变化范围宽、样品湿度大等特点,行业外氡室难以满足地震氡观测台网高精度氡仪器的校准需要。因此地震行业需要开展各类测氡仪器的中试、入网性能检测、脱气装置效能检验等工作,统一观测仪器的标准。 /p p br/ /p p 职能好比汽车质检中心 /p p & nbsp & nbsp 肖健告诉记者,检测平台负责给仪器质量把关。“我们的职能好比汽车质量检测中心,目的在于检测氡观测仪有没有毛病。”如果被测试的仪器与标准仪器数据统一,就能发往全国。同时,检测平台也对与标准仪器存在相对差的观测仪进行校准。经过校准和比测,仪器所测出的数据就变得稳定、可靠。此外,仪器有生老病死,老化仪器维修后也要进行检测和校准。 /p p & nbsp & nbsp 据悉,九江地震监测氡观测仪器检测平台的地下自流水系统能满足监测、检测、生活三种用水需求,且互不干扰。其中,监测用水直接通过井管底部接出,供地下流体监测设备使用,数据实时传到中国地震台网中心;检测用水从井管上部导水口流入恒流装置,在稳流区经过三次缓流后液面基本稳定,最后进入供水区,通过三路水管接到检测单元,用于检测和实验。恒流装置稳流后多余的水流入储水箱,供台站生活使用。 /p p & nbsp & nbsp 九江地震台工程师黄仁桂称:“作为完整的观测系统,地震氡观测由观测仪器、恒流、脱气、集气装置等构成,每个环节都会对观测数据产生影响。” /p p & nbsp & nbsp “检测平台目前检测的内容包括检测准确度、设备可靠性、环境适应性。”黄仁桂介绍道,人通过验血检查身体的异常,氡观测仪器则通过观察水氡来监测地壳异常。工程师李雨泽称,他们设定了三个氡的浓度值,待水流稳定后进行氡测量。通过在三种浓度间切换来测量氡检测仪器的响应时间,响应速度太慢就要维修或被淘汰。 /p p br/ /p
  • AMETEK 推出全新 RTC-168 干液两用温度校准炉
    RTC-158是AMETEK校准仪器上一代干液两用温度校准炉,因其便携、快速升降温、大腔体等优点,在制药,食品、计量、电力以及气象等行业被广泛应用,并深受好评。针对制药、食品和饮料行业广泛使用的卫生传感器校准,技术人员必须将传感元件放置在温度校准器的均匀温场区域,然而,由于卫生级传感器的长度较小或传感器上方的法兰较大,因此传感器元件往往很难放入要求的温场区域;同时针对电力行业主变温度控制器的校准,原先的RTC-158不能完全满足温度范围的要求。针对以上困难,AMETEK STC 与客户进行密切合作,了解其需求,现在推出 RTC-168 干液两用温度校准炉以及相关的解决方案,解决用户痛点。RTC-168干液两用温度校准炉 :RTC-168 VS RTC-158✔ 温度范围扩展:RTC-168扩展到 -30~165℃✔ 更快的升降温时间,其中-30至165℃升温时间为24分钟,RTC-158的-22~155℃则需要60分钟,效率提升了一倍以上;✔ 增加了新的附件--液体容器,使干液模式切换更简便,配合带有泄压阀的保护盖,易于运输;✔ 推出新的恒温套管适配器,兼容使用RTC-156的恒温套管,可以减少设备的投资;✔ 可以校准大法兰的卫生型传感器,最大可达84mm;✔ 新的控温技术显著提高了轴向温场均匀性,在80mm轴向温度偏差优于 ±0.03℃;✔ 新设计的磁性搅拌装置以及软起动方式,有效防止搅拌棒脱落,以及获得更高的搅拌效率;✔ 新的IP68防护等级的外置参考传感器。液体容器及带泄压阀的保护盖恒温套管适配器RTC-168 干液两用温度校准炉的应用✅ 卫生型传感器(干体及液槽模式)。✅ 压力式温度计及温度开关。✅ 标准直杆传感器。✅ PH计和电导率计温度部分。✅ 同时校准多支温度传感器。✅ 校准粗大的温度传感器。卫生型传感器 压力式温度计(开关)PH计关于Ametek Jofra 干体炉Ametek校准仪器是全球主要的温度、压力及电信号校准仪生产厂商之一,引领干体炉校准技术近40年,能提供快速精准的温度校准方案。AMETEK干体炉有5大系列共50多个型号,温度覆盖-100~1205℃,满足各个行业的温度校准需求。根据应用情况提供多样的解决方案,实现实验室及现场的快速精准温度校准。
  • 创新突破!兼具高变形能力与强度的多晶氮化硼陶瓷诞生!
    【科学背景】随着对层状van der Waals(vdW)材料的研究日益深入,科学家们开始关注由扭曲堆积形成的莫尔纹超晶格。这种现象打破了晶体结构的对称性,引发了科研领域对新颖物理现象的兴趣。在这种超晶格中,层状晶体片之间存在轻微的相对旋转,即扭曲角,其引起的变化可能导致材料性质发生独特的变化。例如,魔角双层和多层石墨烯中观察到了超导性,而在两个略微扭曲的六角硼氮化物(hBN)薄晶片之间的界面上出现了铁电样区域。尽管这些扭曲堆积现象引起了广泛关注,但对于这些材料的力学性质了解还不充分。特别是在vdW陶瓷材料中,尚未有针对扭曲结构对变形性和强度的影响进行深入研究。针对这一问题,燕山大学赵智胜及田永君、陕西理工大学张洋博士合作提出了一种合成方法,通过常规的火花等离子烧结(SPS)和热压烧结制备了具有扭曲层结构的BN陶瓷材料。在制备过程中,他们使用了类似洋葱的BN纳米颗粒作为起始材料,并采取了特定的制备条件来实现所需的扭曲结构。该研究解决了对于vdW陶瓷材料的扭曲结构对变形性和强度的影响的认识不足的问题。通过合成具有三维相互锁定的BN纳米片的扭曲层陶瓷材料,科学家们成功地展示了这种材料具有超高的室温变形性和强度。这一突破为工程陶瓷领域提供了新的可能性,因为通常情况下工程陶瓷的变形性较差,几乎没有塑性。通过将扭曲层结构引入vdW陶瓷材料,研究人员改变了材料的内部结构,从而实现了材料力学性能的显著提高。【科学解读】为了研究洋葱状BN(oBN)前体向六角硼氮化物(hBN)陶瓷的相变过程,并深入了解形成的结构特征,研究者通过图1详细表征了实验结果。在图1a中,研究者通过X射线衍射(XRD)图谱展示了不同SPS条件下制备的块状陶瓷的结构演变。图中的XRD图谱表明,随着烧结温度的升高,oBN前体的宽峰逐渐变窄,同时出现了与hBN类似的衍射线,指示了oBN向hBN样式的层状结构的相变过程。在图1b中,展示了在1,600℃烧结5分钟的陶瓷的显微结构,显示了纳米片的随机取向。通过选择区域电子衍射(SAED)测量,揭示了1,600℃样品与标准hBN晶体学衍射图案存在差异,暗示了一些亚稳态结构的存在。在图1c和图1d中,通过差分相位对比图像和高角度透射电子显微镜(HAADF-STEM)图像,研究者观察到了具有扭曲不同BN纳米片的层状结构。而在图1e中,透射电子显微镜(TEM)图像呈现了莫尔纹超晶格的存在,通过傅里叶变换图案表明了两组衍射斑点之间的旋转角度为27.8°。这些实验结果揭示了在1,600℃条件下烧结的陶瓷中存在着扭曲层结构,与标准hBN相比存在差异,暗示了亚稳态结构的存在。图1. 通过SPS制备的块状陶瓷的XRD图谱和显微结构。图2展示了通过SPS制备的TS-BN陶瓷在室温下具有超高的变形性和强度。在图中研究者进行了工程应力-应变曲线表征,发现TS-BN-I陶瓷在1,600°C烧结5分钟后表现出非凡的工程应变(14%)和强度(626MPa),远远超过了普通hBN陶瓷。通过单个循环压缩试验和多个循环试验,研究者证明了TS-BN-I陶瓷具有持久的塑性变形能力,并且能够在多次载荷-卸载循环中保持完整,这表明了其出色的力学稳定性。耗散能量与单轴压缩应力的对数-对数图显示,TS-BN陶瓷具有非常高的能量耗散能力,在塑性变形阶段的能量耗散甚至超过了商业hBN陶瓷等其他工程陶瓷。这些结果突出了TS-BN陶瓷在室温下具有出色的弹塑性能,表明其在冲击吸收器等应用中的潜在应用前景。TS-BN陶瓷的制备和性能评价为工程陶瓷领域带来了新的突破,为设计和制造具有优异力学性能的陶瓷材料提供了重要参考。图2. 通过SPS制备的TS-BN陶瓷的超高室温变形性和强度。图3展示了TS-BN陶瓷超高变形性和强度的起源。a部分通过计算得出了假想的θ-tBN晶体的滑移能和解理能。结果表明,与hBN相比,引入了扭曲堆叠结构后,滑移能明显降低,而解理能保持不变。这表明了扭曲堆叠对材料变形性能的重要影响。b部分展示了假想θ-tBN晶体的固有变形性因子(Ξ),与hBN相比,θ-tBN晶体的Ξ值提高了两个数量级,甚至超过了已知具有超高室温变形性的其他材料,如Ag2S和InSe。这表明扭曲堆叠结构对材料的变形性能有显著的提升作用。c和d部分展示了在三轴压缩试验中得到的(001)和(100)晶格面的平均差异应力(即强度)。结果显示,TS-BN的强度明显高于hBN。这说明了扭曲堆叠结构在提高陶瓷材料强度方面的重要作用。图3. TS-BN陶瓷超高变形性和强度的起源。图4展示了TS-BN陶瓷的变形模式。a) 断裂表面显示了大量纳米片,这些片被弯曲形成了明显的弯曲结构(白色箭头)。这些弯曲的纳米片表明了在陶瓷断裂过程中发生的弯曲变形。b) DF-STEM图像展示了陶瓷中纳米片的弯曲(白色箭头)和剥离(橙色箭头)。通过剥离面,纳米片被“剥离”成多个片,这显示了纳米片之间的局部剥离现象。c) HAADF-STEM图像表征了弯曲边界的局部缺陷(红色圆圈),表明了陶瓷中存在的一些微观缺陷。d) TEM图像展示了基面原子层之间的ripplocation(箭头)和位错(⊥),这些位错和ripplocation是陶瓷中的变形机制之一。这些观察结果揭示了TS-BN陶瓷的变形机制,包括纳米片的弯曲、剥离以及基面原子层之间的位错和ripplocation。这些变形机制有助于陶瓷在受力过程中保持整体结构的完整性,从而提高了其机械性能和韧性(见图4)。图4. TS-BN陶瓷的变形模式。【科学结论】本文展示了通过调控层状结构中的扭曲堆叠可以显著改变二维材料的物理和力学性质。研究者通过对氮化硼陶瓷的制备和调控,成功地实现了超高的变形能力和强度,这为工程陶瓷领域提供了全新的思路和方法。通过引入扭曲堆叠,陶瓷的变形因子得到显著提高,从而使其具有超出传统材料的变形能力和强度。这为设计和制备具有优异力学性能的新型陶瓷材料提供了新的思路和策略。此外,本文还揭示了纳米结构调控对材料性能的重要性,强调了在材料设计和工程中利用纳米尺度结构调控的潜力。原文详情:Wu, Y., Zhang, Y., Wang, X. et al. Twisted-layer boron nitride ceramic with high deformability and strength. Nature 626, 779–784 (2024). https://doi.org/10.1038/s41586-024-07036-5
  • 18家国内氮化镓头部企业:做研发有多烧钱?
    国家“十四五”研发计划已明确将大力支持第三代半导体产业的发展,氮化镓等第三代半导体材料也是支持新基建的核心材料,呈现巨大的潜在市场。目前氮化镓的应用市场分布于LED照明、激光器与探测器方向、5G射频和功率器件等。与国外领先企业相比,国内企业在技术积累上有着较大的差距,但国内企业之间的差距并不明显。通过调研国内18家氮化镓头部企业的研发投入,希望帮助行业人士通过本文了解目前氮化镓上市企业的研发费用情况。综合来看,氮化镓相关企业每年的研发费用最低在千万级,最高高达近30亿元;研发投入相对于营业收入占比,最低在3%以上,最高高达近26%。2020年国内氮化镓相关上市企业研发投入企业名称研发费用/元(单位:RMB)闻泰科技28.02亿三安光电9.3亿安克创新5.68亿华润微5.67亿士兰微4.86亿和而泰2.53亿赛微电子1.96亿华灿光电1.53亿亚光科技1.47亿奥海科技1.44亿易事特1.36亿国星光电1.34亿扬杰科技1.32亿乾照光电9086万捷捷微电7439万京泉华6505万聚灿光电6133万台基股份1283万各家企业简介及2020年研发投入情况如下:1.闻泰科技闻泰科技全资子公司安世半导体是全球知名的半导体IDM公司,总部位于荷兰奈梅亨,产品组合包括二极管、双极性晶体管、模拟和逻辑IC、ESD保护器件、MOSFET器件以及氮化镓场效应晶体管(GaN FET)。在与国际半导体巨头的竞争中,安世在各个细分领域均处于全球领先,其中二极管和晶体管出货量全球第一、逻辑芯片全球第二、ESD保护器件全球第一、功率器件全球第九。安世半导体第三代半导体氮化镓功率器件(GaN FET)广泛应用于电动汽车、数据中心、电信设备、工业自动化和高端电源,特别是在插电式混合动力汽车或纯电动汽车中。目前650V氮化镓(GaN)技术已经通过车规级测试。 2020年闻泰科技研发投入约28.02亿,研发投入总额占营业收入的5.42%。 2.三安光电三安光电主要从事化合物半导体材料与器件的研发与应用,以砷化物、氮化物、磷化物及碳化硅等化合物半导体新材料所涉及的外延片、芯片为核心主业。其中所生产的GaN光电器件——LED、光伏电池应用于照明、显示、背光、农业、医疗、光伏发电等领域;GaN微波射频器件——功率放大器、滤波器、低噪声放大器、射频开关器、混频器、振荡器、单片微波集成电路等应用于移动通信设备和基站、WiFi/蓝牙模组、卫星通信、CATV等;GaN电子电力器件——肖特基势垒二极管、金属氧化物半导体场效应晶体管、绝缘栅双极型晶体管、氮化镓场效应晶体管等应用于消费电源快速充电器、家用电器、新能源汽车、不间断电源、光伏/风能电站、智能电网、高速铁路等领域。2020年三安光电研发投入约9.3亿,研发投入总额占营业收入的11%。3.安克创新安克创新主要从事自有品牌的移动设备配件、智能硬件等消费电子产品的自主研发、设计和销售,是全球消费电子行业知名品牌商,产品主要有充电类、无线音频类、智能创新类三大系列。基于持续和巨大的研发投入,公司在各个产品领域形成了丰富且深入的技术积累,如将GaN(氮化镓半导体材料)材料应用在移动电源等相关产品中,在较大程度提高移动电源充电效率的同时降低了产品体积。2020年安克创新研发投入约5.68亿元,研发投入总额占营业收入的6.07%。4.华润微电子华润微电子是中国领先的拥有芯片设计、晶圆制造、封装测试等全产业链一体化经营能力的半导体企业,产品聚焦于功率半导体、智能传感器与智能控制领域,目前公司主营业务可分为产品与方案、制造与服务两大业务板块。公司产品与方案业务板块聚焦于功率半导体、智能传感器与智能控制领域。公司制造与服务业务主要提供半导体开放式晶圆制造、封装测试等服务。此外,公司还提供掩模制造服务。目前在研项目“硅基氮化镓功率器件设计及工艺技术研发”预计总投资规模约2.44亿元,目标完成650V硅基氮化镓器件的研发,建立相应的材料生产、产品设计、晶圆制作和封装测试能力,并应用于智能手机充电器、电动汽车充电器、电脑适配器等领域,达到领先水平。至2020年,该项目累计投入金额约3746亿元,目前自主开发的第一代650V硅基氮化镓Cascode器件静态参数达到国外对标样品水平,产出工程样品,可靠性考核通过。2020年华润微电子研发投入约5.67亿元,研发投入总额占营业收入的8.11%。5.士兰微电子士兰微电子主要产品包括集成电路、半导体分立器件、LED(发光二极管)产品等三大类。经过二十多年的发展,公司已经从一家纯芯片设计公司发展成为目前国内为数不多的以IDM模式(设计与制造一体化)为主要发展模式的综合型半导体产品公司。公司属于半导体行业,公司被国家发展和改革委员会、工业和信息化部等国家部委认定为“国家规划布局内重点软件和集成电路设计企业”,陆续承担了国家科技重大专项“01专项”和“02专项”多个科研专项课题。2020年,公司的硅上GaN化合物功率半导体器件在持续研发中,并获“极大规模集成电路制造装备及成套工艺”专项约1495万元补助。2020年士兰微电子研发投入约4.86亿元,研发投入总额占营业收入的11.34%。 6.和而泰深圳和而泰子公司铖昌科技主营业务为微波毫米波射频芯片的设计研发、生产和销售。铖昌科技在芯片行业拥有核心技术的自主研发能力,公司产品质量达到了服务于航天、航空的水准。铖昌科技主要产品包括GaN功率放大器芯片、低噪声放大器芯片模拟波束赋形芯片、数控移相器芯片、数控衰减器芯片等,产品应用于我国卫星遥感、卫星导航和通信等领域。2020年深圳和而泰研发投入约2.53亿元,研发投入总额占营业收入的5.41%。7.赛微电子赛微电子现有GaN业务包括外延材料和器件设计两个环节,其中GaN外延材料业务是基于自主掌握的工艺诀窍,根据既定技术参数或客户指定参数,通过MOCVD设备生长并对外销售6-8英寸GaN外延材料。2020年赛微电子研发投入约1.96亿元,研发投入总额占营业收入的25.54%。8.华灿光电华灿光电是全球领先的LED芯片及先进半导体解决方案供应商,主要产品为LED芯片、LED外延片、蓝宝石衬底及第三代半导体化合物氮化镓基电力电子器件。华灿光电十五年聚焦氮化镓材料在LED领域的技术研发,并于2020正式进入氮化镓基电力电子器件领域,产品主要面向移动消费电子终端快速充电器、其他电源设备,云计算大数据服务器中心、通信及汽车应用等领域。2020年华灿光电研发投入约1.53亿元,研发投入总额占营业收入的5.78%。9.亚光科技亚光科技集团系由原太阳鸟游艇股份有限公司在收购成都亚光电子股份有限公司基础上改名而来,太阳鸟为国内领先全材质的游艇、商务艇和特种艇系统方案提供商,连续多年公司复合材料船艇产销量行业领先。2017年9月,上市公司太阳鸟以发行股份的方式完成亚光电子97.38%股权的收购,成为国内体量最大的军用微波射频芯片、元器件、组件和微系统上市公司,是我国军用微波集成电路的主要生产定点厂家之一。在核心射频芯片方面,亚光科技大力扩大芯片研发团队规模,形成设计、封装、测试全流程研发生产能力,集中突破砷化镓/氮化镓射频芯片关键技术,在芯片制造领域与国内流片厂深度合作,打造完整的新型半导体射频芯片产业链,在满足自用的基础上,逐渐扩大对外芯片设计、流片、测试和封装的整体芯片设计外包业务;并以5G/6G射频前端芯片和光通讯芯片为突破口,加快民品芯片设计服务拓展。2020年亚光科技研发投入约1.47亿元,研发投入总额占营业收入的8.10%。10.奥海科技奥海科技主要从事充电器等智能终端充储电产品的设计、研发、制造和销售,产品主要应用于智能手机、平板电脑、智能穿戴设备(智能手表等)、智能家居(电视棒/机顶盒、智能插座、路由器、智能摄像头、智能小家电等)、人工智能设备(智能音箱、智能机器人、智能翻译器等)、动力能源、网络能源等领域。在GaN研发项目上,已经布局了30W、45W、65W产品,GaN充电器方面将布局100W、120W充电器。2020年奥海科技研发投入约1.44亿元,研发投入总额占营业收入的4.87%。11.易事特易事特主要从事5G+智慧电源(5G供电、轨道交通供电、智能供配电、特种电源)、智慧城市&大数据(云计算/边缘计算数据中心、IT基础设施)、智慧能源(光伏发电、储能、充电桩、微电网)三大战略板块业务的研发、生产与销售服务,为广大用户提供高端电源装备、数据中心、充电桩、5G供电、储能、轨道交通智能供电系统、光储充一体化系统等产品及能效解决方案。经过三十一年的发展,现已成全球新能源500强和竞争力百强企业,行业首批国家火炬计划重点高新技术企业、国家技术创新示范企业、国家知识产权示范企业。2020年易事特研发投入约1.36亿元,研发投入总额占营业收入的3.26%。12.国星光电国星光电是集研发、设计、生产和销售中高端半导体发光二极管(LED)及其应用产品为一体的国家高新技术企业,主营业务为研发、生产与销售LED器件及组件产品。公司作为国内LED器件封装的龙头企业,涉足电子及LED行业50余年,产品广泛应用于消费类电子产品、家电产品、计算机、通讯、显示及亮化产品、通用照明、车灯、杀菌净化等领域,技术实力领先,产品精益制造,拥有全面的生产和质量管理认证体系。公司主要产品分为器件类产品(包括显示屏用器件产品、白光器件产品、指示器件产品、非视觉器件产品)、组件类产品(包括显示模块与背光源、Mini背光模组)及LED外延片及芯片(包括各种功率及尺寸的外延片、LED芯片产品),业务涵盖LED产业链上、中、下游产品。2020年国星光电研发投入约1.34亿元,研发投入总额占营业收入的4.09%。“硅基AlGaN垂直结构近紫外大功率LED外延、芯片与封装研究及应用”、“晶圆级GaN纳米阵列生长与紫外探测器芯片研制项目”等获得政府补助。13.扬杰科技扬杰科技专业致力于功率半导体芯片及器件制造、集成电路封装测试等中高端领域的产业发展,主营产品为各类电力电子器件芯片、MOSFET、IGBT及碳化硅SBD、碳化硅JBS、大功率模块、小信号二三极管、功率二极管、整流桥等,产品广泛应用于消费类电子、安防、工控、汽车电子、新能源等诸多领域。“900V耐压GaN基垂直结构功率器件研发及产业化项目”获得政府补助。2020年扬杰科技研发投入约1.32亿元,研发投入总额占营业收入的5.01%。14.乾照光电乾照光电一直从事半导体光电产品的研发、生产和销售业务,主要产品为LED外延片、全色系LED和芯片及砷化镓太阳电池外延片及芯片,为LED产业链上游企业。在氮化镓LED方面,随着南昌生产基地一期的满产,公司全面布局普通照明产品、高压产品、灯丝产品、高光效产品、背光产品、倒装产品、Mini/Micro-LED产品,以及显示屏芯片产品。全新一代的Alioth系列照明产品,采用全新的外延结构设计、芯片结构设计和芯片制程工艺,在产品性能上得到大幅度的提升,凭借较高的性价比,迅速占领市场。2020年厦门乾照光电研发投入约9086万元,研发投入总额占营业收入的6.91%。“通用照明用GaN基材料及LED芯片制造技术改造项目”、“氮化镓基第三代半导体照明用材料及高效白光LED器件产业化项目”等获得政府补助。15.捷捷微电子江苏捷捷微电子是专业从事功率半导体芯片和器件的研发、设计、生产和销售,具备以先进的芯片技术和封装设计、制程及测试为核心竞争力的IDM业务体系为主。公司集功率半导体器件、功率集成电路、新型元件的芯片研发和制造、器件研发和封测、芯片及器件销售和服务为一体的功率(电力)半导体器件制造商和品牌运营商。2021年将加快功率MOSFET、IGBT、碳化硅、氮化镓等新型电力半导体器件的研发和推广,从先进封装、芯片设计等多方面同步切入,快速进入新能源汽车电子(如电机马达和车载电子)、5G核心通信电源模块、智能穿戴、智能监控、光伏、物联网、工业控制和消费类电子等领域。2020年江苏捷捷微电子研发投入约7439万元,研发投入总额占营业收入的7.36%。16.京泉华京泉华专注于电子元器件行业,是一家集磁性元器件、电源类产品的生产及组件灌封、组装技术于一体的解决方案提供者。公司电源产品按照产品特性可分为电源适配器和定制电源两大类,智能电源是定制电源产品系列中的新研发产品。电源具体产品包括:智能电源、氮化镓电源、电源适配器、裸板电源、LED电源、模块电源、医疗电源、工控电源、通信电源、光伏逆变电源、数字电源等多个系列。2020年京泉华研发投入约6505万元,研发投入总额占营业收入的4.95%。17.聚灿光电聚灿光电主要从事化合物光电半导体材料的研发、生产和销售业务,主要产品为GaN基高亮度LED外延片、芯片。与华中科技大学合作承担的“面向高端车用市场的氮化镓基倒装LED芯片研发及其产业化”政府科技项目,通过研发设计芯片版图、开发新工艺,已开发出车用大尺寸倒装芯片,产品性能优异,对占领国产高端芯片市场份额具有重要意义。2020年聚灿光电研发投入约6133万元,研发投入总额占营业收入的4.36%。18.台基股份台基股份专注于功率半导体器件的研发、制造、销售及服务,主要产品为大功率晶闸管、整流管、IGBT、电力半导体模块等功率半导体器件,广泛应用于工业电气控制系统和工业电源设备,包括冶金铸造、电机驱动、电机节能、大功率电源、输变配电、轨道交通、新能源等行业和领域。2020年台基股份研发投入约1283万元,研发投入总额占营业收入的3.30%。结合这18家氮化镓上市企业的研发费用可以看出,近年来国内企业在氮化镓相关领域投入研发资金高达上百亿元,而多数企业在财报中都表明看好未来氮化镓材料在LED照明、激光器与探测器方向、5G射频和功率器件等多个领域的市场前景,纷纷加码布局氮化镓项目。据了解,多家企业不乏获得政府千万级补贴的在研氮化镓项目。这预示着未来几年相关半导体检测仪器市场或将继续快速增长。
  • 4月1日起 这5项水质相关的环境标准将实施
    4月1日起这5项水质相关的环境标准将实施4月1日起有5项水质相关的环境标准将实施,涉及到气相色谱-质谱仪、高效液相色谱仪、生物学检测法、分光光度等仪器设备。HJ 1189-2021水质 28种有机磷农药的测定 气相色谱-质谱法 本标准为首次发布本标准规定了测定水中有机磷农药的气相色谱 -质谱法 。本标准适用于地表水、地下水、海水、生活污水和工业废水中敌敌畏、速灭磷、内吸磷、灭线磷、治螟磷、甲拌磷、特丁硫磷、二嗪磷、地虫硫磷、异稻瘟净、乐果、氯唑磷、甲基毒死蜱、磷胺、甲基对硫磷、毒死蜱、杀螟硫磷、马拉硫磷、对硫磷、溴硫磷、甲基异柳磷、水胺硫磷、稻丰散、丙溴磷、苯线磷、三唑磷、蝇毒磷、敌百虫等28 种有机磷农药的测定。当地表水、地下水和海水取样量为1 L,定容体积为1.0 ml 时,28 种有机磷农药的方法检出限为0.3 μg/L~0.6 μg/L,测定下限为1.2 μg/L~2.4 μg/L;当生活污水和工业废水取样量为100 ml,定容体积为1.0 ml 时,28 种有机磷农药的方法检出限为4 μg/L~7 μg/L,测定下限为16 μg/L~28 μg/L。警告:实验中使用的有机试剂和标准物质均为有毒化合物,试剂配制和样品前处理过程应在通风橱内进行;操作时应按要求佩戴防护器具,避免接触皮肤和衣物。HJ 1190-2021水质 灭菌生物指示物(枯草芽孢杆菌黑色变种)的鉴定 生物学检测法 本标准为首次发布本标准规定了鉴定水中灭菌生物指示物(枯草芽孢杆菌黑色变种)的生物学方法。本标准适用于微生物实验室灭菌效果的评价。警告:检测人员应采取必要的生物安全防护措施(包括但不仅限于一次性手套、口罩、防护服、防护眼镜、鞋套等防护用品);检测时应做好无菌防护,在无菌操作设备内进行。HJ 1191-2021水质 叠氮化物的测定 分光光度法 本标准为首次发布本标准规定了测定水中叠氮化物的分光光度法。本标准适用于地表水、地下水、生活污水和工业废水中叠氮化物的测定。当取样体积为150 ml,试样制备体积为100 ml,使用10 mm 光程比色皿时,方法检出限为0.08 mg/L(以叠氮根计),测定下限为0.32 mg/L(以叠氮根计)。警告:实验中所使用的叠氮化钠为剧毒试剂,具有爆炸性;盐酸具有强挥发性和腐蚀性;高氯酸铁具有强氧化性和腐蚀性。试剂配制和样品前处理过程应在通风橱内进行,操作时应按要求佩戴防护器具,避免吸入呼吸道或接触皮肤和衣物。HJ 1192-2021水质 9种烷基酚类化合物和双酚A的测定 固相萃取/高效液相色谱法 本标准为首次发布本标准规定了测定水中烷基酚类化合物和双酚A 的高效液相色谱法。本标准适用于地表水、地下水、生活污水和工业废水中4-叔丁基苯酚、4-丁基苯酚、4-戊基苯酚、4-己基苯酚、4-庚基苯酚、4-辛基苯酚、4-支链壬基酚、4-叔辛基苯酚和4-壬基酚等9 种烷基酚类化合物和双酚A 的测定。警告:实验中所使用的有机溶剂、标准物质和标准溶液均有一定的毒性,试剂配制和样品前处理过程应在通风橱中进行,操作时应按规定要求佩戴防护器具,避免吸入呼吸道、接触皮肤和衣物。HJ 1230—2021工业企业挥发性有机物泄漏检测与修复 技术指南 本标准为首次发布本标准规定了工业企业挥发性有机物泄漏检测与修复的项目建立、现场检测、泄漏修复、质量保证与控制以及报告等技术要求。本标准适用于工业企业开展设备与管线组件、废气收集系统输送管道组件挥发性有机物泄漏检测与修复工作。Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓扫码到APP免费下载目前仪器信息网资料库 有近70万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有近20万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 以标准“撬”市场 拉曼光谱应用拓展能否“快马加鞭”
    对科学仪器及分析测试行业而言,标准的重要性毋庸置疑。相关标准的制修订和推行对仪器技术及分析方法的市场推广具有非常重要的意义,特别是对市场活跃度比较高的、正在发展中的仪器类别而言,标准在市场中的指导价值也愈发凸显。  作为分子光谱领域最具发展前景的仪器类别之一,拉曼光谱仪器技术以及相关应用的发展一直是大家非常关注的话题。多年以来,虽然拉曼相关的研究很多,从业群体也在不断壮大,但是由于拉曼光谱相关的仪器评价及应用标准等还不够完善,导致市场上拉曼光谱仪的技术性能和产品质量良莠不齐,相关的应用推广还存在不少困难,这也给拉曼光谱仪的生产、使用和市场推广带来了不利影响,对其进一步的推广和应用造成了一定程度的阻碍。  不过,近年来,拉曼光谱相关的标准已经得到了明显的改观,并有加速的趋势。据不完全统计,目前拉曼光谱相关的国家标准有10项,行业标准有8项,地方标准有4项。另外,一系列的团体标准也已经发布实施。  一方面,相关仪器及分析方法标准出炉,让市场有“规”可寻!  特别值得一提的是,我国首次制定的《拉曼光谱仪通用规范》(GB/T 40219-2021)将于2021年12月1日正式实施。本标准的制定将结束国内外没有拉曼光谱仪标准的历史,其发布实施不仅规范了拉曼光谱仪生产厂家的生产检验标准,使得进入市场的产品品质更有保障,促进国内拉曼光谱仪产业更健康有序的发展,同时也提高了与国际同类产品的整体竞争水平。  2020年10月9日,教育部办公厅印发的30个教育行业标准中,《JY/T 0573-2020激光拉曼光谱分析方法通则》将代替JY/T 002—1996《激光喇曼光谱分析方法通则》,当年12月1日实施,这也是该标准实施20多年来的首次修订,吸引业界很大关注。新《通则》对仪器部分以介绍通用原理为主,不涉及具体型号仪器的结构和技术指标,其中的术语、校准器具与材料、及拉曼光谱定量分析方法借鉴了美国试验与材料协会(ASTM)标准和日本工业标准(JIS)相关条款的部分内容。  此外,2018年4月15日,由福建省计量科学研究院起草的《便携式拉曼光谱快速检测仪校准规范》JJF (闽) 1085-2018正式批准发布,2018年6月15日起实施,本规范为首次制定 2015年,国家质量监督检验检疫总局还发布了《拉曼光谱仪校准规范》(JJF 1544-2015),为拉曼光谱仪的校准提供了规范准则。  以上相关标准/规范等的发布实施,让拉曼光谱仪器/分析方法有“规”可寻!拉曼相关国家标准序号标准编号标准名称发布日期实施日期1GB/T 40069-2021纳米技术 石墨烯相关二维材料的层数测量 拉曼光谱法2021-05-212021-12-012GB/T 40219-2021拉曼光谱仪通用规范2021-05-212021-12-013GB/T 39540-2020页岩气组分快速分析 激光拉曼光谱法2020-11-192021-06-014GB/T 38569-2020工业微生物菌株质量评价 拉曼光谱法2020-03-312020-03-315GB/T 37984-2019纳米技术 用于拉曼光谱校准的频移校正值2019-08-302020-03-016GB/T 36705-2018氮化镓衬底片载流子浓度的测试 拉曼光谱法2018-09-172019-06-017GB/T 36063-2018纳米技术 用于拉曼光谱校准的标准拉曼频移曲线2018-03-152018-10-018GB/T 34899-2017微机电系统(MEMS)技术 基于拉曼光谱法的微结构表面应力测试方法2017-11-012018-05-019GB/T 33252-2016纳米技术 激光共聚焦显微拉曼光谱仪性能测试2016-12-132017-07-0110GB/T 32871-2016单壁碳纳米管表征 拉曼光谱法2016-08-292017-03-01(备注:以“拉曼”为关键词搜索的不完全统计)  另一方面,一系列应用标准发布实施,推动应用深度拓展!  随着仪器技术的进步以及相关应用的深入拓展,拉曼光谱相关的应用标准近年来陆续出台。比如2021年即将实施的《纳米技术 石墨烯相关二维材料的层数测量 拉曼光谱法》规定了使用拉曼光谱测量石墨烯相关二维材料层数的方法,为利用拉曼光谱法进行机械剥离方法制备的石墨烯薄片层数测量提供科学可靠的依据以及标准的实验方法,促进拉曼光谱在纳米技术领域及石墨烯相关二维材料产业中的推广应用,并为石墨烯相关二维材料的生产和研究提供技术指导。  激光拉曼光谱法作为气相色谱法后新兴的组成分析方法,具有分析速度快的技术优势,能满足页岩气勘探开发过程中的气质快速分析需求。《页岩气组分快速分析激光拉曼光谱法》(GB/T 39540-2020)将给页岩气的快速检分析提供更为方便的检测方法。  工业菌株是工业生物技术的关键和核心,菌株的质量评价在选育和投料过程中都不可或缺,但目前菌株评价方法大都包括生物量培养累积、目标代谢物提取和检测等繁琐的过程,评价周期长,不仅不利于工业菌株的快速筛选,而且延迟了生产的投料过程。《工业微生物菌株质量评价拉曼光谱法》(GB/T 38569-2020)规定了采用拉曼光谱评价工业微生物菌株质量的标准方法和流程,适用于发酵工业和基于微生物生物制造领域工业微生物(大肠杆菌、酵母等)的质量评价。  制药领域一直是拉曼光谱“攻坚”的领域。《中国药典》于2010年版第一次以指导原则收载拉曼光谱法,2015版中国药典也将拉曼正式以检测方法列入药典附录,提高到了与红外同等的位置 2020年版四部理化分析通则再次修订。参照USP和EP,2020年版中国药典对拉曼光谱法作了一系列修订,更全面地介绍拉曼光谱法的技术,比如增加了方法适用性的表述、对不同仪器波数提出了不同的要求、反映了拉曼光谱法的最新研究和技术进展等。  2020年版中国药典进一步明确了拉曼光谱法在药学中的应用范围,如“拉曼光谱能够脱机、联机、现场或在线用于过程分析,当实用长距离光纤,适用于远距离检测” “拉曼光谱既适合于化学鉴别、结构分析和固体性质如晶型转变的快速和非破坏性检测,也能够用于假药检测和质量控制” “拉曼光谱法用于晶型鉴别时,由于一般不需要制样,可以减少或避免研磨、压片等可能造成的转晶现象。波数低至太赫兹光区的特征光谱也可以提供用于多晶型研究和晶型鉴别重要信息”等,进一步明确了拉曼光谱法的作用,有利于推动拉曼光谱法在工艺开发和药品质量控制中的应用。  除此之外,拉曼光谱技术在乳制品、果蔬、纺织、珠宝玉石、法庭科学等领域的应用也取得了一系列的进展,相关国标、行标、团标已经出炉。不过,相对于拉曼光谱仪目前的应用领域和未来亟待拓展的应用方向,相关的标准还不够,期待更多应用标准出台以助力拉曼光谱应用拓展“快马加鞭”!拉曼相关行业标准序号标准编号标准名称行业批准日期实施日期1JY/T 0573-2020激光拉曼光谱分析方法通则教育2020-09-292020-12-012SF/T 0080-2020单根纤维的比对检验 激光显微拉曼光谱法司法2020-05-292020-05-293SY/T 7433-2018天然气的组成分析 激光拉曼光谱法石油天然气2018-10-292019-03-014GA/T 823.4-2018法庭科学油漆物证的检验方法 第4部分:激光拉曼光谱法公共安全2018-06-252018-06-255SN/T 4698-2016出口果蔬中百草枯检测 拉曼光谱法出入境检验检疫2016-12-122017-07-016GA/T 1067-2013基于拉曼光谱技术的液态物品安全检查设备通用技术要求公共安全2013-05-222013-10-017SN/T 3236-2012纺织纤维鉴别试验方法 拉曼光谱法出入境检验检疫2012-10-232013-05-018SN/T 2805-2011出口液态乳中三聚氰胺快速测定 拉曼光谱法出入境检验检疫2011-02-252011-07-01(备注:以“拉曼”为关键词搜索的不完全统计)
  • 5项水质检测标准发布 明年正式实施
    为进一步完善生态环境监测标准体系,规范生态环境监测行为,提高环境监测数据质量,服务生态环境监管执法,促进生态环境保护和保障人体健康,生态环境部于近日发布了5项国家生态环境标准,5项标准都与水质检测相关,且均为首次发布。《水质 28种有机磷农药的测定 气相色谱-质谱法》(HJ 1189-2021)本标准规定了测定水中有机磷农药的气相色谱-质谱法,适用于地表水、地下水、海水、生活污水和工业废水中敌敌畏、速灭磷、内吸磷、灭线磷、治螟磷、甲拌磷、特丁硫磷、二嗪磷、地虫硫磷、异稻瘟净、乐果、氯唑磷、甲基毒死蜱、磷胺、甲基对硫磷、毒死蜱、杀螟硫磷、马拉硫磷、对硫磷、溴硫磷、甲基异柳磷、水胺硫磷、稻丰散、丙溴磷、苯线磷、三唑磷、蝇毒磷、敌百虫等28 种有机磷农药的测定。本标准适用分析对象多,分离效果好,可支撑《地表水环境质量标准》(GB 3838-2002)、《地下水质量标准》(GB/T 14848-2017)等水环境质量标准实施,为农药行业水污染物排放标准的制修订、企业污染物排放的精细化管理提供监测技术支撑。该标准将于2022年4月1日实施。《水质 灭菌生物指示物(枯草芽孢杆菌黑色变种)的鉴定 生物学检测法》(HJ 1190-2021)  本标准规定了鉴定水中灭菌生物指示物(枯草芽孢杆菌黑色变种)的生物学方法。适用于微生物实验室废水灭菌效果的评价。本标准的发布实施可支撑微生物实验室废水灭菌效果的生物学检测,有利于贯彻落实《生物安全法》,加强生物安全风险防范,保护生态环境。该标准将于2022年4月1日实施。《水质 叠氮化物的测定 分光光度法》(HJ 1191-2021)  本标准规定了测定水中叠氮化物的分光光度法,适用于地表水、地下水、生活污水和工业废水中叠氮化物的测定。叠氮化物毒性强,危险性大。本标准的发布实施有利于相关工业排放叠氮化物的水污染物精细化管控,对保护生态环境和保障人体健康具有重要作用。该标准将于2022年4月1日实施。《水质 9种烷基酚类化合物和双酚A的测定 固相萃取/高效液相色谱法》(HJ 1192-2021)  本标准规定了测定水中烷基酚类化合物和双酚A 的高效液相色谱法,适用于地表水、地下水、生活污水和工业废水中 4-叔丁基苯酚、4-丁基苯酚、4-戊基苯酚、4-己基苯酚、4-庚基苯酚、4-辛基苯酚、4-支链壬基酚、4-叔辛基苯酚和 4-壬基酚等 9 种烷基酚类化合物和双酚A 的测定。可支撑《石油化学工业污染物排放标准》(GB 31571-2015)等水污染物排放标准实施。烷基酚类化合物和双酚A是典型的内分泌干扰物,具有毒性、持久性及生物累积性,我国已在相关产品的生产中禁用并在相关行业污染物排放标准中设置了限制指标。本标准的发布实施,有助于加强水污染物排放管控,为烷基酚类化合物和双酚A污染治理提供监测方法支撑。该标准将于2022年4月1日实施。《水质 铟的测定 石墨炉原子吸收分光光度法》(HJ 1193-2021)  本标准规定了测定水中铟的石墨炉原子吸收分光光度法,适用于地表水、地下水和工业废水中铟的测定。随着高新技术产业发展,铟的使用日益广泛,需关注含铟污染物对生态环境的影响。本标准选择性强、灵敏度高,所用仪器设备价格和分析成本相对较低。本标准的发布实施可为水环境及相关行业水污染物中铟的测定提供技术支撑。该标准将于2022年1月1日实施。
  • 环境领域发布水质检测新标准,4月1日正式实施
    生态环境部发布《水质 28种有机磷农药的测定 气相色谱-质谱法》(HJ 1189-2021)、《水质 叠氮化物的测定 分光光度法》(HJ 1191-2021)、《水质 9种烷基酚类化合物和双酚A的测定 固相萃取/高效液相色谱法》(HJ 1192-2021)等标准,标准将在2022年4月1日正式实施,这3个标准均为首次发布标准。 《水质 28种有机磷农药的测定 气相色谱-质谱法》(HJ 1189-2021)用于地表水、地下水、海水、生活污水和工业废水的检测,除了支撑《地表水环境质量标准》(GB 3838-2002)、《地下水质量标准》(GB/T 14848-2017)外,还为农药行业水污染的排放提供技术支持。 《水质 叠氮化物的测定 分光光度法》(HJ 1191-2021)用于地表水、地下水、生活污水和工业废水中叠氮化物的测定。标准实施更多应用在工业排放的叠氮化物的管控。 《水质 9种烷基酚类化合物和双酚A的测定 固相萃取/高效液相色谱法》(HJ 1192-2021),用于地表水、地下水、生活污水和工业废水测定,支撑《石油化学工业污染物排放标准》(GB 31571-2015)等水污染物排放标准实施,加强水污染物排放管控。 这3项标准的正式实施,为水质质量标准中的检测项目,在检测方法上得到很好地补充。 岛津水质分析仪器推荐 28种有机磷农药(HJ 1189-2021)Pic/01 GCMS-QP2020 NX 1、萘-d8(内标)2、敌敌畏3、(E)-速灭磷4、(Z)-速灭磷5、苊-d10(内标)6、内吸磷7、灭线磷8、治螟磷9、甲拌磷10、特丁硫磷11、二嗪磷12、地虫硫磷13、异稻瘟净14、(E)-磷胺15、菲-d10(内标)16、氯唑磷17、乐果18、甲基毒死蜱19、(Z)-磷胺20、甲基对硫磷21、毒死蜱22、马拉硫磷23、杀螟硫磷24、对硫磷25、甲基异柳磷26、溴硫磷27、水胺硫磷28、稻丰散29、苯线磷30、丙溴磷31、三唑磷32、䓛-d12(内标)33、蝇毒磷 《水质 叠氮化物的测定 分光光度法》(HJ 1191-2021)Pic/02 UV-1285 《水质 9种烷基酚类化合物和双酚A的测定 固相萃取/高效液相色谱法》(HJ 1192-2021)Pic/03 LC-40 岛津水质分析特色方案 Pic/04 SPE-LC-ICPMS汞在线富集及形态分析系统 ■ 流程图■ 在线富集,无机汞、烷基汞同时分离检测色谱图(10ppt) 岛津拥有丰富的分析测试仪器,能很好应对水质分析的需求。对于水质的三个新标准,高灵敏度高稳定性的GCMS、LC、UV均能满足新标准的检出限,并能对方法检测提供完善的应用方案。 本文内容非商业广告,仅供专业人士参考。
  • 6月1日起这10项环境标准将实施
    6月1日起这10项环境标准将实施我们从国家生态环境部了解到6月1日起有10项环境标准将实施,主要是水质、空气和土壤相关的环境标准,涉及到空气颗粒物检测仪器、液质联用仪器、气质联用仪器、分光光度计、不溶性微粒检测仪、气相色谱仪器、便携式傅里叶变换红外光谱仪器。HJ 653-2021 环境空气颗粒物(PM10和PM2.5)连续自动监测系统技术要求及检测方法该标准为替代标准,替代“HJ 653-2013”。本标准规定了环境空气颗粒物 (PM 10 和 PM 2.5 )连续自动监测系统(以下简称 PM 10 和 PM 2.5 自动 监测系统”)的技术要求、性能指标和检测方法。本次修订的主要内容有:—— 术语和定义中增加了“动态加热系统”“ 挥发性颗粒物补偿系统 ”和“实际状态”,并将本标准性能检测中颗粒物的浓度值由标准状态下浓度值修改为实际状态下浓度值;—— 系统组成中增加了“动态加热系统”和“ 挥发性颗粒物补偿系统 ”的要求,删除了 方法原理”的要求;—— 技术要求中增加了系统铭牌内容和切割器应具有唯一性标识的要求,修订了对数据显示、记录和输出功能要求,增加了对参数的显示、记录和输出要求;—— 性能指标中增加了“检出限”“湿度测量示值误差”“断电影响测试” 3项指标,调整和删除了部分性能指标,适当加严“参比方法比对测试”性能指标要求,将“切割器性能”“加载测试” 2项性 能指标调整至功能要求,检测方法见 HJ 93 的相关要求;—— 检测方法对应修改后的性能指标进行了调整,对“参比方法比对测试”的测试地点、测试程序等提出了更加全面和具体的要求。HJ 1210—2021土壤和沉积物 13 种苯胺类和 2 种联苯胺类化合物的测定 液相色谱-三重四极杆质谱法本标准为首次发布。本标准规定了测定土壤和沉积物中13种苯胺类和2种联苯胺类化合物的液相色谱 - 三重四极杆质谱法 。本标准适用于土壤和沉积物中联苯胺、苯胺、4-甲基苯胺、 2-甲氧基苯胺、 3-甲基苯胺、 2-甲基苯 胺、 2,4 -二甲 基苯胺、 4-硝基苯胺、 3-硝基苯胺、 4-氯苯胺、 2-萘胺、 2,6 -二甲基苯胺、 3-氯苯胺、 3,3 ' -二氯联苯胺和 N-亚硝基二苯胺共 13 种苯胺类和 2种联苯胺类化合物的测定。HJ 1214-2021水质 可吸附有机卤素(AOX ) 的测定 微库仑法 本标准为替代标准,替代“GB/T 15959—1995”本标准规定了测定水中叠氮化物的分光光度法 。本标准规定了地表水、地下水、生活污水和工业废水中可吸附有机卤素的微库仑测定方法。本标准与《水质可吸附有机卤素( AOX)的测定 微库仑法》( GB/T 15959—1995)相比,主要 差异如下:——修改了方法适用范围 、方法原理以及样品的采集和保存条件 ;——删除了样品吹脱步骤 ;——完善了标准核查溶液和试样制备的要求 ;——细化了校准 、样品测定和结果表示等内容 ;——增加了干扰和消除 、质量保证与质量控制等条款 。自本标准实施之日起,原国家环境保护局1995年 12月 21日批准发布的《水质 可吸附有机卤素(AOX)的测定 微库仑法》( GB/T 15959—1995)在相应的国家污染物排放标准实施中停止执行。HJ 1215-2021水质 浮游植物的测定 滤膜-显微镜计数法本标准为首次发布。本标准规定了测定地表水中浮游植物的滤膜 - 显微 镜 计数法 。本标准适用于地表水中浮游植物的快速测定。HJ 1216-2021水质 浮游植物的测定 0.1 ml计数框-显微镜计数法 本标准为首次发布。本标准规定了测定地表水中浮游植物的0.1 ml计数框 - 显微镜计数法 。本标准适用于地表水中浮游植物的密度测定。HJ 1219-2021环境空气和废气 吡啶的测定 气相色谱法本标准为首次发布。本标准规定了测定环境空气和废气中吡啶的气相色谱法 。本标准适用于环境空气、无组织排放监控点空气和固定污染源有组织排放废气中吡啶的测定。HJ 1220-2021环境空气 6 种 挥发性羧酸类化合物的测定 气相色谱-质谱法本标准为首次发布。本标准规定了测定环境空气中6种挥发性羧酸类化合物的气相色谱 - 质谱法。本标准适用于环境空气和无组织排放监控点空气中乙酸、丙酸、正丁酸、丙烯酸、异戊酸和正戊酸等6种挥发性羧酸类化合物的测定。HJ 1221-2021环境空气 降尘的测定 重量法本标准规定了测定环境空气中降尘的重量法。本标准与《环境空气降尘的测定重量法》( GB/T 15265 94)相比,主要差异如下——修改了集尘缸的材质要求和实验工具——细化了采样点布设的技术要求 删除了清洁对照点 增加了防鸟措施——明确了样品保存要求 补充完善了质量控制要求和实验记录信息——将降尘总量中可燃物的测定调整至附录自本标准实施之日起,原国家环境保护总局1994年10月26日批准发布的《环境空气降尘的测定重量法》(GB/T 15265—94)在相应的国家生态环境标准实施中停止执行。HJ 1222-2021固体废物 水分和干物质含量的测定 重量法本标准为首次发布。本标准规定了测定固体废物中水分和干物质含量的重量法。本标准适用于常见固体废物中水分和干物质含量的测定,不适用于挥发性有机物含量高、易燃易爆的固体废物样品中水分和干物质含量的测定。HJ 1240-2021固定污染源废气 气态污染物(SO2、NO、NO2、CO、CO2)的测定 便携式傅立叶变换红外光谱法本标准为首次发布。本标准规定了测定固定污染源废气中气态污染物(SO2、NO 、NO2、CO 、CO2)的便携式傅立叶变 换红外光谱法 。本标准适用于固定污染源废气中气态污染物(SO2、NO 、NO2、CO 、CO2)的测定。Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓扫码到APP免费下载目前仪器信息网资料库 有近75万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有近20万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 生态环境部发布《水质 28种有机磷农药的测定 气相色谱-质谱法》等5项国家生态环境标准
    为支撑相关水环境质量标准和水污染物排放标准实施,近期,生态环境部发布《水质 28种有机磷农药的测定 气相色谱-质谱法》(HJ 1189-2021)、《水质 灭菌生物指示物(枯草芽孢杆菌黑色变种)的鉴定 生物学检测法》(HJ 1190-2021)、《水质 叠氮化物的测定 分光光度法》(HJ 1191-2021)、《水质 9种烷基酚类化合物和双酚A的测定 固相萃取/高效液相色谱法》(HJ 1192-2021)、《水质 铟的测定 石墨炉原子吸收分光光度法》(HJ 1193-2021)等5项国家生态环境标准。《水质 28种有机磷农药的测定 气相色谱-质谱法》(HJ 1189-2021)为首次发布,适用于地表水、地下水、海水、生活污水和工业废水中28种有机磷农药的测定。本标准适用分析对象多,分离效果好,可支撑《地表水环境质量标准》(GB 3838-2002)、《地下水质量标准》(GB/T 14848-2017)等水环境质量标准实施,为农药行业水污染物排放标准的制修订、企业污染物排放的精细化管理提供监测技术支撑。《水质 灭菌生物指示物(枯草芽孢杆菌黑色变种)的鉴定 生物学检测法》(HJ 1190-2021)为首次发布,适用于微生物实验室废水灭菌效果的评价。本标准的发布实施可支撑微生物实验室废水灭菌效果的生物学检测,有利于贯彻落实《生物安全法》,加强生物安全风险防范,保护生态环境。《水质 叠氮化物的测定 分光光度法》(HJ 1191-2021)为首次发布,适用于地表水、地下水、生活污水和工业废水中叠氮化物的测定。叠氮化物毒性强,危险性大。本标准的发布实施有利于相关工业排放叠氮化物的水污染物精细化管控,对保护生态环境和保障人体健康具有重要作用。《水质 9种烷基酚类化合物和双酚A的测定 固相萃取/高效液相色谱法》(HJ 1192-2021)为首次发布,适用于地表水、地下水、生活污水和工业废水中9种烷基酚类化合物和双酚A的测定,可支撑《石油化学工业污染物排放标准》(GB 31571-2015)等水污染物排放标准实施。烷基酚类化合物和双酚A是典型的内分泌干扰物,具有毒性、持久性及生物累积性,我国已在相关产品的生产中禁用并在相关行业污染物排放标准中设置了限制指标。本标准的发布实施,有助于加强水污染物排放管控,为烷基酚类化合物和双酚A污染治理提供监测方法支撑。《水质 铟的测定 石墨炉原子吸收分光光度法》(HJ 1193-2021)为首次发布,适用于地表水、地下水、工业废水中铟的测定。随着高新技术产业发展,铟的使用日益广泛,需关注含铟污染物对生态环境的影响。本标准选择性强、灵敏度高,所用仪器设备价格和分析成本相对较低。本标准的发布实施可为水环境及相关行业水污染物中铟的测定提供技术支撑。上述五项标准的发布实施,对于进一步完善生态环境监测标准体系,规范生态环境监测行为,提高环境监测数据质量,服务生态环境监管执法,促进生态环境保护和保障人体健康具有重要意义。
  • ​【诺华新案例】重氮-叠氮-环合,三步全连续制备药物中间体
    欢迎您关注“康宁反应器技术”微信公众号,点击图片报名一、早期药物发现一个自身免疫性疾病的治疗药物发现项目中,2H-吲唑类化合物被鉴定为高效的选择性TLR 7/8拮抗剂。在先导化合物发现阶段,化合物12被确定可进一步进行体内药效实验研究。图1. 微克级样品的合成路线药物的早期发现使得化合物12和作为关键中间体的化合物5(2H-吲唑)的需求迅速增加。项目团队认识到,该微克级的合成路线可能会在进一步批量放大中产生问题。分离不稳定、潜在危险的叠氮化物中间体4及其在热环化为2H-吲唑5的工艺过程中有安全性的隐患。【考虑到连续工艺在处理高活性、不稳定化合物方面具有的优势,从间歇反应切换到连续流工艺的多个驱动因素中,安全性是最重要的一个因素。在需要快速合成化合物的早期临床前阶段,流动化学作为一种新技术可以大大加快开发过程。】二、连续流工艺探讨针对100克及以上规模的合成,团队启动了流动化学的工艺研究,其主要目标是保持反应体积尽可能小,精确控制反应条件,并避免在任何时间内反应混合物中危险且不稳定中间体的积累。1. 间歇式工艺的连续流技术评估图2. 2H-吲唑类化合物5a的三步合成将氨基醛2a转化为叠氮化物4a,间歇式工艺采用了在酸性条件下使用亚硝酸钠的重氮化方案,然后在0°C下添加叠氮化钠。该反应通常在三氟乙酸(TFA)作为酸性介质和溶剂的存在下进行,可以获得高收率的结果,并常规用于小规模合成。【但含有叠氮化物4a的反应混合物形成的悬浊液明显不适合流动化学筛选。而当该反应在水和盐酸的混合物中进行时,观察到明显较低的产率和大量副产物的形成。考虑到下一步反应,叠氮化合物4与氨基哌啶化合物6在Cu(I)催化的热环化反应仍然面临不适合连续流工艺的固体溶解问题。】研究团队首先需要找到合适的反应溶剂和试剂,对这两步反应来说,合适的溶剂既要溶解所有的物料,又要保持高的转化率。其次,作为另一个重点考虑的事项,需要避免叠氮化合物中间体4的分离。2. 叠氮化合物4a生成的连续流工艺开发 1)溶剂的选择研究者首先用亚硝酸叔丁酯和三甲基叠氮硅烷来代替无机物亚硝酸钠和叠氮化钠,但仅得到了20%的转化率。接着,研究者发现利用二氯乙烷和水的两相混合溶剂与三氟乙酸组合,可以将反应体系中的物质完全溶解,并得到了很高的转化率。而其它酸的应用,如乙酸、盐酸、硫酸和四氟硼酸等,仍会造成沉淀的生成或者反应的转化率降低。2)工艺条件筛选对该反应仔细的研究揭示,需当亚硝酸钠完全消耗后再向反应混合物中添加叠氮化钠,如果过早加入叠氮化钠,它将立即被第一反应步骤中剩余的未反应的亚硝酸钠所消耗。图3. 叠氮化合物4a的连续流工艺流程【Entry 3的实验条件连续稳定运行60分钟,可产中间体16g/h,完全满足下游实验的需要。】3. 2H-吲唑5a连续流工艺开发在完成重氮化及叠氮取代的连续流工艺开发之后,研究团队继续研究铜催化环化的连续流工艺。1)间歇式工艺缺陷间歇式反应中,10% mol的氧化亚铜在体系中悬浮性差,不适合用于连续流工艺。对于流动反应而言,80°C下反应90分钟的时间太长,会导致不可接受的低生产率。这种环化反应的收率通常合理的范围在70−80%,研究团队使用LC-MS鉴定了两种主要副产物氨基亚胺8a和氨基醛2a。图4. 2H-吲唑 5a反应路径及副产物确认2)对铜催化剂和配体的筛选研究者发现,在1当量TMEDA存在下,0.1当量的碘化铜可溶于二氯乙烷中。经反应筛选后,研究者确定了流动条件下环化的合适参数。含有0.1当量碘化铜(I)和1当量TMEDA的0.45M 4a 二氯乙烷溶液,在120°C下,在20分钟的停留时间内,完全转化为吲唑5a。使用LC-MS分析反应混合物表明,叠氮化物4a被完全消耗,得到产物5a、氨基醛2a和亚胺8a,其比例分别为91.5%、3.4%和5.1%,与之前使用的间歇式工艺相比,有了显著的改进。3)停留时间及铜盘管催化为了缩短停留时间和提高生产率,研究者在寻求用更具反应性的催化剂代替碘化铜(I)和TMEDA过程中发现,内径为1mm的铜线圈也有效地催化了该环化反应。推断在铜线圈的内表面上形成了少量的氧化铜(I),起到有效催化该反应的作用。图5. 铜盘管反应器催化反应作为概念证明,制备了0.32M的4a溶液,该溶液已与1.2当量的胺6在甲苯中混合,并在120°C下泵送通过铜盘管,停留时间为20分钟。使用色谱法进行处理和纯化后,分离出5.6g吲唑5a,产率为85%,纯度为98%(图5)。4. 重氮-叠氮-环合三步全连续合成2H-吲唑类化合物图6. 2H-吲唑 5b的连续流工艺结果利用上述研究结果,研究者同样进行了类似物5b的连续流工艺开发。与最初使用的间歇合成相比,新的替代连续工艺不仅避免了危险叠氮化物4a和4b的分离,而且为叠氮化物形成和热环化这两个关键步骤提供了更高的纯度和产率。总结报道了三步反应的连续工艺开发,在100克的规模上制备了两个关键的药物中间体2H-吲唑化合物5a和5b。与最初使用的间歇合成相比,新的替代连续工艺不仅避免了危险叠氮化物4a和4b的分离,而且为叠氮化物形成和热环化这两个关键步骤提供了更高的纯度和产率。通过减小反应器的持液体积,避免固体叠氮化合物的分离,并确保精确控制反应参数,特别是反应温度和试剂的比例,改进了工艺的安全性。将两个连续流步骤整合到化合物12的多步合成中导致更安全地制备和处理叠氮化物中间体,并显著促进了高效和选择性TLR 7/8拮抗剂项目的加速开发。随后,连续流工艺从研究部门转移到化学开发部门,仅对工艺进行了少量的修改,便用于制备千克规模的5b。参考文献:Org.Process Res. Dev. 2022,26, 1308−1317
  • 生态环境部印发两项水质检测相关标准征求意见稿
    p   近日,生态环境部印发《水质 叠氮化物的测定 分光光度法(征求意见稿)》和《水质 色度的测定 稀释倍数法(征求意见稿)》两项标准。 /p p   其中,《水质 叠氮化物的测定 分光光度法(征求意见稿)》为首次发布,规定了测定地表水、地下水、生活污水和工业废水中叠氮化物的分光光度法。 /p p   《水质 色度的测定 稀释倍数法(征求意见稿)》规定了测定生活污水和工业废水中色度的稀释倍数法。本标准自实施之日起,原国家环境保护局1989年12月25日批准发布的《水质 色度的测定》(GB 11903-1989)中“4 稀释倍数法”在相应的环境质量标准和污染物排放(控制)标准实施中停止执行。 /p p   详情如下: /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/36edb1f5-7ec6-43b1-b5f7-e9923bfd0760.jpg" title=" 函.jpg" alt=" 函.jpg" / /p p   为贯彻《中华人民共和国环境保护法》,保护生态环境,保障人体健康,提高生态环境管理水平,规范生态环境监测工作,我部决定制定《水质 叠氮化物的测定 分光光度法》等两项国家环境保护标准。目前,标准编制单位已完成征求意见稿,现提供给你们,请认真研究并提出修改意见,于2019年12月3日前将书面意见反馈我部,逾期未反馈将按无意见处理。 /p p   联系人:生态环境监测司顾闫悦 /p p   电话:(010)66556824 /p p   传真:(010)66556824 /p p   邮箱:zhiguanchu@mee.gov.cn /p p   地址:北京市西城区西直门南小街115号(邮编100035) /p p   附件: img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201911/attachment/b1a03251-6e25-4ed6-8bf4-6b121d1a05e6.pdf" target=" _self" title=" 1.pdf" textvalue=" 1.征求意见单位名单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 1.征求意见单位名单.pdf /span /a /p p span style=" color: rgb(0, 112, 192) "    /span img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201911/attachment/e5c6d4f2-4c39-4640-9a0e-a34eca4d9e4f.pdf" target=" _self" title=" 2.pdf" textvalue=" 2.水质 叠氮化物的测定 分光光度法(征求意见稿).pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 2.水质 叠氮化物的测定 分光光度法(征求意见稿).pdf /span /a /p p span style=" color: rgb(0, 112, 192) "    /span img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201911/attachment/25d6bbc8-b2c8-4163-9c48-2b280f05277f.pdf" target=" _self" title=" 3.pdf" textvalue=" 3.《水质 叠氮化物的测定 分光光度法(征求意见稿)》编制说明.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 3.《水质 叠氮化物的测定 分光光度法(征求意见稿)》编制说明.pdf /span /a /p p span style=" color: rgb(0, 112, 192) "    /span img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201911/attachment/8f185e8c-c1a6-433e-9fd0-6b90f86dd390.pdf" target=" _self" title=" 4.pdf" textvalue=" 4.水质 色度的测定 稀释倍数法(征求意见稿).pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 4.水质 色度的测定 稀释倍数法(征求意见稿).pdf /span /a /p p span style=" color: rgb(0, 112, 192) "    /span img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201911/attachment/2705190b-c5b8-4288-a0e7-87f4ebf7a115.pdf" target=" _self" title=" 5.pdf" textvalue=" 5.《水质 色度的测定 稀释倍数法(征求意见稿)》编制说明.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 5.《水质 色度的测定 稀释倍数法(征求意见稿)》编制说明.pdf /span /a /p
  • “恰到好处”的标准——石油产品分析新标准宣贯会举办
    仪器信息网讯 2021年7月15日,在陕西省西安市,第二届全国石油化工分析测试技术暨第十二届全国石油化工色谱学术报告会正式拉开了序幕。本次大会由中国石油学会石油炼制分会主办,中国石化石油化工科学研究院和北京理化分析测试技术学会共同承办,汇集了中国石油化工领域的专家、企业代表以及仪器公司相关技术人员等。15日上午,“石油产品分析新标准宣贯会”举行。宣贯会现场全国石油产品和润滑剂标准化技术委员会副秘书长 张建荣教授张建荣为我们介绍了全国石油产品和润滑剂标准化技术委员会(以下简称标准化委员会)的六个分析室委员会、秘书处以及目前国家标准体系等情况。此外,国家能源局对标准化委员会提出了在团标制定方面的工作要求,标准化委员会将承担石油化工相关的团体标准制定工作,近期也将举行启动会。另外,张建荣还预告了10月份更大规模的标准宣贯会。宣贯会分别由中国石化石油化工科学研究院首席专家徐广通教授和张月琴副研究员主持,相关标准的主要起草人对标准进行了解读。中国石化石油化工科学研究院首席专家徐广通教授主持宣贯会中国石化石油化工科学研究院 王亚敏中国石化石油化工科学研究院王亚敏对NB/SH/T 0230-2019 《液化石油气组成的测定 气相色谱法》标准进行解读。NB/SH/T 0230是 GB 11174-2011《液化石油气》要求的组成测定的试验方法,而NB/SH/T 0230-1992 技术标准较为落后,不适应现有需求,于是就有了新版NB/SH/T 0230-2019。对比NB/SH/T 0230-1992,NB/SH/T 0230-2019扩大了适用范围,可用于烃类和含氧化合物的组成测定;改变了样品进样模式,采用液体阀或闪蒸仪进样,新的进样技术提高了进样的“保真性”和重复性;重新修订了方法定量校正因子;重新建立了方法精密度数据等。总体来说,新标准为不同规格的液化石油气组成的测定提供了一个较好的分析方法。中国石化石油化工科学研究院 张月琴中国石化石油化工科学研究院张月琴对NB/SH/T 0991-2019《汽油中苯胺类化合物的测定 气相色谱-氮化学发光检测法》进行解读。含氮化合物含量过高会造成催化剂中毒,车用汽油产品质量差等,汽车尾气含氮排放将造成大气污染,所以非常有必要建立一套测定汽油中苯胺类化合物的标准方法。目前,国内测定汽油中苯胺类化合物的相关标准如下表所示:GB/T 33648-2017车用汽油中典型非常规添加组分的识别与测定 红外光谱法GB/T 33649-2017车用汽油中含氧化合物和苯胺类化合物的测定 气相色谱法GB/T 32693-2016汽油中苯胺类化合物的测定 气相色谱质谱联用法NB/SH/T 0994-2019汽油中含氧和含氮添加物的分离和测定 固相萃取-气相色谱-质谱法NB/SH/T 0991-2019汽油中苯胺类化合物的测定 气相色谱-氮化学发光法检测法不同的检测方法都有其独特的特点以及不同的检出限,NB/SH/T 0991-2019标准对单体苯胺类化合物的检出限为1mg/L,这种方法具有高选择性、等摩尔响应、外标法定量等特点,汽油样品可直接进样且氮化物峰非常直观,同时建立了汽油中苯胺类化合物的GC-NCD数据库,可对汽油中已知及未知含氮化合物进行准确测量。中国石化石油化工科学研究院 王利中国石化石油化工科学研究院王利对NB/SH/T 0883-2014《柴油着火滞后期和导出十六烷值的测定 等容燃烧室法》进行解读。报告中,主要将该标准与GB/T 386 《柴油十六烷值测法》标准进行对比,NB/SH/T 0883-2014测试柴油十六烷值可准确至75.1-31.5。下表所示为王利整理的两种标准的优缺点。标准优点缺点GB/T 386 《柴油十六烷值测法》稳定、成熟、公认耗费样品多(250mL)、耗时长(40min)、操作要求高、维护强度大NB/SH/T 0883-2014《柴油着火滞后期和导出十六烷值的测定 等容燃烧室法》快捷、耗费样品少(20mL)、时间段(20min)、精确度高、测试范围广、易操作、维护简单、自动化程度高、测试成本低中国石化石油化工科学研究院 钱钦中国石化石油化工科学研究院钱钦对《中间馏分油中含硫化合物的测定 气相色谱-硫化学发光检测法》标准进行解读,该标准仍未发布,并未有标准号。根据国家能源局2017年下达的能源领域行业标准制修订任务的要求,由中石化石科院、中石油石化院负责起草《中间馏分油中含硫化合物的测定 气相色谱-硫选择性检测器法》行业标准,以满足石油化工行业生产发展的需要。目前,现行测定中间馏分油中总硫的标准方法按照测试方法不同可分为以下三类:紫外荧光法GB/T 34100-2017SH/T 0689-2000荧光光谱法GB/T 17040-2019GB/T 11140-2008电量法SH/T 0253-1992然而,上述几种标准方法均不能检测中间馏分油中含硫化合物的类型,只能给出样品中的总硫含量,无法满足国内对中间馏分油中含硫化合物分布的分析需求。本标准基于气相色谱-硫化学发光检测器(GC-SCD),建立了适用于催化裂化柴油、加氢催化裂化柴油和车用柴油等中间馏分油中含硫化合物的分析方法,完成了精密度试验工作,确认了方法的重复性和再现性界值。由于标准未发布,不公开更多数据信息。中国石化石油化工科学研究院 范艳璇中国石化石油化工科学研究院范艳璇对《汽油中铁、铅、锰含量的测定 能量色散X射线荧光光谱法》标准进行解读,该标准仍未发布,并未有标准号。铅、铁、锰元素的存在不仅会造成发动机催化系统中毒,影响机动车的安全性,更会随着尾气排放到大气中,污染环境、危害人体健康。GB 17930-2016《车用汽油》规定:铅含量不大于0.005g/L,锰含量不大于0.002g/L,铁含量不大于0.01g/L。车用汽油中,不得人为加入含铅、含铁、含锰的添加剂。于是非常需要一种快速、准确、灵敏的检测方法。目前测定汽油中铅、铁、锰的标准有:国外标准国内标准分析方法应用范围ASTM D3237GB/T 8020-2015原子吸收光谱法汽油中铅SH/T 0712-2002原子吸收光谱法汽油中铁ASTM D3831NB/SH/T 0711-2019原子吸收光谱法汽油中锰IP 352能量色散X射线荧光光谱法汽油中铅ASTM D5059GB/T 8925-88(已作废)波长色散X射线荧光光谱法汽油中铅能量色散X射线荧光光谱法(EDXRF)方法简便、环保、快速且灵敏度高,无需样品前处理,不需要使用大量有机试剂,可实现多元素同时测量,采用新型激发光源。由于标准未发布,不公开更多数据信息。XRF作为一种普适性测试技术,非常适合石油化工产品的元素分析;随着仪器性能的提高,在痕量元素分析、现场在线测量方面都有较大提高。可作为油品快评技术之一,与化学计量学结合建立分析模型,快速得到样品元素组成信息。本次标准宣贯会的参会人员超过了200人,在每位老师讲解结束后,相关人员积极提问,形成了很好的互动交流,促进了相关标准的宣贯以及在工作中很好的实行。后记:通过上午的标准宣贯会,可以看到气相色谱法在石油化工应用非常广泛。无论是液化石油气的组成测定、汽油中苯胺类化合物的测定以及中间馏分油中含硫化合物的测定,采用的都是气相色谱法。对于不同的检测物质以及检测要求,需要不同的检测方法,如对汽油中苯胺类化合物进行测定时,不同的检测仪器有不同的适用范围:红外光谱法检测时间短,非常适合抽检汽油中苯胺类化合物;气相色谱法可以同时检测多种物质,如苯胺类化合物和其他非常规添加剂;GC-MS 可以看到其他含氧化合物等;GC-NCD虽只能检测氮化物,但是检出限低至1 mg/L;GC-SCD可检测出不同含硫化合物的类型。针对不同的检测需求,找到最合适的检测方法,是至关重要的。另外,在标准的制定过程中,尤为重要的一点就是对精密度的验证,其中包含重复性和再现性,这对仪器的测量准确度有极大的要求,这也是在提醒仪器厂商对于仪器的研发过程中,精密度这一参数是不容忽视的。
  • 【第三方检测】钢中非金属夹杂物的原位研究应用
    钢中非金属夹杂物是指钢中不具有金属性质的氧化物、硫化物、硅酸盐和氮化物。它们是钢在冶炼过程中由于脱氧剂的加入形成氧化物、硅酸盐和钢在凝固过程中由于某些元素(如硫、氮) 溶解度下降而形成的硫化物、氮化物,这些夹杂物来不及排出而留在钢中。随着近代精炼技术的发展,钢的“洁净度”大大提高,夹杂物在钢中的含量虽然极微,但对钢的性能却具有不可忽视的影响,非金属夹杂物在钢中破坏了金属基体的连续性,致使材料的塑性、韧性降低和疲劳性能降低,使钢的冷热加工性能乃至某些物理性能变坏。钢中夹杂物对钢性能的影响主要在对钢韧性的危害,而且危害程度随钢的强度增高而增加。然而其中夹杂物的数量及分布形态是影响钢材质量的重要指标之一。目前,可以利用扫描电镜分析和原位的动态研究对夹杂物的形态特征及分布进行研究。近日就有学者对于304不锈钢中夹杂物在变形过程中对于材料的微观结构的影响进行了相关的研究。原位(In situ)测试基于原位拉伸测试成果案例1[1]:针对夹杂物对304不锈钢变形行为影响的研究,本文通过原位拉伸的实验手段,采集实验过程中各载荷值下的SEM数据和EBSD数据,以此来分析各阶段夹杂物对304不锈钢基体变形行为的影响。通常,夹杂物对拉伸条件下基体性能影响的问题只能通过近原位测试方法来研究。只能用组织状态基本相同的几个试样拉伸,然后在达到预定载荷时停止装载和卸载试样。然后,抛光每个样品的表面以观察样品表面的变形。这种方法有很多缺点。它不能保证每个样品的均匀性,在典型现象发生时不能准确获得负载值,并且不能在同一区域内获得不同应力状态下的变形。这些缺点使得无法确保因素的独特性。与原位拉伸试验相比,原位拉伸试验具有以下三个优点:1.观测区域可以精确定位,在任何载荷下都可以用坐标求出观测区域;2.准确采集同一区域不同应力状态下的SEM和EBSD信息;3.它能准确地找出微裂纹萌生、扩展和宏观断裂的时刻。图1为304不锈钢的原位拉伸实验全过程,展示了不同载荷状态下材料的微观形貌。图1 原位拉伸微观过程 (a) F=0 N(δ= 0mm) (b) F= 300 N(δ =0.061 mm) (c) F=600 N(δ =0.417mm) (d) F =800 N(δ= 1.102mm) (e)F= 800 N(δ= 1.102mm) (f) F=1130 N(δ =2.233 mm) (g) F图2 不同载荷下夹杂物的形貌(a) F= 600 N (b) F = 700 N (c) F=800 N (d) F=900 N (e) F= 1000 N (f) F= 1100 N.由图2可知,当夹杂物的长轴方向与拉伸载荷方向垂直时,孔洞及微裂纹的扩展趋势最为剧烈,促进断裂行为的发生;当夹杂物的长轴方向与拉伸载荷平行时,孔洞及微裂纹的扩展趋势更为平缓,对于断裂行为的危害作用相比较小。图3 原位观察单晶和多晶MnS颗粒的KAM图 (a) F= 0N (b) F= 300 N (c) F=500 N (d) F= 600 N.由图3可知,原位生成的MnS夹杂物单晶形态和多晶形态并存,在变形过程中两者变形行为有明显差异且对于基体变形行为的影响也不同。结论:本文借助原位拉伸实验的手段进行SEM图的信息采集分析,EBSD数据的信息采集分析来研究MnS夹杂物对基体变形行为的影响。得到的结论如下:1.单晶态的MnS颗粒在变形过程中只会发生和基体界面的脱粘现象,多晶MnS颗粒会多发生内部断裂现象偶尔会发生与基体界面脱粘现象;2.在变形过程中,长轴方向垂直于拉伸方向的MnS颗粒比长轴方向平行于拉伸方向的MnS颗粒对于基体的影响更加的显著,对于基体的破坏作用更强;3.MnS颗粒的存在会促进变形过程中孔洞的形核,为孔洞聚集提供机会,促进材料产生准解理断裂特征,使材料失效提前,强度韧性下降。欧波同材料分析研究中心欧波同材料分析研究中心(以下简称“研究中心”)隶属于欧波同(中国)有限公司,研究中心成立于2016年,是欧波同顺应市场需求重金打造的高端测试分析技术服务品牌。旗下的核心团队由一大批“千人计划”、杰出青年和海归博士组成,可为广大客户提供系统性的检测解决方案。研究中心以客户需求为主导,致力于高端显微分析表征技术在国内各行业的推广,旨在通过高质量、高效率的测试分析服务帮助客户解决在理论研究、新产品开发、工艺(条件)优化、失效分析、质量管控等过程中遇到的一系列材料显微表征和分析的问题。
  • 实验室仪器的校准目的、校准周期如何确定?
    1、设备定期校准的主要目的 实验室对设备进行定期校准的主要目的有:1)建立、保持和证明设备的计量溯源性;2)改善设备测量值与参考值之间的偏差及不确定度;3)提高设备不确定度的可信性;4)确定设备性能是否发生变化,该变化可能引起实验室对之前所出具结果的准确性产生怀疑。 2、设备初始校准周期如何确定 设备初始校准周期的确定应由具备相关测量经验、设备校准经验或了解其它实验室设备校准周期的一个或多个人完成。确定设备初始校准周期时,实验室可参考计量检定规程/校准规范、所采用的方法和仪器制造商建议等信息。此外,实验室可综合考虑以下因素:1)预期使用的程度和频次;2)环境条件的影响;3)测量所需的不确定度;4)最大允许误差;5)设备调整(或变化);6)被测量的影响(如高温对热电偶的影响);7)相同或类似设备汇总或已发布的测量数据。 3、设备校准周期的调整 ISO/IEC 17025:2017 中 6.4.7 规定:【实验室应制定校准方案,并进行复审和必要的调整,以保持对校准状态的信心】实验室制定校准方案后,应在后续使用中结合设备的使用情况和性能表现作出必要的调整。设备的校准周期以及后续校准周期的调整一般应由实验室(或设备使用者)确定,并以文件化的形式规定。如果设备的校准证书中给出了校准周期的建议,实验室可根据自身情况决定是否采用。 4、设备后续校准周期调整需考虑的因素 设备后续校准周期的调整,一般应考虑以下因素:1)实验室需要或声明的测量不确定度;2)设备超出最大允许误差限值使用的风险;3)实验室使用不满足要求设备所采取纠正措施的代价;4)设备的类型;5)磨损和漂移的趋势;6)制造商的建议;7)使用的程度和频次;8)使用的环境条件(气候条件、振动、电离辐射等);9)历次校准结果的趋势;10)维护和维修的历史记录;11)与其它参考标准或设备相互核查的频率;12)期间核查的频率、质量及结果;13)设备的运输安排及风险;14)相关测量项目的质量控制情况及有效性;15)操作人员的培训程度。
  • 河北钢铁承钢氮化钒铁检化验标准填补国内空白
    9月23日,由全国生铁及铁合金标准化技术委员会授权河北钢铁集团承钢起草的氮化钒铁系列检化验行业标准顺利通过专家组审定,填补了国内行业相关领域的空白。  氮化钒铁是一种钢铁材料中微合金化的钒合金添加剂,性能优于钒铁和氮化钒,可广泛应用于高强度螺蚊钢筋、高强度管线钢、高强度型钢等产品生产。  氮化钒铁中主要元素的检测没有独立的分析标准,承钢技术人员在编制完成《氮化钒铁》国家标准的基础上,对氮化钒铁中钒、氮、氧、碳、硫、硅、锰、磷、铝等成分的检测方法进行深入的攻关、完善,形成了氮化钒铁系列9个检化验行业标准。  来自冶金工业信息标准研究院、北京钢铁研究总院、中国科学院等8家单位的26名专家,通过审定材料,听取标准起草编制工作汇报,对该标准的科学性、可操作性、知用性和先进性及标准文本结构的严密性、文字的流畅性等内容进行了严格审定,一致同意审定通过。  据悉,氮化钒铁系列检化验标准的制定,填补了国内行业相关领域的空白,为氮化钒铁的生产及评价产品的性能提供了标准依据,为打击伪劣产品,提升产品质量,推动产业升级和有序发展具有积极的促进作用。
  • 制药行业温度校准方案(一) | 安装于工艺设备卫生型温度传感器校准
    应用背景温度数据的监测在制药行业里有相当重要的地位,不论是产品质量保障、节能降耗还是合规要求,再或者药品研发-生产-包装-运输-存储的各个环节,都与温度息息相关,而且对温度参数的准确可靠有较高要求。温度监测大都由温度传感器和显示设备组成,随着时间的推移,温度传感器会受到诸多因素的影响,例如震动,盈利变化,化学腐蚀等,其性能参数也会产生变化,因此需要对其进行校准以确定其误差的大小,确保其在允许误差范围内工作。而新版GMP规范第五章第五节对校准也做了明确规定:对于生产和检验用的仪表要定期校准,保存校准记录,未经校准的仪表不得使用。AMETEK校准仪器具有40年的温度校准经验,深入了解用户需求,为制药行业用户设计了有综合性的专业解决方案:✔ 卫生型温度传感器✔ 超短支温度传感器✔ 无法拆卸狭小空间温度传感器✔ 超低温冰箱、冻干设备温度传感器✔ 湿热灭菌器温度传感器✔ 隧道灭菌温度传感器✔ 表面安装温度开关制药行业温度校准方案(一)安装于工艺设备卫生型温度传感器校准解决方案:RTC-156B 超级标准体炉配短支校准套件✔ 专业套件:定制套管保证与卫生型卡盘传感器充分热平衡,补偿热损失,外接参考传感器与被检传感器位置保持一致,精准控温。✔ 洁净 无液体介质,不易污染探头,尤其适用于对探头洁净度有严格标准的企业 。✔ 性能: 双区加热配合 DLC 动态负载补偿 ,保证垂直温场均匀稳定,不受被检传感器 插入深度影响 。✔ 便携 干体炉 便于携带至 现场 ,可以 进行 全回路校准,减少分离回路校准的附加误差 。✔ 安全: 无液体挥发,不会对操作人员健康产生危害,也不会污染实验室工作空间✔ 快捷: 升降温速度远快于 液槽,成倍提高 工作效率关于Ametek Jofra 干体炉Ametek校准仪器是全球主要的温度、压力及电信号校准仪生产厂商之一,干体炉的发明者,能提供快速精准的温度校准方案。AMETEK干体炉有5大系列共50多个型号,温度覆盖-100~1205℃,满足各个行业的温度校准需求。根据应用情况提供多样的解决方案,实现实验室及现场的快速精准温度校准。
  • 《环境空气挥发性有机物采样器校准规范》(征求意见稿)印发 青岛众瑞参与编写
    近日,全国环境化学计量技术委员会发布了市场监管总局《2020年国家计量技术规范制定、修订及宣贯计划》中的《环境空气挥发性有机物采样器校准规范》(征求意见稿),众瑞作为规范起草小组成员之一重点参与了该规范的编写。  环境空气挥发性有机物采样器(以下简称采样器)主要用于采集环境中以气态、颗粒物状态存在的挥发性有机物。其工作原理是,采样泵将挥发性有机物采集到滤膜和吸附材料中,通过测量单元来控制和测量采样体积,最终达到定量采集的目的。按照采样 流量不同分为中流量采样器、大流量采样器和超大流量采样器,其工作点流量分别为100L/min、225 L/min 和 800 L/min。  采样器一般由采集单元(包括采样头、滤料采样夹、滤膜、吸附材料、采样泵)、 测量控制单元(流量传感器、温度传感器等)、数据处理单元、显示单元组成。  作为有多年研发、生产和校准经验的设备生产厂商,众瑞在标准编制过程中给出了有针对性的意见和建议,同时,众瑞设备参与了规范编制过程中的一系列试验和论证,为规范计量特性的确定做出了重要贡献。  该规范主要适用于采样流量范围在(60~1200)L/min内环境空气挥发性有机物采样器的校准,其发布将填补国内对于大流量和超大流量采样器无相应计量技术规范的空白,进而满足众多生产、使用者量值溯源的需求,具有较强的社会效益和经济效益,规范的具体内容如下:
  • 【无创呼气诊断】山西大学实现免校准、ppb级的实时氨测量
    与血液分析相比,人体呼气分析通过量化呼出的生物标志物,提供了一种非侵入式的实时无创诊断方式。山西大学董磊教授团队实现了一款无需校准的中红外(MIR)呼气传感器,采用 10.359µm 中红外量子级联激光器(QCL)瞄准氨的强吸收谱线,并采用拍频石英增强光声技术(beat-frequency quartz-enhanced photoacoustic technique, BF-QEPAS),消除了传统石英增强光声光谱技术(quartz-enhanced photoacoustic spectroscopy, QEPAS)校准过程和波长锁定的要求。通过研究吸附解吸效应、优化传感器系统的调制深度和调制频率,在3 ms的积分时间内实现了9.5 ppb的检测限。研究组的实验记录了八名健康志愿者呼出的氨气含量,并对实时测量结果进行分析。与传统的 QEPAS 传感器相比,该项目所提出的基于 BF-QEPAS 的传感器具有更高的灵敏度、更快的响应时间。 这项研究成果《Calibration-free mid-infrared exhaled breath sensor based on BF-QEPAS for real-time ammonia measurements at ppb level》2022年2月发表于《Sensors and Actuators: B. Chemical》。 图一 基于BF-QEPAS的免校准、ppb级、实时中红外人体呼出氨传感器论文封面 氨主要通过肝脏和肾脏的代谢过程从人体排出,因此人体氨(NH3)水平的变化与肝脏和肾脏的功能障碍有关,当肝脏和肾脏发生疾病时,代谢紊乱会导致体内氨水平升高。然而,目前关于人体氨水平的医学测量仍依赖于血液分析,这是一种具有感染风险的侵入性诊断方法。尽管近年来有一些新的方法实现氨气监测,然而面对临床诊断的呼吸分析存在分辨率极高、样品量小、响应时间快、校准间隔长等要求,迫切需要开发新的方法来完成人体呼吸氨气的检测。 近年来,随着光声技术的发展,基于石英增强光声光谱(QEPAS)的痕量气体传感器具有更佳的抗噪性和更强的分析能力。随后兴起的拍频石英增强光声光谱(BF-QEPAS)技术在响应时间和校准间隔方面比传统的 QEPAS 更具优势。BF-QEPAS 要求激光调制频率与石英音叉(QTF)谐振频率失谐,当激光波长快速扫描通过目标吸收线时,可以得到两个频率之间的拍频信号,快速获取及反演痕量气体浓度。因此,BF-QEPAS 避免了校准过程和波长锁定要求,并允许对目标痕量气体进行实时监测。 山西大学团队针对选定的氨吸收线,采用中心波长为 10.359 µm 的连续波(CW)分布式反馈量子级联激光器(DFB-QCL)作为光源。项目组采用的激光波长调谐范围涵盖从 964.955 cm-1 到 966.873 cm-1,其中在965.35 cm-1是一条几乎不受水和二氧化碳干扰的强吸收谱线。昕虹光电为项目组提供了QC-Qube 全功能迷你量子级联激光器发射头,集成了高质量进口激光芯片、珀耳帖冷却器、低噪声风扇和输出光束准直透镜组,便于科研人员快速搭建一套基于QCL的激光发射光源。 如图二所示,传感器系统由呼吸采样系统、光声传感单元、控制与数据处理单元三部分组成。呼吸采样系统旨在收集呼出气并调节气体压力和流量,为光声检测提供合适的测量环境。光声传感单元则是采用了BF-QEPAS技术的传感器核心部分。其中,控制和数据处理单元中采用了来自昕虹光电的QC750-touch屏显激光驱动器,为激光器提供工作电流并控制其温度。实验结果显示该传感器原型机能够达到9.5ppb的检测极限。 图二 基于BF-QEPAS的人体呼出气氨传感器原型照片 项目组并演示了八名健康志愿者基于 BF-QEPAS 传感器系统的呼出气实时氨测量。图三为一个典型呼气过程中氨和二氧化碳的浓度变化曲线。八名健康受试者的测量结果氨浓度分布在150-640ppb范围内,均低于1500ppb的安全阈值。实验表明,即使是健康的受试者也存在较大的个体浓度差异。 图三 基于 BF-QEPAS 传感器系统的志愿者呼出气实时测量浓度曲线 参考文献:Biao Li, Chaofan Feng, Hongpeng Wu, Suotang Jia, Lei Dong, Calibration-free mid-infrared exhaled breath sensor based on BF-QEPAS for real-time ammonia measurements at ppb level, Sensors and Actuators B: Chemical, Volume 358, 2022, 131510, ISSN 0925-4005,
  • 44.2万!福州市长乐生态环境局采购颗粒物监测仪器
    项目概况 受福州市长乐生态环境局委托,福州晋建工程造价咨询有限公司对[350182]FZJJ[GK]2021004-1、长乐区政府空气自动站颗粒物监测仪器货物类采购项目组织公开招标,现欢迎国内合格的供应商前来参加。 长乐区政府空气自动站颗粒物监测仪器货物类采购项目的潜在投标人应在福建省政府采购网(zfcg.czt.fujian.gov.cn)免费申请账号在福建省政府采购网上公开信息系统按项目获取采购文件,并于2022-01-06 09:30(北京时间)前递交投标文件。一、项目基本情况 项目编号:[350182]FZJJ[GK]2021004-1 项目名称:长乐区政府空气自动站颗粒物监测仪器货物类采购项目 采购方式:公开招标 预算金额:442000元 包1: 合同包预算金额:442000元 投标保证金:4420元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)1-1A032405-环保监测设备环保监测设备1(项)否长乐区政府空气自动站颗粒物监测仪器更新项目技术参数福州市长乐生态环境局2021年10月长乐区政府空气自动站颗粒物监测仪器更新项目招标参数及要求一、项目清单序号 产品名字 数量 单位 预算价(万元) 预算总价(万元)1 PM10监测仪及附件 1 套 16.7 44.22 PM2.5监测仪及附件 1 套 16.7 3 数采工控机及扩展模块相应软件 1 套 3.1 4 全自动流量校准器 1 套 5.9 5 机柜 1 套 1.8 二、主要技术参数及要求1总体要求★1.1 长乐区空气自动监测站现有设备为安徽蓝盾光电子股份有限公司2013年的产品,监测项目为SO2、NO2、CO、O3、PM10、PM2.5,由于运行时间久,仪器出现老化,本次采购主要对PM10、PM2.5等进行更新,要求所提供的监测仪器必须是原厂全新未经拆封的、高质量和工艺精良的产品,能够与现有的仪器设备构成一个完善的系统并按照技术要求连续运行。所提供的货物技术规格、安装标准及技术规范等必须符合国家和行业规定,技术参数与配置要求不得低于提供的技术参数与配置要求。1.2 所提供的仪器设备应满足《环境空气颗粒物(PM10、PM2.5)连续自动监测系统技术要求及检测方法》(HJ 653-2013)及修改单、《环境空气颗粒物(PM10、PM2.5)连续自动监测系统安装和验收技术规范》(HJ 655-2013)及修改单、《环境空气颗粒物(PM10和PM2.5)连续自动监测系统运行和质控技术规范》(HJ817 2018)等相关要求。1.3 所提供的仪器设备应保证能在当地气候条件及污染水平下全天候正常运行。1.4 需要采购单位自行解决的附属设备、配件应在投标文件中列出。否则,系统正常运行缺少的任何附件及部件,均视为供货方免费及时提供。★1.5 监测设备清单中PM10与PM2.5仪器监测方法需一致,且所投型号在中国环境监测总站PM2.5、PM10适用性检测名录内。★1.6 投标人所提供的仪器(PM10、PM2.5)须持有国家生态环境部环境监测仪器质量监督检验中心出具的《检测报告》,且在有效期内。★1.7所有的仪器应与原系统能构成一个完善的系统并按照技术要求连续运行。投标人所投设备需与原系统兼容,投标人需对此作出承诺,如不能兼容投标人需承担一切责任。2.技术规格要求2.1所有监测仪输出的数据能够自动换算为实测浓度。2.2具有0-100mv,0-1V,0-5V,0-10V模拟输出方式,提供RS232/485双向数字通讯接口,所有监测仪器必须预留一个数据输出串口。2.3须提供监测仪取数通讯协议和数据采集器取数通讯协议。2.4数据采集与传输完整、准确、可靠,采集值与测量值误差≤1%。3.技术参数3.1 PM10分析仪及附件3.1.1配置要求:含主机、切割器、无油活塞泵、采样管、动态加热系统、采样管三脚固定支架、RH温室湿气压传感器及线路、采样管三通转接头、法兰、配套螺丝、采样纸带等。3.1.2技术参数:3.1.2.1分析方法:连续实时β射线吸收法加动态加热系统或β射线吸收法加动态加热系统联用光散射法。3.1.2.2 量程:(0~1000)μg/m3或(0~10000)μg/m3(可选),具有自动切换功能。3.1.2.3切割性能 50%切割粒径:Da50=(10±0.5)μg/m3,σg=1.5±0.13.1.2.4 分辨率:0.1μg/m3。▲3.1.2.5测量精度:斜率(k):1±0.1,截距(b): 当k≥1时,-10μg/m3≤b≤(110-100×k)μg/m3;当k≤1时,(90-100×k)μg/m3≤b≤10μg/m3;相关系数:≥0.95;3.1.2.6数据有效率;连续运行至少90天,有效数据率不低于90%;3.1.2.7温度测量示值误差:在(-30—50)℃范围内,≤2℃;3.1.2.8时钟误差:在正常工作下测试6小时,≤±20s,在断电条件下,≤±120s;3.1.2.9流量稳定:24h内,每一次测试时间点流量变化≤±10%设定流量,24h平均流量变化≤±5%设定流量;3.1.2.10校准膜重现性:≤±1%(标称值);▲3.1.2.11平行性:≤7%3.1.2.12实时质量浓度平均时间:1分钟;长期滑动平均时间:60-3600s和24h。3.1.2.13数据输出速率:每秒。3.1.2.14放射源:符合国家有关放射性安全标准要求3.1.2.15 控制方式:微处理机控制方式,并有自我诊断及设定功能,能显示仪器的操作状态和远程诊断。3.1.2.16输出:具有USB和网络传输接口,RS485、RS232数字信号输出,4-20mA模拟信号输出,也可选择无线网络或光纤进行远距离通讯;3.1.2.17输入:16路数字输入;0-10VDC输入(选项)。3.1.2.18通讯协议:C-link,Modbus,TCP/IP,Gesytec,ESM,数据流和NTP协议。数据存储:测量数据海量存储(至少可存10年的数据量),具有可选择性小时报表、日报表查询和U盘直接导出数据功能;3.1.2.19采样装置:符合行业标准的采样头和切割器;采样系统密封,与站房联接具有法兰或其他形式多级防渗水连接;与站房外联接的法兰必须为耐腐蚀和坚固不锈钢制造;3.1.2.20加热采样管空气滞留时间:<20s。采样管及相关配件要求:(1)长度应满足现有站房采样高度设置要求;(2)材质为非反应性物质,如聚四氟乙烯;(3)应有加热除湿装置;(4)采集可吸入尘样品的管道内壁应光滑; (5)入口应设有防雨伞状帽和纱网,应能防止雨水和粗大尘粒随空气一起被收入。3.1.2.21采样泵流量:>50L/min;选用优质轴流风机。★3.1.2.22投标产品应在中国环境监测总站环境空气颗粒物(PM10)连续监测系统适用性检测合格名录内;投标时提供生态环境部监测仪器设备质量监督检验中心出具的整机适用性测试报告扫描件,以上参数在测试报告中若有检测结果,须以检测报告结果作为响应评审依据。3.2 PM2.5分析仪及附件3.2.1配置要求:含主机、切割器、无油活塞泵、采样管、动态加热系统、采样管三脚固定支架、RH温室湿气压传感器及线路、采样管三通转接头、法兰、配套螺丝、采样纸带等。3.2.2技术参数:3.2.2.1分析方法:连续实时β射线吸收法加动态加热系统或β射线吸收法加动态加热系统联用光散射法。3.2.2.2 量程:(0~1000)μg/m3或(0~10000)μg/m3(可选),具有自动切换功能。3.2.2.3切割性能 50%切割粒径:Da50=(2.5±0.2)μg/m3,σg=1.2±0.1。3.2.2.4 分辨率:0.1μg/m3。▲3.2.2.5测量精度:斜率(k):1±0.1 截距(b):当k≥1时,-5μg/m3≤b≤(55-50×k)μg/m3;当k≤1时,(45-50×k)μg/m3≤b≤5μg/m3,相关系数:≥0.95。3.2.2.6数据有效率;连续运行至少90天,有效数据率不低于90%。3.2.2.7温度测量示值误差:在(-30—50)℃范围内,≤2℃。3.2.2.8时钟误差:在正常工作下测试6小时,≤±20s,在断电条件下,≤±120s。3.2.2.9流量稳定:24h内,每一次测试时间点流量变化≤±10%设定流量,24h平均流量变化≤±5%设定流量。3.2.2.10校准膜重现性:≤±1%(标称值)。▲3.2.2.11平行性:≤10%3.2.2.12实时质量浓度平均时间:1分钟;长期滑动平均时间:60-3600s和24h。3.2.2.13数据输出速率:每秒。3.2.2.14放射源:符合国家有关放射性安全标准要求3.2.2.15 控制方式:微处理机控制方式,并有自我诊断及设定功能,能显示仪器的操作状态和远程诊断。3.2.2.16输出:具有USB和网络传输接口,RS485、RS232数字信号输出,4-20mA模拟信号输出,也可选择无线网络或光纤进行远距离通讯;3.2.2.17输入:16路数字输入;0-10VDC输入(选项)。3.2.2.18通讯协议:C-link,Modbus,TCP/IP,Gesytec,ESM,数据流和NTP协议。数据存储:测量数据海量存储(至少可存10年的数据量),具有可选择性小时报表、日报表查询和U盘直接导出数据功能;3.2.2.19采样装置:符合行业标准的采样头和切割器;采样系统密封,与站房联接具有法兰或其他形式多级防渗水连接;与站房外联接的法兰必须为耐腐蚀和坚固不锈钢制造;3.2.2.20 切割器需经国家级产品质量监督检验中心检测合格;(投标时提供检测报告扫描件予以佐证)。3.2.2.21加热采样管空气滞留时间:<20s。采样管及相关配件要求:(1)长度应满足现有站房采样高度设置要求;(2)材质为非反应性物质,如聚四氟乙烯;(3)应有加热除湿装置;(4)采集可吸入尘样品的管道内壁应光滑; (5)入口应设有防雨伞状帽和纱网,应能防止雨水和粗大尘粒随空气一起被收入。3.2.2.22采样泵流量:>50L/min;选用优质轴流风机。★3.1.2.23投标产品应在中国环境监测总站环境空气颗粒物(PM2.5)连续监测系统适用性检测合格名录内;投标时提供生态环境部监测仪器设备质量监督检验中心出具的整机适用性测试报告扫描件,以上参数在测试报告中若有检测结果,须以检测报告结果作为响应评审依据。3.3数据采集工控机及扩展模块相应软件3.3.1配置要求系统自动采集空气自动监测站数据,实现数据包的有效性检查、解析和入库(数据存储);采用多线程异步通信技术与各监测点通信,可查看原始数据报文,并可实现数据同步转发;同时支持接入协议的启用和停止,原始数据查询,AQMS空气质量协议标准,可实现向导式的数据接入配置。数据采集软件作为整个平台系统的中间件,用于实现现场设备监测数据与服务端监管平台的对接,根据数据规约,能够对现场监测设备进行数据采集及在线传输,实现数据收发、数据解析、数据存储及日志记录。子站数据采集系统能够根据中国环境监测总站的《总站环境自动监测系统联网数据交换协议(试行)》的要求,可直连到中国环境监测总站。投入正常运行时,日常监测数据应可连接传送到省站平台。3.3.2硬件技术参数3.3.2.1 CPU:Intel I5,大于等于3.4GHz 。3.3.2.2内存:8G及以上。3.3.2.3硬盘:≧120G SSD或者≧500G机械硬盘。3.3.2.4?232串口:≧8个。3.3.2.5显示器:≧19LCD(分辨率1280 ×824)。3.3.2.6操作系统:预装windows XP以上。3.3.2.7 4U工业机箱3.3.2.8键盘及显示器:通用型104键键盘,液晶显示器1024*768像素以上3.3.2.9接口扩展模块:视站点仪器设备配置与集成情况选择如下接口模块(RS232接口模块、AD转换模块4017+、ADAM 4520)3.3.2.10 RS232九针直联线及交叉线各8根模拟信号连接线303.3.3软件技术参数3.3.3.1 数据采集器可储存一年以上的五分钟平均值、小时平均值及日平均值,同时保存相应时间发生的有关校准、及其他事件记录。3.3.3.2数据采集器应可正确显示监测仪测定的结果,单位可选择,例如ppb,ppm,ug/m3, mg/m3。3.3.3.3 具备数据查询功能,不仅能够查询一定时间段的历史数据,而且能够查询分钟均值、小时均值、日均值。3.3.3.4 具备开机自动运行功能,当停电或仪器重新启动后,无需要人工操作,数据采集仪软件能够自动运行;3.3.3.5 采集数据可自动上传至福建省、福州市空气站中心平台。3.4全自动流量校准器3.4.1适用要求采用近无摩擦原理和红外传感器,能快速准确的进行气体流量校准,适用于中小气体流量的测量及相关流量测试仪的校准,属于一级流量计,具备标况流量和工况流量两种显示模式。3.4.2中流量校准器技术参数3.4.2.1校准流量范围:300mL/min~30L/min3.4.2.2流量准确性:≤±1%3.4.2.3每次测量时间:约1~15s3.4.2.4持续工作时间:≥8hr3.4.2.5流量测定模式:吸气或吹气3.4.2.6使用环境?:0~40?℃;0~70%RH(无结露)3.4.2.7测量方式:干式3.4.3 小流量校准器技术参数3.4.3.1校准流量范围:5.0mL/min~500.0mL/min3.4.3.2流量准确性:≤±1%3.4.3.3每次测量时间:约1~15s3.4.3.4持续工作时间:≥8hr3.4.3.5流量测定模式:吸气或吹气3.4.3.6使用环境 :0~40 ℃;0~70%RH(无结露)3.4.3.7测量方式:干式3.5机柜3.5.1技术参数3.5.1.1立式机柜,散热性能良好,可容纳本次采购的PM2.5、PM10监测仪、数采仪等仪器,必要时也需要包括相应的其他配套设备。3.5.1.2使用机柜情沉下,机柜采用航空级导轨抽拉连接装载仪器,方便拆卸仪器与清洗仪器内部管路,机柜后侧有纵向导轨汇总各仪器的电缆线路。3.5.1.3机柜有接地孔线,所有的连接管线、接头等应采用防腐材质不与被测污染物发生化学反应。三、验收1.验收标准:投标人所提供的设备必须是制造厂家生产的崭新的、未开箱的、原包装仪器设备。所有设备按照《环境空气颗粒物(PM10和PM2.5)连续自动监测系统技术要求及检测方法》(HJ 653-2013)、《国家环境空气质量监测城市自动监测站运行管理暂行规定》(总站2013版)以及《国家环境空气质量监测网城市站运行管理实施细则(试行)》(国家环保部2017年)、厂家设备验收标准(符合国家或行业或地方标准)、招标文件、投标文件等有关内容进行验收。投标方提供设备的制造标准及技术规范等有关资料必须符合国家有关标准、规范要求。如属于计量器具的,须经过计量部门计量检定或校准,合格后才能投入使用。检测费用由中标人承担。2 验收程序和方法2.1 出厂检验:中标人在设备出厂前,应按设备技术标准规定的检验项目和检验方法进行全面检验,中标人应随同货物出具供货证明、产地证书、出厂检验报告、质量合格证书、原装拼配设备的证明资料和文件以及生产厂家供货确认函等。结果必须符合验收标准的要求。2.2 初验收:由中标人和采购人共同对设备的数量、质量、外包装等根据本章节的有关规定逐项检验。2.3 试运行:设备安装完毕后,中标人应对设备的整体性能和功能进行测试,试运行期间,出现的任何问题,应由中标人及时处理修正。测试结果必须符合招标文件要求及合同中的相关条款,同时中标人应向采购人提供自检记录。2.4 最终验收:试运行并测试验收结束后,由采购人或采购人委托的专家组以及有关管理部门按招标文件以及合同相关条款要求一同对设备进行联合验收,验收结果应符合采购人使用要求。在此期间,若发现产品质量有问题中标人应无条件免费更换,并无条件重新检测并调试直至验收合格交付使用。2.5 索赔:如发现物资设备与合同规定不符,或验收不合格,采购人有权拒绝接受并向中标人提出索赔。如货物在质保期内被证明存在缺陷,包括潜在的缺陷或使用不合适的材料,采购人有权凭有关证明文件向中标人提出索赔。四、评标方法和标准采用综合评分法:(1)投标文件满足招标文件全部实质性要求,且按照评审因素的量化指标评审得分(即评标总得分)最高的投标人为中标候选人。(2)每个投标人的评标总得分FA=F1×A1+F2×A2+F3×A3+F4×A4(若有),其中:F1指价格项评审因素得分、F2指技术项评审因素得分、F3指商务项评审因素得分,A1指价格项评审因素所占的权重、A2指技术项评审因素所占的权重、A3指商务项评审因素所占的权重,A1+A2+A3=1、F1×A1+F2×A2+F3×A3=100分(满分时),F4×A4为加分项(即优先类节能产品、环境标志产品在采购活动中可享有的加分优惠)。(3)各项评审因素的设置如下:①价格项(F1×A1)满分为30分。②技术项(F2×A2)满分为55分。评标项目 评标分值 评标方法描述1、技术响应 28 根据各投标人所提供的技术和服务要求响应表,并结合所投标产品的佐证材料等方面情况,对照招标文件“第五章 招标内容及要求”中“二、技术和服务要求”的要求,由评委按以下标准评定:①投标人所投产品完全满足招标文件要求的,得满分28分。②以“★”标示的内容(合计 6项)为不允许负偏离的实质性要求,若负偏离则投标无效;打▲号指标,如有一处不满足扣3分,非打▲号指标,有一处不满足项评委扣0.5分,扣完为止。如有技术参数遗漏处,视为不满足项,得分参照本项规定。2、系统兼容性 3 为保证本次采购设备与原系统的兼容性及数据的可比性,投标人提供相关证明材料,并能有效证明可以兼通及数据的可比性的得3分,否则不得分。3、PM10测量原理 3 测量原理(满分3分): 1)采用β射线外吸收法的得1分; 2)采用β射线外吸收法+光散射法,得3分。评审依据:生态环境部(环境保护部)出具的适用性检测报告,未按要求提供不得分。4、PM10采样、测量和读数方式 3 监测仪采样、测量和读数方式(满分3分);1)采取步进式测量方式,每测量和更新一次PM10浓度值,时间不超过60分钟,且所投型号在中国环境监测总站PM10适用性检测名录内,满足得1分;2)采取步进式测量方式,每测量和更新一次PM10浓度值,时间不超过30分钟,且所投型号在中国环境监测总站PM10适用性检测名录内,满足得2分;3)采取连续测量方式,采样与测量同点位不间断同时进行,实时监测PM10浓度值,每测量和更新一次PM10浓度值,时间不超过5秒,且所投型号在中国环境监测总站PM10适用性检测名录内,满足得3分;评审依据:凭环境监测部门针对所投同型号产品使用说明(加盖用户公章)的证明材料以及中国环境监测总站官方网站相关截图计分,未按要不享受加分。五、付款方式合同支付方式分三期,交货后支付30%;验收合格后支付60%,质保期满后无质量问题付10%。442000 合同履行期限: 合同签订后 (10) 天内交货 本合同包:不接受联合体投标二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 包1 (1)明细:落实政府采购政策的证明材料(专门面向中小企业采购) 描述:1、供应商提供的服务应符合《政府采购促进中小企业发展管理办法》(财库〔2020〕46号) 第四条规定的情形,且应当提供《政府采购促进中小企业发展管理办法》(财库〔2020〕46号)规定的《中小企业声明函》,格式见第七章《投标文件格式》附件。 2、供 应商为监狱企业的视同小型和微型企业,可不提供以上第1材料,但应当提供由省级以上监狱管理局、戒毒管理局(含新疆生产建设兵团)出具的属于监狱企业的证明文件。3、供应商为残疾人福利性单位的视同小型和微型企业,可不提供以上第1点材料,但应当提供《残疾人福利性单位声明函》,格式见第七章《投标文件格式》附件。4、本项目为 货物 类采购项目,采购标的对应的中小企业划分标准所属行业为工业 。(如属于专门面向中小企业采购的项目,供应商应为中小微企业、监狱企业、残疾人福利性单位)四、获取招标文件 时间:2021-12-16 14:00至2021-12-31 23:59(提供期限自本公告发布之日起不得少于5个工作日),每天上午00:00:00至11:59:59,下午12:00:00至23:59:59(北京时间,法定节假日除外) 地点:招标文件随同本项目招标公告一并发布;投标人应先在福建省政府采购网(zfcg.czt.fujian.gov.cn)免费申请账号在福建省政府采购网上公开信息系统按项目下载招标文件(请根据项目所在地,登录对应的(省本级/市级/区县))福建省政府采购网上公开信息系统操作),否则投标将被拒绝。 方式:在线获取 售价:免费
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制