当前位置: 仪器信息网 > 行业主题 > >

超声显微系统

仪器信息网超声显微系统专题为您提供2024年最新超声显微系统价格报价、厂家品牌的相关信息, 包括超声显微系统参数、型号等,不管是国产,还是进口品牌的超声显微系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超声显微系统相关的耗材配件、试剂标物,还有超声显微系统相关的最新资讯、资料,以及超声显微系统相关的解决方案。

超声显微系统相关的资讯

  • 深圳先进院等研发出新型无标记血管成像双光子显微系统
    p style=" text-align: justify text-indent: 2em " 近日,中国科学院深圳先进技术研究院研究员郑炜团队、北京大学教授施可彬团队合作,研制出首台短波长(520纳米)激发的双光子显微系统。该系统可用于毛细血管的高分辨率、无标记、无创活体成像,相关成果论文In vivo label-free two-photon excitation autofluorescence microscopy of microvasculature using a 520 nm femtosecond fiber laser发表在Optics Letters上。 /p p style=" text-align: justify text-indent: 2em " 对微血管网络在其自然环境中进行形态评估,为理解感染、高血压、糖尿病、缺血、癌症等各种疾病的发生和发展提供了独特视角。目前,无需标记物的高分辨率三维成像技术的缺乏,限制了对微血管的体内研究。以往采用蓝宝石激光器(波长范围:700-1000纳米)作为光源的普通双光子显微系统给血管成像时,由于血管自身几乎不发荧光,需要提前在血管中注射荧光染料。近年来,科研人员发现红细胞在可见光飞秒激光激发下可发出微弱的自发荧光信号。但以往研究只能依赖蓝宝石激光器和光参量振荡及放大技术或光子晶体光纤(PCF)产生超连续谱这两种方法来获得可见光波段(400-700纳米)的飞秒光。这些方法存在激光器体积大,价格昂贵,结构复杂,易受环境影响等问题。 /p p style=" text-align: justify text-indent: 2em " 该研究借助施可彬团队自行研制的520纳米高功率飞秒光纤激光器,采用短波长激发和荧光寿命成像相结合的技术,实现了毛细血管的无标记、活体、高分辨成像。整个双光子显微系统横向分辨率达到260纳米,纵向分辨率为1.3微米,在体成像深度可达200微米。该设备的研发将为后续血管相关的疾病机理研究与治疗策略探索提供重要工具。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 该研究得到国家自然科学基金、广东省自然科学基金等项目支持。 /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.osapublishing.org/ol/abstract.cfm?uri=ol-45-10-2704" target=" _self" span style=" color: rgb(0, 176, 240) " strong span style=" text-indent: 2em " 论文链接& nbsp /span /strong /span /a /p p style=" text-align: center text-indent: 0em " span style=" text-indent: 2em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/aa10e0df-e883-46ef-ad83-b8c46ccd44d1.jpg" title=" 1.PNG" alt=" 1.PNG" / /span /p p style=" text-align: center text-indent: 0em " strong span style=" text-indent: 2em " (a)血红细胞和(b)毛细血管的无标记、高分辨成像结果 /span /strong /p
  • 徕卡显微系统助力教学设备更新
    基础教育是教育事业发展、建设教育强国的重要基石,对提高国民素质、培养各级各类人才具有极其重要的基础地位和作用。国务院发函各省级教育主管单位发函徕卡显微系统作为百年光学品牌,在其175年的历程中致力于用显微镜帮助老师们在课堂上揭示各种物体的内部细微结构,从而让学生从微观了解自然的构成和运行规律。光学显微镜分为体视镜、复合显微镜两大类,其中复合显微镜因为用途又分为专门观察活细胞的倒置显微镜和切片观察为主的正置显微镜。体视显微镜又称之为立体显微镜,其的光路设计和人眼观察的角度类似,左右分离最后在观察目标处的交会让观察者可以立体的看到所观察的物体,而且不需要进行标本的制备处理就可以观察。放大倍率通常为几十倍也可以观察到百倍,所以非常适合做肉眼可见的标本物的教学,因为其目镜和物体之间的工作距离大,所以也可以用于手术解剖教学。EZ4教学用体视显微镜(最大35X放大),其中EZ4E可以进行有线组网,EZ4W版本还可以直接连接智能终端。Ivesta 3具有最大有55X的放大,其具有Leica在体视镜的独门绝技—融合光学,该技术可以兼顾景深和分辨率,打破传统光学固有限制。为了让老师能在狭窄的细胞间中对学生进行活细胞形态学教学,徕卡显微系统研发了Mateo TL数字倒置显微镜。其无目镜设计,机载15.6英寸的大屏幕可以方便多位学生同时观看。相差辅助功能能教会学生了解正确使用该观察方法。无线传图功能,让同学们手中的移动终端可以方便无线获取显微镜所拍摄的图片。此外,其自带的汇合度模块,可以辅助老师教指导学生对细胞生长的节点进行准确把握。(【客户之声】引路科学 协助教学)Leica DM300 单筒或双筒教育用显微镜专门用于高年级的生物学系学生或2-4年的大学生命科学课程,其复式显微镜结构紧凑。得益于坚固耐用的铜质聚焦核心零件免于维护,每天均能提供无故障运行。配备了机械台,从而使用方便。还有贴上标签的阿贝聚光镜,保证优异的光学质量。DM300可配置旋转式单镜筒或双镜筒,共享观看,便于储存。徕卡具有175年在显微镜设计和制造方面的经验,Leica DM300教学显微镜可以帮助学生探寻大自然的奥秘。DM500/750正置显微镜,得益于其无限远光路系统,可以方便连接相机,从而用于大教室多人互动教学。AgTreat™ – 为防止学生之间的细菌传播所设计的触点,EZStore™ 设计具有手柄和绳裹,便于搬运、方便提升且绳易于收藏。EZLite™ 提供寿命超过20年以上的LED照明和延时自动关闭功能,节约时间和能源。以上部分产品还可以在徕卡网上商城直接购买:徕卡显微咨询电话:400-630-7761关于徕卡显微系统徕卡显微系统的历史最早可追溯到19世纪,作为德国著名的光学制造企业,徕卡显微成像系统拥有170余年显微镜生产历史,逐步发展成为显微成像系统行业的领先的厂商之一。徕卡显微成像系统一贯注重产品研发和最新技术应用,并保证产品质量一直走在显微镜制造行业的前列。徕卡显微系统始终与科学界保持密切联系,不断推出为客户度身定制的显微解决方案。徕卡显微成像系统主要分为三个业务部门:生命科学与研究显微、工业显微与手术显微部门。徕卡在欧洲、亚洲与北美有7大产品研发中心与6大生产基地,在二十多个国家设有销售及服务分支机构,总部位于德国维兹拉(Wetzlar)。
  • 卡尔蔡司发布激光层照显微系统
    卡尔蔡司激光层照显微系统(Lightsheet Z.1)   ——低光毒性的大型生物活体样本的三维荧光成像   2012年10月15日   德国,耶拿 / 美国,新奥尔良   在路易斯安那州新奥尔良的神经科学年度会议上,卡尔蔡司的显微镜事业部提出了一项新的显微技术,即激光层照显微镜(Lightsheet Z.1)。这给生物学家带来了在活体生物动态成像研究上的新方法。   生命观察   生物学家可以使用新的显微系统观察整个生物体在几天甚至更长时间内的发育。极低的光毒性和整合的培养系统可以在不损伤样本的情况下观察细胞群的分化。在大型生物活体上,特别是像果蝇或斑马鱼胚胎,相比已有的荧光显微镜观察方式来说,激光层照显微镜(Lightsheet Z.1)可以提供更多的信息。“样本越大,你可以从激光层照显微镜上获到越多的信息。” 德国Max Planck研究所的分子生物学和遗传学博士 Pavel Tomancak说。同时,激光层照显微镜(Lightsheet Z.1)也可被用于海洋,细胞生物学和植物生理学。   Multiview带来的新视觉   激光层照显微镜(Lightsheet Z.1)的光照光束(层照光束)只会照亮样本很薄的一层,因而起到保护样本其他部分的作用。并且它的成像光束与光照层成90度角。 因此,激光层照显微镜(Lightsheet Z.1) 能在最小的照明强度下获得最好的图像质量,尤其适合于活体样本的长期试验。Multiview成像从不同的观察角度获得数据,再通过数学运算进行三维重建和时间序列视频录制。   Lightsheet Z.1的激光层照系统使用了可实现柱面透镜光学与激光扫描相结合的新型光学概念。用户能从复杂的实验样本上得到均匀的光学切片信息。   蔡司激光层照显微镜产品经理Olaf Sslchow博士说:“我相信这种照明方法将会为三维荧光照明带来革命性的改变。”   更多产品信息,请访问www.zeiss.com/lightsheet
  • 徕卡显微系统携手仪器信息网,5月13日直播探讨光学显微镜新进展与选型指南
    在科研设备日益更新的当下,仪器信息网积极响应国务院常务会议审议通过的《推动大规模设备更新和消费品以旧换新行动方案》,特别推出系列直播活动。本期活动将聚焦光学显微镜领域,携手徕卡显微系统,于2024年5月13日13:30邀请行业资深专家,共同探讨仪器技术新进展、行业应用趋势,为用户带来最新技术和选型采购的实用经验。本次直播活动将涵盖多个亮点。首先,圆桌论坛将聚焦显微成像前沿技术,行业大咖将现场分享经验,探讨未来发展新趋势。此外,徕卡显微镜产品家族也将进行深度解读,包括多通道成像、智能平台、宽场光学与工业新应用等方面的技术亮点。圆桌论坛环节,仪器信息网邀请行业大咖,共同探讨显微成像技术的未来发展。嘉宾阵容包括:王文娟,清华大学蛋白质研究技术中心主管/高级工程师,她长期利用化学生物学手段,特别是荧光成像技术,深入探索生物大分子的功能与机制。韦欣,中国科学院半导体研究所主任/研究员,专注于新型半导体激光器、探测器及纳米结构应用的研究。夏燕,徕卡显微系统工业销售总监,她将带来工业显微镜领域的最新进展和市场洞察。王怡净,徕卡显微系统生命科学部全国应用经理,她将分享生命科学研究中显微镜技术的应用案例和选型建议。在直播中,嘉宾们将分享与光学显微镜的深厚情感,探讨技术创新浪潮下的专业实验室配置的光镜新品类,以及创新应用与发展趋势。他们还将针对用户需求,提供权威的选型指导,助力用户精准采购。 点击报名 此外,为了增加活动的趣味性,报名参加直播的用户还有机会赢取徕卡特色礼品,包括精美咖啡杯、设计感雨伞和趣味积木等。快来参与直播抽奖,让好运和惊喜不断!活动日程如下:点击报名
  • 徕卡显微系统国产化成果斐然,积极响应设备更新政策
    近年来,随着国家对于设备国产化的重视和扶持力度的加大,为了满足中国市场的多样化需求,徕卡显微系统积极投入研发和生产,推出了一系列国产化产品。这些产品不仅继承了徕卡显微系统一贯的卓越品质和技术优势,还针对中国市场的特点进行了优化和改进,深受用户的喜爱和好评。徕卡显微系统已经成功实现从研发到生产的全面国产化能力。 随着国家政策的逐步推进,设备更新已成为推动产业升级和科技进步的重要动力。作为光学显微领域的领军企业,徕卡显微系统积极响应国家设备更新政策,推出了多项优惠政策和服务措施。针对老旧设备的更新,徕卡显微系统提供了专业的评估和咨询服务,帮助用户选择最适合自己的新产品。此外,徕卡显微系统还提供了完善的售后服务和技术支持,确保用户在使用过程中能够得到及时、有效的帮助和支持。 与小编一起感受徕卡在中国市场的深耕细作,看看国产化产品的魅力吧! Leica DM300 单筒或双筒教育用显微镜 结构紧凑,使用方便,配备了机械台以及贴上标签的阿贝聚光镜,DM300可配置旋转式单镜筒或双镜筒,共享观看,便于储存。适用于高年级的生物学系学生或2-4年的大学生命科学课程。该机型和DM500/750的主要接触部件上的Ag涂层有效防止使用者之间的感染。 Leica DM500 双目教学显微镜 无限远光学系统使其具有“即插即用”功能,是教师和学生在学院和大学初级生命科学课程教学中的一种方便有趣的理想工具。该机型有适合学生的各种功能,如预聚焦、预居中的聚光器和EZTube™预置屈光度,这些功能可以避免错误调整,为实践操作教学提供更多时间。此外,EZStore™具有一体化手柄及绳裹,便于搬运和提升,且防止显微镜部件损坏。 Leica DM750 双目教学显微镜 徕卡DM750除了支持无限远光学,还支持科勒照明。其适用于学院和大学高级生命科学课程和医学、兽医及牙科学校专业训练的各种需求。除了和DM500一样的EZStore™功能,该机型和DM500一样的圆边EZGuide允许单手滑动装载,减少滑动玻片,提供安全的课堂环境。 Leica DM1000 生物显微镜 符合人体工程学设计,具有多种可调功能且易于使用的控制装置,是所有临床实验室应用的理想选择,特别是细胞学、血液学和病理学。 Leica DM2000 & DM2000 LED 正置显微镜 具有高端的模块设计和高性能的荧光,人体工学设计,适用于复杂的临床应用,可用于病理学、细胞学,以及其它复杂工作领域。从该机型开始支持微分干涉功能。 Leica DM2500 & DM2500 LED 荧光显微镜 凭借强大的透射光照明、高品质的光学性能以及技术先进的附件,特别适合要求微分干涉相衬或高性能荧光等颇具挑战性的生命科学研究任务。 Leica DM3000 & DM3000 LED 生物显微镜 适用于病理学、细胞学与血液学研究,它具有电动物镜转盘、聚光顶镜、自动光线强度调节装置与可选脚踏开关,直观的显微镜改善了细胞学与病理学研究的操作流程。 Leica DMi1 倒置显微镜 操作直观,灵活自如,可以轻松添加必须的各种配件,支持细胞培养实验室中的日常工作。 Leica DM IL LED 倒置显微镜 高性能光学元件、人体工学设计和 5W LED 照明,是细胞培养、显微操作、免疫染色样本成像和活细胞常规检查的理想选择。 Mateo TL 数字透射光倒置显微镜 让所有实验室成员都能够舒适地检查和记录细胞生长状态,适合需要获得一致实验结果的研究人员。统一测量汇合度,从而增强对下游实验取得成功的信心。 Leica EZ4 用于高校教学的体视显微镜 Leica EZ4教学体视显微镜,带4.4:1变焦镜头,适用于入门级高等院校课程,如生物学、解剖学、化学,提供了超过20年寿命的高亮LED照明,从而节省时间和更换灯泡的成本。此外,7路LED照明系统提供了高品质照明的入射、斜射和透射光以及任何应用的对比。格里诺光学系统提供了样本的三维视图。 未来,徕卡显微系统将继续深耕中国市场,坚持技术创新和品质提升,不断推出更多符合中国用户需求的国产化产品,为用户创造更大的价值。我们坚信,在国家政策的支持和推动下,徕卡显微系统一定能够在光学显微领域取得更加辉煌的成就。 点击此处申请样机试用 徕卡显微咨询电话:400-630-7761 关于徕卡显微系统 徕卡显微系统的历史最早可追溯到19世纪,作为德国著名的光学制造企业,徕卡显微成像系统拥有170余年显微镜生产历史,逐步发展成为显微成像系统行业的领先的厂商之一。徕卡显微成像系统一贯注重产品研发和最新技术应用,并保证产品质量一直走在显微镜制造行业的前列。 徕卡显微系统始终与科学界保持密切联系,不断推出为客户度身定制的显微解决方案。徕卡显微成像系统主要分为三个业务部门:生命科学与研究显微、工业显微与手术显微部门。徕卡在欧洲、亚洲与北美有7大产品研发中心与6大生产基地,在二十多个国家设有销售及服务分支机构,总部位于德国维兹拉(Wetzlar)。
  • 新闻 | 徕卡显微系统亮相首届中国国际进口博览会
    號外中国上海2018年11月5日隶属于丹纳赫集团的徕卡显微系统(简称“徕卡”)和丹纳赫集团旗下所有子公司于今天一同正式亮相年度国际一流盛会——首届中国国际进口博览会。本次展会是世界上第一个以进口为主题的国家级博览会,是世界各国展示国家发展成就,开展国际贸易的开放性合作平台,在政府的高度重视和大力提倡下,为各个参展企业、采购方和行业嘉宾提供了重要的交流和互动平台。徕卡已与来自全国各地的采购代表团展开了接洽与合作,更与意向合作的采购团签署采购协议。徕卡携手丹纳赫旗下公司亮相会场徕卡展示区位于丹纳赫品牌馆,坐落于上海国家会展中心7.1馆医疗器械及医药保健展区C2-05展位。丹纳赫品牌展区设计为一艘乘风破浪的帆船,占地300平米,分五大战略平台进行展示,分别是生命科学、诊断、齿科、水质管理和产品标识。徕卡隶属生命科学战略平台,作为光学成像行业的领先服务商之一,徕卡也将展示科学领域创新和探索具有代表性的元素。见微知著,洞见未来徕卡提供给您预见未来的视野徕卡显微系统一直致力于在光学成像上的极致追求和不断进取,为帮助科学家实现更进一步的科学探索不断创新,其创新精神在自公司十九世纪成立的100多年以来,一直得到业界广泛认可。本届展会上,徕卡展示了不同应用领域的显微产品,有生命科学领域专门帮助活细胞培养检测的新产品Paula,应用于生命科学领域的体视显微镜S9i,和工业领域的数码显微镜DVM6,以及应用于医疗领域的手术显微镜M320。Paula-活细胞智能成像监测仪S9i 体视显微镜DVM6数码显微镜M320手术显微镜将生命科学融入生活徕卡一直就在您的身边参观者在徕卡展区,亲自体验到显微世界的神奇奥妙,一根头发丝,一片花瓣,都能通过简易操作,展现出意想不到的画面,让参观者从微观视角重新认识已习以为常的事物,亲身感受科学如何来源于生活,并将造福于生活。此外,展台机器人的互动环节,也帮助参观者深入了解徕卡显微系统在生命科学,工业和医疗领域的创新价值。比如获得诺贝尔奖的STED超高分辨率显微技术,为亚细胞结构和纳米级细胞动态研究带来了新事态 ;配备全新独特的4Tune检测器的可调式全光谱多光子显微镜SP8 DIVE,让深度活体多色实验的可能性不再受到滤光片选择的限制,实现光谱自由。更有徕卡专利融合光学M530 OHX高端手术显微镜,同时具有超大景深和超大分辨率,突破人类视觉技术,满足未来技术的要求。关于徕卡显微系统Leica Microsystems徕卡显微系统是全球显微科技与分析科学仪器之领导厂商之一,总部位于德国维兹拉(Wetzlar, Germany)。主要提供显微结构与纳米结构分析领域的研究级显微镜等专业科学仪器。自公司十九世纪成立以来,徕卡以其对光学成像的极致追求和不断进取的创新精神始终得到业界广泛认可。徕卡在复合显微镜、体视显微镜、数码显微系统、激光共聚焦扫描显微系统、电子显微镜样品制备和医疗手术显微技术等多个显微光学领域处于全球领先地位。 自创立至今,徕卡的光学足迹已遍及全球100多个国家。目前,徕卡在欧洲、亚洲与北美有6大产品研发与生产基地,在20多个国家设有销售或服务支持中心,以及遍布全球的经销商服务网络。
  • 适用于单细胞内单分子动态观测的层状光超高分辨率扫描荧光显微系统的研究
    成果名称 适用于单细胞内单分子动态观测的层状光超高分辨率扫描荧光显微系统的研究 单位名称 北京大学 联系人 马靖 联系邮箱 mj@labpku.com 成果成熟度 □研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产 成果简介: 超分辨技术是利用随机光学重构等方法,突破光学衍射极限的一种新型显微技术,它使得我们有机会在单分子水平上观察亚细胞结构。但是传统意义的超分辨技术是基于全内反射照明的,这就使得我们可观测的样品厚度远小于细胞厚度,从而无法对细胞深处,如细胞核内的分子进行实时观测。层状光扫描技术是利用高斯光束的性质,通过光线的单方向汇聚产生亚微米级的层状光,从而可以对组织样品进行3D扫描。层状光荧光扫描显微系统有着成像速度快,光致漂白与光毒性效应小等优势,非常适合于组织及真核细胞的观测,但它的分辨率会受到衍射极限的限制。 生命科学学院孙育杰课题组将这两种技术进行了优势互补,发展了新型集成芯片技术,研发出了一种适用于单细胞内单分子动态观测的新型显微系统。在基金的资助下,通过相关设备的购置和材料的加工,有力地推动了项目组相关工作的开展,其主要工作包括:(1)层状光-荧光扫描系统的实现;(2)适用于单细胞层状光成像的新型细胞芯片技术的研究;(3)单分子超高分辨率荧光技术的实现;(4)超高分辨率一层状光荧光扫描复合光路的实现。通过以上工作的开展,单分子超高分辨率荧光显微系统的样机搭建已经完成,顺利通过了第四期项目的验收。这项工作获得了国家自然科学基金委重大项目的后续支持,项目名称为&ldquo 细胞中活性分子实时动态变化与相互作用的荧光探针研究&rdquo 。 应用前景: 该研究成果在细胞生物学,特别是干细胞定向分化、胚胎早期发育、胞内运输等生物过程的研究领域中有着重要的应用前景。
  • ​关注"生育力保护",Nexcope显微系统能在辅助生殖中做什么?
    7月9号,湖北省性学会生育力保护专委会成立大会暨生育力保护新进展学术研讨会在武汉举行。1 研讨会现场根据《中国卫生健康统计年鉴》的调查结果和北医三院乔杰院士团队开展的全国育龄人群生育健康监测数据显示,我国不孕率从1997年的3.5%提高至2020年的17.6%。即平均每6到7对夫妻中就有一对遭遇生育困境,且呈年轻化的趋势。“生育力保护”已成为相关领域专家研究的热点问题。研讨会后,人类精液分析标准化和质量控制高级培训班开幕,进行了为期一天的实操培训。本次培训实操使用的显微镜为Nexcope NE900 和NE620正置生物显微镜。在辅助生殖(ART)领域,它们通常用于精子观察,通过相差观察来计数,同时检验精子形态、存活率、活动力和浓度。 学员使用Nexcope显微镜进行实操在辅助生殖研究多个环节,Nexcope显微镜均可作为得力科研工具:正置生物显微镜--------------------精子观察、精液分析Nexcope 正置生物显微系统具有高亮度LED,能清楚地观察精子的流动性,此外由于LED光源产生的热量较低,对样品的损害会减少;25mm 大视场目镜,观察内容更全面、观察速度更快;微分干涉模块和相衬物镜可实现更精确的精子计数和更清晰的形态观察;可倾角观察头和低手位可调节手柄有助于确保舒适的显微镜操作。 Nexcope NE900 生物显微镜体视显微镜--------------------卵母细胞及胚胎观察Nexcope 体视显微镜用于卵母细胞清洁、卵母细胞冷冻和解冻期间的观察、受精检查、胚胎等级确认。Nexcope体视显微镜使您能快速切换所有观察区域,从0.75X放大倍率切换到13.5X放大倍率,变焦倍率比达到 1:18, 既可以在低放大倍率下进行高质量的整体观察,又可以快速放大以进行微米级的细节观察。在实际工作过程中,需要相当长的时间来查找和判断卵母细胞和胚胎成熟度。为减轻用户疲劳,Nexcope体视显微镜系列提供可倾角三目观察头,能够实现瞳距、视度调节,眼基线高度可提升 47mm,让您在最自然、最舒适的姿势下进行工作。此外,底座内置 OIC 照明装置,可滑动侧边操作杆将下照明改为斜射照明,增强了无色、透明样品表面的对比度,可以快速检查卵母细胞和胚胎的状况。 Nexcope NSZ818 体视显微镜倒置生物显微镜------------------------- 卵胞浆内单精子注射(ICSI)Nexcope 倒置生物显微镜可搭载体外显微注射系统,在卵母细胞中进行卵胞浆内单精子注射(ICSI)。首先使用Nexcope 倒置生物显微系统观察卵母细胞的纺锤体以确认是否成熟,同时有助于确保其处于正确的位置,避免注射过程中的损伤。通过Nexcope倒置生物显微镜可以通过微分干涉对比度(DIC)、相称进行一系列观察,您能清晰地观察主轴的外观。此外,浮雕3D反差观察塑料/玻璃培养皿中的三维卵母细胞,使您能检查卵母细胞透明带的状况,由此显著提高受精率。在ICSI期间,需要使用多种观察方法和镜头放大倍率,使显微镜操作更加复杂,并增加了用户的压力和疲劳水平。Nexcope 倒置生物显微镜能记忆使用每个物镜时的照明亮度,当不同物镜相互转换时,自动对光强进行调节,减少视觉疲劳,提高工作效率。 Nexcope NIB900 倒置显微镜搭载体外显微注射系统关注“生育力保护”,Nexcope显微系统在重要环节助力辅助生殖研究,使您的操作更舒适,观察更精准,成功率更高。了解更多相关产品,请关注我们:
  • 新活体光片:徕卡显微系统通过整合Viventis显微技术,为其产品组合增加了前沿光片解决方案
    Viventis光片解决方案助力详尽的体成像, 探索生命的全貌 2024年5月7日,德国韦茨拉尔——作为显微镜和科学仪器领域以及高级成像解决方案领域的领先厂商之一,徕卡显微系统公司已将Viventis显微技术的光片技术纳入其先进研究显微镜系列。光片显微镜技术使研究人员能够精确研究复杂生物系统的发展和动态,直至单个细胞水平。作为一种尤为温和的成像技术,光片显微镜提供了对自然过程随时间演变的无偏见观察,这可能在多个科学领域带来突破,深化对生物学、健康和疾病的理解。全新的Viventis LS2 Live光片荧光显微镜以其独特方式进行多视角和多位置光片成像,全方位展示生命。其时空分辨率和图像质量,即使是对大型光散射样本,也能够扩展研究人员的科学认识和分析。徕卡显微系统公司现已对Viventis LS2 Live显微镜接受咨询,并将为所有Viventis显微技术产品提供全球支持与服务。 “在徕卡显微系统公司,我们生命科学领域的重点是为研究人员提供推动未来突破所需的环境,”徕卡显微系统公司总裁安妮特林克博士说。“随着Viventis显微技术加入我们的强大产品组合,我们将赋能全球研究社区,从类器官和其他大型样本等三维模型中提取这一环境。实际上,随时间推移,类器官中整个样本体积的温和可视化带来了前所未有的细节,正在转变深入功能研究并推动科学理解的边界。” “徕卡显微系统公司是我们确保全球研究社区获得创新光片解决方案的理想伙伴,”Viventis显微技术的联合创始人、现为徕卡显微系统生命科学业务部副总裁詹姆斯奥布莱恩团队之一的Petr Strnad补充道。“作为徕卡团队的一员,我们将继续支持研究人员开启科学发现新突破的旅程。” Viventis显微技术自2016年起,与位于瑞士巴塞尔的弗里德里希米舍尔研究所的Prisca Liberali实验室合作,开始开发光片显微镜。自那以后,该公司已为欧洲顶尖研究机构提供显微镜。 徕卡显微咨询电话:400-630-7761 关于徕卡显微系统 徕卡显微系统的历史最早可追溯到19世纪,作为德国著名的光学制造企业,徕卡显微成像系统拥有170余年显微镜生产历史,逐步发展成为显微成像系统行业的领先的厂商之一。徕卡显微成像系统一贯注重产品研发和最新技术应用,并保证产品质量一直走在显微镜制造行业的前列。 徕卡显微系统始终与科学界保持密切联系,不断推出为客户度身定制的显微解决方案。徕卡显微成像系统主要分为三个业务部门:生命科学与研究显微、工业显微与手术显微部门。徕卡在欧洲、亚洲与北美有7大产品研发中心与6大生产基地,在二十多个国家设有销售及服务分支机构,总部位于德国维兹拉(Wetzlar)。
  • 北京科委:高时空分辨电子显微系统关键技术研发可获千万级国家自然基金支持
    北京科委发布《关于开展2021年度国家自然科学基金区域创新发展联合基金项目组织申报工作的通知》,围绕人工智能、生物医药、新材料与先进制造等相关领域开展基础研究和应用基础研究,充分发挥国家自然科学基金在北京国际科技创新中心建设中的作用。新材料与先进制造中,高时空分辨电子显微系统关键技术及功能体系动力学集成项目直接费用平均资助强度约为1000万元。研究要求围绕新型量子体系和低维纳米材料系统的研究需求,研究高时空分辨电子显微镜的关键核心技术和功能体系动力学过程,解决脉冲电子束产生、脉宽压缩、显微成像等关键科学技术问题,发展多时域、多维度的飞秒-亚纳米电子显微成像方法和解析理论。研究内容包括研制适合超快电镜的高性能电子源,提高脉冲电子束发射性能,发展具备超快时间分辨及高空间分辨的电子显微学表征新方法。重点支持项目还包括了车用燃料电池催化剂的原子尺度准原位表征和机理研究,研究要求针对车用燃料电池催化剂对高活性和高耐久性的技术要求,研究和开发新型低维高质量活性和高低电压稳定性的贵金属氧还原催化剂,在原子尺度下用准原位方法表征催化剂表面结构和原子迁移过程,阐明催化剂表面原子结构与催化活性的构效关系、催化剂稳定性机制,制备满足高活性和长循环需求的燃料电池氧还原催化剂。通知全文如下:关于开展2021年度国家自然科学基金区域创新发展联合基金项目组织申报工作的通知各依托单位:北京市2020年起加入国家自然科学基金区域创新发展联合基金(以下简称区域联合基金),旨在吸引和聚集全国优秀科研人员,围绕人工智能、生物医药、新材料与先进制造等相关领域开展基础研究和应用基础研究,充分发挥国家自然科学基金在北京国际科技创新中心建设中的作用。近日,国家自然科学基金委员会正式发布《2021年度国家自然科学基金项目指南》,启动区域联合基金申报工作(申请通知详见国家自然科学基金委员会网站www.nsfc.gov.cn),集中接收截止时间为2021年3月20日16时。为做好2021年度区域联合基金项目的组织申报工作,现将有关事项通知如下:一、深入开展项目组织动员各依托单位要深入分析优势研究团队情况,充分整合资源,调动科研人员申报积极性。做好交叉方向项目组织工作,促进优秀团队强强联合。认真研读申报通知和项目指南,做好申报政策宣讲和解读。二、积极联合企业等应用方共同申报2021年度国家自然科学基金区域创新发展联合基金项目指南(北京节选,见附件)明确提出“鼓励申请人与北京地区具有较好研究实力和研究条件的企业开展合作研究”。各依托单位要加强宣传,广泛动员科研人员与企业、创新中心等应用方联合申报区域联合基金项目。三、加强辅导提高申报质量各依托单位应积极组织领域专家对项目申报进行培训和指导,交流项目申报的经验和做法,提高申请书撰写水平;组织专家听取项目汇报、开展项目预审、提出修改意见,提升项目申报质量。各依托单位要充分发挥主体责任,加强项目组织与协作,加强与市基金的沟通和联系,共同为科研人员做好服务。在项目组织申报过程中遇到问题,请及时与北京市自然科学基金委员会办公室联系。联系人:郭凤桐;电话:010-66154813。北京市自然科学基金委员会办公室2021年1月26日
  • 省时省力!微塑料全自动快速分析,非接触式亚微米红外拉曼同步光谱显微系统再度升级!
    随着大量塑料的使用和随意处置,微塑料几乎污染了整个地球,科学家也愈发关注对微塑料的研究。环境中微塑料的尺寸往往小于5μm,传统红外因受限于微米级别空间分辨率,以及不同尺寸颗粒变化的实际红外吸收峰相较于理想吸收峰散射严重等问题,很难对样品进行有效的定性和定量分析。美国PSC公司推出的非接触式亚微米红外拉曼同步光谱显微系统-mIRage,得益于其500 nm空间分辨率、不因颗粒尺寸变化而发生散射且无需接触测量等优势,有效解决了绝大多数环境微塑料样品光谱显微测试的问题。其显著的技术优势为:✔ 亚微米红外空间分辨率,比传统的FTIR/QCL红外显微提高~20倍;✔ 有效排除小尺寸样品散射伪影,极大提高样品测试范围,获得高质量红外拉曼分析图谱;✔ 非接触式,反射(远场)模式测量,对样品无污染,没有任何常见光谱失真。可快速匹配光谱商用数据库,获得样品种类结果;✔ 可升级亚微米同步红外+拉曼同步联用系统,在相同时间、条件、位置下获得相同空间分辨率的红外和拉曼光谱。非接触亚微米分辨红外拉曼同步测量系统—mIRage近日,PSC公司将mIRage系统全新升级,即将发布FeaturefindIR功能。FeaturefindIR创新性的实现了微塑料和其他颗粒快速、自动化的光谱测量和化学鉴定,显著提高了实验效率,并为应用中大量样品的测量提供了基础,包括但不限于微塑料,缺陷污染和细胞分析,以及许多其他样品类型。mIRage升级系列将原有优势进一步拓宽:☛ 测试从亚微米到毫米范围内微塑料样品;☛ 红外拉曼同步,测量大量的微塑料和颗粒;☛ 测试系统自动搜索和检测粒子;☛ 自动测量和定位化学ID。升级功能新品发布会为使研究者更好的了解这一升级功能,美国PSC公司将举办升级功能新品发布会,发布会将由产品管理和营销总监Mustafa Kansiz博士主持介绍。此次发布会将主要介绍“FeaturefindIR”软件自动化工具如何在mIRage上对更具有生物学意义的微塑料颗粒(从小于500 nm到大尺寸(mm))进行自动化、快速和准确的分析,规避传统FTIR/QCL和拉曼显微系统所见的明显缺陷,从而有效完成微塑料样品测试。同时,Mustafa Kansiz博士也将实时演示亚微米mIRage的featurefindIR功能,无论颗粒形状和大小如何,都将得到一致、无伪影的图谱,并使用交叉偏振可见光增强颗粒检测。敬请期待mIRage系统featurefindIR的详情发布!FeaturefindIR优势解析:【高效粒子数据收集】微塑料、颗粒和有机污染物有时很难在大量的一般污染物中发现。为了获得最大的灵活性,featurefindIR可以使用图像输入,以实现更准确和敏感的检测和定位。【自动测量和识别】一旦确定了颗粒的位置和大小,mIRage系统就会自动移动到所需测量位置,并执行快速、自动化的红外光谱测量。测量完成后,粒子信息汇总表将列出获得关键光谱的每个粒子的位置和特定尺寸。此表可以转移到featurefindIR μChemical ID报告中,也可以导出为CSV文件。【FeaturefindIR μChemical ID报告】FeaturefindIR μChemical ID报告将自动分析PTIR Studio文件中用户选择的所有光谱,并将它们与集成数据库中的参考光谱集相关联。对每个测量的频谱报告命中质量指数(HQI),如果HQI高于用户设置的阈值,还会报告最佳匹配化学ID。在测量光谱和参考光谱之间显示覆盖层,颜色编码可用于评估光谱数量的视觉支持,特定塑料类型被分配特定颜色作为视觉辅助。此外,可以通过选择每个结果来进行定量检查,以显示与OPTIR参考匹配接近的详细光谱叠加。FeaturefindIR为研究人员提供了一种快速测量大量相关微塑料的自动化方案。不但提供了维度方面的信息,同时可以通过专用的μChemical ID数据库确定它们的化学ID。所有数据都可以通过CSV导出,以便根据需要进行进一步分析。FeaturefindIR通过提供识别微塑料类型的不同方法(如单波长成像和荧光图像)来提高测量效率,提供了从亚微米到毫米大小的微塑料研究完整解决方案。
  • 国内首套真空太赫兹波段近场光学显微系统在电子科技大学太赫兹中心成功安装
    太赫兹有着光明的应用前景,还是一片未开垦的处女地。电子科技大学太赫兹中心自成立以来,为太赫兹科学研究搭建了更高的合作发展平台,也标志着我国以“国际前沿、”为目标的太赫兹科学研究迈入了崭新阶段。2018年6月,应电子科技大学太赫兹中心对真空环境下进行太赫兹近场光学研究的需求,QD中国工程师配合德国neaspec公司立即展开积响应并为客户量身定制了套真空太赫兹波段近场光学显微系统(HV-THz-neaSNOM),并已成功安装。 图1:电子科技大学太赫兹中心安装调试现场 图2:真空太赫兹波段近场光学显微系统(HV-THz-neaSNOM) 电子科技大学太赫兹中心原有一套大气环境太赫兹波段近场光学显微系统(THz-neaSNOM),空间分辨率~50nm、宽太赫兹时域近场响应波段0.5-2.2THz。由于更进一步的科研需要,客户需在更加严格的真空条件下进行太赫兹实验。为了满足客户的实验需求,德国neaspec公司在原有大气环境THz-neaSNOM的基础上,结合新的低温散射式近场光学显微镜(Cryo-neaSNOM)技术,设计了新的真空腔体系统,改进了原子力显微镜布局,并重新设计了光路,终成功研发出了套真空太赫兹波段近场光学显微系统(HV-THz-neaSNOM)。该套系统成功地继承了德国neaspec公司THz-neaSNOM的设计优势,采用保护的双光路设计,完全可以实现真空环境下太赫兹波段应用的样品测量。HV-THz-neaSNOM在实现30nm高空间分辨率的同时,由于采用0.1-3THz波段的时域太赫兹光源(THZ-TDS),也可以实现近场太赫兹成像和图谱的同时测量。这大地满足真空环境中太赫兹近场光学研究的需求,可以减少大气中水对太赫兹波段的吸收影响,能更好地保持样品的洁净,为用户进一步集成真空设备提供了基础。 图3:系统理论培训 图4:现场实时操作培训 太赫兹波有强的穿透性,对不透明物体能完成透视成像,用来做半导体材料、生物样品等的检测是其应用趋势之一。该套真空太赫兹波段近场光学显微系统(HV-THz-neaSNOM)的集成,将在生物应用、半导体元器件和相变材料载流子等研究及领域都有着广阔的应用前景,有望为广大太赫兹科研工作者提供更多实际研究工作中的便利和支持。
  • 新闻 | AR荧光技术让您实时观察脑血管血流情况 -徕卡显微系统副总裁接受神外前沿专访
    徕卡显微系统副总裁Maxim Mamin于2017年11与17日来华,并于当日接受了“神外前沿”公众号的专访,对徕卡即将在国内上市的MFL800研发初衷与技术问题进行了独家的解读。神外前沿讯,在洛杉矶举行的2017 AANS美国神经外科年会上,徕卡基于手术显微镜的增强现实荧光成像技术AR荧光(MFL800)正式上市,这个血管荧光突破性的新技术,可以将近红外荧光成像与白光图像相结合,让神经外科医生在双目镜筒中实时观察解剖结构及荧光效果,为手术决策提供实时有效的信息。(点击上图播放手术效果视频)据悉,采用AR(增强现实)荧光技术的徕卡MFL800已经通过CFDA认证,将于明年一季度在中国上市。近日,徕卡显微系统副总裁Maxim Mamin先生就AR荧光新技术的研发情况接受了《神外前沿》的访谈。对话内容如下神外前沿:AR荧光(MFL800)研究开发的初衷是什么,能够帮助神外医生解决什么问题?Maxim Mamin:血管荧光造影剂广泛应用于脑血管手术,包括动脉瘤夹闭,脑血管畸形和微血管减压术等手术。在使用过程中就会发现ICG通过红外成像,是肉眼看不到的,只能在显微镜上看到,而且是黑白的,还有很多解剖结构的细节看不清,并且还有一点延时,这对医生来说是比较被动的事情。ICG只能看到荧光显影,周边的组织是无法看清楚的;MFL800也属于ICG技术,但在镜下高清的,可以把细节和血管等都显示出来。有了深度的感觉了,周边的血管可以看得很清楚,可以在这上面做一些操作。神外前沿:AR荧光(MFL800)和以往的显微镜下的荧光有什么不同,比如肿瘤手术使用的5?ALA肿瘤荧光?Maxim Mamin:ICG荧光方式现在主要用于血管病的手术治疗,因为ICG要用注射的方式注射到到血管里,可以通过血液的流动经过全身,然后可以观察到血流的情况。5-ALA是一种荧光显影剂,使用方式是在患者手术前,通过饮用的方式喝下去,不会在血管显现,只会在肿瘤上显现,而且只会在高级别胶质瘤上显现。可以说ICG是血管显影的介质,5ALA是胶质瘤显影的介质。另外,ICG和5ALA在激发后产生的光波的波谱和波长是不一样的,借助于发射波长为400nm蓝光手术显微镜,5-ALA是可以看见的,ICG的波长是780nm-800nm,是红外光,肉眼看不到的。神外前沿:AR荧光(MFL800)在神经外科中更适合血管还是肿瘤的显影?Maxim Mamin:这个新技术主要应用于血管病,包括动脉瘤、血管畸形、MVD(微血管减压)等,当然还可以用在心血管病的搭桥手术,看血管的流畅情况,还有可以用在整形手术中。(图注:Leica M530 OH6手术显微镜与MFL800的结合,有德国科隆医疗中心神经外科的Cleopatra Charalampaki教授提供的手术照片)神外前沿:这个技术如果应用于脑血管外科,是否会扩大适应症范围,相对于介入技术的不断发展?Maxim Mamin:这是个很好的问题,现在确实有趋势看到很多医生开始采用介入技术,MFL800肯定能帮助神经外科医生看得更清楚,以治疗更复杂的脑血管病。MFL800是基于(增强现实技术的)GLOW平台,现在开发的是用于脑血管病的技术,将来还可以开发应用于肿瘤的技术。这个平台的硬件包括摄像头等设备,另外还有相关软件,以实现定量化、多波长的荧光成像技术,最终就像地图一样,能够显示出比如血流的强度、随时间变化的情况等,因而能够区分动脉和静脉,带来更多的信息。我们采用的是开放性的设计平台,将来有了新技术都可以将其升级到手术显微镜上。新的技术把不可见的光通过数据化显示出来,最重要的一点是MFL800是一个实时的技术,术者可以在目镜下实时观察到手术中的情况,没有延时。神外前沿:MFL800预计在中国何时上市?Maxim Mamin:我们产品的正式上市是在10月份刚刚结束的AANS美国神经外科年会上,正式的装机在11月份,12月份还会在欧洲和美国有新的装机。在中国我们已经通过了CFDA的认证,应该在明年一季度上市。神外前沿:目前内镜技术在神经外科应用越来越多,显微镜如何面对内镜的竞争?Maxim Mamin:显微镜和神经内镜是互补的技术,手术显微镜最明显的优势就是术中可以有很好的深度感受,可以很直观的看到并操作,相对来说也容易操作。另外,显微镜现在可以搭载各种荧光成像技术,但目前的神经内镜还没有。再有,神经内镜很难判断方向,并且并非所有手术器械都适用于脑室镜,比如双极电凝。神经内镜可能更适合于不能直视的一些病变,比如在角落或者被重要器官遮挡的。目前最新的技术可以把神经内镜的成像集成到显微镜上,也就是可以在目镜下直接显示。受访者简介Maxim Mamin, Vice President Medical Division (Surgical Microscopes Imaging) at Leica Microsystems (Danaher company), Leica Microsystems, UCLA Anderson School of Management.International Executive with 15+ years of leadership experience in Siemens Healthcare across various functions (Marketing, Product Development, Sales, Regional Business Development, Country Operations), across diverse products portfolio (Imaging and Lab Diagnostics), and cultures (Russia, Germany, Singapore, Korea, Malaysia).来源:神外前沿关于徕卡显微系统Leica Microsystems 徕卡显微系统是全球显微科技与分析科学仪器之领导厂商,总部位于德国维兹拉(Wetzlar, Germany)。主要提供显微结构与纳米结构分析领域的研究级显微镜等专业科学仪器。自公司十九世纪成立以来,徕卡以其对光学成像的极致追求和不断进取的创新精神始终得到业界广泛认可。徕卡在复合显微镜、体视显微镜、数码显微系统、激光共聚焦扫描显微系统、电子显微镜样品制备和医疗手术显微技术等多个显微光学领域处于全球领先地位。 徕卡显微系统在全球有七大产品研发与生产基地,在二十多个国家拥有服务支持中心。徕卡在全球一百多个国家设有区域分公司或销售分支机构,并建有遍及全球的完善经销商服务网络体系。
  • 200万!贵州医科大学采购台式微量离心机、相差显微系统等设备
    项目概况 贵州省常见慢性疾病发病机制及药物研究重点实验室科研仪器设备采购项目 招标项目的潜在投标人应在 登录贵州省公共资源交易公共服务平台2020版网上报名(http://ggzy.guizhou.gov.cn/)获取招标文件,并于 2021-12-09 11:00:00(北京时间)前递交投标文件。一、项目基本信息项目名称: 贵州省常见慢性疾病发病机制及药物研究重点实验室科研仪器设备采购项目项目编号: GZWH-2021-23112采购方式: 公开招标项目序列号: S5200100000001373001采购主要内容: 仪器设备采购数量: 1 批预算金额:2,000,000(元)最高限价:1,999,830(元)本项目(是/否)接受联合体投标:否二、申请人的资格要求一般资格要求: ①法人或者其他组织的营业执照等证明文件,自然人身份证明;②&ldquo 审计机构出具的2019年度或2020年度的财务审计报告&rdquo 复印件或&ldquo 基本开户银行出具的2021年的银行资信证明&rdquo ;③2020年至今任意3个月缴纳税收的凭据或证明材料复印件(依法免税的,提供有效的证明文件);④2020年至今任意3个月缴纳社会保障资金缴纳证明材料复印件(不需要缴纳社保资金的,提供有效的证明文件);⑤参加政府采购活动前3年内在经营活动中没有重大违法记录的书面声明(自行声明);⑥供应商自行承诺:在&ldquo 信用中国&rdquo 网站(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)等渠道查询中未被列入失信被执行人名单、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单,查询截止时点为开标当日评审前,由代理机构对信用记录进行甄别,对列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的供应商,拒绝其参与本次政府采购活动,并承担由此造成的一切法律责任及后果(承诺自拟)。⑦本项目不接受联合体投标。特殊资格要求: ①单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。为采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加该采购项目的其他采购活动(承诺自拟)。三、获取招标文件时间:2021-11-15 09:00:00至 2021-11-22 17:00:00(提供期限自本公告发布之日起不得少于5个工作日)每天上午09:00至12:00 ,下午14:30至17:00(北京时间,法定节假日除外)地点: 登录贵州省公共资源交易公共服务平台2020版网上报名(http://ggzy.guizhou.gov.cn/)方式: 登录贵州省公共资源交易公共服务平台2020版网上报名(http://ggzy.guizhou.gov.cn/)售价: 300 元人民币(含电子文档)投标保证金额(元): 20,000投标保证金交纳时间: 2021-11-15 09:00:00至2021-12-09 11:00:00投标保证金交纳方式: 银行转账、银行保函、保证保险、合法担保机构出具的担保。A包:14000元,B包:6000元。开户单位名称: 贵州省公共资源交易中心开户银行: 贵州银行股份有限公司贵阳展览馆支行开户账号:0109001400000182-0002四、提交投标文件截止时间、开标时间和地点截止时间: 2021-12-09 11:00:00(北京时间)( 自招标文件开始发出之日起至投标人提交投标文件截止之日止,不得少于20日)地点: 贵州省公共资源交易中心时间: 2021-12-09 11:00:00五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜采购项目需要落实的政府采购政策: 已落实 。PPP项目: 否简要技术要求、服务和安全要求: A包:台式微量离心机等设备;B包:相差显微系统等设备。本项目预算为:200万元,A包:140.08万元,B包:59.92万元。项目最高限价为: 199.983万元,A包:140.063万元,B包:59.92万元。交货地点或服务地点: 采购人指定地点其他事项(如样品提交、现场踏勘等): 无交货时间或服务时间: :收到中标通知书后,国产产品30个日历日,进口产品90个日历日内完成交货、安装调试及验收。七、对本次招标提出询问,请按以下方式联系1、采购人信息名 称:贵州医科大学项目联系人:吴老师地 址:贵州省贵安新区大学城联系方式:0851-884161032、代理机构信息(如有)代理全称:贵州卫虹招标有限公司联 系 人:项目二部地 址:贵州省贵阳市云岩区中华中路时代广场名仕楼18楼D座联系方式:0851—858018203、项目联系方式联 系 人:项目二部电 话:0851—85801820贵州卫虹招标有限公司
  • 375万!厦门大学生命科学学院激光片层扫描显微系统采购项目
    项目编号:XDZB2022-A-012项目名称:厦门大学生命科学学院激光片层扫描显微系统预算金额:375.0000000 万元(人民币)最高限价(如有):375.0000000 万元(人民币)采购需求:激光片层扫描显微系统,1套,具体配置与技术参数要求详见招标文件合同履行期限:6个月本项目( 不接受 )联合体投标。
  • 祝贺2017 MicroTime 200时间分辨共聚焦显微系统研讨会完美闭幕
    由东隆科技有限公司发起并与德国picoquant公司一起主办,天津理工大学材料科学与工程学院新能源材料与低碳技术研究院承办的2017 microtime 200时间分辨共聚焦显微系统研讨会,于2017年8月11日在天津理工大学成功召开。多所著名高校及科研院所的专家学者出席了研讨会。现场出席的有北京大学、华南理工大学、吉林师范大学、江南大学、清华大学、厦门大学、天津理工大学、长春光机所、中国工程物理研究院的专家和老师。(以上排名按首字母排列)会上来自德国picoquant公司的dr. steffen rüttinger现场对micotime 200 时间分辨共聚焦显微系统的原理及应用做了详细介绍,本次会议围绕该系统在时间分辨方面进行展开。内容涵盖时间相关单光子计数原理介绍,flim,fcs以及fret等功能的介绍,及其在生物、化学、材料领域的应用。 本次会议分为两个部分:研讨与实验,既将理论化部分层层剥解,又通过实验测试样品得到有效数据,到场嘉宾无不收获丰厚。 再次感谢不远千里到场的专家和老师,愿此次的分享能促进我们更好更快的成长,举办下一届会议时,我们将越来越好!东隆科技一直致力于不断引入先进技术,为广大客户提供专业的产品和优质的服务,愿我们的不懈努力能为您带来更多更好的服务!
  • 最高人民检察院150万采购共聚焦显微系统 不接受进口产品投标
    p   6月2日,中国政府采购网发布采购招标信息,最高人民检察院预算160万元采购拉曼光谱仪,明确指出不接受进口产品投标。 /p p    a title=" " href=" http://www.instrument.com.cn/news/20170605/221158.shtml" target=" _blank" strong 最高人民检察院160万采购拉曼光谱仪 不接受进口产品投标 /strong /a /p p   6月7日,最高人民检察院检察技术信息研究中心再发招标公告,预算150万元采购共聚焦显微系统,与上一则招标公告一样,本项目也不接受进口产品投标。 /p p   按照招标公告内容:最高人民检察院采购全自动型正置式共聚焦显微镜,满足纸张、印章、笔迹、印刷品、陶瓷样品表面观察、测量、3D形貌观察等功能。适用于文书鉴定工作等。采购共聚焦专用物镜,用于共聚焦显微镜,要求放大倍数150倍等。 br/ /p table align=" center" border=" 1" cellspacing=" 0" cellpadding=" 0" tbody tr class=" firstRow" style=" height: 39px " td height=" 39" style=" padding: 0px 7px border: 1px solid windowtext border-image: none background-color: transparent " p style=" text-align: center margin-top: auto margin-bottom: auto " strong span style=" font-family: 宋体 font-size: 12px " 包号 /span /strong /p /td td width=" 88" height=" 39" style=" border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px border-image: none background-color: transparent " p style=" text-align: center margin-top: auto margin-bottom: auto " strong span style=" font-family: 宋体 font-size: 12px " 招标内容 /span /strong /p /td td width=" 48" height=" 39" style=" border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px border-image: none background-color: transparent " p style=" text-align: center margin-top: auto margin-bottom: auto " strong span style=" font-family: 宋体 font-size: 12px " 采购预算 /span /strong /p /td td width=" 113" height=" 39" style=" border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px border-image: none background-color: transparent " p style=" text-align: center margin-top: auto margin-bottom: auto " strong span style=" font-family: 宋体 font-size: 12px " 实施周期 /span /strong /p /td td width=" 76" height=" 39" style=" border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px border-image: none background-color: transparent " p style=" text-align: center margin-top: auto margin-bottom: auto " strong span style=" font-family: 宋体 font-size: 12px " 实施地点 /span /strong /p /td td width=" 138" height=" 39" style=" border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px 7px border-image: none background-color: transparent " p style=" text-align: center margin-top: auto margin-bottom: auto " strong span style=" font-family: 宋体 font-size: 12px " 简要技术要求/项目基本概况介绍/采购数量 /span /strong /p /td /tr tr style=" height: 57px " td height=" 57" style=" border-width: 0px 1px 1px border-style: none solid solid border-color: rgb(0, 0, 0) windowtext windowtext padding: 0px 7px border-image: none background-color: transparent " p style=" text-align: center margin-top: auto margin-bottom: auto " span style=" font-family: 宋体 font-size: 12px " 01 /span /p /td td width=" 88" height=" 57" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" text-align: center margin-top: auto margin-bottom: auto " span style=" font-family: 宋体 font-size: 12px " 共聚焦显微系统 /span /p /td td width=" 48" height=" 57" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" text-align: center margin-top: auto margin-bottom: auto " span style=" font-family: 宋体 font-size: 12px " 150 /span /p p style=" text-align: center margin-top: auto margin-bottom: auto " span style=" font-family: 宋体 font-size: 12px " 万元 /span /p /td td width=" 113" height=" 57" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" text-align: center margin-top: auto margin-bottom: auto " span style=" font-family: 宋体 font-size: 12px " 合同签订后10个日历日内完成交货、安装调试并验收合格 /span /p /td td width=" 76" height=" 57" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" text-align: center margin-top: auto margin-bottom: auto " span style=" font-family: 宋体 font-size: 12px " 招标人指定地点(北京) /span /p /td td width=" 138" height=" 57" style=" border-width: 0px 1px 1px 0px border-style: none solid solid none border-color: rgb(0, 0, 0) windowtext windowtext rgb(0, 0, 0) padding: 0px 7px background-color: transparent " p style=" text-align: center margin-top: auto margin-bottom: auto " span style=" font-family: 宋体 font-size: 12px " 采购全自动型正置式共聚焦显微镜,满足纸张、印章、笔迹、印刷品、陶瓷样品表面观察、测量、3D形貌观察等功能。适用于文书鉴定工作等。采购共聚焦专用物镜,用于共聚焦显微镜,要求放大倍数150倍等。详见招标文件第五章技术需求书。 /span /p p style=" text-align: center margin-top: auto margin-bottom: auto " span style=" font-family: 宋体 font-size: 12px " 采购数量:1套 /span /p /td /tr /tbody /table p   项目名称:最高人民检察院检察技术信息研究中心文件检验试验室设备共聚焦显微系统购置项目 /p p   项目编号:1741STC50669 /p p   项目联系方式: /p p   项目联系人:王建莉 /p p   项目联系电话:010-62688213 /p p   招标文件的发售时间及地点等: /p p   预算金额:150.0 万元(人民币) /p p   时间:2017年06月07日 14:34 至 2017年06月14日 16:00(双休日及法定节假日除外) /p p   地点:北京市海淀区海淀大街8号中钢国际广场16层中钢招标有限责任公司 /p p   招标文件售价:¥500.0 元,本公告包含的招标文件售价总和 /p
  • 国产超分辨iSTORM新品!力显智能于清华发布新品活细胞超高分辨率显微成像系统!
    2023年8月6日至12日,由清华大学蛋白质研究技术中心、生物医学测试中心、中国细胞生物学学会细胞器生物学分会联合主办的第四届活细胞与超高分辨成像高级研讨会在清华大学成功举办。众多领域专家学者、行业头部翘楚齐聚一堂,和来自全国各地的100余位青年学者一起见证了这场学术盛宴。研讨会邀请了北京大学席鹏教授、陈良怡教授、孙育杰教授,中科院生物物理所李栋研究员,中国科技大学唐爱辉教授,西湖大学章永登研究员、清华大学陈春来副教授等十数位在活细胞、超分辨、单分子成像等领域的知名专家进行报告,还邀请了尼康、徕卡、蔡司等公司就超分辨成像、一体化活细胞成像等仪器进行了专业介绍和体验展示。在本次研讨会上,力显智能科技联合创始人兼COO张猛博士就《单分子定位超高分辨率显微镜iSTORM在生物医学领域的应用》进行了相关报告分享。会议期间,力显智能科技研发的新品活细胞超高分辨率显微成像系统iSTORM VIVO在清华大学正式发布,更是为这场精彩盛宴增添了一抹亮色。现场,清华大学高级工程师王文娟老师与力显智能科技联合创始人兼COO张猛博士共同为活细胞超高分辨率显微成像系统iSTORM VIVO揭幕。揭幕仪式力显智能科技联合创始人兼COO张猛博士表示:非常感谢一路支持力显的各位朋友和老师,是大家的支持和帮助,促成了这次活细胞超分辨新品在清华大学的圆满发布,这是广大用户对力显超分辨的再一次肯定,也是力显智能科技自研国产超分辨之路的又一个重要里程碑。活细胞超高分辨率显微成像系统iSTORM VIVO作为目前国内唯一的商业化单分子超分辨显微系统,iSTORM成功实现了光学显微镜对衍射极限的突破,使得在20纳米的分辨率尺度上从事生物大分子的单分子定位与计数、亚细胞及大分子复合物结构解析、生物大分子生物动力学等的研究成为现实。在原先标准版iSTORM的基础上,经光机系统、染料、算法协同开发,iSTORM VIVO在活细胞超分辨成像领域获得极大技术提高,提升原始图像拍摄速度,搭配高密度快速荧光定位算法,可以在维生条件下进行快速活细胞超高成像,以高精密度的成像能力解析活细胞的各种生命生理过程,极大弥补了传统STORM技术在活细胞超分辨成像领域的短板,给生命科学、医学等领域带来重大突破。
  • 微观世界“探秘神器” 科研人员都在用谁家超分辨显微镜?
    1873年,德国物理学家恩斯特阿贝(Ernst Abbe)提出光学显微镜存在分辨率极限,约为200nm。2014年的诺贝尔化学奖同时授予了三位科学家,他们在突破了“阿贝极限”,在超分辨荧光成像技术领域做出重要成绩,将光学显微技术带入到纳米尺度。近些年来,超分辨显微技术得到了快速发展,当前主要的超分辨技术有结构光照明(SIM)、受激发射损耗(STED)、光激活定位显微(PALM)、随机光学重构(STORM)等,获诺奖的两种超分辨技术分别是STED和单分子定位显微技术,后一类技术的典型代表目前有光激活定位显微(PALM)和随机光学重构显微(STORM)。随着超分辨技术的发展与成熟,几大显微公司也纷纷推出各自的商业化产品,并根据各技术的特点和优势应用到不同的生命科学研究当中。本文对国内实验室共享的超分辨显微仪器进行了盘点,共统计到70台,未在所用统计平台上传的仪器不在本次统计范围之中。超分辨显微镜的货值较高,应用领域较专业,虽然统计到的共享仪器数据量不大,但一定程度上可反映出其时间地域分布、科研单位特定技术需求以及对于品牌的选择。获“诺奖”后超分辨共享启用提速 北京占比超30%图1 共享超分辨显微镜各省分布本次统计当中,分布在北京的超分辨显微镜数量最多,占比约为30%,其中北京大学和中科院系统(包括中科院生物物理所、中科院动物研究所)的共享仪器数量相对较多。除北京以外,江苏省上传的共享超分辨显微镜数量较多,主要分布单位是江南大学、南京农业大学和东南大学。图2 共享仪器启用时间分布 本次统计的共享超分辨显微镜的启用时间可以看出,2014年以后,共享仪器大幅增加,而2018年启用的共享超分辨显微镜最多。尼康近4成 STORM技术应用更广泛图4 共享超分辨显微镜品牌占比本次统计的共享超分辨显微系统品牌分布如图4,最多的是尼康,占比38%,主要技术类型则是STORM;其次是蔡司,主要技术类型是蔡司的Airyscan(部分仪器未标明具体技术,Lattice SIM和SMLM未统计到),占比为22%;STED技术是第一个用来突破衍射极限的远场光学显微技术,目前国内市场主要是徕卡的产品,在本次统计中占比为17%。图3 各超分辨技术占比主要超分辨技术应用占比如图3,全国来看,应用最多的是STORM技术,占比22%,其次是蔡司的Airyscan(不包括Airyscan2)和SIM,分别占比21%和19%。而以样本量最多的北京地区分析,最多的是STORM技术,占比26%,STED、SIM其次,占比均为21%。STORM超分辨技术是目前分辨率最高的技术,据称可达20nm。另有报道显示,苏州医工所自主研制的超分辨显微成像系统主要基于STED和STORM技术,而本次统计到的苏州医工所自主研制的仪器还用到了SIM 技术,根据苏州医工所官网报道,其STED超分辨显微镜分辨率达到50nm。表1 超分辨技术和商业化企业超分辨技术/主要公司蔡司徕卡尼康奥林巴斯GESIM√(Lattice SIM)√√PALM√√STORM√(SMLM)√STED√Airyscan√OSR√多方发力 国产超分辨技术追赶正当时 在被国外品牌长期“统治”的高端光学显微镜领域,中国科研人员始终坚持研发力求突破,令人欣喜的是,在本次统计中,国产超分辨显微系统共有5台,占比7%,其中苏州医工所2台,中科院生物物理3台,这些超分辨显微技术也已经对科研人员开放使用,并且依靠自主研发的仪器做出的数据也发表了高质量的文章。此外,北京大学陈良怡教授团队与合作者在2018年研发出的超高分辨率显微镜 -- 海森结构光显微镜(Hessian-SIM),研究成果在Nature Biotechnology上发表,并夺得了生物成像领域的多个“首次”,也被评为当年的“中国光学十大进展”。据悉北京世纪桑尼科技有限公司正在研发商业化超分辨模块,近期将有测试数据,仪器信息网将持续关注。当前,飞速发展的中国生命科学和医学向中国的高端科研仪器制造提出要求。近些年来,高端显微设备国产化方面,越来越多的中国自主研制超分辨、双光子和共聚焦等高端显微镜问世。虽然超分辨显微技术越来越成熟,但空间与时间、成本与性能的博弈还在持续,超分辨显微成像技术仍有进步的余地,期待国产超分辨显微镜能够继续奋起直追,早日立足国际舞台。
  • 我国科研团队在光学超分辨显微成像技术领域取得重要突破
    16日,记者从哈尔滨工业大学获悉,该校仪器学院现代显微仪器研究所在光学超分辨显微成像技术领域取得突破性进展。研究团队在低光毒性条件下,把结构光显微镜的分辨率从110纳米提高到60纳米,实现了长时程、超快速、活细胞超分辨成像。为精准医疗和新药研发提供了新一代生物医学超分辨影像仪器,使未来大幅度加速疾病模型的高精度表征成为可能。  显微仪器的分辨能力代表人类对科学探索的边界,2014年诺贝尔化学奖就授予了3位在超分辨率荧光显微技术领域取得重要成就的学者。哈工大现代显微仪器研究所团队提出了一种可突破光学衍射极限的计算显微成像算法,利用荧光成像的前向物理模型与压缩感知理论,并结合稀疏性与时空连续性的双约束条件,建立起一个通用的解算框架——稀疏解卷积技术,突破了现有光学超分辨显微系统的硬件限制,扩展了时空分辨率和频谱。  在此基础上,研究团队研发了超快结构光超分辨荧光显微镜系统(Sparse-SIM),该系统具有超分辨、高通量、非侵入、低毒性等特点,在高速成像条件下,具备优于60纳米的分辨率和超过1小时的超长时间活细胞动态成像性能。团队首次观察到了胰岛分泌过程中具有的两种特征的融合孔道,第一次利用线性结构光显微镜观察到只有在非线性条件下才能分辨的环状的不同蛋白标记的核孔复合体与小窝蛋白。此外,研究人员还展示了利用该影像技术解析肌动蛋白动态网络、细胞深处溶酶体和脂滴的快速行为,并记录了双色线粒体内外膜之间的精细相对运动。  据悉,该项研究成果主要由哈工大仪器学院和北京大学未来技术学院合作完成。11月16日,研究成果以《稀疏解卷积增强活细胞超分辨荧光显微镜的分辨率》为题,以长文形式在线发表于国际权威杂志《自然-生物技术》。
  • 我国科学家在光学超分辨显微成像技术领域取得重要突破
    近日,哈尔滨工业大学仪器学院现代显微仪器研究所在光学超分辨显微成像技术领域取得突破性进展。研究团队在低光毒性条件下,把结构光显微镜的分辨率从110纳米提高到60纳米,实现了长时程、超快速、活细胞超分辨成像。11月16日,研究成果以《稀疏解卷积增强活细胞超分辨荧光显微镜的分辨率》(Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy)为题,以长文形式在线发表于国际权威杂志《自然-生物技术》(Nature Biotechnology)。显微仪器的分辨能力代表人类对科学探索的边界,2014年诺贝尔化学奖就授予了3位在超分辨率荧光显微技术领域取得重要成就的学者。哈工大现代显微仪器研究所团队提出了一种可突破光学衍射极限的计算显微成像算法,利用荧光成像的前向物理模型与压缩感知理论,并结合稀疏性与时空连续性的双约束条件,建立起一个通用的解算框架——稀疏解卷积技术,突破了现有光学超分辨显微系统的硬件限制,扩展了时空分辨率和频谱。在此基础上,研究团队研发了超快结构光超分辨荧光显微镜系统(Sparse-SIM),该系统具有超分辨、高通量、非侵入、低毒性等特点,在高速成像条件下,具备优于60纳米的分辨率和超过1小时的超长时间活细胞动态成像性能。团队首次观察到了胰岛分泌过程中具有的两种特征的融合孔道,第一次利用线性结构光显微镜观察到只有在非线性条件下才能分辨的环状的不同蛋白标记的核孔复合体与小窝蛋白。此外,研究人员还展示了利用该影像技术解析肌动蛋白动态网络、细胞深处溶酶体和脂滴的快速行为,并记录了双色线粒体内外膜之间的精细相对运动。该项工作在物理和化学方法基础上,首次从计算的角度提出了突破光学衍射极限的通用模型,实现了从0到1的原理创新,是目前活细胞光学显微成像中分辨率最高(60纳米)、速度最快(564帧/秒)、成像时间最长(1小时以上)的超分辨显微仪器。该技术框架也被证明适用于目前多数荧光显微镜成像系统模态,均可实现近两倍的稳定空间分辨率提升,为精准医疗和新药研发提供了新一代生物医学超分辨影像仪器,使未来大幅度加速疾病模型的高精度表征成为可能。该项研究成果主要由哈工大仪器学院和北京大学未来技术学院合作完成。哈工大为论文第一单位,哈工大博士生赵唯淞、北大博士后赵士群和李柳菊为论文共同第一作者,哈工大李浩宇副教授和北大陈良怡教授为论文共同通讯作者,哈工大刘俭教授和谭久彬院士均为论文共同作者和哈工大科研团队负责人。合作单位还包括中科院国家纳米中心、中科院生物物理所、武汉大学等。
  • 上海高研院在量子增强的超分辨显微成像机制研究中取得进展
    中国科学院上海高等研究院王中阳课题组提出新型的基于荧光量子相干的超分辨显微成像方法,研究成果以Breaking the diffraction limit using fluorescence quantum coherence为题,近日发表在 《光学快报》(Optics Express)上。 在经典光学成像中,显微镜的空间分辨率受阿贝衍射极限限制为?λ/2NA,其中λ为光波长,NA为显微物镜的数值孔径。近二十年来,各种超分辨荧光显微成像技术的出现打破了光学衍射极限,将空间分辨率提高到纳米尺度,主流技术包括随机光学重构超分辨成像技术(STORM)、结构光照明显微技术(SIM)和受激辐射损耗技术(STED)。其中STED和STORM通过不断提升测量精度极限来提高分辨率,如STED利用非线性受激辐射损耗机制来压制衍射受限的埃里斑尺寸再通过点扫描获得超分辨成像,而STORM通过统计荧光分子中心位置的定位精度来超衍射极限分辨,其分辨率由测量精度即统计分辨率极限? ?N?1/2决定,?N?为探测到平均光子数。 在量子光学中,现有研究表明利用光的量子性质能够突破经典的空间分辨率限制,从而进一步提升分辨率。例如,利用N个纠缠光源的光子干涉能够将分辨率提升到海森堡极限?1 / N。而在荧光显微镜中,同样可以利用荧光光源的量子特性来实现分辨率的提升。单个荧光分子或原子的发射具有单光子辐射源的性质,在一次脉冲激发下仅发出单个光子,因此光子发射统计概率不同于热辐射光源的一簇一簇的光子辐射,而是一个接一个发出,体现了明显的反聚束统计特性,并且理想的单光子源发出的光子在光谱、偏振上完全相同,即具有高的光子不可区分特性。上述荧光的量子性质已被实验证明存在于荧光显微成像常用的荧光染料中,例如单个有机染料分子、单个量子点以及单个金刚石色心,为发展新型的超分辨荧光显微成像技术带来了新的量子信息维度。 基于此,王中阳课题组提出了基于荧光光源的量子性质的超分辨成像方法,并对成像机制展开研究。研究者从荧光光源的发光机制出发,考虑了大多数荧光染料所包含的退相和光谱扩散机制,构建了通用的单光子波函数并考虑其在显微系统中的时间和空间维成像变换;通过计算双光子干涉的时间和空间的探测概率分布,从而获得荧光量子相干统计模型。该模型为宏观部分相干理论与荧光微观辐射机制提供了桥梁。基于此模型,研究者还提出了一种基于荧光量子相干性的超分辨荧光显微成像方法。利用新型的单光子雪崩探测器(SPAD)阵列统计荧光光子的时间和空间涨落p(r, t)。为了提取荧光光子相干性,通过引入时间门Tg作为光子到达时间的后选择窗口来提取高度相干的光子并沿Tg积分构造时间相干调制函数p(r, Tg),如图1所示。 时间相干调制函数与荧光光源空间分离量s有关。因此,通过准确测量时间相干调制函数,并预先确定其它变量,可从中准确提取出衍射极限内荧光光源空间分离距离s。此时,分辨率(即光源分离距离s)取决于荧光时空相干性的测量精度,而相干性测量精度又与探测到的光子数和空间采样率有关,如图2所示,仿真结果表明,当探测到的光子数达到104时,分辨率可以达到50 nm。该新型量子增强成像技术能够发掘荧光量子时空涨落特性及量子相干性,有助于实现荧光弱信号下的快速超分辨成像。  论文链接   图1.基于荧光量子相干的超分辨荧光显微成像方法示意图。(a)实验装置图;(b)传统成像方式和SPAD阵列探测方案对比图;(c)成像过程时序图;(d)荧光光子时空相干性概率分布;(e)引入时间门调制后荧光光子时空相干性概率分布。 图2.不同累计光子数下p(0, Tg)的测量精度(荧光光源距离s分别为50和100 nm)
  • 预算超15亿!10月高校255项光学显微镜采购意向汇总
    2000亿贴息贷款政策点燃了整个十月的仪器采购市场,数十个高校发布了采购意向,预算动辄过亿。本文汇总了本轮采购潮中光学显微镜的情况,供相关从业者参考。据不完全统计,本轮高校仪器采购意向,共有255项光学显微镜采购及相关项目,涉及30所高校,累计金额约15.3亿元(含少数整体采购项目中的其他仪器)。技术难度高、单台货值高的高端光学显微镜在本轮采购中成为“常见”需求货物。对255项采购意向进行梳理分析发现,共聚焦显微镜63台/套,预算约3亿元,其中双光子显微镜13台/套;超分辨显微镜27台/套,占比约1/10,预算约1.5亿,上述类别显微镜统计有重叠。光片显微镜13台/套,预算约8000万。以光学显微镜意向采购数量将29所高校排序,中山大学以70台/套居首,前五分别是中山大学(预算2亿元)、浙江大学(25台/套,预算1.17亿)、华南理工大学(22台/套,预算1.13亿元)、南京农业大学(20台/套,预算4976万)、清华大学(18台/套,预算7286万)。附表:各高校光学显微镜采购详情列表采购单位项目名称预算金额(万元)预计采购时间查看北京大学双光子扫描光遗传学显微镜500Nov-22意向原文北京大学多功能共聚焦显微拉曼成像系统300Dec-22意向原文北京大学多功能共聚焦显微拉曼成像系统298Dec-22意向原文北京理工大学压电力显微镜180Nov-22意向原文北京理工大学激光共聚焦荧光显微镜200Nov-22意向原文北京理工大学分析测试中心原位微区气氛系统采购项目290Dec-22意向原文北京理工大学分析测试中心冷冻传输系统和冷冻传输样品杆采购项目320Dec-22意向原文北京理工大学多功能超高分辨荧光分析与激光共聚焦系统970Nov-22意向原文北京师范大学珠海校区高分辨共聚焦拉曼成像系统采购项目476.93Dec-22意向原文北京师范大学正置荧光显微镜采购项目105Nov-22意向原文北京师范大学光片荧光显微镜采购项目580Nov-22意向原文复旦大学转盘式激光共聚焦显微镜675Dec-22意向原文复旦大学原位催化型XPS互联高空间分辨表征系统540Dec-22意向原文复旦大学复杂结构解析及电热功能原位分析高通量-高分辨表征平台580Dec-22意向原文复旦大学超高分辨率活细胞三维长时程成像系统877.5Dec-22意向原文复旦大学材料加工-原位加热-结构表征双束多功能综合平台360Dec-22意向原文广东农工商职业技术学院广东农工商职业技术学院化学品智能安全管理与实验教学中心设备建设项目372.9Nov-22意向原文哈尔滨工程大学全通道激光共聚焦显微镜800Dec-22意向原文哈尔滨工程大学傅里叶红外光谱/红外显微镜400Nov-22意向原文哈尔滨工程大学单光子计数共聚焦显微镜1500Nov-22意向原文哈尔滨工业大学离子/电子双束系统1400Nov-22意向原文哈尔滨工业大学多场耦合原位微纳米力学可视化测试系统1350Nov-22意向原文华北电力大学新能源高效转换与特性研究4400Dec-22意向原文华北电力大学新能源发电国家工程研究中心平台建设与设备更新4000Dec-22意向原文华北电力大学新能源电力系统国家重点实验室仪器设备升级更新项目7241.55Dec-22意向原文华北电力大学水利工程学科科学研究706.6Dec-22意向原文华北电力大学清洁高效燃煤发电关键技术与装备集成攻关大平台4272.25Dec-22意向原文华北电力大学氢能科学与工程学科及高水平科研平台建设5036.5Dec-22意向原文华北电力大学国家储能技术产教融合创新平台5000Dec-22意向原文华北电力大学电能转换与智慧用电教育部工程研究中心实验平台建设1889.4Dec-22意向原文华北电力大学材料科学与工程教学实验室规划、改造与建设630Nov-22意向原文华北电力大学(保定)光伏制储氢发电一体化技术研究平台340Nov-22意向原文华北电力大学(保定)多元多相燃料高效清洁混燃研究平台建设665Dec-22意向原文华南理工大学自旋科技研究院购置激光共聚焦荧光显微镜设备项目380Nov-22意向原文华南理工大学研究级倒置显微镜系统100Nov-22意向原文华南理工大学橡胶类冷冻扫描分析系统520Nov-22意向原文华南理工大学微纳米尺度红外光谱成像系统725Nov-22意向原文华南理工大学微纳光学成像工作站557Nov-22意向原文华南理工大学双转盘激光共聚焦高内涵系统550Nov-22意向原文华南理工大学双光子激光微纳加工系统480Nov-22意向原文华南理工大学双光子激光共聚焦显微镜1000Nov-22意向原文华南理工大学双光子激光共聚焦显微镜1000Nov-22意向原文华南理工大学生物医学科学与工程学院-扫描探针及激光共聚焦成像系统600Nov-22意向原文华南理工大学生物医学科学与工程学院-超高分辨率倒置荧光显微镜320Nov-22意向原文华南理工大学扫描隧道显微镜185Nov-22意向原文华南理工大学冷冻切片传输微加工系统585Nov-22意向原文华南理工大学冷冻切片传输微加工系统585Nov-22意向原文华南理工大学多势阱光镊操控系统190Nov-22意向原文华南理工大学电子增益探测正置光学显微系统160Nov-22意向原文华南理工大学单分子成像和捕获系统530Nov-22意向原文华南理工大学超快激子扩散四维成像显微镜1050Nov-22意向原文华南理工大学超高分辨率原位动态显微成像系统575Nov-22意向原文华南理工大学STED超分辨成像系统620Nov-22意向原文华南理工大学CSU转盘式扫描高速共聚焦成像380Nov-22意向原文华南理工大学3D单分子定位显微镜260Nov-22意向原文华中科技大学转盘共聚焦显微镜450Nov-22意向原文华中科技大学智能超灵敏活细胞超分辨显微镜450Nov-22意向原文华中科技大学近红外上转化共聚焦显微镜440Nov-22意向原文华中科技大学超高分辨激光共聚焦显微镜420Nov-22意向原文华中农业大学水生动物疫病专业实验室建设项目734.62Jan-23意向原文吉林大学双束拉曼一体化显微镜联用分析系统647.85Dec-22意向原文吉林大学全自动数字玻片扫描系统280Nov-22意向原文吉林大学激光差动共焦显微镜120Nov-22意向原文吉林大学活细胞工作站320Nov-22意向原文吉林大学多功能高分辨磁光克尔显微成像系统109Dec-22意向原文吉林大学倒置荧光显微成像及显微操作系统200Nov-22意向原文吉林大学超高分辨率激光共聚焦显微镜360Nov-22意向原文吉林大学超高分辨激光共聚焦显微镜315Nov-22意向原文吉林大学超分辨共聚焦扫描显微镜368Nov-22意向原文暨南大学粤港澳中枢神经再生研究院科研设备121.5Dec-22意向原文暨南大学暨南大学番禺校区药学院实验教学示范中心改善教学条件填平补缺建设项目200Dec-22意向原文暨南大学基础医学与公共卫生学院科研设备429Dec-22意向原文暨南大学光子技术研究院科研设备987.7Dec-22意向原文江南大学显微镜操作平台250Dec-22意向原文江南大学全自动3D全息无标记活细胞成像系统200Nov-22意向原文江南大学tirf全内返荧光显微镜180Jun-23意向原文兰州大学医学实验中心十人共览显微镜采购项目28Nov-22意向原文兰州大学生态学院研究级正置显微镜设备采购项目35Nov-22意向原文兰州大学生态学院基因编辑与显微注射平台设备采购项目38.6Nov-22意向原文兰州大学生态学院共聚焦扫描成像显微镜采购项目130Nov-22意向原文兰州大学生态学院倒置荧光显微镜设备采购项目22Nov-22意向原文兰州大学生命科学学院细胞、免疫及显微技术科教一体化平台-荧光相差显微成像系统采购项目126Nov-22意向原文兰州大学生命科学学院生物学野外实习科教一体化平台-农作物生长箱等设备采购项目85Nov-22意向原文兰州大学兰州大学中长期贷款项目投资估算表-拔尖创新人才培养平台60Nov-22意向原文兰州大学兰州大学生命科学学院红外相机等采购19.48Nov-22意向原文兰州大学兰州大学草地农业科技学院显微数码互动系统采购108Nov-22意向原文兰州大学基础医学院显微数码互动教学实验室采购项目192Nov-22意向原文兰州大学基础医学院显微数码互动教学实验室采购项目144Nov-22意向原文兰州大学基础医学院双光子激光共聚焦成像系统设备采购项目500Nov-22意向原文兰州大学核科学与技术学院+核材料制备装置120Dec-22意向原文兰州大学草业科学国家级实验教学示范中心一流草学人才培养平台建设项目43Nov-22意向原文南京大学高倍显微镜260Nov-22意向原文南京大学多功能可控环境扫描探针显微镜300Nov-22意向原文南京农业大学植物保护学院教学中心仪器设备采购项目680Nov-22意向原文南京农业大学荧光倒置显微镜48Nov-22意向原文南京农业大学眼科手术显微镜20Nov-22意向原文南京农业大学显微镜5Nov-22意向原文南京农业大学体视显微镜26Nov-22意向原文南京农业大学双光子激光共聚焦显微镜680Nov-22意向原文南京农业大学受激发射损耗显微镜620Nov-22意向原文南京农业大学生命科学学院植物生理实训平台采购项目45Nov-22意向原文山东大学表面共振显微镜400Nov-22意向原文山东大学FRET显微镜测定分析系统155Nov-22意向原文武汉大学
  • 我国应自主研发超分辨显微镜关键零部件,不做进口仪器的“搬运工” ——访南开大学潘雷霆教授
    超分辨显微成像技术的诞生,打破了德国物理学家恩斯特阿贝提出200 nm光学显微镜分辨率极限,让科学家能够观察到细胞内部的微观结构,如细胞骨架、膜蛋白分布、细胞器的相互作用等,这对于理解细胞功能和疾病机制至关重要。实现超分辨的技术有多种,其中单分子定位超分辨技术的分辨率最高,可达20-50 nm。在这一领域,南开大学潘雷霆教授取得了一系列创新成果并且正在积极推动相关成果的产业化进程。仪器信息网特别采访了潘雷霆教授,就其研究的随机光学重构显微技术(STORM)(单分子定位超分辨技术的一种)产业化进展和对国产生命科学仪器发展等话题展开交流。南开大学潘雷霆教授仪器信息网:您是如何走上光学显微镜研发这条道路的?为何超分辨显微成像技术为主要研究方向?潘雷霆:我本科就读于南开大学物理学院,生物物理学专业,研究生是光学专业。作为学物理的人,我喜欢眼见为实,在进行科研方向调研时发现自己对成像比较感兴趣,于是我的博士课题主要是开展钙离子成像相关研究。2009年,我有幸接触到超分辨成像重大科研项目申报工作,虽然最后没立项,但却为我的超分辨成像研究之路种下了的种子。2016年出国做访问学者时,我跟随加州大学伯克利分校许可教授学习超分辨成像技术,许可教授曾在哈佛大学庄小威教授实验室做博士后。回国后,我就一直从事单分子定位超分辨显微成像技术的研究。仪器信息网:请您介绍您团队的主要研究工作和成果。对比市场上其他同类技术,您所研究的技术及其转化的产品有何特点和优势?潘雷霆:我们课题组的主要研究领域是单分子定位超分辨成像技术以及相关的生物学应用研究,比如细胞骨架膜蛋白相关的研究。基于我个人物理学和生物学的学习背景,我们开展研究工作能很好地打破学科交叉壁垒。我经常开玩笑说自己是既能撅着屁股搭光路,又能坐在那里养细胞的人。这样的好处是,我们能从技术开发角度知道技术本身好不好,也能从用户的角度知道技术是否好用,所以交叉属性是我们一个优势。仪器信息网:您所研发的技术产业化目前进展如何?潘雷霆:我们今年刚刚成立了成果转化的公司——宁波纳微成像生物科技有限公司。目前单分子超分辨成像设备已经有工程化样机。公司最重要的进展是基于我们自己多年制样经验的积累,推出了超分辨设备的配套设备,全自动免疫荧光制样机,这台仪器主要针对单分子超分辨显微镜领域用户制样难的痛点,能够自动化完成细胞或切片样品的免疫标记整个过程,减少人工干预,提高实验效率,同时增强了实验的重复性和可靠性。它不只是用于STORM超分辨成像,也可以用于STED、SIM、共聚焦等成像需求。这款产品已经在国内的大型生命科学公共平台上安装使用。此外,我们还推出了很多超分辨显微成像配套产品,包括闪烁探针,成像缓冲液、封闭液等一些特色的试剂耗材。全自动免疫荧光制样机仪器信息网:您所研究的技术及产品主要应用领域有哪些?市场需求呈现怎样的特点和趋势?潘雷霆:目前超分辨显微镜应用最多的还是科研领域,随着整个市场的热度提升,我希望单分子超分辨显微镜的应用不仅局限在科研领域,还要推向如药物研发、药理研究以及病理的精准检测等方向的应用,我认为单分子定位超分辨光学显微镜在这些领域有更广阔的市场。仪器信息网:您如何评价目前国内高端光学显微镜自主研发和国产化现状,与国外技术相比处于什么水平?潘雷霆:我感到很自豪,在高端超分辨显微镜市场,我们国内的学者是走在前列的,毕竟我们国家在早期显微镜发展中没有很好地参与。比如,国内在结构光照明超分辨显微镜领域有很多优秀的学者,像陈良怡教授、李栋教授、席鹏教授,他们也都将成果进行了转化。因此,在高端超分辨显微镜领域,我们国家做得非常好,包括单分子定位超分辨成像技术,除了我之外,国内也有很多学者都在做这件事情。我相信我们国家在高端光学显微镜市场会越来越好。仪器信息网:谈谈对国产生命科学仪器未来的展望。潘雷霆:虽然国产仪器现在做得挺不错,但细究起来还是有问题的。我们常听到农夫山泉广告词中那句“大自然搬运工”,现在高端国产仪器厂商某种意义上也是进口仪器的“搬运工”。比如,超分辨显微系统是一个多种部件耦合所搭建起来的系统,很多关键部件如物镜,稳定的激光器等都还是采购进口的,导致很多利润被他们拿走了。我认为以后中国还是应该有人牵头去自主研发这些关键部件。虽然会辛苦一点,但还是要做,否则只能沦为别人的打工者,也很容易被卡脖子。仪器信息网:今年是仪器信息网成立25周年,请您谈谈对仪器信息网未来有哪些建议或者期待?潘雷霆:我觉得仪器信息网已经做得很好,以前采购仪器经常看仪器信息网的信息,这些信息很重要。关于建议,因为现在行业交叉的非常厉害,有些技术在这个行业不是能用的技术,可能却是另外一个行业的从业者找了好久的技术,但两个行业的信息并不对称。仪器信息网作为一个平台,掌握足够多的信息,建议内部做好交叉沟通,做信息的筛选和分类,将信息更好地传递给给广大仪器生产制造者。
  • 安东帕发布荧光显微-流变学同步测量系统
    安东帕公司已向市场推出的光学显微流变系统,已得到广大客户的认可和应用,标准的光学显微流变系统使用普通白光作为光源,并可选配偏振光功能。而最新推出的荧光显微-流变学同步测量系统,利用荧光染料在样品内部不同相之间的选择性分布,并且受到激发后可发出荧光的特点,为普通光学显微系统无法观测样品的研究,提供了一条途径,比如不透明样品、界面边界不清晰样品、高浓度样品等。可以测量样品在静止或剪切状态下的结构。如下图: 可以根据样品特点选择合适的荧光指示剂,根据指示剂的激发波长和发射波长选择合适的滤色片。 值得骄傲的是,安东帕将荧光显微和原先的光学显微系统整合在一起,共用光学平台、只需增加荧光附件和光源,使光学显微系统的用户可以花很小的代价、很方便的升级到荧光显微平台。 可应用行业或领域:聚合物溶液乳液食品化妆品生物材料粒子示踪
  • 显微镜界的“黑科技”:3D超分辨成像系统
    近, 法国abbelight公司研发的模块化多功能单分子定位显微 (SMLM)系统凭借其有的DAISY等技术在3D超分辨成像领域取得重大突破,在学术界引起了广泛的关注。该系统次实现在三维空间上的15 nm超3D定位;且因为模块化设计具有高兼容,仅需使用一个c-mount接口即可将客户的倒置荧光显微镜升成超分辨显微镜,是佳的超分辨搭建方案。 轴向延伸 定位Abbeligh公司系列超分辨模块采用了先进且特的双通路DAISY技术能够将以往定位不佳的Z轴精度提高到15 nm,真正实现三维空间上的15 nm超3D定位。同时此技术巧妙地结合DONALD和SAF技术的优势,有效解决采集过程中的热漂移和多色成像中不同波长激光位置不同等问题,大幅度提高了长时间和多色成像的度,并且还可实现多4色的同时3D成像。超大视野 图像采集在光路方面,SAFe light 能够实现在较低激光能量下对大视野图像的均匀照射。这使得abbelight能够在不增加采集时间的前提下,一次性采集200 × 200 μm2 范围内的图像,并且能够保证图像照射光的整体均一性。灵活兼容 轻松升abbelight具有高度兼容性,仅需使用一个c-mount接口即可将您的倒置荧光显微镜升成超分辨显微镜,并且基本不会破坏显微镜的原有功能,节约您的预算与空间。(除了模块外,abbelight也提供完整的超分辨系统)先进软件 功能强大abbelight 同时还是一台十分简便易用的设备,该设备的NEO软件简单、直观、优化良好,可提供全面的参数控制命令、实时3D漂移校正、实时3D重构图像、高速3D定位图像处理、空间分析和测量、分辨率计算等功能。初次应用 轻松上手对于超分辨中的光漂问题,abbelight的商业化成像液能够有效的降低成像过程中的光漂作用。对于初学者来说,abbelight 还提供全面的技术支持,帮助您快速的建立自己的超分辨观测方法,打开超分辨大门,助力科之路。【新发表文章】[1]. Belkahla, Hanen, et al. "Carbon dots, a powerful non-toxic support for bioimaging by fluorescence nanoscopy and eradication of bacteria by photothermia." Nanoscale Advances (2019).[2]. Jimenez, Angélique, Karoline Friedl, and Christophe Leterrier. "About samples, giving examples: Optimized Single Molecule Localization Microscopy." bioRxiv (2019): 568295.[3]. Cabriel, Clément, et al. "Combining 3D single molecule localization strategies for reproducible bioimaging." Nature communications 10.1 (2019): 1980.[4]. Capmany, Anahi, et al. "MYO1C stabilizes actin and facilitates the arrival of transport carriers at the Golgi complex." J Cell Sci 132.8 (2019): jcs225029.
  • 光学显微镜新动向:直播间里的“科技盛宴”——大规模设备更新之徕卡专场活动成功举办!
    仪器信息网讯 2024年5月13日,大规模设备更新——光学显微镜专场直播活动圆满召开!本次活动由仪器信息网携手徕卡光学显微系统联合主办,特别设置了圆桌对话和主题报告两大环节,在大规模设备更新政策背景下,9位嘉宾聚焦光学显微成像前沿技术与应用,共话未来发展新趋势。活动话题丰富、干货十足,吸引2000余人观看,观众在直播间与嘉宾积极互动,热烈讨论。对话专家:深度剖析光学显微镜之两大热门领域需求趋势活动开始,中国科学院半导体研究所主任/研究员韦欣、清华大学蛋白质研究技术中心主管/高级工程师王文娟、徕卡显微系统生命科学部全国应用经理王怡净和徕卡显微系统工业销售总监夏燕四位嘉宾作客直播间,就光学显微镜的技术创新、生命科学研究和半导体等工业领域的应用进展以及各类光学显微镜的选型建议等话题分享了自己的观点。圆桌对话清华大学蛋白质研究技术中心主管/高级工程师王文娟王文娟从事光学显微镜相关工作已十余年的时间,是资深的应用专家。她所管理的平台上,荧光显微镜、共聚焦显微镜、双光子显微镜、超分辨显微镜等生命科学相关的各个类型光学显微镜一应俱全,在生物医药、细胞生物学、发育生物学、分子医学、神经科学甚至环境、材料等方向都有好的支撑。谈及光学显微镜的技术创新,她讲到,面对生命科学领域的需求,光学显微镜技术更新迭代非常快,向更高分辨率、更快成像速度、成像深度更深、更低的光毒性以及更高通量这几个方向发展;在后续图像处理方面,人工智能技术的融入让图像处理更加简便。她还指出,当前活体组织的超分辨成像是当前的一大难点,希望显微镜能有技术上的突破去解决这一难题。在光学显微镜选型话题时,她给出了经验之谈:第一是看技术的先进性,要解决实际问题;第二是对比不同平台实际样品测试结果;第三是售后服务的响应及时性和维保价格合适。中国科学院半导体研究所主任/研究员韦欣韦欣主要从事化合物半导体分立器件和小规模集成电路器件的研究。他介绍到,半导体相关的工业强烈依赖于工艺水平和过程中的加工良率,光学显微镜是工艺过程中不可或缺的一类控制和检测工具,在他的工作中金相显微镜和体式显微镜几乎每天都要使用。不同于生命科学研究应用,工业检测领域对于光学显微镜的分辨率要求相对较低(电镜可实现),但对于更大视场和更快的成像速度需求较高,这主要源于工业领域对于效率的追求。要提高成像速度,硬件和软件技术都需要不断提升,尤其现在已经进入数字化时代,因此机器学习来提高识别效率和可靠性是软件发展的一大趋势。韦欣老师对光学显微镜未来技术最大期待是通过软件自动寻找、识别和记录每一个工艺步骤的缺陷,作为过程控制中定量的手段,而不只是实现定性检测。谈到工业领域的应用前景,韦老师认为,除了半导体工艺过程控制,在材料的表面分析方面光学显微镜的作用越来越大。在选型时,韦老师更关注是否能够满足定制化的需求、能否给出更多选项以及软件是否有明显提升等几个方面。徕卡显微系统生命科学部全国应用经理王怡净负责王怡净长期从事光学显微镜在生命科学领域的应用开发工作,她讲到,针对前面王文娟老师提到的超高分辨率、更深成像和智能化图像处理等用户需求或者技术趋势,徕卡在这些方面都早有相应的布局,今年也有一些新的突破。比如,“看的更深”方面,徕卡在常规多光子基础上进行了技术性的突破,从原来的滤片式外置检测器升级为光谱式外置检测器,检测灵敏度更高,在做神经纤维、骨等特殊样品时更有优势。对于智能化,徕卡的全类产品都有相应设计,如去年推出的MICA全场景显微成像分析平台可以实现一键成像。应用方面,徕卡在空间多组学、脑科学和类器官的研究等方向也早有布局,近期将推出流程化的解决方案。徕卡显微系统工业销售总监夏燕夏燕介绍到,在工业领域,光学显微镜如金相显微镜的革新性技术相对较少,但无论是高校和科研院所等前沿研究还是制造业的大规模检测,工业领域对于光学显微镜的操作便捷性、功能的可拓展性以及特殊的软件定制化都有明确的需求。徕卡在生命科学、工业检测、手术显微镜和电镜制样等各个产品线上都有相应硬件和定制化软件的布局。谈到工业领域光学显微镜的应用前景,夏燕着重介绍了徕卡在新能源领域毛刺检测方面根据客户的需求开发了新的软件,能够实现从定向到定量的需求。在半导体方面,针对民用半导体领域晶圆表面缺陷检测,徕卡有DM8000M、DM12000M产品来实现,并且相关产品在物镜、内置光源等方面具有独特优势。系统报告:徕卡显微镜产品家族的特点和应用圆桌对话环节后,来自徕卡光学显微系统的5位专家老师对徕卡显微镜产品家族进行了深度解读,包括多通道成像、智能平台、宽场光学与工业新应用等方面的技术亮点和解决方案。报告主题:《徕卡STELLARIS全方位多维成像解决方案》报告嘉宾:徕卡显微系统(上海)贸易有限公司 应用工程师 黄晖报告展示了STELLARIS全方位多维成像效果,它配备了最新一代白激光技术,可提供非常宽泛的光谱选择范围,为多色成像提供了重要基础。同时,STELLARIS Hyd 新一代共聚焦检测器使其具有更亮的信号、更多荧光颜色的自由搭配和更温和的激发。此外,黄老师还介绍了TauSTEDXtend纳米级多色活细胞成像和DIVE光谱式多光子深层多色成像。报告主题:《革新科学研究:MICA智能显微成像分析平台》报告嘉宾:徕卡显微系统(上海)贸易有限公司 高端宽场产品经理 童昕童昕介绍了全场景智能显微技术——MICA智能显微成像平台,它具备人人皆享、包罗万象、极简工作流三大特点。同时,童老师还讲解了MICA在效应T细胞介导的肿瘤细胞杀伤等实验中的应用案例。报告主题:《常规宽场显微镜助力诊断和科研》报告嘉宾:徕卡显微系统(上海)贸易有限公司 宽场显微镜产品经理 郑晓业常规的宽场显微镜主要分为体视镜、正置显微镜和倒置显微镜三大类,郑晓业分别介绍了徕卡这三类显微镜的产品和功能。徕卡的体视镜家族具有融合光学的独有技术;正置显微镜家族主要包括DM500/750、DM4/6B和DM1000-3000;倒置显微镜家族主要包括DMi1、DMiL、DMi8、Mateo TL和Mateo FL。报告主题:工业显微镜新应用——为发展新质生产力护航报告嘉宾:徕卡显微系统(上海)贸易有限公司 应用工程师 姚永朋姚永朋主要介绍了徕卡在工业领域的主要产品及功能,此外还讲述了这些产品在地质科学、水泥工业、煤炭焦化、石棉检测和液晶工业等领域的应用。报告主题:徕卡先进制样技术在电子半导体行业应用介绍报告嘉宾:徕卡显微系统(上海)贸易有限公司 电镜制样产品应用工程师 王露露王露露介绍了徕卡的离子束切割/研磨技术路线,主要用到EM TXP精研一体机、EM TIC3X三离子束研磨仪和EM ACE200/ACE600低真空/高真空镀膜仪三台仪器。EM TXP精研一体机应用于对固定样品切割/铣削/冲钻/研磨/抛光,EM TIC3X三离子束研磨仪应用于固体表面无应力损伤表面/截面制备。活动主持人 曲文清 仪器信息网品牌合作伙伴资深运营更多精彩内容尽在直播回放!点击查看 :直播链接:https://www.instrument.com.cn/webinar/meetings/leica2024 此次直播,为广大相关从业者提供一个全面了解光学显微镜新技术、新方案的平台,让大家在选型过程中少走弯路,能够为大家在科研工作中提供更多帮助和支持,为进一步高效推动科研设备的升级换代贡献一份力量。
  • 国产厂商已实现SIM超分辨显微镜原创技术的引领——​访北京大学席鹏教授
    在高端科学仪器领域,国产品牌鲜有能用“引领”二字来描述的。而在许多科学家和工程师的不懈努力之下,SIM超分辨显微镜成为例外。近五年,国内创新企业和传统光学企业纷纷推出超分辨显微镜,其中以结构光照明(SIM)技术路线最具代表性,这些国产SIM超分辨显微镜陆续进入大型科研平台并得到用户的充分认可。北京大学席鹏教授是推动这一领域快速发展的科学家之一,他的多项成果也已完成产业化并得到了市场的良好反馈,他的另外一个身份是艾锐科技首席科学家。 仪器信息网也特别采访了席鹏教授,听他述说其光学显微镜研发之路以及对当前高端光学显微镜技术和市场发展的看法。北京大学席鹏教授仪器信息网:您是如何走上光学显微镜研发这条道路的?为何选择超分辨显微成像技术为主要研究方向?席鹏:我的专业背景是光学工程,从本科到博士,我一直都在从事光学工程相关的研究,后来在博士后期间以及在工作以后,我分别跟从普渡大学、密西根州立大学和马普研究所三位导师,包括J. Paul Robinson 教授、 Marcos Dantus 教授,还有诺奖得主德国马普生物物理化学研究所Stefan Hell教授,他们既是学术大咖,也都有自己的产业化公司。我自己在做学术的时候,发现很多技术在迭代行成一篇好的文章后,往往随着学生的毕业就流失了。而我的实验室在开发了这些技术以后,有很多合作者找到我们,希望进一步产生应用上的合作,可是由于实验室有限的接待能力,使得我们不能够去服务于广大的用户。因此,在2020年,我们决定将其中一些技术,特别是超分辨技术进行产业化,并注册了北京艾锐精仪科技有限公司来承接这个任务。仪器信息网:请您介绍您团队的主要研究工作和成果。对比市场上其他同类技术,您所研究的技术及其转化的产品有何特点和优势?席鹏:我们从2016年开始了STORM偏振超分辨技术的研究,2019年发表了Polar-SIM技术的文章。基于我自己光学工程的背景,我们会从硬件的源头进行创新,比如偏振STORM技术,它的核心是利用旋转的偏振实现对于超分辨结构的解析以及偶极子的判定,我们进一步结合了菲斯特算法,实现了50个纳米的高时空分辨率的超分辨。后来我们又结合结构光在偏振上的特性实现了偏振结构光超分辨显微成像技术。总体来说,我们实验室擅长将光学的硬件和软件进行结合,使得我们的技术能够始终保持在一个非常强的技术驱动的前沿,从而满足用户的多方面的需求。仪器信息网:您所研发的技术产业化目前进展如何?席鹏:我们公司注册于2020年,感谢公司全体同仁的努力付出,经过三年技术的不断迭代,我们公司有了4款产品,其中2款是显微类产品,包括 Polar-SIM高保真偏振超分辨显微系统以及Nova-SD转盘共聚焦显微成像系统。同时我们还开发了一些周边产品,分别是活细胞显微镜工作站和成像分离器。随着我们对产品的不断开发和迭代,我发现自己在做教授的时更多是在进行原理性验证和实现性能的突破,最后去发表文章。而在做产品的道路上,则要从原料的可靠性、产品的可靠性、产品UI设计的用户友好度、产品外观是否美观、电磁兼容性等各个方面不断努力去进行产品标准化的设定。当做了这些过去作为教授没有做过的工作后,我发现我们可以更好的响应用户的需求,从而能够解决更多以前从来没有想过的问题。仪器信息网:您所研究的技术及产品主要应用领域有哪些?SIM超分辨显微技术的市场需求呈现怎样的特点和趋势?席鹏:我们公司现在有4款产品,其中Polar-SIM超分辨显微镜是更适合于活细胞和固定细胞的超高时空分辨率成像的技术,且由于SIM超分辨显微镜需要将结构光的条纹对样品进行调制,所以它也更适合薄样品成像;我们还开发了兼容后样品的转盘共聚焦成像系统;在做活细胞成像时,我们需要对活细胞进行长时程的培养,所以我们开发了基于显微镜的活细胞培养工作站;为了进一步结合多色成像,能够看到多种细胞器的相互作用,我们开发了成像分离器。从活细胞成像来看,由于SIM超分辨显微技术能够实现活细胞中细胞器的精准观察和相互作用的研究,因此它在基础生命医学、新药研发和疾病的相互作用等方面都可以得到相应的应用。仪器信息网:近几年市场上商业化SIM超分辨显微镜越来越多,您认为应该如何进行差异化竞争?席鹏:实际上这个领域并不是厂商越来越多,而是呈现此消彼长的状态。最早SIM超分辨显微由国际巨头GE、尼康、蔡司这三家作为主要引领的品牌。后来随着中国厂商和技术的崛起,艾锐科技、超视计、纳析光电等公司都推出了自己的SIM超分辨显微镜产品。在2021~2022年,GE公司决定退出全球SIM超分辨显微镜市场;2023年,尼康公司决定退出全球SIM超分辨显微镜市场。所以,整体来看,现在是中国公司在进行非常强的原创性技术的引领。讲到竞争,从用户的角度这不是坏事,只要竞争公平有序,那么适度的竞争能够在为用户提供多种多样的性能提升和服务提升方面带来一定的好处。从另外的一个方面,我们厂商也会致力于去开发更多适用于不同用户的具有差异化的产品,来满足用户多样性的需求。此外,在这样的竞争过程中,会让我们自己的产品性能和质量得以提升,从而进一步走出国门,实现对海外市场的覆盖。随着国内市场的崛起,大家可以看到国内竞争已经达到趋于饱和的状态,而海外市场则形成真空,只有蔡司一家品牌,而海外的市场又远远大于国内的市场容量。因此通过在国内的充分竞争后,我相信中国的高水平超分辨企业将会走出一条属于自己的出海之路,就像小米、华为、TCL这样品牌一样,形成高性能、高质量、“皮实”的仪器系统,使得海内外的用户都能够得到这样一个科技的普惠。仪器信息网:您如何评价目前国内高端光学显微镜自主研发和国产化现状,与国外技术相比处于什么水平?席鹏:虽然在结构光照明超分辨显微成像上我们做到了一定程度的突破,但在整体高端显微成像仪器上,我们是不可以掉以轻心的,因为国外的仪器厂家如蔡司、徕卡、尼康、奥林巴斯都有百年以上的悠久积累和沉淀,他们的品牌、所积累的技术优势以及一代代产品的迭代形成的专利和用户信赖度成为了牢靠的“护城河”。我们要想突破,一定要做好相应的准备,从源头做起,让我们的显微镜技术能够从下至上逐步去实现全球化,达到国际化的竞争水平。如果说在超分辨显微成像上我们已经走出了一条道路,我认为主要归功于我们在技术上的降维打击,即通过高校、科研院所在技术上的原创性迭代,实现了本领域的产品对国际大企业的技术优势的突破,完成了更优质、价格也更低的替代。将该模式进行推广时,一方面我们要通过国产替代来逐步提升民族显微镜的提升;另外一方面我们则应当融入国际化大潮中,与全球优秀供应商共同成长,共同合作,来实现自有品牌的国际化。仪器信息网:谈谈对国产生命科学仪器未来的展望。席鹏:这个问题我想引用一句话——“革命尚未成功,同志仍需努力”。国产生命科学仪器或科研仪器,虽然只占到国民生产总值不足4%的份额,但其影响力却可以触达60%以上的工业生产总值。所以科学仪器发展对中国来说任重而道远。当我们去数“985” 、“211”高校数量时会发现大概只有160多家的规模,也就是说,国内高质量高校总量并不多,国外其实有大量的高校科研院所和非常巨大的市场在呼唤着我们这些优质的国产仪器走出国门。在这里我也特别要感谢所有愿意尝试国产仪器创新和研制的老师们——你们成为“第一个吃螃蟹的人”这样的行动让国产仪器能够不断自我提升,走到海外,实现出海政策的重要推进。因此在我看来,对于未来科学仪器行业,国内市场的优势就是人口基数大,如果我们能像小米、TCL这些家电品牌,利用人口红利实现科学仪器的颠覆式创新的话,那么在国内市场就会有相当大的成长;放眼国际,则是一个高端海量的市场规模。因此,我们可以实行两步走的策略。仪器信息网:今年是仪器信息网成立25周年,请您谈谈对仪器信息网未来有哪些建议或者期待?首先非常感谢仪器信息网在这25年里对国产仪器的支持与陪伴,有一句话叫做“春江水暖鸭先知”,仪器信息网的编辑们一定能够通过这25年来的相知相伴,感受到国产仪器不断成长、不断崛起的力量。在这里特别祝贺仪器信息网25岁生日快乐,也期待未来仪器信息网和国产好仪器能够共同成长,不断进步。席鹏教授采访视频
  • 赛默飞世尔科技展示新型Nicolet iN10 型傅立叶变换红外显微系统
    (2008年3月5日,北京) ——服务科学,世界领先的赛默飞世尔科技公司, 今天宣布其新型科技产品-Thermo Scientific Nicolet iN10 型傅立叶变换红外显微镜将与美国同期投放到中国市场, 该产品由新版 OMNIC Picta软件支持。这一全新的系统简化了传统的红外显微镜,使得分析和研究型化学实验室的化学家们能够充分利用该技术的力量,从而对他们的实验结果产生足够的信心。这种新型显微镜将于3-6日在美国路易斯安娜州新奥尔良召开的Pittcon 2008仪器展的Thermo Scientific #1741号展台展出。 据该公司负责全球研发工作副总裁Ian Jardine 介绍:“从载药系统到平板显示,采用的材料的结构在微观尺度上正日益精细化,这就呼唤能够表征这些结构的仪器的出现。 红外显微镜集傅立叶变化红外光谱(FT-IR)的分辨功能和显微镜的放大功能与一体,使得这一需求得到满足。传统的红外显微镜功能强大,但要求更高超的技能 ,因为它相对于简单的FT-IR测试来说,增加了一些操作步骤。 新型Nicolet iN10 型傅立叶变换红外显微镜与我们的OMNIC Picta软件完美结合, 前所未有地缩小了FT-IR主机的简易性和红外显微镜的复杂性之间的差距。” Nicolet iN10 型傅立叶变换红外显微镜的独特的一体化设计无需外加主机光谱仪,提供了优异的光学功效,使得数据的获得变得更为简捷。由于 Nicolet iN10 无需外加主光学台,因此拥有老式FT-IR仪器的用户可采用这一系统,而无需担心兼容性问题。 传统的FT-IR显微镜的一个特征是需要液氮冷却的检测器,而Nicolet iN10 FT-IR型显微镜配备室温检测器, 这就消除了由于液氮冷却所导致的时间浪费,危险性和成本消耗。加之高效的Slide-on ATR采样附件,这种检测器使得Nicolet iN10 型傅立叶变换红外显微镜的使用与传统红外主光学台一样简便快速。 Jardine接着说:“传统上采集和测试样品往往需要一定的技巧和时间,Nicolet iN10 型傅立叶变换红外显微镜是高度自动化和集成化的机器成像技术,它可以使得样品的载入,定位和测定变得更为简便。而 OMNIC Picta 软件提供了强大数据分析功能,使用户使用该仪器变得更为简易,这个软件能够帮助用户从所得数据中提取得到更多的化学和物理信息. 从而使样品的测试更为快捷,简单,用户对分析结果更具自信。” 红外显微镜在其验证性能上落后于FT-IR.这导致其在一些需要高度控制的行业中难以被接受。而Nicolet iN10 型傅立叶变换红外显微镜可在反射,透射和ATR采样模式下进行验证, 从而简化了在这些行业中,仪器的认证过程。 为了满足用户对仪器获取数据速度的要求,PITTCON 2008仪器展上还将展出新型的Nicolet iN10MX 成像显微镜, 它包括成像的光学元件和阵列检测器,保证仪器简便快速地获得高保真的化学成像。 欲获得有关Thermo Scientific Nicolet iN10 型傅立叶变换红外显微镜更多详情, 请访问: www.thermo.com/FT-IR screen.width-300)this.width=screen.width-300" # # # 关于Thermo Fisher Scientific(赛默飞世尔科技,原热电公司) Thermo Fisher Scientific(赛默飞世尔科技)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过90亿美元,拥有员工约30000人,在全球范围内服务超过350000家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于Thermo Scientific和Fisher Scientific这两个主要的品牌,帮助客户解决在分析化学领域从常规的测试到复杂的研发项目中所遇到的各种挑战。Thermo Scientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。Fisher Scientific为卫生保健,科学研究,以及安全和教育领域的客户提供一系列的实验室装备、化学药品以及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。欲获取更多信息,请浏览公司的网站:www.thermofisher.com
  • 630万!吉林大学采购超分辨共聚焦显微成像系统
    近日,某采购平台发布吉林大学2022年8至10月政府采购意向,其中预算630万计划采购一套超分辨共聚焦显微成像系统,要求为包括4个波长以上的激光光源、显微镜系统、成像检测器系统、操作软件、电脑主机、显示器。可实现进行细胞亚结构的动态成像,细胞或组织内部的超细微荧光特性解析,观察细胞或组织内部的微细结构和形态学变化,记录细胞的生理特性。实现“高清”、“动态”的活细胞高分辨观察要求。 具体要求详见采购文件。供货期:签订合同之日起,6个月货到采购人指定地点并安装验收完毕。(包括供货,安装,调试,验收合格所需时间)。具体事宜由成交供应商按采购人指定地点及时间安排要求执行。详细情况如下超分辨共聚焦显微成像系统项目所在采购意向:吉林大学 2022年8至10月政府采购意向采购单位:吉林大学采购项目名称:超分辨共聚焦显微成像系统预算金额:630.000000万元(人民币)采购品目:A02100301显微镜采购需求概况 :超分辨共聚焦显微成像系统,1套。要求为包括4个波长以上的激光光源、显微镜系统、成像检测器系统、操作软件、电脑主机、显示器。可实现进行细胞亚结构的动态成像,细胞或组织内部的超细微荧光特性解析,观察细胞或组织内部的微细结构和形态学变化,记录细胞的生理特性。实现“高清”、“动态”的活细胞高分辨观察要求。 具体要求详见采购文件。供货期:签订合同之日起,6个月货到采购人指定地点并安装验收完毕。(包括供货,安装,调试,验收合格所需时间)。具体事宜由成交供应商按采购人指定地点及时间安排要求执行。预计采购时间:2022-10备注:本次公开的采购意向是本单位政府采购工作的初步安排,具体采购项目情况以相关采购公告和采购文件为准。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制