吡喃甘露糖氟

仪器信息网吡喃甘露糖氟专题为您提供2024年最新吡喃甘露糖氟价格报价、厂家品牌的相关信息, 包括吡喃甘露糖氟参数、型号等,不管是国产,还是进口品牌的吡喃甘露糖氟您都可以在这里找到。 除此之外,仪器信息网还免费为您整合吡喃甘露糖氟相关的耗材配件、试剂标物,还有吡喃甘露糖氟相关的最新资讯、资料,以及吡喃甘露糖氟相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

吡喃甘露糖氟相关的资料

吡喃甘露糖氟相关的论坛

  • 【原创】半乳甘露聚糖

    半乳甘露聚糖是一种包含了甘露糖骨干与半乳糖旁基的多糖,更准确的一点来说,半乳甘露聚糖是直线状(1-4)-连结的β-D型甘露糖((1-4)-linked beta-D-mannopyranose )骨干于它们6-连接点连接到α-D型半乳糖(alpha-D-galactose)的多糖,即1-6-连结的α-D型吡喃半乳糖(1-6-linked alpha-D-galactopyranose)。部分的植物与真菌都含有半乳甘露聚糖的成分。目前主要有四种来源的半乳甘露聚糖,分别来源于胡芦巴胶(Fenugreek Gum),瓜尔豆胶(Guar Gum),长角豆胶(Locust Bean Gum)和他拉胶(Tara Gum),它们具有不同支化度的半乳甘露聚糖。 这四种半乳甘露聚糖的结构都是以甘露糖为主链,半乳糖为侧链基团。更准确地说,它们是以主链为β(1,4)连接的D-甘露糖聚合物,每隔几个甘露糖残基有一个α-D-半乳糖以1,6键与主链相连。PS-FNG,-GG,-TG和–LBG都是半乳甘露聚糖,不同的仅仅是他们的半乳糖和甘露糖的比例,比例分别是1:1,1:2,1:2。5~3,和1:3.5~4。[size=4][color=#DC143C]请注意不要在技术论坛做广告,不显示公司名字[/color][/size]

  • CNS_19.017_D-甘露糖醇

    CNS_19.017_D-甘露糖醇

    李少晖目录第1章 认识D-甘露糖醇11.1 D-甘露糖醇的性质1第2章 D-甘露糖醇的生产22.1生产工艺22.1.1海带提取法22.1.2葡萄糖电化学还原22.1.3蔗糖水解催化氢化法2第3章D-甘露糖醇在食品中的应用43.1 D-甘露糖醇在食品中的优点4第4章 D-甘露糖醇在其他领域上的应用64.1生产聚醚64.2大功率的电解电容64.3在医药方面上的应用6第5章 D-甘露糖醇的发展趋势75.1市场情况75.2 近年产品货紧价扬的原因分析75.2.1提取法生产成本的增高和产量的降低75.2.2国际市场供货量的降低75.2.3人工合成法的普及不足7第6章 对D-甘露糖醇的展望8第7章 D-甘露醇的产品标准、限量标准及检测标准介绍97.1产品标准及最大使用量97.2甘露醇的检验97.2.1定性检测97.2.2定量检测97.2.2.1碘量法97.2.2.2薄层层析法97.2.2.3比色法10[align=left][font='times new roman'][size=21px][color=#000000]第1章 [/color][/size][/font][font='times new roman'][size=21px][color=#000000]认识D-甘露糖醇[/color][/size][/font][/align][font='calibri'][size=14px]长期以来,[/size][/font][font='calibri'][size=14px]D-[/size][/font][font='calibri'][size=14px]甘露[/size][/font][font='calibri'][size=14px]糖[/size][/font][font='calibri'][size=14px]醇生产的发展受到原料来源的限制,与山梨醇相似,生产工艺短,主要用途成本低的影响。[/size][/font][font='calibri'][size=14px]但[/size][/font][font='calibri'][size=14px]随着[/size][/font][font='calibri'][size=14px]D-[/size][/font][font='calibri'][size=14px]甘露[/size][/font][font='calibri'][size=14px]糖[/size][/font][font='calibri'][size=14px]醇应用的不断发展,原料来源的多样化、成本的降低以及[/size][/font][font='calibri'][size=14px]D-甘露糖[/size][/font][font='calibri'][size=14px]醇的独特用途,预示着[/size][/font][font='calibri'][size=14px]D-[/size][/font][font='calibri'][size=14px]甘露[/size][/font][font='calibri'][size=14px]糖[/size][/font][font='calibri'][size=14px]醇将是一种前景广阔的精细化工产品。[/size][/font][font='calibri'][size=14px]1.1 [/size][/font][font='calibri'][size=14px]D-甘露糖醇的性质[/size][/font][font='calibri'][size=14px]D-[/size][/font][font='calibri'][size=14px]甘露[/size][/font][font='calibri'][size=14px]糖[/size][/font][font='calibri'][size=14px]醇[/size][/font][font='calibri'][size=14px]([/size][/font][font='calibri'][size=14px]D- mannitl、D- mannita[/size][/font][font='calibri'][size=14px]l、[/size][/font][font='calibri'][size=14px]mannite、manna sugar)学名己六醇[CH[/size][/font][font='calibri'][size=14px]8[/size][/font][font='calibri'][size=14px](OH)[/size][/font][font='calibri'][size=14px]6[/size][/font][font='calibri'][size=14px]],又称甘露醇、木蜜醇,分子式C[/size][/font][font='calibri'][size=14px]6[/size][/font][font='calibri'][size=14px]H[/size][/font][font='calibri'][size=14px]14[/size][/font][font='calibri'][size=14px]O[/size][/font][font='calibri'][size=14px]6[/size][/font][font='calibri'][size=14px]。[/size][/font][font='calibri'][size=14px]D-甘露糖醇的化学性质稳定,对稀酸、稀碱、热较稳定,在空气中不氧化。具有多元醇的通性,其羟基具有较强的反应性能,可以通过取代、醇化、醚化、缩合等生成一系列的衍生物或中间体,中间体再进一步合成获得更多的衍生物。[/size][/font][font='calibri'][size=14px]D-甘露糖醇是一种[/size][/font][font='calibri'][size=14px]无色至白色针状或斜方柱状晶体或结晶性粉末。无臭,具有清凉甜味[/size][/font][font='calibri'][size=14px],[/size][/font][font='calibri'][size=14px]甜度约为蔗糖的57%~72%[/size][/font][font='calibri'][size=14px],[/size][/font][font='calibri'][size=14px]每g产生8.37J热量,约为葡萄糖的一半。含少量山梨糖醇。相对密度1.49[/size][/font][font='calibri'][size=14px],[/size][/font][font='calibri'][size=14px]吸湿性极小。水溶液稳定。溶于水(5.6g/100ml,20℃)及甘油(5.5g/100ml)[/size][/font][font='calibri'][size=14px],[/size][/font][font='calibri'][size=14px]略溶于乙醇(1.2g/100ml)[/size][/font][font='calibri'][size=14px],[/size][/font][font='calibri'][size=14px]溶于热乙醇。几乎不溶于大多数其他常用有机溶剂。20%水溶液的pH值为5.5~6.5。[/size][/font][font='calibri'][size=14px]D-甘露糖醇的红外光谱图见图1。[/size][/font][font='calibri'][size=14px][1][/size][/font][font='calibri'][size=14px]甘露醇与山梨醇[D (L)- sorbitol]、艾杜糖醇[D (L)- iditol]、 塔里糖醇 [D (L)- talitd][/size][/font][font='calibri'][size=14px]、[/size][/font][font='calibri'][size=14px]卫矛醇[dulcitol]、蒜糖醇[allitd ]互为同分异构体[/size][/font][font='calibri'][size=14px],因[/size][/font][font='calibri'][size=14px]具有多元醇的化学性质,[/size][/font][font='calibri'][size=14px]所以[/size][/font][font='calibri'][size=14px]在医药食品、纺织化工、火工等方面大量应用。[/size][/font][align=center][/align][align=center][/align][align=center][font='times new roman'][size=21px][color=#000000]第2章 [/color][/size][/font][font='times new roman'][size=21px][color=#000000]D-甘露糖醇的生产[/color][/size][/font][/align][font='calibri'][size=14px]2.1[/size][/font][font='calibri'][size=14px]生产工艺[/size][/font][font='calibri'][size=14px]D-甘露糖醇是第一个从自然界发现的结晶糖醇,也是目前唯一从自然界植物提取具有工业价值的精醇。D-甘露糖醇广泛存在于自然界的海藻、水果、植物的叶和杆中,它最早发现存在于南瓜、洋葱、蘑菇以及褐海藻中。1806年,普鲁斯特(Proust)首先从甘露蜜树(manna ash)中分离得到,甘露醇由此得名,也由此开创了用热乙醇或其他可选溶媒从以树汁或其他天然原料中提取甘露醇的先例。[/size][/font][font='calibri'][size=14px][2][/size][/font][font='calibri'][size=14px] D-甘露糖醇的生产方法颇多,但大部分产物都不是纯净物,是山梨醇和甘露醇的混合物,如果要得到单一产品,必须经过分离提纯。[/size][/font][font='calibri'][size=14px]2.1.1海带提取法[/size][/font][font='calibri'][size=14px] 其工艺过程:将提碘后的海带浸泡、加碱中和,经电渗析、蒸发浓缩、冷却结晶、分离,除去无机盐得粗品。再溶解、脱色、过滤、离子交换、精过滤、蒸发浓缩、冷却结晶、分离干燥得到成品。原料海带可生产三种化工产品:海参藻酸钠、精制碘、甘露醇。甘露醇是在前两种产品加工完后,在废液中进一步提取而制成,约10t海带可得1t甘露醇。[/size][/font][font='calibri'][size=14px]2.1.2葡萄糖电化学还原[/size][/font][font='calibri'][size=14px] 以葡萄糖为原料,将葡萄糖电解,再中和、蒸发、除盐、结晶、精制、干燥得到甘露醇,此法电解转化率为98%-99.6%。[/size][/font][font='calibri'][size=14px]2.1.3蔗糖水解催化氢化法[/size][/font][align=left][font='宋体'][size=16px]蔗糖与水1:1比例投入溶解锅,加热溶解,用盐调pH至2.5-4.0,然后继续加热至沸,温度控制在90-105[/size][/font][font='宋体'][size=16px][color=#000000]℃[/color][/size][/font][font='宋体'][size=16px][color=#000000]下1-2小时(预处理),冷却备用。[/color][/size][/font][font='宋体'][size=16px]经预处理后的糖水经阴、阳离子交换树脂提纯,再进入氢化釜。以雷尼镍为催化剂,用量为投料量的5-10%,在氢气压力为4.0MPa、温度100-150℃、pH值为6-8的条件下进行氢化反应,反应时间1-2小时。[/size][/font][/align][align=left][font='宋体'][size=16px]分离出催化剂后的反应物料,再经阴-阳离子交换树脂净化,以除去残余的催化剂和反应生成的色素,然后进入真空浓缩器将物料浓缩至60-70%,送至第一结晶釜结晶,结晶温度控制在10-30℃,时间10-16小时,然后离心分离,结晶为粗甘露醇 母液即为工业山梨醇。[/size][/font][font='宋体'][size=16px] 将上述第一次结晶的粗甘瞎醇投人二次结晶釜,加水配成50-60%浓度进行第二次结晶,结晶条件与第一次相同,母液为山梨醇和甘露醇混合液,并人第一次结晶物料,得到的晶体在90-105℃温度下烘干,即得工业级甘露醇。[/size][/font][font='宋体'][size=16px][3、4][/size][/font][font='宋体'][size=16px] 将第二次结晶的甘露醇用蒸馏水配至40-50%浓度,加人1-2%活性炭,搅拌加热至90-105℃,保持1-1.5小时,趁热压滤进行第三次结晶,结晶条件控制与第一、二次相同。再经离心分离,在90-105℃温度下烘干,即得到医药级甘露醇,质量符合国家药典85版标准。[/size][/font][font='宋体'][size=16px] 将上述第一次结晶的山梨醇母液真空蒸发,浓缩至浓度为70-80%,进行重结晶,结晶温度控制在10-30℃,时间24-48小时,同时加人1-2%甘露醇作晶种,结晶完毕进行压滤,滤液经阴-阳交换柱处理,即得到医药级山梨醇,比旋度小于5.3,滤饼并人第一次结晶物料中。[/size][/font][font='宋体'][size=16px][5][/size][/font][font='宋体'][size=16px] 采用该工艺生产甘露醇比海带提取法成本降低50%,且原料不受地区限制,各地均可生产。[/size][/font][/align][align=left][font='times new roman'][size=17px]2.1.4[/size][/font][font='times new roman'][size=17px]果糖催化氢化制甘露醇[/size][/font][/align][align=left][font='times new roman'][size=17px]将淀粉水解为葡萄糖后,在异构酶存在下,或者化学法转化成果糖、葡萄糖、甘露糖的混合液,然后催化加氢制甘露醇。上述方法,氢化后得到的产物是以山梨醇、甘露醇为主的混合物,通常采用结晶法或吸附分离法精制提纯。[/size][/font][/align][align=left][font='宋体'][size=16px]在上述生产方法中,海带提取法,采用海带碘和海藻酸钠废水提取,作为一种综合利用,这种方法不会被淘汰,但由于海藻资源的限制,难以扩大产量。葡萄糖电化学还原法的电解能耗较高,目前已停止工业生产。果糖糖浆的催化还原法,虽然甘露醇收率高,但由于工艺时间长,技术难度大,成本高,不适合推广采用。以蔗糖为原料,将果糖和葡萄糖进行水解,然后部分葡萄糖转化为甘露糖,[/size][/font][font='宋体'][size=16px]成为[/size][/font][font='宋体'][size=16px]果糖、葡萄糖和甘露糖的混合[/size][/font][font='宋体'][size=16px]液[/size][/font][font='宋体'][size=16px],然后氢化生成甘露醇[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]原料来源丰富,相对工艺时间短,生产成本低。这是今后发展甘露醇生产的一种很有前途的方法。[/size][/font][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=center][font='黑体'][size=21px]第3章D-甘露糖醇在食品中的应用[/size][/font][/align][font='黑体'][size=18px]3.1 [/size][/font][font='黑体'][size=18px]D-甘露糖醇在食品中的优点[/size][/font][align=left][font='宋体'][size=16px]多年来,人们对甘露醇的医学作用进行了许多研究。然而,由于甘露醇来源的短缺和市场供应的波动,甘露醇在食品中的应用研究较少。[/size][/font][font='宋体'][size=16px]但如今[/size][/font][font='宋体'][size=16px]随着合成甘露醇生产工艺的发展,甘露醇的生产规模[/size][/font][font='宋体'][size=16px]的[/size][/font][font='宋体'][size=16px]扩大,生产成本和价格趋于稳定[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]甘露醇进入食品行业势在必行。[/size][/font][/align][font='times new roman'][size=17px]D-甘露糖醇作为食品添加剂可用于食品工业中,具有以下优点:[/size][/font][font='calibri'][size=17px]①D-甘露糖醇在人体中的一次代谢途径与胰岛素无关,摄入后不会引起血液葡萄糖与胰岛素水平太大幅度的波动,可以给糖尿病病人食用。[/size][/font][font='cambria'][size=16px]②D-甘露糖醇具有清凉的甜味,其甜度相当于蔗糖的0.6倍,其溶解吸热为-29Cal/g,相当于木糖醇的76%,利用这点,可以应用在口香糖上,作为甜味剂使用。[/size][/font][font='calibri'][size=16px]③D-甘露糖醇不会作为口腔微生物的营养源,还可以抑制突变链球菌的生长繁殖,可以用于防止牙齿龋变的食品。[/size][/font][font='宋体'][size=16px]④D-甘露糖醇与山梨醇、木糖醇等不同,它不易吸潮,20℃时,其溶解度仅为18克/100克,远比山梨醇、木糖醇与麦芽糖醇等低。因此,它可以用作隔潮剂,当用于口香糖、胶姆糖等其他食品中,可防止加工使用过程中的粘连。[/size][/font][font='宋体'][size=16px]⑤D-甘露糖醇没有还原基,不参与美拉德反应,所以用于烘烤食品,可以保持良好的颜色,不容易焦化。[/size][/font][font='宋体'][size=16px][6][/size][/font][font='宋体'][size=16px]由于上述优点,甘露醇在食品工业中得到了广泛的应用。比如可作为一种低热值和低糖的甜味剂,用于糖尿病肥胖患者的食品使用,也适合减肥者服用。甘露醇在食品中被用作无糖口香糖的甜味剂,因为它不吸收水分。用于防粘剂也得到了广泛的应用。另外,甘露醇是用来制作冰淇淋、糖果巧克力的风味糖主,也就是所谓的巧克力皮酥脆,可以保持产品硬皮,效果很好。甘露醇还可以隐藏其他食品添加剂的坏味道,如糖精的铁锈味和其他物质的苦味,因此可以用高倍甜味剂混合用于饮料、糖浆及其他食品。如蜜饯、果酱、果冻等等。[/size][/font][font='宋体'][size=16px]目前,甘露醇是食品中使用最多的无糖口香糖甜味剂或抗粘剂。[/size][/font][font='宋体'][size=16px]其次[/size][/font][font='宋体'][size=16px],它可以为冰淇淋和糖果制作巧克力糖果外套。甘露醇还可用作充填剂和质量改良剂,防止结块。此外,它还可以添加到各种食物中。为了延长保质期[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]甘露醇与食品中其他成分相容性好,与其他甜味剂有协同作用。与[/size][/font][font='宋体'][size=16px]高倍[/size][/font][font='宋体'][size=16px]甜味剂相结合,可获得最佳甜度,降低成本,提高产品稳定性和贮存性能。制作巧克力糖衣时,如果使用甘露醇,可添加其他乙二醇(如麦芽糖醇氢化淀粉水解物等),以提高人体耐受性,降低吸热效应。[/size][/font][font='宋体'][size=16px]甘露醇作为多元醇是不能被口腔微生物利用的,服用后也不会增加口腔酸度。这就意味着,不会促成牙垢与形成龋齿。美国牙医协会认为,包括甘露醇在内的多元醇可作为蔗糖的替代品,可以保护牙齿。美国食品与医药管理局同意在使用甘露醇等多元醇的无糖食品上标注“不形成龋齿”的宣传。[/size][/font][font='宋体'][size=16px]而D-甘露糖醇也是国际上公认的在食品工业上使用是安全的。目前我国食品添加剂使用标准中糖果制品最大的使用量是可按生产需要适量使用。[/size][/font][font='宋体'][size=16px][7][/size][/font][align=left][font='宋体'][size=16px]但是,多元糖醇在服用时,有一个共同特点,即超过一定量时,会引起肠胃不适或腹泻。这是因为大部分糖醇在肠道中吸收速度要比糖难得多,小肠内壁未被吸收的糖醇会产生很高的渗透压,这样导致小肠壁粘膜表面产生水流,故引起了腹泻。而未消化吸收的糖醇进入大肠中,,被肠道细菌利用,发酵又产生大量挥发性物质,如果超出了能通过血液重新吸收和随粪便排出的数量极限,就会产生肠胃胀气。这方面,甘露醇和木糖醇、山梨醇都有相同情况。所以美国政府规定,如果一次性服用甘露醇可能超过20克时,必须在食品标志上加以说明。[/size][/font][font='宋体'][size=16px][6][/size][/font][/align][align=left][font='宋体'][size=16px]在美国,50%的糖醇用于食品,在日本,60%的糖醇用于食品,而我国现在食品中糖醇的应用还不到10%。中国有13亿人口,对甜味剂及功能性甜味剂的需求量大,市场潜力巨大,大力开发糖醇在食品中的应用是食品生产商及糖醇企业的当务之急。[/size][/font][/align][align=left][/align][align=center]第4章 [font='黑体'][size=21px]D-甘露糖醇在其他领域上的应用[/size][/font][/align][align=left][font='黑体'][size=18px]4.1生产聚醚[/size][/font][/align][align=left][font='宋体'][size=16px]在精细化工上,甘露醇可用于生产聚醚,作为制造耐高温泡沫塑料,用于保温与消防。甘露醇聚醚制造的泡沫塑料其品质优良,并可以耐温高达180[/size][/font][font='宋体'][size=16px]℃[/size][/font][font='宋体'][size=16px],这是其他多元醇生产的聚醚制造的泡沫塑料所无法比较的,所以用于特殊管道保温时,必须要采取甘露醇聚醚。[/size][/font][/align][align=left][font='黑体'][size=18px]4.2大功率的电解电容[/size][/font][/align][align=left][font='宋体'][size=16px]如大型铝电解用的电解电容器,其中的电解液中必须加入甘露醇,以降低电解液的饱和蒸汽压,抑制氧化膜的水合作用,提高电容器的高温稳定性和电解液的高低温特性。南通江海电容器厂使用国产甘露醇配制的中高压工作电解液,使得在105℃下的铝电解电容器寿命从2000小时突破到5000小时。[/size][/font][/align][align=left][font='黑体'][size=18px]4.3在医药方面上的应用[/size][/font][/align][align=left][font='宋体'][size=16px]甘露醇的利尿脱水作用。甘露醇可以减轻脑水肿,使血糖度下降和离血管舒张,从而发送离血流,保持了脑的自动调节作用。还可增加冠脉的血流,最大程度地降低缺血心肌的损害程度和范围。正因为甘露醇在医疗上有以上重要作用,所以在所有的医院里,甘露醇是利尿排水的首选药物,甘露醇注射液都属必备药物之一。[/size][/font][font='宋体'][size=16px] [/size][/font][font='宋体'][size=16px]由于甘露醇在血管中,可以从体液中吸收水份,从而起到了扩张血管的作用。所以在医药方面[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]甘露醇广泛用于脑血管舒张剂,用于治疗脑血管梗塞。由于它的扩张血管作用,甘露醇可以间接起到降低血压,舒筋活血的作用。[/size][/font][font='宋体'][size=16px] [/size][/font][font='宋体'][size=16px]甘露醇在人的肠胃中不易吸收,所以它还是一种温和的轻泻剂,对于长期性的便泌有良好的治疗作用。[/size][/font][/align][align=left][font='宋体'][size=16px]甘露醇可用于制备醒酒剂,目前在市场上可 以见到的醒酒药片, 其80%以上成分是甘露醇,再加一些葛根提取液或葛根粉制成。[/size][/font][font='宋体'][size=16px][6][/size][/font][/align][align=left][font='宋体'][size=16px]甘露醇具有保健功能性的作用,也越来越多的人了解它,而且随着甘露醇生产的扩大以及人们的保健意识的提高,甘露醇的功能与作用也会有愈来愈多的人认识,甘露醇也将开始大规模应用与各个领域。[/size][/font][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=center]第5章 [font='黑体'][size=21px]D-甘露糖醇的发展趋势[/size][/font][/align][font='黑体'][size=18px]5.1市场情况[/size][/font][align=left][font='宋体'][size=16px]目前,我国甘露醇生产能力小,生产企业大多是中小企业,生产成本无法与国外先进企业相竞争,必须实现规模化、系列化生产,提高经济效益,同时亟须实现下游产品系列化、装置通用化、上下游一体化。[/size][/font][font='宋体'][size=16px] [/size][/font][font='宋体'][size=16px]国内化学合成法比较成熟。南宁化工研究设计院已成功开发出以蔗糖为原料,经水解氢化、分离结晶制备甘露醇的方法和以葡萄糖为原料,异构后加氢,分离结晶制备甘露醇技术,并建有数套工业化装置,其工艺技术简单,环境污染小,产品质量好,收率高,生产成本低、适合大规模工业化生产。南宁化学制药公司已经采用该技术,开工建设1万t/a的装置。无锡轻工大学以淀粉为原材料,采用化学-酶双异构化法、制备高含量的甘露糖和果糖(质量分数分别为43.0%[/size][/font][font='宋体'][size=16px]和[/size][/font][font='宋体'][size=16px]21.5%),将反应液氢化可获得质量分数为53.5%的甘露醇。该工艺投资少,生产易连续化、甘露醇得率高,从而较大程度降低了甘露醇的生产成本,是一个有应用价值的新生产方法。[/size][/font][font='黑体'][size=16px][8][/size][/font][/align][align=left][font='黑体'][size=18px]5.2[/size][/font][font='黑体'][size=18px] 近年产品货紧价扬的原因分析[/size][/font][/align][align=left][font='黑体'][size=17px]5.2.1提取法生产成本的增高和产量的降低[/size][/font][/align][align=left][font='宋体'][size=16px]传统工艺仍然是我国甘露醇的主导生产方法,我国甘露醇生产地的沿海地区,劳动力成本大幅度上涨,海藻类植物随着过度开发导致产量日益减少,加剧了甘露醇产品成本的上扬,带动其它辅料价格也相应上涨,对甘露醇价格的,上涨产生了很大影响。虽然近年来甘露醇产量有一定的增长,但仍远远不能满足市场日益增长的需要。我国以传统的生产方式产出的甘露醇,在今后较长时期内,产量将会逐年下降,市场用量则不断上升,使供求缺口继续扩大。[/size][/font][/align][align=left][font='黑体'][size=17px]5.2.2国际市场供货量的降低[/size][/font][/align][align=left][font='宋体'][size=16px]世界上甘露醇最大的生产国家及出口国-智利、巴西的产量大幅度减少,导致国际市场供求总量失衡,牵动价格上扬。我国是甘露醇的出口大国之一,国际市场上的甘露醇货稀价扬,必然会牵动国内市场的上涨。此外海带资源日趋减少,也导致价格上涨。[/size][/font][/align][align=left][font='黑体'][size=17px]5.2.3人工合成法的普及不足[/size][/font][/align][align=left][font='宋体'][size=16px]目前我国的人工合成甘露技术已经与世界同步,但生产能力和产量还比较低,[/size][/font][/align][align=left][font='宋体'][size=16px]没有发挥出应有的潜力,这也是造成甘露醇货紧价扬的重要原因[/size][/font][font='宋体'][size=16px];[/size][/font][font='宋体'][size=16px]值得庆幸的是在广西南宁一条5 kt/a( 总醇)甘露醇-山梨醇生产线已经投人运行,这将对缓和我国甘露醇供不应求的局面产生积极的作用。[/size][/font][/align][align=left][/align][align=center]第6章 [font='黑体'][size=21px]对D-甘露糖醇的展望[/size][/font][/align][align=center][/align][align=left][font='宋体'][size=16px]目前,我国的甘露醇市场-直呈现供不应求的局面,预计这种供不应求的现象在一定范围内还将持续一段时间,而且随着人们生活水平的提高,这种供不应求的局面还可能进一步加强。因此有条件的企业可以考虑新建或扩建生产装置,以提高我国的甘露醇的生产能力,满足国内外市场的需求。[/size][/font][/align][align=left][font='宋体'][size=16px]但是,也应该清醒地看到:由于甘露醇的市场状况,目前国内不少企业正在投资建设生产装置或在现 有装置上进行扩产改造,国家一定要加强宏观调控,防止一哄而上,出现生产能力和产量过剩的局面。此外,在市场经济条件下,企业的自主权增大,筹集资金的渠道较多,要想避免出现能力和产量过剩的局面,除国家进行必要的宏观调控外,主要依靠企业自律。“九五”期间,我国的医药中间体行业对于这一问题已有了深刻的认识,甘露醇市场也经历了亚洲金融危机之后的一个相当长的市场低谷,一度出现产品亏本的现象。[/size][/font][font='宋体'][size=16px][9][/size][/font][/align][align=center]第7章 [font='黑体'][size=21px]D-甘露醇的产品标准、限量标准及检测标准介绍[/size][/font][/align][font='黑体'][size=18px]7.1[/size][/font][font='黑体'][size=18px]产品标准及最大使用量[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2021/06/202106112258138869_1163_1608728_3.png[/img][font='宋体'][size=16px][7][/size][/font][font='黑体'][size=18px]7.2[/size][/font][font='黑体'][size=18px]甘露醇的检验[/size][/font][font='黑体'][size=17px]7.2.1定性检测[/size][/font][font='黑体'][size=17px] [/size][/font][font='宋体'][size=16px]在实际的分析检测工作中,有时仅需要对未知样品进行定性判定。甘露醇的定性检测基本原理是:晶体甘露醇在碱性条件下与三氯化铁反应生成棕黄色沉淀,振荡不消失,加过量的碱液即溶解生成棕色溶液,这种现象可以作为甘露醉的定性检测,该方法简便、快捷,但是这种方法仅局限于纯度较高的甘露醇晶体,如果样晶中所含杂质较多,则这种检测方法的准确性将无法保证,因此这种定性的检测方法在实际应用中亦有较大的局限性。[/size][/font][font='黑体'][size=17px]7.2.2定量检测[/size][/font][font='黑体'][size=16px]7.2.2.1碘量法[/size][/font][font='黑体'][size=16px] [/size][/font][font='宋体'][size=16px]即中华人民共和国药典中规定的容量法,其原理是:甘露醇与过量的高碘酸盐反应,反应完全后再加入过量的碘化钾,剩余的高碘酸盐及反应生成的碘酸盐都能与碘化钾作用生成游离碘出来,游离碘用硫代硫酸钠标准溶液滴定。碘量法可用于纯度较高的甘露醇样品,如一定浓度的注射液等,但对于含有其他还原性物质如单糖等的样品来说,这些还原性物质也可以被高碘酸氧化,测定结果偏高。此外,碘量法虽然简便快捷,不需要特殊的检测仪器,但操作较为繁琐。近年来也有将碘量法用于测定发酵制品或中草药等复杂体系中的甘露醇含量,这种方法一般需要对样品进行预处理,通过溶剂将样品中的甘露醇提取、纯化,然后对提取液中的甘露醇进行测定。如蔡仲军等人研究了使用不同溶剂处理样晶对虫草甘露醇测定结果的影响,结果表明,在虫草甘露醇含量的测定中,样品预处理采用水提法的准确性和精确性均大大高于醇提取法。[/size][/font][font='黑体'][size=16px]7.2.2.2薄层层析法[/size][/font][font='黑体'][size=16px] [/size][/font][font='宋体'][size=16px]薄层层析是一种微量、快速和简便的色谱方法。其原理是:根据各种化合物的极性不同,吸附能力不相同,在展开剂上移动,进行不同程度的解析。这种方法既可以用于定性检测,也可以用于定量检测。汪宝琪等人采用薄层色谱法,对冬虫夏草中甘露醇进行分离后,用高碘酸钾-联苯胺显色,采用薄层扫描法,在λs =295nm λμ=370nm的条件下进行双波长反射锯齿形扫描,测得西藏产冬 虫夏草中甘露醇的含量为8.4% ,回收率98% - 101.6%。[/size][/font][font='黑体'][size=16px]7.2.2.3比色法[/size][/font][font='宋体'][size=16px] 比色法分析测定甘露醇,是利用高碘酸钠与甘露醇反应产生黄色的3,5-乙酰-1,4-脱氣二甲基吡啶,此化合物在412nm左右处有最大吸收,并且单糖如半乳糖、葡萄糖、甘露糖等对甘露醇的影响很少。李雪芹、包天榈等人比较了测定冬虫夏草中甘露醉含量的两种方法,认为用比色法测定虫草中甘露醇含量较容量法更具特异性且快速简便。在一些较为复杂的体系中,如果含有一定量的果糖,果糖会对甘露醇测定产生较大的干扰,这是因为甘露醇、果糖都可以参与高碘酸氧化反应呈色,且在412nm处有重叠,但通过--定的处理手段可以去除检测体系中的这种影响。蒋华、陈卫等人建立了一种比较简便和精确的分光光度分析法,用以测定乳酸菌发酵体系中的甘露醇含量,通过与盐酸共热脱水反应去除发酵体系中果糖对甘露醇分析测定的干扰和影响,精密度实验和回收率实验表明,此法准确可靠。[/size][/font][font='宋体'][size=16px][10][/size][/font][align=center][/align][align=center][/align][align=center][font='宋体'][size=16px][color=#000000]参考文献[/color][/size][/font][/align][font='calibri'][size=14px][1] [/size][/font][font='calibri'][size=14px][color=#231f20]黎颖.甘露醇的性质、生产与发展建议[J].广西化工[/color][/size][/font][font='calibri'][size=14px][color=#231f20]1999,28(4):29[/color][/size][/font][font='calibri'][size=14px][color=#231f20].[/color][/size][/font][font='calibri'][size=14px][2] [/size][/font][font='calibri'][size=14px]Leen W . W right Sorbitol and M annitol[ J] CHEM TECH, [/size][/font][font='calibri'][size=14px]1944, 4(1): 42-[/size][/font][font='calibri'][size=14px]46[/size][/font][font='calibri'][size=14px].[/size][/font][font='calibri'][size=14px][3] [/size][/font][font='calibri'][size=14px][color=#231f20]黄云翔.ICIA公司蔗糖水解还原法制山梨醇和甘露醇的生产技术[J].广东化工,1995,(1):33-36[/color][/size][/font][font='calibri'][size=14px][4] [/size][/font][font='calibri'][size=14px][color=#231f20]张应茂.李再资.一步法蔗糖直接转化成山梨醇和甘露醇的研究[J].现代化工,1999,19(8):26-27[/color][/size][/font][font='calibri'][size=14px][color=#231f20][5]何燕.精细化工原料及中间体.开发指南.甘露醇生产与应用[J]浙江省巨化集团公司,[/color][/size][/font][font='calibri'][size=14px][color=#231f20]2003,10:15-16[/color][/size][/font][font='calibri'][size=14px][color=#231f20].[/color][/size][/font][align=left][font='calibri'][size=14px][color=#231f20][6]陈为民.甘露醇的性质与应用[J]黑龙江省轻工科学研究院,2009,10(19):41-42.[/color][/size][/font][/align][font='calibri'][size=14px][color=#231f20][7]中华人民共和国国家卫生和计划生育委员会.GB2760-2014食品安全国家标准,食品添加剂使用标准[s].北京:中国标准出版社,2014.[/s][/color][/size][/font][font='calibri'][size=14px][8] [/size][/font][font='calibri'][size=14px]吴国荃.聂美丽.罗书凯.我国甘露醇的生产状况与发展趋势[J]化工技术经济,2004,22(4):5[/size][/font][font='calibri'][size=14px][9] [/size][/font][font='calibri'][size=14px]赵美法.我国甘露醇的生产、市场分析与发展建议[J].山东青岛,2004,(1):4-7.[/size][/font][font='calibri'][size=14px][10] [/size][/font][font='calibri'][size=14px]林成真.甘露醇分析检测技术研究进展[J].河南化工,2010,27(2):5[/size][/font][align=center][/align][align=center][/align][align=center][/align][align=center][/align][align=center][/align][align=center][/align][align=center][/align][align=center][/align][align=center][/align][align=center][font='times new roman'][size=21px][color=#000000]致谢[/color][/size][/font][/align][font='宋体'][size=16px]在完成毕业***是他们的悉心指导,让我对这个课题有了明确的方向。[/size][/font][font='宋体'][size=16px]尤其要感谢我**文的贡献和教导。[/size][/font][font='宋体'][size=16px]同时感谢所**论文。[/size][/font][font='宋体'][size=16px]感谢这篇**篇论文。[/size][/font][font='宋体'][size=16px]最后再次向*最衷心的感谢![/size][/font]

吡喃甘露糖氟相关的方案

吡喃甘露糖氟相关的资讯

  • 离子色谱-积分脉冲安培法检测黄酒中的阿拉伯糖、半乳糖、甘露糖、葡萄糖、核糖、乳糖
    目的:建立了离子色谱-积分脉冲安培法同时检测黄酒中的阿拉伯糖、半乳糖、甘露糖、葡萄糖、核糖、乳糖,并对这几种糖的含量进行探讨。方法:色谱分离选用CarboPacTM10(250 mm×4 mm)分析柱,以氢氧化钠和无水乙酸钠为淋洗液进行梯度洗脱,流速为 1.0 mLmin-1,柱温为30℃的色谱条件,在20 min内实现6种糖的分离,利用建立的方法对26个黄酒样品中的单糖含量进行了测定。结果:该方法的重现性(RSD)≤3.70%,相关系数R2≥0.9990,加标回收率为91.6%~109.1%,最低检出限为2.99×10-3 ~1.38×10-3 μgmL-1。结论:黄酒中主要存在的单糖是葡萄糖,阿拉伯糖、半乳糖、甘露糖、核糖和乳糖的含量较低;半甜型黄酒中单糖的含量高于加饭酒,其含量的差异可能与酿造工艺有关。 离子色谱_积分脉冲安培法检测黄酒_省略_乳糖_甘露糖_葡萄糖_核糖_乳糖_徐诺.pdf
  • 中关村量子生物农业产业技术创新战略联盟发布《酿酒酵母培养物中甘露聚糖的测定 反相高效液相色谱法》 (征求意见稿)
    各有关单位、相关专家:由北京农学院、北京中农弘科生物技术有限公司、河北弘科荣达生物技术有限公司、安琪酵母股份有限公司、安徽东方新新生物技术有限公司、北京大北农科技集团股份有限公司、中国农业大学、铁骑力士食品有限责任公司共同起草的团体标准《酿酒酵母培养物中甘露聚糖的测定 反相高效液相色谱法》已完成征求意见稿。根据《中关村量子生物农业产业技术创新战略联盟团体标准管理办法》的有关要求,现公开广泛征求意见。请各有关单位和专家认真审阅团体标准《酿酒酵母培养物中甘露聚糖的测定 反相高效液相色谱法》征求意见稿及编制说明,并于2023年9月25日前将《征求意见表》反馈给联系人。同时欢迎与该项团体标准有关的高等院校、科研机构、相关企业、行业从业者等加入本标准的研制工作,若有意参与该项团体标准研制工作请与中关村量子生物农业联盟联系。联系人:刘运平联系方式:15011406045电子邮箱:uabi2007@163.com 中关村量子生物农业产业技术创新战略联盟2023年8月25日关于征求《酿酒酵母培养物中甘露聚糖的测定 反相高效液相色谱法》(征求意见稿)意见的通知.pdf1.团体标准-《酿酒酵母培养物中甘露聚糖的测定 反相高效液相色谱法》(征求意见稿).pdf2.团体标准-《酿酒酵母培养物中甘露聚糖的测定 反相高效液相色谱法》(征求意见稿)编制说明.pdf3.团体标准-《酿酒酵母培养物中甘露聚糖的测定 反相高效液相色谱法》征求意见表.docx
  • 中关村量子生物农业产业技术创新战略联盟立项《反相高效液相色谱法测定酿酒酵母培养物中甘露聚糖含量》团体标准
    各有关单位:根据国家标准化管理委员会、民政部关于印发《团体标准管理规定》(国标委联[2019]1号)的规定和《中关村量子生物农业产业技术创新战略联盟团体标准管理办法(试行)》的有关要求,由北京农学院牵头申报的《反相高效液相色谱法测定酿酒酵母培养物中甘露聚糖含量》团体标准经联盟标准化工作委员会及相关专家评审,符合立项条件,现批准立项。请各起草单位按照GB/T 1.1—2020《标准化工作导则 第1部分:标准化文件的结构和起草规则》的规定和要求,严把质量关,加强组织协调,增强本标准的适用性和有效性,确保标准高质量,按期完成标准编制工作。同时欢迎与本标准有关的高校、科研机构、相关企业、使用单位等加入本批标准的起草制定工作。有意参与标准起草制定工作的请与联盟秘书处联系。联系人:刘运平,电话:15011406045电子邮箱 :uabi2007@163.com通讯地址:北京市海淀区苏家坨镇翠湖南路澄湾街19号院。中关村量子生物农业产业技术创新战略联盟2023年04月26日

吡喃甘露糖氟相关的仪器

  • 甘露醇、Parteck山梨醇、高风险应用蔗糖、海藻糖、葡甲胺、无水磷酸氢钙、药用有机溶剂、药用级防腐剂/抑菌剂、药用三氯蔗糖、聚乙烯醇、直压型缓控释药用辅料Parteck SRP 80、热熔挤出用聚乙烯醇Parteck MXP、多孔硅载体Parteck SLC-提高药品溶出、药物递送系统(DDS)相关药用原辅料信息可参见本页面核心参数 – 样本下载中的资料手册。
    留言咨询
  • 全新的 Agilent 6560C 离子淌度 Q-TOF LC/MS 系统将色谱、离子淌度和质谱相结合,可提供出众的分离能力与选择性。6560C Q-TOF LC/MS 还可揭示传统 LC/MS 系统无法提供的结构信息,包括通过高分辨率多重性分解 (HRdm) 分离同类异构体。该系统采用创新的电动离子漏斗技术,可显著提高灵敏度,同时保持有利的低场漂移管设计。这使您能够直接测量准确的碰撞截面 (CCS) 并保留不稳定目标物。无论您是寻求对代谢组学样品进行更全面的分析,表征复杂的聚合物混合物,还是要了解生物分子的结构变化,离子淌度质谱都能提供新的信息。 特性:能够在没有标准品的情况下实现基于第一性原理的碰撞截面准确测量。将 UHPLC、离子淌度和高分辨率质谱相结合,提供极高的分离能力。更好地分离各类复杂的同质异位物质,例如脂类和多聚糖。深入表征不同结构构象和同分异构化合物。采用低能量漂移管设计,保证气相中分子的结构保真度。多重分解可显著提高灵敏度和动态范围,提升达一个数量级。使用安捷伦高分辨率多重性分解 (HRdm 2.0) 软件进行后处理,可实现高达 200 的全谱离子淌度分辨率。用于蛋白质定量结构分析的碰撞诱导去折叠 (CIU) 技术包括诱导分子碎裂的源内活化。在不影响 UHPLC 兼容的分离度的情况下,可使用高达 5 Hz 的采集速率。利用安捷伦 VacShield 真空盾,无需放空即可取出毛细管。性能指标:MS 灵敏度S/N (RMS) 50:1. Measured with 1pg reserpine on columnMS 质量准确度(正离子)1 ppm RMSMS 采集速率50 幅谱图/秒MS/MS 质量准确度(正离子)2 ppm RMSMS/MS 采集速率30 幅谱图/秒TOF 质量分辨率 (FWHM) 在 m/z 2722 处为 42000,与采集速率无关TOF 质量范围m/z 20-20,000四极杆分离质量范围m/z 20-4000四极杆分辨率 (FWHM)1.3 Da(自动调谐)支持的附加软件MassHunter BioConfirmClassifierMassHunter VistaFluxLipid AnnotatorMass Profiler Professional无需放真空的维护VacShield 真空盾技术温度质量稳定性1 ppm / 3 °C离子淌度分辨率 (FWHM)200离子源Dual-AJSMultiMode (ESI+APCI)Dual-ESIGC/APCIAPCINanoESI谱图内动态范围5 个数量级软件平台MassHunter工作原理:安捷伦 LC/Q-TOF 系统结合 e-MSion 的 ExD 池实现 ECD 功能结合使用 e-MSion 的 ExD 池与安捷伦 LC/Q-TOF 系统,通过快速有效的电子捕获解离 (ECD) 显著改善蛋白质形式的整体表征。ECD 可以实现更出色的多聚糖和二硫键定位表征,以及不稳定翻译后修饰的鉴定。e-MSion ExD 可诱导侧链断裂,从而区分同质异位素氨基酸和影响生物药物质量的其他降解产物,而 Q-TOF 的主要功能(如传输效率、灵敏度或分辨率)保持不变。
    留言咨询
  • Thermo ScientificTM Orbitrap FusionTM 是赛默飞最高端的四极杆-静电场轨道阱-线性离子阱三合一组合式质谱。Fusion使用的Orbitrap为超高场Orbitrap质量分析器,相比于赛默飞其他Orbitrap系列产品,Fusion具有超高分辨、高灵敏度、多级质谱能力,并且配备多种裂解模式(CID、HCD及可升级的ETD),非常适合蛋白质组学中复杂体系的高通量蛋白检测。1) 离子源 Orbitrap Fusion配置的是赛默飞新一代的Easy Max NG离子源,具有加热型HESI源和APCI源一体化设计,只需要更换喷针即可实现ESI源和APCI源的切换。Easy Max NG源的另一个特点是集成式气路电路设计,安装Easy Max NG源时即可自动完成气路和电路的连接,不需要进行额外的操作。同时质谱系统还可自动识别源的类型,真正实现了智能化操作。对于蛋白质组学研究客户,除了标配的Easy Max NG离子源之外,有Nanospray Flex Ion Source NG和Easy-Spray nano-Electrospray Ion Source NG两种nanoESI源可供选择。 2) 离子传输部件 离子传输部件采用了S-lens设计,S-lens的离子传输效率是传统的tube lens的数倍,除了S-lens透镜组外,离子传输部件还采用了弯曲的方形离子传输四极杆,质谱离子化时会产生一些中性粒子,这些中性粒子很容易惯性飞行到检测器,被检测器检测到从而产生中心噪音。弯曲的离子传输四极杆可以有效阻挡样品离子中的中性粒子,降低噪音,提高灵敏度。 3) 四极杆质量分析器 主四极杆是Q Exactive上使用的赛默飞专利的同类双曲面四极杆,可以对离子进行过滤筛选,母离子选择窗口可调,可以根据自己实验的要求选择不同质荷比范围的离子通过四极杆进入到后方静电场轨道阱检测,既可进行数据依赖的二级或多级子离子扫描,也可进行非数据依赖的二级子离子扫描。 4) C-trap和离子传输多极杆 C-trap将离子冷却聚焦,传输到Orbitrap进行高分辨扫描。离子传输多极杆是Fusion的核心部件之一,离子进入到离子传输多极杆后可以做两个方向传输,第一就是传输到离子阱,进行快速的碎裂和子离子扫描,第二是经过C-trap进入Orbitrap,进行高分辨扫描。除此之外,离子传输多极杆同时又是一个高能裂解碰撞池,可对母离子进行HCD裂解。离子传输多极杆既可以将离子进行正向和反向传输,又可对离子进行HCD裂解,从而使得Fusion可以在任意阶段选择任意质量分析器进行任意裂解模式的碎裂和扫描。 5) Orbitrap超高静电场轨道阱 Orbitrap Fusion为新一代超高场Orbitrap技术,相比上一代Orbitrap产品,超高场Orbitrap阱的体积缩小,电压提高,从而使分辨率获得提高。同时超高场Orbitrap采用了独特的FT信号处理系统、新型离子传输透镜,从而改善进入Orbitrap质量分析器的离子光学传输。 (Orbitrap 原理:静电场轨道阱Orbitrap是1999年,由俄国科学家MAKAROV发明的一种新型的质谱仪,其质量分析器形状似纺锤体,由纺锤形的中心内电极和左右2个外纺锤半电极组成。Orbitrap对离子的操作步骤分为离子捕获,旋转运动,轴向振动和镜像电流检测。仪器工作时,在中心电极上逐渐加上直流高压,在Orbitrap内产生特殊几何结构的静电场。当离子进入到Orbitrap室内后,受到中心电场的引力,开始围绕中心电极做圆周轨道运动,m/z高的离子有较大的轨道半径。同时离子受到垂直方向的离心力和水平方向的推力,而沿中心内电极作水平和垂直方向的震荡。外电极除限制离子的运行轨道范围,同时检测由离子振荡产生的感应电势,其中水平振荡的频率和分子离子的m/z关系可有公式来描述,由方程可见轴向频率ω与离子的初始状态无关,这造就了Orbitrap的高分辨率和高质量精确度,频率由傅里叶转换成频域谱,再转换成质谱。此外和其他质谱仪不同,Orbitrap既是质量分析器又是检测器,是无损的不需要定期更换。) 6) 双压线性离子阱 Fusion的离子阱设计为高压阱和低压阱两个部分,离子阱技术采用氦气冷却打碎离子,高压氦气有利于离子的捕获、冷却和解离,低压氦气有利于离子的扫描。双压线性离子阱采用高压和低压两个离子阱,高压单元的离子捕获能力提高,离子碎裂时间缩短,低压单元扫描速度加快,质谱分辨率提高,这一双阱优化设计使得离子检测的各过程在最佳的氦气压力下进行,实现了最快的扫描速度,更多的扫描,更高的分辨率。CID裂解在离子阱中进行。 7) ETD(选配) ETD为电子转移裂解(Electron Transfer Dissociation)的简写。ETD裂解的原理是利用阴离子自由基向带正电荷的肽阳离子转移电子,在此过程中产生的化学能量将肽段碎裂。相较于传统的CID裂解和HCD裂解,ETD裂解能够使蛋白质或肽段离子在肽骨架上发生碎裂,即使不依赖蛋白质酶解技术都能够获得很好的肽段碎片信息,并且不会破坏蛋白质或肽段上带有的翻译后修饰基团,因此十分有利于翻译后修饰蛋白质组学和Top-down蛋白质组学研究。Fusion的ETD是不同于以往产品的全新设计,采用汤森德放点原理产生电子,用于和荧蒽反应产生ETD阴离子反应气,调谐更为简单,产生的阴离子反应气流十分稳定,使ETD操作更为简便。
    留言咨询

吡喃甘露糖氟相关的耗材

  • SUPELCOGEL Pb(铅型)树脂型糖柱 液相色谱柱(单糖、木糖/半乳糖、甘露糖分离)
    液相色谱柱 SUPELCOGEL Pb(铅型)树脂型糖柱(单糖、木糖/半乳糖、甘露糖分离)货号59335-U 产品描述 分析/色谱法、高效液相色谱、高效液相色谱法,高效液相色谱柱列的碳水化合物 应用特点 用于单糖、木糖/半乳糖、甘露糖分离,符合USP L34方法 型号规格 10cm*7.8mm,9&mu m
  • SUPELCOGEL Pb(铅型)树脂型糖柱 液相色谱柱 (单糖、木糖/半乳糖、甘露糖分离)
    液相色谱柱 SUPELCOGEL Pb(铅型)树脂型糖柱(单糖、木糖/半乳糖、甘露糖分离) 产品描述 SUPELCOGEL Pb 色谱柱中这种铅为反离子的树脂为单糖提供了最佳的选择性和分离效果。SUPELCOGEL Pb 色谱柱为木糖、半乳糖和甘露糖的分离获得了良好的分离效果,而它们在钙离子树脂的色谱柱中并不能完全分离。 应用特点 用于单糖、木糖/半乳糖、甘露糖分离,符合USP L34方法 型号规格 30cm*7.8mm,9&mu m
  • D-甘露醇分析柱
    近期政府公布了新的可使用的食品添加剂的列表,同时也对这些生产和使用的企业公布了新的食品添加剂的国家检测标准。 其中有一种很常用的食品添加剂:D-甘露糖醇,其国家新检测标准中规定必须使用伯乐公司的100× 7.8mm的快速糖分析柱(货号:1250105) D-甘露糖醇是低热量甜味剂,胶姆糖和糖果的防粘剂,营养增补剂及组织改良剂,保湿剂,使用范围很广,包括所有的糖果、酥糖、大部分的饼干,以及大部分的甜味的食品。 货号 规格mm 应用 粒径 离子形式 交联率 pH范围 125-0105 快速糖分析柱 100× 7.8 葡萄糖、半乳糖、蔗糖、果糖 9&mu m 铅 8% 5-9 国家指定标准
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制