智能工程测量

仪器信息网智能工程测量专题为您提供2024年最新智能工程测量价格报价、厂家品牌的相关信息, 包括智能工程测量参数、型号等,不管是国产,还是进口品牌的智能工程测量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合智能工程测量相关的耗材配件、试剂标物,还有智能工程测量相关的最新资讯、资料,以及智能工程测量相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

智能工程测量相关的厂商

  • 海克斯康制造智能海克斯康,数字化信息技术解决方案的提供商,秉承“智慧引擎,共赋未来”的理念,凭借“双智战略” 带动制造业的智能与创新,推演智慧城市的演进之路。海克斯康以“推动以质量为核心的智能制造”为核心,打造了完整的智能制造生态系统,实现覆盖设计、生产以及检测的全生命周期闭环管理,达成绿色、高质量、低成本的智能工厂目标。海克斯康智慧城市打破传统的信息孤岛,实现了跨部门的互联互通,通过完善的智慧城市运营平台架构,构建互联互通的智慧城市网络基石,驱动城市管理业务和技术创新,创造更美好、更智能的生活。 海克斯康制造智能隶属于海克斯康集团,专注于为客户提供贯穿设计工程、生产制造、计量测试等领域的专业技术、产品与解决方案,通过使工厂更智能,帮助用户实现品质、效率和生产力的提升,推动以质量为核心的智能制造。来自海克斯康的专业技术正在助力全球制造业实现数字化转型升级,并正在应用于75%的汽车生产、90%飞机制造以及85%的智能手机产品。海克斯康集团业务目前遍及全球50个国家及地区,拥有员工21,000多人,其2019年全年净销售额超过39亿欧元。
    留言咨询
  • 南京燕而信智能化系统工程有限公司(YTH)是一家专注于智能化系统软硬件研发、生产、销售与服务的创新型企业。公司主要从事空间环境研究及数据测控设备研发,产品主要用于水土保持及相关生态环境监测、海绵城市和智慧城市建设。公司立足于研发、创新、承秉稳步发展、务实创新的精神,尊重人才、注重技术,努力提升科技服务水平和质量,以使用户在享受技术发展最新成果的同时不断获得最大的收益。 燕而信公司凝聚了一批研发团队、生产和经营管理方面的专业人才、公司主要人员均有良好的基础知识和理论知识,并具有较长时间的国内外研究开发实践,具有良好的技术水平。相关核心产品拥有自主知识产权,并应用于水文水利、高等院校及科研院所等各个领域。我们相信,在不断关注掌握国外技术新动向的同时,与国内业界的具体实际相结合,快速开发出符合实际需求的的实用产品。
    留言咨询
  • 肯措测量技术(上海)有限公司成立于上海市嘉定区。提供便携式三维激光扫描仪,便携式三坐标测量机,桥式三坐标测量机,齿轮测量中心,光学跟踪仪,振动及位移分析系统,快速成型机等设备及软件的销售。基于15年以上的行业应用经验,以及对各种测量设备、测量软件的深刻理解,可为客户提供三维几何特征及曲面测量检测、三维扫描、逆向工程与设计、快速成型等服务。
    留言咨询

智能工程测量相关的仪器

  • &emsp &emsp 洁净工程实验室智能通风系统是指变频与变风量通风控制系统的有机结合,主要包括,风速传感器,红外线探测器,变风量控制阀,自动控制器面板,操作终端,智能化通风系统管理软件等。  &emsp &emsp 洁净工程智能化通风系统可以对大楼的所有通风系统及设备进行监控及遥控操作,可以在中控室启动或关闭排独柜,升高或降低排独柜的视窗门,播放音乐,设置排独柜温度,风速,风量,工作时间等自动报警参数,还可预设排独柜的自动启动或自动关闭时间,特别适用于需要长时间进行实验而无须工作人员在操作的情况。智能化通风系统管理软件能对通风系统进行实时监控,自动记录并输出运行监控报表,详细记录各时段的运行情况,故障情况,并可输出实际节能的数据,让用户对投资成本与运行成本一目了然。将智能化通风系统接上互联网后,可通过手机或电脑在异地操作智能化通风系统,还可让智能化通风系统的供应商在异地对其进行故障诊断与维护。智能通风系统是国际化实验室的重要标志。  &emsp &emsp 洁净工程智能气体系统包括智能供气与智能排气两种。  &emsp &emsp 给排水系统:节能可循环的水处理和资源化关键技术设备,能达到节水,资源综合利用等功效,有缺水报警系统。  &emsp &emsp 空调系统,暖通空调的智能控制系统具有分程控制,混风控制等多种能块,能根据外界气候条件而自动调节,按照预先设定的指标对安装在实验室内的温度,湿度,空气洁净度传感器所传来的信号进行分析,判断,及时自动打开制冷,加热,去湿及空气净化等功能。北京华旭洁净净化科技提供实验室工程及配套设备一站式服务。
    留言咨询
  • 光标小农水工程智能一体化灌溉排涝泵站是什么?  农村小型灌排泵站作为农田水利建设的重要组成部分,具有量大面广的特点,在设计和建设质量上直接影响到了农田水利工程建设的使用效果。目前我国农田灌溉泵站还是采用传统的建设模式,泵房一般为砖混结构,占地面积大,施工时间长、构造多样:泵站控制方式比较简单,自动化程度低,管理维护复杂,已经很难适应农业现代化和信息化的发展需要。  光标环保科技经过充分的现场调研和市场分析,为了满足现代化和信息化建设的需要,自主研发了一款智能型泵站——光标小农水工程智能一体化灌溉排涝泵站。光标小农水工程智能一体化灌溉排涝泵站在设计方面由防腐钢结构和新型环保墙体、屋面材料集成,是基于物联网技术研发出来的智能一体化灌排设备,它改变了传统意义上的灌排泵站的理念,将现代电气控制、过程自动化检测、超声波计量、智能电气保护、红外安防监控、视频过程监控、水利物联网等技术与泵机组进行一体化系统集成,使之成为可移动,可组合的全智能灌排设备。  光标小农水工程智能一体化灌溉排涝泵站采用集成式结构、结构紧凑、体积小。外观设计为亭式结构,泵房采用新型环保材料,占地面积一般不大于6m2。  光标小农水工程智能一体化灌溉排涝泵站中所有部件均设计为标准件,工厂加工好之后直接运输到现场就可以组装。大大的节省了时间,泵站的建设不再是一项复杂的土建和设备安装工程,而是一套设备就地组合装配的过程。占城占地面积大大缩小,降低了泵站建设施工成本及建设的难度,并显著的缩短了建设的周期。  常州光标环保科技是一家专业从事一体化泵站、隔油提升一体化设备、污水处理等设备的公司,拥有10年的研发、生产、和销售经验,良好的业界口碑,是您不错的选择。  公司:常州光标环保科技有限公司  地址:常州市武进区印墅工业园区印墅村209号
    留言咨询
  • 产品简介:DycubatorTM组织工程培养箱是用于细胞和组织的先进动态培养设备,广泛用干细胞的扩增与分化,各种正常与病变组织的体外动态培养,亦可用于病毒繁殖、细菌培养、遗传工程、疫苗生产等。产品特点: ?本产品备有动态组织培养功能,一体化设计的蠕动泵可不间断的进行培养液的动态循环。能够方便的添加细胞和组织培养成分、收集和提取细胞和组织培养过程中所产生的活性因子和外泌体等成分。可以实时监控和调节培养条件,大大提高工作效率。?微电脑智能控制器(数字显示或液晶显示)可控制蠕动泵转速、转向、流量、培养箱温度、CO2气体浓度、门温、照明、紫外灯开关和定时等,还具有超温安全保护和报警功能。 ?触摸彩屏智能控温仪除以上功能外,还可程式编程,可显示运行曲线,可直接查看同一时间的温度、湿度、CO2浓度三组曲线的变化情况及异常报警开关功能,控温更精确,培养箱配有进口红外浓度探头,CO2浓度更稳定,安全保护功能更完善。?CO2进气口配备微生物高效过滤器(0.22um),过滤效率高,有效过滤CO2气体中细菌及灰尘颗粒(选配)。?配有紫外杀菌灯可定期对箱体内部进行消毒,有效杀灭箱体内微生物,从而防止细胞和组织培养期间的污染。?带有RS-485接口,可连接打印机和计算机,记录温度参数的变化情况(选配)。主要参数:名称(范围)出厂值温度设定(0.0~60.0)30.0℃浓度设定(0.0~20.0)5.0%转速0.1~150(转/分钟)流量范围0.006-720毫升/分钟
    留言咨询

智能工程测量相关的资讯

  • 一款手机APP终端显示智能硬件推动沼气工程智能化!
    沼气精灵,为四方仪器自控系统有限公司自主研发的一款快速测量沼气成分的智能硬件,便携小巧、智能安全,一经面世,即吸引了业内专家的瞩目! 为感谢广大客户与专家学者的而支持,“百万壕礼,寻沼专家”首发活动,倾情送出100台沼气精灵。 沼气精灵功能特性: 1.工业级微型传感器:NDIR非分光红外CH4传感器(0-100%CH4,分辨率0.01%);高精度、长寿命电化学H2S传感器(0-2000ppmH2S, 分辨率1ppm); 2.扩散式进气方式; 3.内置蜂鸣器,气体浓度超限报警; 4.小巧、便携、安全; 5.智能手机蓝牙连接设备,APP终端实时显示气体浓度测量值。 为助力我国沼气工程技术发展,沼气精灵限时赠送活动将持续发力,“百万壕礼,寻沼专家”第2季已火热启动! 只要你是致力于沼气工程领域发展的有志之士,在线提交简要信息即可完成申请,稍后就等待被我们的幸运大礼砸中吧!500台价值2000元的沼气精灵,总有一个属于你! 活动对象:全国沼气工程领域专家 活动时间:2016年10月26日-11月7日 参与方式:保存上方海报图片,长按识别海报二维码,进入微信公众号,按指示完成申请即可!
  • 全面领略智能仪器与测量 2019中仪学学术年会成功举办
    p  strong仪器信息网讯/strong 2019年3月29日,是中国仪器仪表学会40周岁的生日。为庆祝中国仪器仪表学会成立40周年,中国仪器仪表学会、国务院学位委员会仪器科学与技术学科评议组、教育部高等学校仪器类专业教学指导委员会在北京联合举办了“中国仪器仪表学会学术年会 中国仪器仪表学会四十周年纪念活动”。此次年会的主题是“量子化与智能化时代的仪器与测量”。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/20f1f6cb-016d-4cf8-9eef-792c00e33236.jpg" title="IMG_9992_副本.jpg" alt="IMG_9992_副本.jpg"//pp style="text-align: center "strong中国工程院院士、清华大学教授 尤政/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/4e2c74cb-9a99-4a63-bac6-6020bd5e6327.jpg" title="IMG_0004_副本.jpg" alt="IMG_0004_副本.jpg"//pp style="text-align: center "strong北京信息科技大学校长 王永生/strongbr//pp  中国航天科技集团有限公司九院十三所王巍研究员主持了主会场报告。会议伊始,中国工程院院士、清华大学教授尤政和北京信息科技大学校长王永生分别致辞,并预祝大会取得圆满成功。尤政表示,仪器学科发展涉及化学、物理、材料等多种基础学科,仪器学科的突破往往来自这些学科的技术应用,希望更多领域的专家,加入到仪器行业的学术交流中,促进仪器行业发展。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/d3229c92-bfde-41b1-829a-1d78172dbad6.jpg" title="IMG_0011_副本.jpg" alt="IMG_0011_副本.jpg"//pp style="text-align: center "strong报告题目:国际基本单位常数化和中国应对研究/strong/pp style="text-align: center "strong报告人:中国工程院院士、中国计量科学研究院 李天初研究员/strong/pp  2019年5月20日,基于常数的国际单位制将正式实施。李天初以秒和米为例,介绍了国际单位制从实物基准到量子基准再到常数化的演变历程,以及我国在计量基准中的努力。在生活中,我们可能感觉不到这些基本单位定义准确度的影响,但是高端用户却有深刻感受。如中美股市如果存在计时差异则会引起很多纠纷 大工业制造中,不同国家设备间的配合也会因基本单位不同而无法实现。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/805c602d-9150-4e66-8db1-370408fc886d.jpg" title="IMG_0042_副本.jpg" alt="IMG_0042_副本.jpg"//pp style="text-align: center "strong报告题目:智能制造与智能微系统/strong/pp style="text-align: center "strong报告人:中国工程院院士、清华大学 尤政教授/strong/pp  在信息技术指数级增长、系统集成式创新不断涌现、新一代人工智能技术实现战略突破的大背景下,智能制造已成为发展趋势。智能制造不仅包括制造智能化,也包括服务智能化,而这一切的基础是传感器,而以微机电系统(MEMS)技术为核心的微系统技术是信息化、智能化的核心使能技术。微系统技术在物联网、医疗与健康监护、汽车行业(自动驾驶)、机器人行业等都将发挥重大作用。清华大学联合13家单位成立了“微纳制造、器件与系统协同创新中心”,将成为我国微系统技术的重要基地。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/8c9da10f-9a1a-471a-b7a2-67bccdafe175.jpg" title="IMG_0089_副本.jpg" alt="IMG_0089_副本.jpg"//pp style="text-align: center "strong报告题目:人工智能浪潮下的物联网—智能、无源、安全问题之初探/strong/pp style="text-align: center "strong报告人:中国科学技术大学 李向阳教授/strong/pp  对于智能感知,面对很多挑战,包括如何实现高效能感、智能化知、纵横使用、跨领域融合等 但也发展了很多技术基础,如爆发式增长的物联网设备,人工智能等。李向阳介绍了其课题组研发的基于RFID的感知技术,如多物体追踪技术,可用于实体店购物行为分析 频率检测,可用于转速测量、音乐感知、故障诊断等。未来,此技术还可能应用于智慧教育、智慧医疗等领域。最后,李向阳还讨论了对于安全问题的关注以及可能采取的技术措施。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/19f26146-438f-4155-a4d6-f586ea34613c.jpg" title="IMG_0115_副本.jpg" alt="IMG_0115_副本.jpg"//pp style="text-align: center "strong报告题目:Smart Condition Monitoring and Instrumentation through Advanced Sensing and Digital Signal Processing/strong/pp style="text-align: center "strong报告人:英国肯特大学 闫勇教授/strong/pp  流量在很多领域是一个基本的测量参数,但在很多领域,流量的测量并不容易。闫勇介绍了其团队采用最新技术解决的工业界流量测量问题,如空气-油系统、液体-固体系统、气体-液体-固体系统等,具体包括海上渡轮加油系统、电厂煤粉输送系统、橡胶坝系统。通过对静电、图像和其它参数的测量,加上数据分析处理,不仅可以实现对复杂流体的动态测量以及长期监测,而且成本低廉。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/d58b6ff6-0b3d-4677-8681-a8052d74b243.jpg" title="IMG_0133_副本.jpg" alt="IMG_0133_副本.jpg"//pp style="text-align: center "strong报告题目:高端压电材料在智能化时代的重要作用/strong/pp style="text-align: center "strong报告人:美国宾夕法尼亚州立大学 曹文武教授/strong/pp  压电材料是把机械能和电能相互转换的功能材料,高性能压电材料是制备高端精密仪器的关键,如传感器不够灵敏、超声成像模糊、位移控制量程不够、制动器力度不够、控制线性度差、温度漂移严重等,其根本原因都是压电材料不够好。弛豫铁电PMN-PT单晶带来了超声技术的飞跃发展,使其从2D发展成为4D。曹文武为大家展示了其团队在高性能的多元系PZT基压电陶瓷和无铅压电材料的最新进展。/pp  除上午的主会场之外,下午还安排了11个分会场,对众多仪器行业的热点问题进行了讨论。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/dafe8048-9f99-4048-a381-ef34cb91226a.jpg" title="IMG_0329_副本.jpg" alt="IMG_0329_副本.jpg"//pp style="text-align: center "strong分论坛一:空天探测与仪器/strongbr//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/f1662026-a726-4d78-8eb7-56ea234687f6.jpg" title="IMG_0319_副本.jpg" alt="IMG_0319_副本.jpg"//pp style="text-align: center "strong分论坛二:化学测量与分析仪器br//strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/8925d568-d6e9-4b9d-a45d-eb9e65bcfcce.jpg" title="IMG_0164_副本.jpg" alt="IMG_0164_副本.jpg"//pp style="text-align: center "strong分论坛三:海洋、气象探测/strongbr//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/cd41c35e-2a80-4c39-aebb-96b77a41e50a.jpg" title="IMG_0332_副本.jpg" alt="IMG_0332_副本.jpg"//pp style="text-align: center "strong分论坛四:生命健康与医疗仪器br//strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/c741fa84-378c-4109-b3a1-630fea4b74b3.jpg" title="IMG_0324_副本.jpg" alt="IMG_0324_副本.jpg"//pp style="text-align: center "strong分论坛五:精密仪器与智能制造/strong/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201903/uepic/62cb3cea-4692-419e-a67e-e9b66add4579.jpg" title="IMG_0312_副本.jpg" alt="IMG_0312_副本.jpg"//pp style="text-align: center "strong分论坛六:智能感知技术/strongbr//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/be3b60f7-8677-4025-86c2-5a8c6882ea1f.jpg" title="IMG_0340_副本.jpg" alt="IMG_0340_副本.jpg"//pp style="text-align: center "strong分论坛七:电子测量仪器与技术br//strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/09834533-8fc8-4699-8df1-028b9e109cad.jpg" title="IMG_0327_副本.jpg" alt="IMG_0327_副本.jpg"//pp style="text-align: center "strong分论坛八:自动检测与控制技术/strongbr//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/6cb126eb-86e3-429f-be36-b7c8a81b30b9.jpg" title="IMG_0342_副本.jpg" alt="IMG_0342_副本.jpg"//pp style="text-align: center "strong分论坛九:工业安全技术br//strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/91e662e4-95d7-490b-8ed0-5581273f8387.jpg" title="IMG_0336_副本.jpg" alt="IMG_0336_副本.jpg"//pp style="text-align: center "strong分论坛十:青年学者论坛/strongbr//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/78a75ef9-a60c-4bd0-8494-a673254580e7.jpg" title="IMG_0315_副本.jpg" alt="IMG_0315_副本.jpg"//pp style="text-align: center "strong分论坛十一:教育论坛/strong/p
  • 第3届测量仪器国际会议暨第13届精密工程测量与仪器国际会议成功举行
    第3届高端测量仪器国际论坛暨第13届精密工程测量与仪器国际会议(IFMI & ISPEMI 2024)于2024年8月8日至10日在山东青岛成功举办。本会议由国际测量与仪器委员会、中国计量测试学会、中国仪器仪表学会共同发起,中国工程院信息与电子工程学部指导,哈尔滨工业大学主办,中国计量测试学会计量仪器专业委员会、北京信息科技大学、中国石油大学(华东)、海克斯康制造智能技术(青岛)有限公司联合承办。本会议的目的是,邀请各国精密工程测量与仪器领域的高层科学家、专家与业界领袖,就国际精密工程测量与仪器领域面临的重大机遇、重大科学问题和关键技术问题进行研讨,交流国际精密工程测量与仪器领域取得的重大进展;特别是,根据世界新一轮科技革命与产业变革的前沿发展趋势,判断未来5年和10年精密工程测量与仪器技术的发展方向和技术路线;同时,推测未来5年和10年全球各领域对精密工程测量与仪器的需求,判断国际精密工程测量与仪器产业发展趋势;进而提出促进世界高端测量仪器科学研究与产业发展的建议,共同促进世界范围内高端测量仪器技术的发展。中国工程院院士、哈尔滨工业大学精密仪器工程研究院院长谭久彬教授担任大会主席并致辞。谭久彬院士指出:“随着超精密工程、精准医疗、智能制造和原子级制造,以及物联网、大数据、云计算、人工智能和智慧城市等领域不断发生革命性突破,精密工程测量与仪器技术必然迎来前所未有的巨大挑战和发展机遇。近年来,至少有三件大事将对精密测量和仪器技术的发展走势产生至关重要的影响。一是2018年国际计量大会正式通过了一项具有里程碑意义的重要决议,即7个国际基本计量单位均由自然常数来定义,并于2019年5.20国际计量日正式实施。这件事带来的直接好处是,标准量值传递链将实现扁平化和去中心化,这将导致国际测量体系与各国的国家测量体系发生革命性的变化。二是数字化制造、网络化制造和智能化制造发展得非常迅速,加上国际计量单位定义常数化、计量量子化发展双重趋势的作用下,精密测量仪器将产生新的形态;三是原子级制造的兴起将导致精密测量仪器技术成体系的创新。上述三件大事必将导致国际仪器产业体系的重大变革。”谭久彬院士担任大会主席并致辞大会现场中国计量测试学会副理事长兼秘书长马爱文先生、中国仪器仪表学会副理事长兼秘书长张彤先生、中国石油大学(华东)校长助理于连栋教授参加大会并在开幕式上致辞。中国计量测试学会秘书长马爱文在大会开幕式致辞中国仪器仪表学会副理事长兼秘书长张彤在大会开幕式致辞中国石油大学(华东)校长助理于连栋在大会开幕式致辞本次会议分为主论坛大会报告、分论坛研讨和圆桌论坛3部分。共有来自中国、美国、英国、德国、日本、韩国、加拿大、澳大利亚、俄罗斯、白俄罗斯、塞尔维亚、比利时、新加坡等13个国家和地区的280余位专家出席本次盛会,10900余名科技工作者和研究生观看了会议直播。大会特邀中国工程院院士、中国科学院长春光学精密机械与物理研究所所长张学军研究员,德国工程院院士Ö mer Sahin Ganiyusufoglu教授、白俄罗斯国家科学院主席团第一副主席Sergey Antonovich Chizhik院士、美国密歇根大学Steven Cundiff教授、韩国科学技术院Seung-Woo Kim教授、德国联邦物理技术研究院Jens Flügge教授、中国计量科学研究院原院长方向研究员、美国加州大学洛杉矶分校Mona Jarrahi教授、海克斯康制造智能技术研究院首席专家王慧珍女士等国际著名专家做大会主旨报告。张学军院士的主题演讲题为《机器人辅助的超精密非球面及自由曲面光学抛光》,提出了一种以机器人系统为中心的新型抛光方法,将确定性抛光技术(如计算机控制光学表面抛光和离子束整形)与机器人平台协同集成,形成了一种灵活、经济、高效的多轴抛光设备,在中型非球面和自由曲面光学元件制造中实现了亚纳米精度,同时大幅度降低了生产成本,可满足新一代高端制造装备制造、前沿科学实验所需的高端光学元件大规模生产需求。张学军院士发表主题演讲Ö mer Sahin Ganiyusufoglu院士的主题演讲《智能装备与在线测试》着重探讨了从大规模生产向创新驱动的高质量产业快速转型的发展趋势。在这一过程中,智能机器和智能制造技术扮演着至关重要的角色,这些技术能够通过在线测量和在线测试实现自动化的过程优化。他强调,传感器是信息数据获取的关键,并通过人工智能(AI)使装备“智能化”。Ganiyusufoglu院士通过汽车行业的若干实例详细介绍了从传统大规模生产向智能制造转型的过程。Ö mer Sahin Ganiyusufoglu院士发表主题演讲Mona Jarrahi教授在其题为《太赫兹技术的新前沿》的主题演讲中,介绍了一种新型高性能光电导太赫兹源,利用等离子体纳米天线实现了创纪录的太赫兹辐射输出,功率达到数毫瓦级,比现有技术提高了三个数量级,成功应用于太赫兹探测器、超光谱焦平面阵列和量子级探测灵敏度的外差光谱仪,使其在宽太赫兹频带和室温条件下的检测能力大幅提升。该技术突破为医疗成像、诊断、大气监测、制药质量控制和安全监测等领域带来了新的机遇,具有广阔的应用潜力。Mona Jarrahi教授在线发表主题演讲Seung-Woo Kim教授的主题演讲《基于梳状激光的光频率产生技术用于精密测量和仪器》,探讨了超短激光脉冲及其频率梳在现代计量学中的革命性应用。他指出,频率梳作为一种“频率标尺”,能够与微波原子钟或光钟稳定联结,产生超稳定的光频率,从而促进干涉测量和飞行时间测量等领域的技术突破。Kim教授进一步介绍了这种光频合成技术在自由空间相干通信、频率传输、光谱学以及太赫兹波生成等领域的应用。他还展望了频率梳技术未来在计量学和仪器制造领域的广泛应用前景,并提出了相关的技术挑战和解决方案。Seung-Woo Kim教授发表主题演讲Steven Cundiff教授的主题演讲《优化频率梳用于多梳光谱》集中讨论了双梳光谱技术的优势与挑战。双梳光谱是一种光学傅里叶变换光谱技术,通过使用两个略有不同重复频率的频率梳,实现无需移动部件的扫描延迟。Steven Cundiff教授指出,虽然双梳光谱在光谱分辨率、信噪比和采集时间方面表现优异,但也存在诸如光谱范围与采集时间之间的难以兼顾的问题。他提出,通过使用重复频率接近倍数关系的两个梳子,可以改善光谱分辨率,减少对信噪比的影响。此外,通过相位调制技术可以在不降低信噪比的情况下缩短采集时间,满足非线性光谱学中的高脉冲能量需求。 Steven Cundiff教授发表主题演讲Sergey Antonovich Chizhik院士的发表了《原子力显微镜在微机械装置表征中的应用》的主题演讲,讨论了原子力显微镜(AFM)在微机电系统(MEMS)纳米级结构和材料性能表征方面的应用。Chizhik院士介绍了一系列自主开发的AFM设备和方法,及其在电子学和生物细胞研究中的应用,展示了包括纳米层析成像、静态与动态力谱学、纳米钻探以及振荡摩擦测量等技术的创新性应用。他还讨论了这些方法在生物细胞研究中的特殊应用,并展望了AFM在MEMS表征中的广阔应用前景。Sergey Antonovich Chizhik院士发表主题演讲方向研究员在主题演讲《计量数字化转型的机遇与挑战》中,详细探讨了数字化时代对计量学的深远影响。自2018年国际单位制(SI)重新定义以来,计量领域进入了数字时代,所有SI单位都基于物理学的基本定律和常数进行了定义。方向研究员介绍了数字化计量的转型过程,特别是国际计量委员会(CIPM)在推动全球数字化计量框架方面的努力,并探讨了未来计量技术和测量仪器发展面临的机遇和挑战。他强调,随着全球数字化转型的加速,计量学的数字化变革将继续深刻影响各个行业,推动工程测量技术的进一步创新和发展。方向研究员发表主题演讲Jens Flügge教授的主题演讲《干涉仪在测量系统中的集成》探讨了干涉仪在高精度测量中的广泛应用。Jens Flügge教授介绍了激光干涉仪的设计方案及其在不同测量系统中的应用,包括PTB纳米比长仪、用于硅晶格参数测定的光学/X射线干涉仪,以及用于干涉仪校准的真空比较仪等。他详细介绍了上述装备的设计、优化过程及其实际测量案例,展示了在降低测量不确定度和提高测量精度方面的创新性解决方案,阐明了干涉仪技术在计量领域的重要性和应用前景。 Jens Flügge教授在线发表主题演讲王慧珍首席专家的主题演讲《智能计量技术深度赋能制造业高质量发展》重点介绍了现代几何计量技术的最新进展,及其在高端制造业中的应用。人工智能(AI)、多传感器技术和测量数据再利用相融合,实现了制造过程的优化和提高生产效率。她展示了智能几何计量系统提升生产精度和质量控制水平的典型案例,探讨了未来智能计量技术的发展趋势和挑战。她认为,随着先进制造业对高精度、高效生产需求的不断增长,智能几何计量系统将在提升制造业整体质量和竞争力方面发挥越来越重要的作用。王慧珍女士发表主题演讲分论坛分为10个分会场,共计63个分论坛邀请报告。分论坛的专家学者们结合测量仪器技术与精密工程各个分支方向,交流了目前本领域存在的重大科学问题与关键技术问题、具有发展优势的新的技术路线和近期重大研究进展与突破;探讨了因学科交叉衍生出的新原理、新技术和新方向;并对该领域未来10-15年的发展趋势与特点、新的应用背景和可能产生的新突破进行了探索与研判。除主论坛、分论坛的学术交流与研讨外,会议还以圆桌论坛形式进行战略研讨。圆桌论坛邀请测量仪器领域的著名专家学者与企业家参加了研讨。圆桌论坛围绕“面向高端装备制造的高端测量仪器发展战略”为主题展开讨论。与会专家学者与企业家首先就我国当前国家测量体系和仪器产业体系对先进制造支撑能力的现状及存在的问题,未来10-15年仪器领域重大应用场景战略需求、前沿仪器技术、发展趋势、全景路线图,全制造链、全产业链和全生命周期测量仪器体系建设框架构建,嵌入式、芯片化、微型化、小型化的计量标准体系与实时精度调控体系构建,仪器学科发展战略和创新领军人才培养体系,精密仪器产业体系构建、发展趋势研判、仪器产业布局构想等热点问题展开了热烈讨论,并达成了初步共识。

智能工程测量相关的方案

智能工程测量相关的资料

智能工程测量相关的试剂

智能工程测量相关的论坛

  • 智能自动化技术在仪器仪表及测量中应用

    2的组合优势。例如,目前已可使用连接到Web的数字万用表和示波器,通过因特网和模式识别软件区别不同的时空条件和仪器仪表的类别特征以及测出临界值,作出不同的特征响应;也可使用分布式数据采集系统代替过去单独使用的数据采集设备,以至可跨越以太网或其他网络,实施远程测量和采集数据,并进行分类的存储和应用。 网络化的智能测量环境将网上各种类型,不同任务的计算机和仪器仪表有机地联系在一起,完成各种形式的任务要求,如在某地采集数据后送往各种需要这些数据的地方,把相同数据按需拷贝多份,送往各需要部门;或者定期将测量结果送往远方数据库保存,供需要时随时调用。而多个用户可同时对同一过程进行监控,例如各部门工程技术人员、质量监控人员以及主管领导人员可同时分别在相距遥远的各地监测、控制同一生产运输过程,不必亲临现场而又能及时收集各方面数据,进行决策或建立数据库,分析现象规律。一旦发生问题,可立即展现眼前或重新配置,或即时商讨决策,立即采取相应措施。 另外,智能重构信息处理技术也将为仪器仪表创造更广阔的活动舞台。结合了计算机与专用集成电路(ASIC)优点的可重构计算机,不仅要根据不同的计算任务对大量的可编程逻辑单元阵列(FPGA)作出灵活的相应配置,其指令级、比特级、流水线级以至任务级的并行计算,使其运行速度达到通用计算机的数百倍以上。 综上所述,随着智能自动化技术应用的日益深入及应用范围与规模的不断扩大,我国的仪器仪表产业的发展水平必将快速迈向更高阶段。 仪器仪表智能自动化的未来前景展望 智能科技在仪器仪表中的应用正日新月异地飞速发展,许多其他领域的新技术也不断融合进来。例如在充分发挥光电束流最高速物性的基础上,智能化日益趋向人脑化。积极地利用人脑机制与生物DNA芯片的有机智能,与电子,光子计算速度的无机智能的高效、能动优势相结合,并使材料智能化,进而与虚拟化交互作用,共同提高。当今又有光互连技术正以极高的时空带宽、极小的电磁干扰和较小的互连功耗等一系列独特的物理性能,克服了电互连技术物理上的本质极限,为动态、灵活、高速、实时地重构网络互连结构,大大提高并行处理能力,开创出一个全新天地。这更将为人类创造出形形色色、开放的人机结合系统,和五光十色的拟人高智能、高效自动化系统奠定牢固基础,从而将人类社会生产力不断推向新的更高境界,使人类生活向着智能世界幸福美好的明天大步迈进!

  • 通过测量劳易测传感器实现智能监控

    通过测量劳易测传感器实现智能监控测量劳易测传感器能够主动检测距离,定位系统部件,并监控其他参数,以便可以智能、独立地采取行动,如在工艺过程中进行控制性干预。在此区域,您可以找到各种技术和设计,使您的系统尽可能高效、无故障地运行。劳易测致力于成为测量传感器技术驱动力之一,并以完善齐全的杰出产品功能为基础,包括...广泛的集成接口,通过这些接口,劳易测的设备可毫无问题地与各种常用现场总线系统通信。工作范围高达10,000米的创新型条码定位系统,可以毫米级的精度绝对定位移动对象。激光距离测量系统,按照PTB校准标准,最高可以毫米级的精度测量300米。测量劳易测传感器十分适合各种复杂检测任务。除了典型的功能(例如,高精度、高分辨率或大检测距离)之外,[url=http://www.china-leuze.com/]劳易测传感器[/url]还具有如集成智能数据评估和各种接口技术、运行轻松、安装简单等多种特性。这使得劳易测电子传感器对于特定的任务特别有吸引力。”

  • 国家变频电量测量仪器计量站工程技术中心在长沙成立

    [color=#666666]近日,国家变频电量测量仪器计量站工程技术中心在湖南银河电气有限公司(下简称银河电气)举行成立仪式。国家变频电量测量仪器计量站(下简称国家站)站长王有贵、湖南银河电气总经理徐伟专出席了本次仪式。银河电气党支部书记谢开明主持仪式。[/color][color=#666666]  国家变频电量测量仪器计量站工程技术中心是按照国家站与银河电气签署的战略合作协议打造的开放式科技创新服务平台,旨在吸纳变频电量测量仪器领域高校、研究机构、仪器仪表企业、用户企业等优质资源,开展共性技术研究和计量科技创新工作。工程中心立足于将计量基标准资源、科学研究、产业需求融合发展,将成果共享应用于用户需求。[/color][color=#666666]  近年来,中国轨道交通、风电光伏、电动汽车、航天航空、智能电网、舰船电力推进等领域高速发展,这些行业的持续健康发展需要变频电量计量标准及计量测试技术为其提供科学的数据支撑。工程技术中心将立足产业需求,加强协同创新,促进军民融合,走出去、深入到各行各业,与行业相关企业建立深度合作。深入了解企业需求的基础上,为企业在产品研发及质检方面提供测试与计量保障,与企业深度融合、协同创新,不断提升工程技术中心的科技创新能力和计量测试技术服务能力。[/color]

智能工程测量相关的耗材

  • SVS智能型热线风速测量探头
    SVS智能型热线风速测量探头(配C310风速仪) 法国凯茂SVS智能型热线风速测量探头(配C310风速仪)法国凯茂SVS智能型热线风速测量探头(配C310风速仪)法国凯茂
  • 电子测量智能镊(Smart Tweezers)
    电子测量智能镊(Smart Tweezers)Smart Tweezers 是一系列的电阻、电感、电容测试仪表,这种产品采用独特的专利技术,将嵌入式电阻、电感、电容测试单元集成于一个金属镊子上,从而形成了独一无二的智能镊-Smart Tweezers。它可以方便地对生产线上的电气元件(SMD)进行直接的电学测量,进行元件阻抗测试,以及元件分离和分类。 SmartTweezers 大大地减少了PCB检修时间, 帮助技术人员快速找到问题所在, 使得复杂问题轻松化解。集成的SMD测试和图形显示, 以及对电阻, 电感和电容的自动测试功能允许操作人员关注于元件本身, 从而使得对元件的测试, 分类, 和评估变得高效率和低成本。 电感、电容、电阻的测量:中间的主显示屏显示当前主参数测量值,上部的次显示屏显示次参数测量值或者电感和电容的测试条件。当测量出现多个测试值时,次显示不断给出不同的读数,下方条形显示则用于显示输入模拟信号的动态变化。电压的测量:Smart Tweezers 可用于测量电压信号。在VOLTAGE/AUTO模式,它可以测量100微伏到8伏的直流电压信号;在TRACE模式,它可以测量和显示示波器形状的交流信号。Tweezers 可以用于电路的连贯性测试。当电阻测量值小于阈值,Smart Tweezers 会发出嘟嘟声,或者显示开路状态。 耐用针镊 l 针镊采用镀金抗磁不锈钢制成,可靠耐用l 采用工效学设计,简单易用 l Smart Tweezers采用接触式按键,便于选择不同功能以及修改设置。通过转动按键,便可以从功能列表中选择所要功能,然后轻按按键激活所选功能 产品参数:物理指标工作温度: 0 °C to +55 °C储存温度:40 °C to +60 °C相对湿度:0 % to 90 % (0 °C to 35 °C) 0 % to 70 % (35 °C to 55 °C)工作海拔高度: 0-2000 米储存海拔高度:10000 米电池类型: 1.5V LR44 碱性镍锌电池电池寿命: 80 小时(碱性电池);240 小时(镍锌电池)电磁兼容 (EMC):受影响和发射状况服从标准:FCC B 部分尺寸:14.0 x 2.5 x 3.0 厘米 (3.94 x 0.9 x 1.5 英寸)重量: 53 克(0.11磅lb)保修期: 1 年基本性能:测量参数:C, L, R, ESR, Rs, Rp测量频率: 100 Hz, 1 kHz, 10 kHz测试速率: 1次/秒直流电压: 0 to 8 V电阻: 0 to 9 MOhm电容: 10 pF to 900 μF电感: 1 μH to 999 mH测量精度指标:精度测量条件:温度:18°C to 28°C (64°F to 82°F);相对湿度:90%.电阻量程: 0.1 Ohm - 9.9 MOhm精度:1% 在 1 Ohm - 999 KOhm范围 5% 在0.1 Ohm- 9.9 Mohm范围最大分辨率: 10 mOhm测试频率:1 kHz电容:量程: 10 pF - 499 µF精度:3% 在 10 pF - 100 µF范围 5%在0.5 pF - 4999 µF范围最大分辨率:0.1 pF测试频率: 10 kHz 在0.5 pF-999 pF范围 1 kHz 在1000 pF - 1 µF范围100 Hz 大于1 µF电感:量程:1 µH-1 H精度: 3% 在 10 µH - 99 mH范围 5% 在0.5 µH - 999 mH范围最大分辨率: 0.1 µH测试频率:10 kHz L 1 µH 1 kHz L 1 µH 100 Hz L 1 mH特点总结:双图形显示模拟信号显示条全自动电感,电容,电阻测量自动量程选择:仪表自动选择最佳量程电路连贯性/开路测试:当电阻测量值小于阈值,会发出嘟嘟声,或者显示开路状态轨迹图形:示波器形交流电压测量 价格仅供参考,详情请致电商家
  • 实验室气路工程 实验室色谱气路 原子荧光气路工程 ICP管道设计施工
    实验室气路工程 实验室色谱气路 原子荧光气路工程 ICP管道设计施工实验室气路工程 色谱气路工程 原子吸收气路工程 实验室气路设计施工集中供气系统的设计(1) 通过气瓶和输送管道将载气输送给仪器,在气瓶出口装有单向阀,可避免更换气瓶时有空气和水分混入,另外在一端安装泄压开关球阀,将多余的空气和水分排放后再接入仪器管道,保证仪器用气的纯度。(2) 集中供气系统采用二级减压保证压力的稳定,采用二级减压的方式,一是,经过第一级减压后,干路压力比气瓶压力大大降低,起到了缓冲管道压力的作用,提高了用气的安全,降低了应用的风险,二是保证仪器供气入口压力的稳定,降低了因为气体压力波动而引起的测量误差,保证了仪器使用的稳定性。 (3) 由于实验室有些仪器需要使用易燃气体,如甲烷,乙炔,氢气,做这易燃气体的管路时,应注意管路尽量短,减少中间接头的连接,同时,气瓶一定装入防爆气瓶柜内,气瓶输出端接回火器,可阻止火焰回流气瓶引起的爆炸,防爆气瓶柜顶端应有连接到室外的通风排气口,且有泄漏报警装置,一旦泄漏能及时报警并将气体排到室外。四、安装注意事项(1) 管径为1/8的管路很细且特软,安装后不直,很不美观,建议管径为1/8的全部换成1/4,在二级减压器末端加一变径就可以了。(2) 氮气,氩气,压缩空气,氦气,甲烷,氧气的已经减压器压力表量程为0—25Mpa,二级减压器为0—1.6 Mpa。乙炔一级减压器量程为0—4 Mpa,二级减压器为0—0.25 Mpa. (3) 氮气,氩气,压缩空气,氦气,氧气钢瓶接头共用氢气钢瓶接头分两种,一是正转钢瓶接头,另一是反转。大气瓶用的是反转,小气瓶用的是正转。 (4) 气体管路每隔1.5m设一管子固定件弯曲处及阀门两端都应设固定件。 (5) 气体管路应沿墙明设,以便安装维护。南京科航实验仪器有限公司,专业从事气体管路设计及安装服务,包括实验室气体管路、高纯气体管路、特种气体管路及压力管道及压力容器的安装及报检、液态储罐安装有报检、真空管道安装及报检、卫生级食品安装、医院供气系统等项目。 为客户提供从技术咨询、整体规划、系统设计、设备选型、项目安装、系统检测及调试运行的整套工程技术服务。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制