当前位置: 仪器信息网 > 行业主题 > >

带催化反应器

仪器信息网带催化反应器专题为您提供2024年最新带催化反应器价格报价、厂家品牌的相关信息, 包括带催化反应器参数、型号等,不管是国产,还是进口品牌的带催化反应器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合带催化反应器相关的耗材配件、试剂标物,还有带催化反应器相关的最新资讯、资料,以及带催化反应器相关的解决方案。

带催化反应器相关的论坛

  • 【讨论】国内外光催化反应器的发展情况

    【讨论】国内外光催化反应器的发展情况

    随着我国社会经济的迅速发展,不可避免地伴随着大量废弃物排放,这导致了严重的环境污染和生态破坏。这些因素正危及我国居民生存安全。另外,调查表明环境污染问题也会影响到我国的可持续性发展。所以,保护与治理环境是构建环境友好、和谐社会和实现我国社会经济叮持续发展的重要任务。传统污染物处理方法不能彻底消除降解污染物,也容易造成二次污染,使用范围窄。仅适合特定的污染物,还伴随着能耗高,不适合大规模推广等缺陷。近些年来,利用光催化技术降解和消除污染物得到人们的广泛关注。光催化氧化技术是一种集高效节能、操作简便、反应条件温和、同时可减少二次污染等突出特点于一身的一项新的污染治理技术,而且从地球卜物质循环的角度来看,光催化技术可以将大量的有机污染物降解为CO2和H2O.从而被植物利用.形成了循环,如图l所示,可以说光催化技术正足人类所急需的一种技术。 http://ng1.17img.cn/bbsfiles/images/2012/06/201206281052_374718_2556116_3.jpg 光催化技术起源于20世纪70年代.自从日本学者Fujishima和Honda发现了利用TiO2单晶可将水光催化分解之后。世界范围内,便开始了光催化氧化技术在污水处理、空气净化、抗菌杀毒等方面的应用研究,于是光催化技术受到全世界的广泛关注。并得到了快速发展。如今人们对于光催化技术的研究主要分为对光催化剂的研究(如TiO2、ZnO)和对光催化反应条件的研究,其中。对反应条件的研究中,人们为了让光催化氧化反应能稳定和高效的进行,会设计出相应的反应器,用来为反应提供良好的平台,一个设计良好的反应器,将能大大提高反应体系的反应效率,从而达到高效、节能、稳定等目的。1 光催化反应器的设计依据 光催化反应器的设计主要目的是为了给光催化氧化反应提供高效和稳定的反应空间和环境。实现光催化过程对光的充分利用,从而提高反应效率。由于光催化反应需要有光子参与,光催化剂才能将光能转化成为化学反应所需的能量,来进行催化降解作用,因而在设计反应器的时候,最主要的两个理论依据就是光的传输理论和催化反应动力学理论。光的传输以及在光在反应器中的分布直接影响到催化剂对于光的吸收效率。充分均匀的催化剂分散可保证光在传输途中浪费少,这样催化剂对光的利用效率高,反之将会有较多催化剂由于得不到或者只接受到很少的光照而不能充分的进行光催化氧化反应。2 国内外光催化反应器的发展 早期的光催化研究大多是在一些很随意的反应条件下进行的。比如在液相光催化反应中,催化剂与污染物溶液混合时,一般的实验过程都是人工用玻璃棒进行搅拌。由于人为误差的因素难以避免,会对结果的准确性和再现性产生较大影响。为了满足对光催化反应器准确、稳定和高效的要求,反应器的设计也在不断的变化。一个设计较好的反应器,不仪可以提高光催化反应的效率,而且可以将其大规模化。可高效稳定的进行光催化作业,从而实现产业化。到目前为止,有一些类型的反应器已经用于诸如污水和空气处理的工业化应用。2.1流动床光催化反应器 流动床光催化反应器是将催化剂与待降解物质直接混合的一种反应器。一直以来,人们都在为满足不同的光催化反应要求,设计不同的反应器。应用最多的儿种类型的反应器包括椭圆型、底灯型和柱型,如图2所示。这几种反应器的特点是不仅效率较高,制作难度低。而且可以用于大多数的反应类型,可以同时满足液相和气相两种类型的光催化反应,因而得到了广泛的应用。http://ng1.17img.cn/bbsfiles/images/2012/06/201206281053_374721_2556116_3.jpg 椭圆型反应器(图2(a)所示)是将灯管和反应区分别放在椭圆的2个焦点上,这样可以很好的将灯管所发出的光集中在反应区内,减少了光的浪费,提高了整体的效率。虽然反应器中的反应区在椭圆型焦点上,但是这不表示灯管所发出的所有光线都能达到反应器,而且这种类型的反应器.光的传输路程较长,这样就增加了光在传输过程中的损失,并且反应区域内光的分布不均匀。底灯型反应器(图2(b)所示)是对椭圆型反应器的改进,它的光源位于抛物线的焦点上,但是光源的光线并不是聚焦在另一个焦点,而是从下往上射人反应区,光进入了反应区域后就不会再被反射回来。更大程度的利用了光源。柱型反应器是现在比较成熟的类型,一般可分为中灯外反应区(图2(c)所示)和中反应区外灯(图2(d)所示)2种。柱型反应器有着较高的光利用率和良好的对称性(可使光在反应区内均匀的分布,减少局部差异)。一些发达园家,这两种反应器已经用来处理污水,在这2种反应器中.光从光源发出来后,基本上都会通过反应区。特别是中灯外反应区这样的反应器.光的利用率几乎可以达到最大。在光源的光照强度合适的情况下,甚至可以不需要反射壁。都可以达到光的最大利用率。而且这种柱型的反应器制造难度小,成本低。适合大规模的生产和运用。因此现在的大多数针对反应器的研究,也是以柱型为模型来进行的。2.2 固定床光催化反应器 在近年来,人们将催化剂固定在一些载体表面来进行催化反应.即固定床反应器,这样避免了光催化剂的分离问题。固定床与传统的流动床的区别在于,催化剂不随液体或者气体一起流动.而是固定在玻璃或者其它介质表面,污染物流经其表面来进行反应。这样一来,人们就可能更精确的了解催化剂的性质,并易于控制催化反应的进行,也易于催化剂和反应物的分离。基于这种思路,人们设计了一些新型的光催化反应器,其中效果比较好的是平板型和喷泉型,如图3所示。http://ng1.17img.cn/bbsfiles/images/2012/06/201206281053_374722_2556116_3.jpg 平板型的反应器是将催化剂固定在平板上,在光照的条件下.将污染物液体或者气体缓慢的通过催化剂表面降解,属于层流型反应器。这种反应器的好处在于制造简单,待降解物经过催化剂的时候光照时间和光照强度基本一致,并很容易控制流动速度。当流速放慢的时候可提高反应物的降解程度。但是所需时问也就相应增加;当加快流速的时候虽然降解的程度不如流速慢的情况.但是所需时间较少。这种平板反应器可以根据不同的降解需求。调整流速,达到相应的效果。平板型的反应器还有另一个其他反应器不具备优点,由于催化剂是固定在平板上的。不会随着待降解物的流动而流动,也就省去了后续催化剂分离的步骤。但是也由于催化剂固定的原因,在降解一定时间后,催化剂的催化效率会降低,而更换催化剂比较困难,并且光的损失也比较严重。因为光源发出的光最多只有50%被利用.即使加装了反射壁.也会有大量的光损失掉。鉴于平板型反应器的造价低.易于控制的优点,很多实验室都运用平板反应器来进行一系列的光催化研究。 喷泉型反应器是近几年由Puma和Yueu等人提出的,此类反应器与平板型反应器大致相同,将催化剂固定在斜面上,在顶部固定光源,将待降解物斜面中心的喷嘴喷出,然后在重力作用下流经催化剂从而得到降解。此种反应器主要是用于研究催化剂的反应效率.由于结构相对比较复杂,所以应用也较少。还有很多种新型的反应器.比如球型反应器.这种反应器在理论上能达到非常高的光利用率,并且无论是光的分布。还是污染物的分布.还有催化剂的分布都能达到非常高的均匀性和稳定性.反应效率也是非常理想的,但是制作非常的困难.所以现在这种球型的反应器并不常见,是一种理想化的反应器。3 结语 随光催化技术的提高,光催化反应器也在被不断的改进和优化.越来越受到人们的重视.特别是光催化技术实现工业化后,反应器的设计需要进行系统的优化没计才能使光催化反应效率达到最优值,一个设计优良的反应器,不仅可以提高反应效率,还能减少对能源和原材料的浪费.提高经济效益。 http://ng1.17img.cn/bbsfiles/images/2012/06/201206291103_374928_2556116_3.jpg

  • 【求助】有机催化反应后,要测定催化剂的流失,如何处理样品?

    本人是作催化的,公司新买了ICP,但没有人会用。有2个问题想向各位请教一下。用钯/活性炭 作为催化剂,催化苯乙酮加氢还原,得到苯乙醇。1、想测定催化反应循环过程中,每次催化剂的流失。如何处理样品?(注* 催化剂颗粒很小,即使用高速离心机处理,产物相还是有点黑,也就是还有少量催化剂在里面)2、想测定钯/活性炭 催化剂中 钯的量。样品又如何处理?谢谢各位啦!!

  • 多相催化反应动力学基础

    多相催化反应动力学基础[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=14957]多相催化反应动力学基础[/url]

  • 【求助】咨询紫外光催化反应器的情况,谢谢

    本课题组要用到这样的仪器,主要的情况是 用一个可以改变紫外波长&强度的装置,放置在一个水做溶剂的反应体系中,通过改变波长或者是强度来观察对反应的影响,也就是起到一种催化的效果,不知道有没有这样的仪器,谢谢大家,有点话给我邮箱留言cation-gdj@163.com

  • 大气污染==(挽救臭氧层)特定气候条件形成的催化反应

    「氯贮存物质」与 催化反应  氟里昂进入平流层后在强烈的紫外辐射作用下,释放出一个氯原子:CCl3F+hv→ CCl2F+Cl。这个释放出的氯原子,用数个月的时间通过催化反应,就可以使10万个臭氧分子消失。首先,氯与臭氧反应,生成氧化氯自由基:Cl+O3 →ClO+O2,自由基ClO非常活泼,与同样活泼的氧原子反应,生成氯和稳定的氧分子:ClO+O→Cl+O2。释放出的氯原子又和臭氧产生反应,因此,氯原子一方面不断消耗臭氧,另一方面却又能在反应中不断再生,形成催化反应。但是注意到,进入平流层还有其它微量气体,例如甲烷(CH4)和二氧化氮(NO2),氯原子和它们分别作用产生氢氯酸(HCl)和硝酸氯(ClONO2),这些物质化学性质不活泼,不会释放出氯原子,称为「氯贮存物质」,阻断了氯原子再生功能,在臭氧分解反应方面氯原子不再具有催化功能。单纯从化学的角度来看,氟里昂对臭氧的破坏有限。  既然,氟里昂在平流层可以形成「氯贮存物质」,为什么还有臭氧洞?  氟里昂主要由北半球工业化国家排出,北半球大气中氟里昂浓度也高于南半球,那么至今最大的臭氧洞却出现在南极而不是其它地方?

  • 【求助】光催化反应注意事项

    那位大侠在做光催化,能否提供一些光催化实验所需注意的事项,比如反应器与光源的距离,搅拌速率,取样位置等等,拜托啦!!!![em09509]

  • 用手性色谱测试催化反应转化率

    [color=#444444]我做了个催化反应,测试反应物的转化率,产物是手性的,还需要同时测定产物的ee值,我能不能取少量反应液,用正己烷和异丙醇(10:1)的混合液稀释后直接打进手性测试中呢?[/color][color=#444444]手性色谱用的流动相是正己烷和异丙醇(10:1)的混合液。[/color]

  • 【求助】微型管试反应器

    用于实验室用气(反应气)固(催化剂)催化反应(常压).我想求助各位高手,这种反应器的构造如何,能否自制,若不能,应从哪里购买?急急急

  • 催化反应疑问

    请问反应体系是这样:一种反应物1是液体,另一种反应物2(室温时是固体,加热到50度成液体),在室温下将2加入到1中,液体混浊,如将2加热到60度以液体形式加入到1中,观察到透明,请问2溶于1吗?反应温度调在65度以上,是不是可以认为2溶于1中,如果不加催化剂它们之间的反应是属于均相反应吗?如果在此反应温度下,催化剂加入后溶液呈混浊状或者催化剂明显不溶,那么此情况下反应是否属于非均相反应?还是非均相反应必须是两反应物分别处于两相中,采用一种相转移催化剂的反应才是真正意义的非均相反应?请各位做过催化研究的大侠帮我分析一下,在此表示十分感谢。

  • 【资料】光催化转化氮氧化物的研究进展

    光催化转化氮氧化物的研究进展 马睿 谭欣 赵林 ( 天津大学环境学院, 天津 300072) 摘要:对光催化转化氮氧化物的研究进展进行了综述。首先介绍了氮氧化物的危害及传统处理方法的缺点以及光催化反应的机理 随后着重介绍了以 TiO2 为催化剂对 NOx 去除的研究进展, 并对其他用于分解氮氧化物新型光催化进行了介绍 最后对应用前景作出 展望。光催化转化氮氧化物的研究分为光催化氧化和光催化还原 2 种, 反应器则主要为固定床反应器和流化床反应器。N 原子的搀 杂、氧空穴的产生以及表面负载 Pt 均能有效地利用可见光, 炭( AC) 、沸石、氧化钙、ZrO2、高岭土等载体也可明显地提高光催化转化 氮氧化物的效率。此外, 植入过渡金属离子沸石, 也可有效地转化氮氧化物。 关键词 TiO2 氮氧化物 光催化 脱除 载体 可见光 进展 中图分类号 O43 文献标识码 A 文章编号 0517- 6611( 2007) 08- 02215- 03目前, 脱除 NOx 的技术措施主要有非催化法和催化还 原法两类[1]。非催化法主要包括湿式吸收法、固体吸附法、电 子束照射法等, 这些方法往往需要复杂的设备、较高的成 本, 且存在二次污染问题。选择性催化还原法是目前主流发 展方向, 但也存在二次污染及要求较高的反应温度等问题。 例如, 在 Ag/Al2O3 催化剂上选择性还原 NO 的最佳操作温 度是 500 ℃[2], 在 Ba/MgO 催化剂上选择性还原 NO 的最佳操 作温度是 700 ℃[3]等。光催化技术是近几年发展起来的一项 空气净化技术, 具有反应条件温和、能耗低、二次污染少等 优点[4], 笔者对光催化分解氮氧化物的研究进展进行了综述。1 光催化反应机理半导体材料存在能级分布, 当用能量大于半导体禁带 宽度的光照射半导体时, 光激发电子跃迁到导带, 形成导带 电子( e-) , 同时在价带留下空穴( h+) 。由于半导体能带的不 连续性, 电子和空穴的寿命较长, 它们能够在半导体本体和 表面运动, 与吸附在半导体催化剂粒子表面上的物质发生 氧化还原反应, 而将污染物分解掉。以 TiO2 为例, 它的禁带 宽度为 3.2 eV, 在波长小于 380 nm 光照下, TiO2 的价带电 子被激发到导带上, 产生高活性的电子- 空穴对。图 1 绘出 了受光源照射时半导体内载流子的变化。电子和空穴被光 激发后, 经历多个变化途径, 主要存在俘获和复合两个相互 竞争的过程。光致空穴具有很强的氧化性, 可夺取半导体颗 粒表面吸附的有机物或溶剂中的电子, 使原本不吸收光而 无法被光子直接氧化的物质, 通过光催化剂被活化氧化。光 致电子具有很强的还原性, 能使半导体表面的电子受体被 还原, 这两个过程均为光激活过程。同时迁移到体内和表面 的光致电子和空穴又存在复合的可能, 此为去激活过程, 对 光催化反应无效。空穴能够同吸附在催化剂粒子表面的OH-或 H2O 发生作用生成 HO?。HO?是一种活性很高的粒 子, 通常被认为是光催化反应体系中主要的氧化剂。光生电 子能够与 O2 发生作用生成 HO2?和 O2?-等活性氧类, 这些活 性氧自由基也能参与氧化还原反应。目前对 NOx 的光催化 反应的研究分为光催化氧化和催化分解 2 种。[img]http://ng1.17img.cn/bbsfiles/images/2009/03/200903201415_139711_1614854_3.gif[/img]

  • 催化转化器

    转化器是什么呢?它是汽车上面的一个小东西。可是汽车少了它那是万万不行的。其实这个东西我还真没有见过,它的外观还是黑色的,远处看好象是塑料做成的。其实它是钢做成的。外型也挺可爱的,那我们一起来研究一下,们来看看催化转化器综述:随着环境保护要求的日益苛刻,越来越多的汽车安装了废气催化转化器以及氧传感器装置。它安装在发动机排气管中,通过氧化还原反应,将发动机排放的三种废气有害物CO、HC和NOx转化为无害的水、二氧化碳和氮气,故又称之为三元(效)催化转化器,其催化剂大都含有铂、锗等贵金属或稀土元素,价格昂贵,在正常情况下,它的寿命为八万公里左右。由于三效催化转化器的工作要求比较严格,如果使用不当,会造成催化器失效层损坏。在高温度过高 常温下三元催化转化器不具备催化能力,其催化剂必须加热到一定温度才具有氧化或还原的能力,通常催化转化器的起燃温度在250—350℃之间。催化转化器工作时会产生大量的自量越高,氧化的温度也愈高,这都会使未燃烧的混合气进入催化反应器,造成排气温度过高,影响催化转化器的效能。硫和铅来自于汽油,磷和锌来自于润滑油,这四种物质及它们在发动机中燃烧后形成氧化物颗粒易被吸附在催化剂的表面,使催化剂无法与废气接触,从而失去了催化作用中毒现象还是比较高的,在三元催化器无法启动,发动机排出的炭烟会附着在催化剂的表面。这样长期下来便使载体的孔隙堵塞,影响其转化效能。催化转化器对污染物的转化能力有一定的限度,因此必须通过机内净化技术将原始排气降到最低。如果排放的废气污染物各成分的浓度、总量过大,比如混合气偏浓等,就会影响催化器的催化转化能力,降低其转化效。在排气状况就发生变化,安装三元催化器的位置就不同,这都会影响三元催化转化器的催化转化效果。因此,不同的车辆,应使用不同的三元催化转化器。然在发动机排气管中安装氧传感器并实现闭环控制,其工作原理是氧传感器将测得废气中氧的浓度,转换成电信号后发送给ECU,使发动机的空燃比控制在一个狭小的。还有它的注意事项:1.安装有催化器的汽车绝对不允许使用有铅汽油。 2.要避免催化转化器发生磕碰。 3.汽车不要长时间怠速,以防催化转化器烧坏。 4.要避免突然加速,以防止催化转化器过热。   5.要保证发动机正常运转,以防止催化转化器排气净化率最佳。由于三效催化转化器发动机始终处于理论空燃比的情况下工作,这时排气净化率最高。发动机电控系统、点火系统和燃油系统的故障都会使发动机工作不正常,混合气浓度偏离理论空燃化,使排气净化率降低,三效催化转化器寿命缩短。你们看一个催化转化器都有这么多条件,还有这么多的知识值得我们去看,去读,去理解,你们懂了吗?

  • 双氧水在紫外灯下的催化反应

    不添加其他催化剂,只有紫外灯的照射,反应条件是碱性的,将双氧水催化成羟基自由基 ·OH,来进行氧化反应。现在想问一下这个催化的机理;芬顿是酸性的,条件为什么是碱性的呀?

  • 催化反应的应用领域

    工业的应用现代化学工业的巨大成就与催化剂的使用是分不开的。约90%以上的化学工业产品是借助于催化过程来生产的。例如,从煤炭和石油资源出发合成了甲醇、乙醇、丙酮、丁醇等基本有机原料,改变了过去用粮食生产的途径;合成纤维的生产减轻了人类对棉花的依赖;塑料的发展减轻了人类对木材的依赖。合成橡胶、化肥、医药、合成食品、调味品的生产都与催化剂的使用分不开。例如,硫酸的生产,相比于二氧化氮作催化剂的铅室法,产品浓度低、杂质多、产量小;用铂作催化剂可使硫酸产品浓度达98%以上,可制得发烟硫酸;用钒作催化剂后,产品质量大大提高,成本大幅度下降。又如炼油工业中的催化裂化,用分子筛催化剂代替无定形硅铝胶催化剂后,由于分子筛的择形作用,改变了裂化产物的分布,得到了高质量产品。生态上的应用处理各类废弃物。二氧化碳 + 废塑料轮胎→汽柴油+可燃气+炭黑,既解决了空中环境堵塞,又将地面废弃物转化为能源;煤+地面农、林、牧、城市生活废弃物、城市工业废弃物→汽柴油+可燃气+炭黑,既解决了地面的污染问题,地面生态通道的堵塞,和煤排出的CO2问题,又将煤、地面废弃物转化为急需的汽、柴油基础油,它产生的可燃气体和天然气的低碳排放是一个水平:排出的可燃气体,碳排放量为16%,天然气的碳排放量12%。优化化石能源的产业结构。用先进的催化技术和仿生能源的工艺方法,将炼油工业转化为资源节约型的工业结构。石油→汽柴油+可燃气+炭黑,以高科技手段,打破垄断,形成资源节约型产业,把地下化石能源成本降下来。 相比于传统炼油,设备成本为(1/5) 生产成本为(1/2),且更多的产出来源于石油中的生物质。

  • 【转贴】红外分光光度计--红外光谱研究吸附催化反应

    物理吸收电磁被附加分子以范德华力与吸附剂相结合。化学吸附则因被吸附分子和吸附剂间形成了离子键或共价键。这两种吸附情况,在红外光谱上的反映是不同的。物理吸附只看得谱带的位移、化学吸附由于形成了新的化学键,故出现新谱带。  (1)氮在低温多孔玻璃上的吸附是物理吸附。在未吸附氮分子的干燥多孔玻璃上,它的表面结构中羟基的倍频7326cm-1,引入氮分子后,它的倍频移到7257cm-1。并随时间的增加而加强。7326cm-1带则减弱,二十分钟后,7326cm-1源谱带完全消失。如加热到20℃ ,则7326cm-1带又出现了。这是因为加热使物理吸附的氮分子解吸了的缘故。     (2)乙烯催化加氢反应机理长久未能解决。最终还是用红外光谱解决了这个问题。有两种说法:①先打开双键CH2-CH2的缔合吸附再加氢。②先发生C-H断裂再加氢CH=CH+HM。      │  │              │ │      M  M              M M  由乙烯在镍上化学吸附后的红外光谱研究指出,这两种情况都有可能。而取决于实验条件——温度、压力、以及催化剂表面是否有一层预吸附层。如有预吸附层则为缔合吸附。这时在红外光谱上有2950-2880cm-1的饱和碳氢伸缩带及1465cm-1的亚甲基弯曲振动。  如催化剂表面无吸附层,则乙烯催化加氢的反应是离解型。红外光谱上有3030cm-1谱带出现,说明有v=CH伸缩振动带出现。

  • 系统气相与双通道电催化与热催化在线检测系统

    系统气相与双通道电催化与热催化在线检测系统

    新型肺炎期间,琢磨出双通道电催化与热催化在线检测系统,实验室以前都是一个反应器对应一台GC,现在省纪委二个反应器可以直接在一台GC上获得测试结果,还能够全自动化检测。。。如开发的双通道电化学CO2还原测试系统,如图1所示,可以在14min内获取2组样品的测试结果[img=,492,590]https://ng1.17img.cn/bbsfiles/images/2020/07/202007082158397466_1536_4231648_3.jpg!w492x590.jpg[/img]同时,也开发了全自动控制检测系统,如下图所示,需要合作的请联系。[img=,690,387]https://ng1.17img.cn/bbsfiles/images/2020/07/202007082202289915_5731_4231648_3.png!w690x387.jpg[/img]

  • 【转贴】微波技术在催化领域中的应用

    微波技术在催化领域中的应用微波技术是近代科学技术发展的重大成就之一,发展极为迅速。20世纪80年代微波开始在化学领域中得到广泛研究,并取得了积极效果,如在有机合成方面,合成某些放射性药剂及干燥等方面[1]。最近,微波在催化领域中的研究也越来越活跃,这里介绍近年来微波技术在催化领域中所取得的进展,如微波用于诱导催化反应,用于催化剂的制备以及载体的改性方面。微波技术用于诱导催化反应一、 微波诱导催化反应原理 微波是一种电磁波,电磁波包括电场和磁场,电场使带电粒子开始运动而具有一种力,由于带电粒子的运动从而使极化粒子进一步极化,微波的电和磁部分的相关的力方向快速变化,从而产生摩擦使其自身温度升高。这就是微波加热的基本原理[2]。 许多有机反应物不能直接明显地吸收微波,但将高强度短脉冲微波辐射聚焦到含有某种“物质”(如铁磁性金属)的固体催化剂床表面上,由于表面金属点位与微波能的强烈作用,微波能将被转变热,从而使某些表面点位选择性地被很快加热至很高温度。尽管反应器中的物料不会被微波直接加热,但当它们与受激发的表面点位接触时可发生反应。这就是微波诱导催化反应的基本原理[3]。 二、微波诱导催化反应的催化剂和载体 微波诱导催化反应实质上是微波首先作用于催化剂或其载体,使其迅速升温而产生活性点位,当反应物或载化都可以用于微波诱导催化反应的,只有那些可能被微波激活的催化剂和载体才能用于微波诱导催化反应。对于金属催化剂,能与微波发生强相互作用的主要是那些铁磁性金属,如镍、钴、铁等。对于金属氧化物,则视组分和结构不同而有很大差别;对于S区金属氧化物,不存在变价情况,则对微波是透明的。对于P区金属氧化物和过渡金属氧化物,存在变价现象,则它们对微波是不透明的,即吸收微波的能力随组分和结构而不同[4]。有人曾对过渡金属和P区金属的氧化物与微波之间的相互作用作过较深的研究[5]。把金属氧化物分成3类:第1类是高损耗物质,它们是一些含有变价元素的金属氧化物,如NI2O3,MNO2,Co3O4等,在微波场中有很高的活性。第2类是在微波场中辐射一段时间后才开始急剧升温,如Fe2O3,CdO,V2O5等。第3类低损耗物质,如AL2O3,TiO2,ZnO,PbO,La2O3,Y2O3,ZrO2,Nb2O5等。显然,第1类金属氧化物最适宜作微波诱导催化反应的催化剂,第3类金属氧化物宜作载体。 三、微波诱导催化反应的应用 (1) 甲烷分解 四烷分解制成乙烯有着十分重要的经济和学术意义。研究证明[6],在微波辐射下,许多催化剂可使甲烷快速分解,通过适当控制条件,可选择地获得较低或较高烃类。当在400 W 微波炉中用Ni-1404片或Ni粉作催化剂时,其转化产物主要为乙烯、乙烷和乙炔。 (2) 烃类氧化 脂肪烃和芳香烃直接氧化有着重要的经济意义,已被广泛地研究了几十年,但是迄今未能找到转化率高、选择性好的直接氧化方法(尤其是对于甲烷的氧化。)最近研究证明:在微波辐射下,甲烷、丙烷、再烯、乙烷、甲苯都可与水发生催化氧化,形成相应的醇、酮、醚等。 微波场中甲烷部分氧化剂制合成气的研究较为活跃,因为在微波场中进行的甲烷部分氧化(POM)反应与常规加热条件下相比较前者具有反应速率快,催化床层温度低,反应物的转化率和产物的选择性均得到改善等优点[7]。对微波场中甲烷部分氧化合成气所用催化剂的考察,研究人员做了很多工作[8],通过对Ni/La2O3,Ni/ZrO2,Co/La2O3,和Co/ZrO2的催化性能的考察,发现以ZrO2为载体的镍基催化剂的活性和稳定性明显优于钴基催化剂,活性顺序为:Ni/ZrO2>Ni/La2O3>Co/ZrO2>Co/La2O3。 甲苯选择氧化制苯甲酸的多相工业化生产由于甲苯的转化率和苯甲酸的选择性较低而无法实现。研究表明[9],在微波场下,V2O5/TiO2在较低的温度下选择氧化甲苯,可得到苯甲酸和苯甲醛的收率分别为41%和14%。与传统加热催化过程相比,苯甲酸的收率有较大的提高。 (3) SO2和NO的还原 以往的除去SO2的方法大都是将其氧化后中和除去,但基氧化物腐蚀性强,处理费用高。把含有SO2的空气在微波场下通过Ni-1404催化剂,则SO2可分解而释放出氧和硫;同样把含NO的空气在微波场下通过Ni-1404催化剂,则NO被分解成为O2、N2及少量N2O。微波技术用于催化剂的制备及载体的改性 一、分子筛的合成 利用微波的介电加热作用进行分子筛合成,是一种新型合成方法。据报道。用微波技术合成的分子筛有A型,X型,Y型,ZXM-5型,CoAPO-44型,CoAPO-5型,AlPO4-5型以及中孔MCM-41型分子筛,还有NaX及NaA分子筛。与传统的水热合成方法相比,微波合成法能同时大量成核且能大幅度缩短晶化时间,获得均匀细小的晶粒,比表面积增大。 二、活性组分在分子筛上的负载 活性组分负载在载体上是一个复杂的过程,其分散度影响催化剂的活性、选择性及寿命等各个方面。最近不少学者采用微波技术使一些无机盐很好地负载在分子筛等载体上。据研究,微波固相法制备的ZnCl2/NaY催化剂与普通法制备的ZnCl2/NaY催化剂相比,在Diels-Alder反应中表现出较高的环加成选择性和区哉选择性。利用微波法制备的ZnCl2-HY分子筛催化苯甲醚与乙酰氯的酰化反应,发现这种催化剂具有良好的初活性。利用微波功率的增大,苯甲醚的转化率和甲氧基苯乙酮的选择性也增加。这可能是由于微波功率增大,促进了ZnCl2在HY分子筛中的分散及与HY分子筛的交换的缘故。 用微波法负载活性分于分子筛上,与传统法相比,具有以下优点:分散度高;处理时间短,效率高;处理样品简单,避免了溶液的混合烘干及培烧;无机盐很容易分散到多孔分子筛上。 三、载体的改性及新型材料的合成 Al2O3是多相催化中广泛应用的载休,利用微波辐射制备结晶γ-Al2O3,与传统的深浅法所获得的γ-Al2O3相比,具有规整、清晰的晶貌特征。这是由于在微波下,水分子被子激活形成活性水分子,加速了铝溶胶的溶解从而促进了体系中结晶Al(OH)3xH2O的生成所致其制备方法是:将铝溶胶置于微波炉中,利用策波辐射加热,保持沸腾3h后,冷却,静置,将所得白色沉淀洗涤,分离,在120℃烘干,在马福炉中按规250℃ 1h,350℃ 1h,450℃ 1h,550℃ 3h顺序焙烧,得到白色粉末,即可得到边界清晰、结构规整的结晶γ-Al2O3。 Al2O3作为一种载体,由于它的比表面积较小,所以某些活性成分在其上面的负载将受到限制。若将 Al2O3分散于比表面积较大的沸石上,则可制得一种具有Al2O3表面性质又保持沸石高比表面积的新型复合材料。据研究,用化学镀饰法化学浸渍法和高温热处理法所制的Al2O3/NaY新型催化材料的分散度均不高,而采用微波辐射固相法制得的Al2O3/NaY新型催化剂材料具有较高的分散度。Al2O3在NaY沸石上的理论分散值为0.62,实验测得用微波辐射得到的分散值为0.45,其他方法得到的分散值均小于0.3。 四、 结 语 微波技术应用于化学研究有着相当大的优势和无限的魅力。微波技术发展的特点之一,是它与更多的学科相结合。这会大大地突破传统内容,建立一系列新的生长点。而研究用的微波炉也易于获得,使该方法的研究更具有普遍意义。但微波技术应用于催化领域也存在一些复杂性。有关微波诱导催化反应的机理以及微波参催化剂作用的机理的研究毕竟还很不深入,主要原因是微波场中温度无法准确测量。所以进一步改进实验测量技术(特别是微波场中的温度测量技术)具有十分重要的意义。只有将微波的作用机理进行深入研究才能使微波在催化剂领域中得到进一步发展。

  • 【分享】光催化净化原理

    光催化材料是具有环境净化和自洁功能的半导体材料的总称。它在微量紫外线作用下,能产生强大的光氧化还原能力,催化分解附表的有机物和部分无机物。光催化技术的特点是能有效利用光能、易操作、无二次污染,在环境保护(废水废气净化、空气净化)、新能源开发、有机合成、自洁和抗菌材料生产等领域具有广阔的应用前景。 TiO2是公认的最有效光催化剂,它的显著优点是:能有效吸收太阳光谱中的弱紫外辐射部分;氧化还原性较强;在较大pH值范围内的稳定性强;无毒。但由于TiO2的禁带宽度为3.2eV,只能吸收波长小于387nm的紫外辐射,不能充分利用太阳能。另外,TiO2的光量子效率也有待进一步提高。有鉴于此,国内外已从多种途径对TiO2材料进行改性,包括TiO2表面贵金属淀积、金属离子掺杂、半导体光敏化和复合半导体的研制等。近来研究发现纳米级TiO2材料的催化效率高于一般半导体材料。纳米半导体粒子存在显著的量子尺寸效应,它们的光物理和光化学性质已成为目前最活跃的研究领域之一,其中纳米半导体粒子优异的光电催化活性倍受世人注目。与体相材料相比,纳米半导体量子阱中的热载流子冷却速度下降,量子效率提高;光生电子和空穴的氧化还原能力增强;振子强度反比于粒子体积而增大;室温下激子效应明显;纳米粒子比表面积大,具有强大的吸附有机物的能力,有利于催化反应。 纳米TiO2具有良好的半导体光催化氧化特性,是一种优良的降解VOCs(可挥发性有机化合物)的光催化剂。它的本质是在光电转换中进行氧化还原反应。根据半导体的电子结构,当其吸收一个能量不小于其带隙能(Eg)的光子时,电子(e-)会从充满的价带跃迁到空的导带,而在价带留下带正电的空穴(h+)。价带空穴具有强氧化性,而导带电子具有强还原性,它们可以直接与反应物作用,还可以与吸附在催化剂上的其他电子给体和受体反应。例如空穴可以使H2O氧化,电子使空气中的O2还原,生成H2O2,OH" 基团和HO2" ,这些基团的氧化能力都很强,能有效的将有机污染物氧化,最终将其分解为CO2、H2O、PO43-、SO42-、NO23-以及卤素离子等无机小分子,达到消除VOCs的目的。TiO2 +hv —— e - + h +e - + h + —— N +能量 (hv’入射光能量hv或热能)HO- +h+ —— OHH2O + h+ —— OH +H+O2 + e- —— O2-O2-+H2O —— OOH +OH-2OOH —— H2O2 +OH-OOH +H2O+ e- ——H2O2 +OH-H2O2 + e- —— OH+OH-

  • 微型反应器的特点

    (1)由于反应器中微通道宽度和深度比较小,一般为几十到几百微米,使反应物间的扩散距离大大缩短,传质速度快,反应物在流动的过程中短时间内即可充分混合(2)微通道的比表面积一般为5000—50000m2m-3,而在常规反应容器内,比表面积约为100m2m-3,少数为1000m2m-3。微通道的比表面积大,具有很大的热交换效率,即使是激烈的放热反应,瞬间释放出大量反应热也能及时移出,维持反应温度在安全范围内。由于反应物总量少,传热快,特别适用于研究异常激烈的合成反应而避免爆炸的危险。(3)在微通道反应器中进行合成反应时,需要反应物用量甚微,不但能减少昂贵、有毒、有害反应物的用量,反应过程中产生的环境污染物也极少,实验室基本无污染,是一种环境友好、合成研究新物质的技术平台。(4)在微通道反应器中得到产物的量与近代分析仪器,如GC、GC2MS、HPLC及NMR的进样量相匹配,使近代分析仪器可用于直接在线监测反应进行的程度,大大提高了研究合成路线的速度。(5)可以将各种催化剂固定在芯片微通道中得到高比表面积的微催化床,提高催化效率。(6)在微通道反应器中进行合成反应时,反应物配比、温度、压力、反应时间和流速等反应条件容易控制。反应物在流动过程中发生反应,浓度不断降低,生成物浓度不断提高,副反应较少。(7)在微通道反应器中采用连续流动的方式进行反应,对于反应速度很快的化学反应,可以通过调节反应物流速和微通道的长度,精确控制它们在微通道反应器中的反应时间。(8)随着微加工技术的发展,由微传感器、微热交换器、微混合器、微分离器、微反应单元、微流动装置等组成的集成系统,在合成反应研究中受到越来越多的关注。(9)微流控芯片高通量、大规模、平行性等特点使多个或大量微反应器的集成化与平行操作成为可能,从而提高了合成新物质、筛选新药物的效率,大幅度地降低了研究成本。文章来源:http://www.micromeritics.com.cn/news_view.aspx?id=819

  • 反应器选型注意事项

    对于特定的反应过程,反应器的选型需综合考虑技术、经济及安全等诸方面的因素。   反应过程的基本特征决定了适宜的反应器形式。例如气固相反应过程大致是用固定床反应器、流化床反应器或移动床反应器。但是适宜的选型则需考虑反应的热效应、对反应转化率和选择率的要求、催化剂物理化学性态和失活等多种因素,甚至需要对不同的反应器分别作出概念设计,进行技术的和经济的分析以后才能确定。 除反应器的形式以外,反应器的操作方式和加料方式也需考虑。例如,对于有串联或平行副反应的过程,分段进料可能优于一次进料。温度序列也是反应器选型的一个重要因素。例如,对于放热的可逆反应,应采用先高后低的温度序列,多级、级间换热式反应器可使反应器的温度序列趋于合理。反应器在过程工业生产中占有重要地位。就全流程的建设投资和操作费用而言,反应器所占的比例未必很大。但其性能和操作的优劣却影响着前后处理及产品的产量和质量,对原料消耗、能量消耗和产品成本也产生重要影响。因此,反应器的研究和开发工作对于发展各种过程工业有重要的意义。

  • 【资料】固体酸催化剂!

    【资料】固体酸催化剂!

    酸碱催化剂中的一类重要催化剂,催化功能来源于固体表面上存在的具有催化活性的酸性部位,称酸中心。它们多数为非过渡元素的氧化物或混合氧化物,其催化性能不同于含过渡元素的氧化物催化剂。这类催化剂广泛应用于离子型机理的催化反应,种类很多(见表)。此外,还有润载型固体酸催化剂,是将液体酸附载于固体载体上而形成的,如固体磷酸催化剂。 固体酸催化剂  性质  与固体酸的催化行为有重要关系的性质是酸中心、酸强度和酸度。①表面上的酸中心可分为B-酸与L-酸(见酸碱催化剂),有时还同时存在碱中心。可用下式示意地表示氧化铝表面上的酸中心的生成: [img]http://ng1.17img.cn/bbsfiles/images/2010/01/201001051910_194402_1643419_3.jpg[/img]红外光谱研究表明,800℃焙烧过的 γ-Al2O3表面可有五种类型的羟基,对应于五种酸强度不等的酸中心。混合氧化物表面出现酸中心,多数是由于组分氧化物的金属离子具有不同的化合价或不同的配位数形成的。SiO2-Al2O3的酸中心模型 (见图)有多种模式。②酸强度,可用哈梅特酸强度函数H0来表示固体酸的酸强度,其值愈小,表示酸强度越高。③酸度,用单位重量或单位表面积上酸中心的数目或毫摩尔数来表示,又称酸度。在同一固体表面上通常有多种酸强度不同的酸中心,而且数量不同,故酸强度分布也是重要性质之一。由某些固体酸的酸强度范围,可知SiO-Al2O3、B2O3-Al2O3等均有强酸性,其酸强度相当于浓度为90%以上的硫酸水溶液的酸强度。不同的催化反应对催化剂的酸强度常有一定的要求,例如在金属硫酸盐上进行醛类聚合、丙烯聚合、三聚乙醛解聚、丙烯水合,有效催化剂的酸强度范围分别为H0≤3.3,H0≤1.5,H0≤-3,-3H0+1.5。在同类型的催化剂上进行同一反应时,催化活性与催化剂的酸度有关,例如在SiO2-Al2O3上异丙苯裂解,催化活性与催化剂的酸度有近似的线性关系。固体催化剂绝大多数为多孔物质,除应考虑其表面的酸功能外,还必须考虑孔隙构造对反应物的扩散及传热过程的影响。例如对于烃类反应,设计了许多具有规整孔结构的固体酸催化剂,如具有管状和笼状孔道的分子筛催化剂,具有层叠结构的半晶态的铝硅酸盐或硅酸盐催化剂。 [img]http://ng1.17img.cn/bbsfiles/images/2010/01/201001051912_194404_1643419_3.jpg[/img]

  • 【资料】试剂介绍-催化剂

    [size=4]定义  [/size][b][size=4] [/size][/b][size=4] [/size][size=4]又叫触媒。根据国际纯粹与应用化学联合会(IUPAC)于1981年提出的定义,催化剂是一种物质,它能够改变反应的速率而不改变该反应的标准Gibbs自由焓变化。这种作用称为[/size][size=4]催化作用[/size][size=4]。涉及催化剂的反应为催化反应。[/size][size=4][/size][size=4]  催化剂(catalyst)会诱导化学反应发生改变,而使化学反应变快或减慢或者在较低的温度环境下进行化学反应。催化剂在工业上也称为[/size][size=4]触媒[/size][size=4]。[/size][size=4]  催化剂自身的组成、化学性质和质量在反应前后不发生变化;它和反应体系的关系就像锁与钥匙的关系一样,具有高度的选择性(或专一性)。一种催化剂并非对所有的化学反应都有催化作用,例如二氧化锰在[/size][size=4]氯酸钾[/size][size=4]受热分解中起催化作用,加快[/size][size=4]化学反应速率[/size][size=4],但对其他的化学反应就不一定有催化作用。某些化学反应并非只有唯一的催化剂,例如氯酸钾受热分解中能起催化作用的还有[/size][size=4]氧化镁[/size][size=4]、[/size][size=4]氧化铁[/size][size=4]和氧化铜等等。[/size][size=4]  初中书上定义:在化学反应里能改变其他物质的化学反应速率,而本身的质量和化学性质在反应前后都没有发生变化的物质叫做催化剂,又叫触媒。催化剂在化学反应中所起的作用叫催化作用。[/size][size=4]  也有一种说法,催化剂先与反应物中的一种反应,然后两者的生成物继续在原有条件下进行新的化学反应,而催化剂反应的生成物的反应条件较原有反应物的反应条件有所改变。催化剂原先因发生化学反应而生成的物质会在之后进一步的反应中重新生成原有催化剂,即上面提到的质量和化学性质在反应前后都没有发生变化。[/size]

  • 求助:催化氧化产物的气相色谱分析!

    各位高手,请问voc物质经过催化燃烧后如何进行色谱分析!催化反应后产物为高温气体,是直接进入色谱呢还是冷却后分别对液体和气体进行分析呢?直接进色谱的话,请问应该采取什么方法呢?如果分开的话,我tcd(填充柱)和fid(毛细管柱)都仅有一根柱子,应该如何进行呢?希望高人赐教,万分感谢!

  • 三元催化_台式XRF分析仪

    三元催化器,是安装在汽车排气系统中最重要的机外净化装置,载体部件是一块多孔陶瓷材料,安装在特制的排气管当中。称它是载体,是因为它本身并不参加催化反应,而是在上面覆盖着一层铂、铑、钯等贵重金属。 它可以把废气中的HC、CO变成水和CO2,同时把Nox分解成氮气和氧气。  HC、CO是有毒气体,过多吸入会导致人死亡,而NOX会直接导致光化学烟雾的发生。经过研究证明,三元催化器是减少这些排放物的最有效的方法。通过氧化和还原反应,一氧化碳被氧化成二氧化碳,碳氢化合物被氧化成水和二氧化碳,氮氧化合物被还原成氮气和氧气。三种有害气体都变成了无害气体。三元催化剂最低要在350摄氏度的时候起反应,温度过低时,转换效率急剧下降;而催化剂的活性温度(最佳的工作温度)是400℃到800℃左右,过高也会使催化剂老化加剧。在理想的空燃比(14.7:1)下,催化转化的效果也最好。它安装在发动机排气管中,通过氧化还原反应,二氧化碳和氮气,故又称之为三元(效)催化转化器。

  • 色谱法化学吸附仪在催化剂行业

    色谱法化学吸附仪在催化剂行业2013无机及同位素质谱会2014环境监测仪器形势大好第我国研制超分辨显微镜打破国际技食药总局发布组织申报国家科技计划欧盟成功研制出低成本便携式石棉检广东H7N9禽流感卷土重来疾控整站优化:最给力的优化编者按:在多相催化中,由于反应体系的复杂性,使得再解释催化活性及其机理上遇到了困难,因而妨碍了对特定化学过程最佳催化剂的选择。在以往工作的基础上,研究人员提出了用气象色谱(GC)对催化反应、化学吸附和气体扩散进行联合研究的设计,建立了相应的装置,并拟投入定型化仪器生产。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制