超顺磁纳米氧化铁

仪器信息网超顺磁纳米氧化铁专题为您提供2024年最新超顺磁纳米氧化铁价格报价、厂家品牌的相关信息, 包括超顺磁纳米氧化铁参数、型号等,不管是国产,还是进口品牌的超顺磁纳米氧化铁您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超顺磁纳米氧化铁相关的耗材配件、试剂标物,还有超顺磁纳米氧化铁相关的最新资讯、资料,以及超顺磁纳米氧化铁相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

超顺磁纳米氧化铁相关的资料

超顺磁纳米氧化铁相关的论坛

  • 【技术@创新】我国科学家首次发现氧化铁纳米颗粒模拟酶

    [font=黑体]简介:中国科学院生物物理研究所阎锡蕴研究小组的《氧化铁纳米颗粒具有过氧化物酶活性》一文,日前在9月份出版的《自然—纳米技术》杂志上发表。该刊物同时配发的评论文章《氧化铁纳米颗粒:蕴藏的功能》[/font]我国科学院生物物理研究所阎锡蕴研究小组的《氧化铁纳米颗粒具有过氧化物酶活性》一文,日前在9月份出版的《自然—纳米技术》杂志上发表。该刊物同时配发的评论文章《氧化铁纳米颗粒:蕴藏的功能》称:“阎锡蕴、柯沙和同事们首次发现氧化铁纳米颗粒具有类似过氧化物酶的催化活性,并提出了氧化铁纳米颗粒模拟酶的概念。这一发现不仅为惰性金属材料在纳米尺度具有催化活性的学说提供了新的论据,而且拓展了磁性纳米颗粒的应用。虽然如何在生物技术和医疗领域更好地利用纳米材料的催化活性还有待探索,但氧化铁纳米颗粒催化活性的发现,无疑将使人们对此产生更多的关注。” 据评论文章介绍,在纳米医学研究中,氧化铁纳米颗粒作为一种理想材料,可用于疾病诊断、控制药物释放和体内分子成像。氧化铁纳米颗粒通常用于分离和纯化蛋白质、DNA、病毒和细胞。这主要利用氧化铁纳米颗粒的磁性,如果将其表面连接抗体—— 一种能够特异识别生物分子的蛋白质,它便具有靶向识别和磁性分离的双重功能。在医学应用中,传统的检测方法是将纳米颗粒的磁分离作用与酶标记的抗体免疫反应结合起来,后者通过酶催化底物显色显示生物分子的存在并进行定量。

超顺磁纳米氧化铁相关的方案

超顺磁纳米氧化铁相关的资讯

  • ​【印度新材料案例】康宁反应器合成纳米磁性氧化铁
    研究背景纳米氧化铁在催化、药物传递、光吸收材料等前沿研究中扮演者不可或缺的角色。纳米氧化铁的尺寸大小和粒径分布对材料性能表现非常重要。因此,高效制备一系列小粒径(<10 nm)且平均粒径均一的纳米氧化铁颗粒变得尤为重要。康宁反应器印度团队与印度国家理工学院的研究人员合作,使用康宁微反应器合成氧化铁纳米颗粒(NPs),研究了不同操作参数对获得的NP特性的影响。氧化铁NPs的合成基于使用硝酸铁(III)前体和氢氧化钠作为还原剂的共沉淀和还原反应。使用透射电子显微镜(TEM)、傅里叶变换红外光谱和X射线衍(XRD)分析对氧化铁纳米颗粒进行了表征。简介近年来,由于在磁存储设备、生物技术、水净化和生物医学应用领域的广泛应用,如热疗、化疗、磁共振诊断成像、磁感染和药物递送等,对高效合成磁性氧化铁NP的兴趣显著增加。该工作涉及使用Corning AFR微通道反应器通过共沉淀和还原法合成胶体氧化铁纳米颗粒,氧化铁纳米颗粒的XRD和TEM分析分别证实了其晶体性质和纳米尺寸范围。另外使用电子自旋共振光谱研究了氧化铁纳米颗粒的磁性,康宁微通道反应器制备的氧化铁纳米颗粒表现出超顺磁性行为。结果和讨论一. 氧化铁纳米颗粒形成的反应原理1.控制两个反应器中氧化铁纳米颗粒形成的总沉淀还原反应如下:2.随后,按照以下反应生成氧化铁:二. 共沉淀和还原反应生成氧化铁纳米颗粒共沉淀和还原反应是获得氧化铁纳米颗粒的最简单和最有效的化学途径。在通过反应器的过程中,九水合硝酸铁(III)被氢氧化钠还原,形成还原铁,随后稳定为氧化铁纳米颗粒。图1. AFR实验装置表1 康宁微反应器中的操作条件和结果在康宁AFR反应器中,氧化铁(磁铁矿Fe3O4或磁铁矿γ-Fe2O3)在室温下将碱水溶液添加到亚铁盐和铁盐混合物中形成。在反应器中,由于铁还原加速而形成黄棕色沉淀物,得到胶体氧化铁纳米颗粒如图1所示。在AFR反应器中合成氧化铁纳米颗粒的实验条件Fe(NO₃ )₃ 9H₂ O和NaOH溶液的流速在20- 60 ml/h。对于所有实验,还原剂与前体的摩尔比保持恒定为1:1。图2. 在AFR中具有不同流量的氧化铁np的紫外吸收光谱&trade .实验显示了在AFR反应器中不同流速所对应的结果:在CTAB表面活性剂存在下获得的λ最大值在480和490 nm之间;AFR中的心形设计使混合更佳;氧化铁NP的平均粒径通常随着流速的增加而减小,在50 ml/h的流速下获得最小粒径。在60和50 ml/h的较高流速下,分别观察到窄PSD超过6.77&minus 29.39 nm和3.76&minus 18.92 nm,如图3和表1所示;另一方面,在20 ml/h的较低流速下,在10.1&minus 43.82 nm,如图5和表1所示。从图5B所示的数据也可以确定,由于纳米粒子的引发和成核在50 ml/h下比在60 ml/h时发生得更快。因为颗粒大小取决于纳米粒子在反应器中的成核过程和停留时间,这也通过图5所示的TEM图像得到证实,图5显示制备的颗粒大小在2~8nm;图3所示数据&minus 对于表1中报告的PSD和平均粒径,可以确定粒径随着进料流速的增加而减小,这归因于较低的停留时间。在反应器中的较大停留时间(较低流速)为颗粒的团聚和晶体生长提供了更多的时间,从而获取更大的颗粒尺寸。图4A、B所示的TEM图像也证实。图3. 不同流速下氧化铁纳米颗粒的粒度分布(PSD)图4:50 ml/h的微反应器中合成的氧化铁纳米颗粒的透射电子显微镜图像图5:(A,B)使用CTAB作为表面活性剂在AFR中合成的氧化铁NP的TEM图像。总结通过共沉淀还原方法,在Corning AFR微通道设备中成功制备了稳定的胶体氧化铁纳米颗粒;流速即反应停留时间和混合模式的差异对所获得的氧化铁NP的粒度和PSD有显著影响,这反过来也影响材料稳定性和磁性;CTAB的使用,有助于合成稳定的氧化铁NP;反应流速是决定NP的平均粒径以及粒径分布的关键参数。氧化铁NP的平均粒径随着反应物流速的增加而减小;通过ESR光谱分析和基于使用永磁体的研究证实,制备的氧化铁NP表现出超顺磁性行为。总的来说,当前的工作证明了使用康宁微通道反应器,合成了更小更均一粒径的磁性氧化铁纳米颗粒。这项研究为后续其它纳米科学相关领域的研究提供里有效的实验支持和指导。参考文献:Green Process Synth 2018 7: 1–11
  • Nature:原位TEM研究氧化铁介晶形成!
    定向附着结晶使粒子沿着特定的晶体方向排列,产生像单晶体一样衍射的介晶。传统观点认为成核提供了粒子的供应,这些粒子受有吸引力的粒子间势的影响,通过布朗运动聚集。介晶通常表现出规则的形态和均匀的大小。尽管许多晶体系统形成介晶,并且个体的附着事件已经被直接可视化,但是随机的附着事件如何导致良好的自相似形态仍然是未知的。基于此,美国西北太平洋国家实验室James J. De Yoreo教授利用原位透射电子显微镜(TEM)和“冷冻观察”TEM,研究了氧化铁介晶形成,这是自然环境中重要的胶体相,以及形成普遍的前驱相并经历颗粒附着结晶(CPA)伴随相变系统经典例子。作者原位跟踪了在草酸盐(Ox)存在的情况下赤铁矿(Hm)中晶体的形成。发现孤立的Hm粒子很少出现,但一旦形成,覆盖在ox表面上的界面梯度驱动Hm粒子在距离表面大约两纳米的地方重复成核,然后附着在表面,从而产生介晶。原位TEM追踪晶体形成作者首先研究了一种由低结晶的两线铁氧体(Fe2O3xH2O, Fh) 聚集而成的前体,在约1.5 Å和2.5 Å处表现出两个典型的弥散环(图1a)。在不添加添加剂的情况下,在10小时内形成具有多面的Hm (Fe2O3)单晶(图2a-c)。然而,在加入2mm的草酸钠(NaOx)后,两小时后,Fh聚集体中出现了纺锤形的Hm中晶体(图1b)。到10h,所有的Fh消失,只剩下Hm介晶(图1c,图2d-f)。低温透射电子显微镜(cryo-TEM)在相同的时间点进一步验证了这些结果(图3)。高分辨率透射电镜(HRTEM)显示所有纺锤均由结晶排列Hm粒子组成(图1 d-f),并沿[001]轴伸长(图2)。横断面透射电镜(图4),以及切片样品的三维(3D)断层扫描证实了纺锤状微观结构,并显示了许多纳米级孔隙。主轴的尺寸分析表明,一次颗粒的尺寸从2 h时的3.5 nm(图1d)增加到10 h时的6.5 nm(图1e),到200 h时长到9.5 nm(图1f)。纺锤长度与宽度的曲线图显示恒定的长宽比为2.15 ± 0. 08,证明了纺锤体主轴的生长具有确定性。此外,即使前12小时纺锤体的平均长度和宽度都增加,之后则减少,这种一致性也保持不变 (图1 g, h)。与长宽比相比,主轴的尺寸在任何给定时间都有很大的变化。例如,在3.5小时,主轴长度在40-140 nm之间变化。这个大约四倍大小的排列反映了新纺锤体的缓慢但持续的诞生。尽管如此,纺锤体呈现出一种特征性的大小,而不是幂律大小分布(图2)。分析还表明,纺锤体的发育经历了两个阶段:第一阶段纺锤体的长度、宽度和颗粒数都有所增加 在第二阶段,纺锤体尺寸减小,但平均一次颗粒尺寸继续增大,可识别颗粒总数减少(图1i),暴露的颗粒缓慢长大(图1i),并形成小平面(图1e,f)。从第一阶段到第二阶段的转变与Fh的消失有关(图1c,i)。这些结果表明,第一阶段主要由纺锤体生长控制,而第二阶段主要由溶液中的颗粒粗化控制,溶液中的颗粒相对于Hm处于平衡状态,且没有Fh。图1 Fh纳米粒子形成纺锤形Hm介晶图2 菱形Hm与纺锤形Hm的表征图3 90°C下Fh生长纺锤形Hm介晶的低温TEM研究图4 Hm主轴横截面的TEM成像为了跟踪Fh和Hm的时间演化,使用了一种“冷冻观察”的方法,即将Fh置于TEM网格,并随时间对其进行成像。将载有Fh的网格置于含Ox的90°C溶液中然后在数小时后用TEM在相同区域成像(图5a,图6)。观察到Fh最初由大团聚体组成(图5b),当第一个Hm颗粒开始出现时,其整体形态在3h后保持不变,仅位于Fh团聚体中(图5c)。考虑到溶液必须与Fh平衡,Hm的存在仅与Fh相关,这意味着初始Hm颗粒必须通过Fh的直接转化或Fh/溶液界面的异相成核形成。对Hm颗粒的进一步探究表明,它们呈半纺锤形,所有半纺锤都指向溶液,而不是Fh聚集体(图5d)。HRTEM(图5e, f)显示,主要的Hm粒子在晶体上是同轴的(图5f,插图,快速傅里叶变换(FFT)模式)。如果Hm纺锤是通过Fh的直接添加而生长的,然后Fh转化为Hm,可以预期,纺锤将生长为Fh粒子的聚集体——也就是说,纺锤的尖端将向Fh粒子的来源处前进。纺锤尖端远离Fh源并进入本体溶液的事实表明Hm初级粒子是从周围的溶液中形成和添加的。如果Hm粒子来自于自由溶液,则与时间无关的主轴形状和长径比的含义是,首先形成的Hm粒子决定了后续粒子的产生和附着速率。为了进一步探索这一可能性,作者将Hm的多面体单晶晶种加入到含Ox的Fh前驱体溶液中。与Fh相比,晶种的数量密度可以忽略不计。5 h后, Hm初级粒子在晶体形成和附着在Hm晶种匹配,以形成纺锤,其增加的长度和宽度的比值约2.2(图7,图8)。因此Hm晶种增长与不含Hm晶种遵循相同的结晶路径,种晶为新粒子的配制提供了模板。当进行反向实验时,将Hm纺锤加入到不含Ox的Fh的溶液中,具有良好多面的Hm纺锤以晶体共线方式在Hm纺锤上生长(图9)。上述结果表明,一旦Hm粒子出现在含Ox的Fh溶液中,无论Hm粒子是通过溶液成核,还是在Fh上形成,或者通过Fh晶种,Fh都会溶解为新的Hm粒子提供溶质,它必须直接在Hm晶体的晶体共线中或在Hm晶体附近的溶液中成核,然后它们以共线方式附着。为了验证这一假设并确定新的Hm颗粒形成的位置,作者使用了80°C 的原位液相透射电镜来观察现有Hm晶种的纺锤体形成。图5 生长中Hm纺锤与Fh的关系图6 应用参考TEM网格跟踪Fh上的Hm增长图7 液相TEM观察Hm成核图8 菱形Hm晶种上生长的Hm纺锤体的TEM成像图9 菱形Hm在纺锤形Hm晶种上生长的TEM成像在TEM模式下,Hm晶种最初被清晰地分辨出来,但Fh粒子由于其低对比度而难以看到(图7c-e)。然而,扫描TEM(STEM)成像可以同时分辨出Hm晶种和Fh颗粒(图10。综合结果证实,Fh逐渐溶解,而新的“子”Hm颗粒在“母”Hm晶种附近成核,但不是在“母”Hm晶种表面成核,然后附着到晶种上(图7c-e中的箭头)。此外,晶核呈球状,晶种与晶核之间的接触角超过90°,这与晶种表面上的异相成核模型不一致,在这种模型中,只有在界面能和接触角较低的情况下,才更倾向于成核。此外,远离附着颗粒位置的晶种平面不会显著增长,也不会形成纳米或更大的粗糙度。这与观察结果一致,即在后期粗化期间,暴露的颗粒表面会形成晶面(图1e,f)。如果让实验进行较长时间,在此期间,光束在多个短图像系列的采集之间被阻挡(图7e),可以直接跟踪晶种周围纺锤的发展以及子粒子对生长纺锤的重复成核和附着。原位加热5小时后对液胞含量的分析表明,最终产物与非原位形成的纺锤难以区分(图11与图1c)。图10 Fh溶解和Hm晶种/溶液界面附近新Hm颗粒成核的连续STEM图像图11 液体电池芯片拆卸后表征原位透射电镜结果清楚地证明了Fh作为一个缓冲,提供并设定了形成子代Hm初级粒子的溶质离子的浓度。只要Fh颗粒存在,溶质浓度就保持在Fh的溶解度不变,从而确保当Fh溶解时,Hm颗粒在恒定的过饱和度下形成,以取代生长中的Hm所吸收的离子。然而,这些子颗粒在Hm-溶液界面附近成核,尽管TEM成像的二维性质和有限的分辨率妨碍了对初始分离的精确测定(图12和13),但在连接以构建纺锤形Hm单晶之前,显示出约2 nm的中间边到边间隙。所有新的Hm粒子都附着在母体晶种或纺锤上,没有发现任何粒子扩散到远离晶种(或纺锤)的溶液中。然而,无法从这些实验中辨别出新的Hm颗粒是否在成核时聚结,在附着过程中对齐,或者它们是否表现出其他类型的定向附着,包括未对齐的附着,然后消除缺陷,或者在某些情况下,通过在中间间隙中形成颈部附着。接着,作者试图了解Ox的作用。在溶液中,Ox与Fe3+结合,使Ox复合物成为主要的铁物种。因此,Ox能够加速Fh的溶解,尽管它不会明显改变大块Fe3+的活性,而大块Fe3+的活性保持在Fh的溶解度。然而,有Ox和无OxHm生长的差异表明,它也作用于Hm表面:在没有Ox的情况下,Hm形成大的多面晶体(图9a,图2a-c);在Ox存在的情况下,会形成球状粒子,可能是一个接一个的离子在生长,但当它们达到大约5nm直径时,生长速度非常缓慢。因此,Ox的一个作用是稳定Hm纳米颗粒并抑制其生长。此外,只有当Ox存在时,子Hm粒子才会成核和附着。Ox必须位于Hm颗粒表面,其第二个作用是通过偏压局部化学并可能协助驱动颗粒附着来促进Hm成核。图12 原位TEM中Hm晶种和晶核之间的间隙大小及其随时间的消除分析图13 晶种粒子和晶核之间间隙大小的进一步测量总之,作者通过原位TEM和冷冻TEM结合,追踪了在草酸存在情况下赤铁矿结晶的形成。草酸在土壤中含量丰富,而氧化铁是非常常见的,从而为天然存在的氧化铁的异常形态提供了可能的解释。本文所证实的界面梯度驱动粒子成核为天然氧化铁的异常形态提供了可能的解释,纺锤型的晶形是有纳米颗粒聚集体组成的。以上发现和与其他系统的比较表明,由界面驱动的CPA过程可能在合成和自然环境中均广泛存在。参考文献:Guomin Zhu et al. Self-similar mesocrystals form viainterface-driven nucleation and assembly. Nature. 2021, 590, 416-422.DOI: 10.1038/s41586-021-03300-0.https://www.nature.com/articles/s41586-021-03300-0
  • 日立高新SU8010观察氧化铝晶体上外延生长的氧化铁晶体
    本例是氧化铝晶体上外延生长的氧化铁晶体的观察例。这个样品是给陶瓷品上彩用的颜料(红褐色),主要成分是刚玉(Al2O3)和氧化铁(Fe2O3)。为了弄明白它为什么能成长出如此漂亮的结构和其生长原理,用SEM进行观察就变得非常重要。  左图是用Upper探头拍的背散射电子的照片,通过成分对比度可以判断出Al2O3的周围存在着Fe2O3。另外,对Al2O3处放大后(右图)可以发现很细微的台阶结构。本例采用日立高新SU8010场发射扫描电子显微镜进行观察,关于此仪器请参考:http://www.instrument.com.cn/netshow/SH102446/C138451.htm 关于日立高新技术公司:  日立高新技术公司是一家全球雇员超过10,000人,有百余处经营网点的跨国公司。企业发展目标是“成为独步全球的高新技术和解决方案提供商”,即兼有掌握最先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合n性高新技术公司。日立高新技术公司的生命科学系统本部,通过提供高端的科学仪器,提高了分析技术和工作效率,有力推进了生命科学领域的研究开发。我们衷心地希望通过所有的努力,为实现人类光明的未来贡献力量。  更多信息请关注日立高新技术公司网站:http://www.hitachi-hitec.cn/

超顺磁纳米氧化铁相关的仪器

  • 磁粒子成像(MPI)系统是面向临床前成像的崭新技术。作为适用于疾病研究、移植研究和药物研制的配套临床前成像技术,新增的磁粒子成像很有可能帮助研究人员从器官、细胞和分子层面,对病程产生新的深刻认识。 全新布鲁克临床前MPI扫描仪是与飞利浦电子公司合作开发的。合作中双方各展所长,布鲁克发挥了其在磁共振分析仪器和临床前磁共振成像(MRI)领域的领先优势,而飞利浦则充分运用了其在医疗成像领域的优势。磁粒子成像是一项由飞利浦公司科学家发明并发展的新型医疗成像技术,其可行性论证于2005年首次在《自然》杂志上发表。MPI断层扫描成像技术通过探测注入血液循环中的磁性氧化铁纳米颗粒,来生成三维图像。这项技术用于医疗和工业研究以及最终用于治疗患者的潜力,业已在若干研究中得到证明,譬如,MPI技术已经被用于生成实时图像,精确捕捉了小鼠心血管系统活动情况。事实上,这种在短短数毫秒之内采集高时间分辨率图像的能力,为旨在利用时间分辨率来解决令许多现有成像技术束手无策的问题的创新应用奠定了基础。
    留言咨询
  • 超高精度、高稳定纳米压痕测试仪UNHT3 高精度超纳米压痕测试仪采用真实力传感器,可用于测量材料在纳米尺度的机械性能。UNHT3 采用独特的主动表面参比专利技术,几乎消除了热漂移和框架刚度的影响。因此,非常适用于所有类型的材料(包括聚合物、纳米涂层和软组织)的长时间测量。主要特点用于低载荷测量的最佳的计量型纳米压痕测试仪表面参比系统上的真实力传感器确保可直接测量微牛级的力主动表面参比技术:独特的专利设计(欧洲专利 1828744 和美国专利 7,685,868)从低压入位移(几纳米)到高压入位移(高达 100 μm)从低载荷 (10 μN) 到高载荷(高达 100 mN)市场上稳定性最高的纳米压痕测试仪长期蠕变测试不需要进行热漂移修正未修正的热漂移低至 10 fm/sec,消除了热漂移影响即使在高载荷下也保持高框架刚度 (108 N/m)独特的无热膨胀 Macor 材料载荷和位移的全部反馈控制系统“快速点阵”压痕模式带“模板”模式采用“快速点阵”压痕模式的快速测量点阵:每小时测量高达 600 次,符合 ISO14577 仪器化压入测试 (IIT) 要求全新“模板”模式让您可以用导出的数据创建一个自定义模板,从而更灵活快速分析数据多样品夹具用于 6 个或更多样品连夜进行一系列测试高精度的纳米压痕测试仪用于进行准确的表面检测高质量载荷-位移曲线,载荷 0.1 mN超灵敏表面探测包含刚度探测测量凝胶和硬质材料载荷分辨率为 0.003 μN位移率分辨为 0.003 nm可用于多种分析模式的多种测试模式多种测试模式:连续多周期 (CMC)、恒定应变速率、用户自定义、高级点阵动态力学分析 (DMA) 模式包含“正弦”模式各种机械性能的不同分析:硬度、弹性模量、储能和损耗模量、蠕变、应力 - 应变、赫兹应力分析环境控制:真空、液体、温度和相对湿度技术指标载荷最大载荷100 mN分辨率3nN位移最大位移100 μm分辨率最小至 0.006 nm载荷框架刚度 107 N/m国际标准ISO 14577, ASTM E2546
    留言咨询
  • [ 产品简介 ]蔡司新一代场发射扫描电子显微镜Sigma系列,具有高质量的成像和分析能力,将先进的场发射扫描电子显微镜技术与优秀的用户体验完美结合。利用Sigma系列直观的4步工作流程,在更短的时间内获得更多的数据,提高测试与生产效率。可选配多种探测器,以满足半导体、能源等新材料、磁性样品、生物样品、地质样品等不同的应用需求。结合蔡司原位电镜实验平台,可以实现自动智能化的原位实验工作流程,高效率获取高通量、高质量的原位实验数据。领先的EDS几何设计保证了出色的元素分析性能,分析速度高、精度好、结果可靠。高分辨、全分析、多扩展、强智能、广应用,全新Sigma系列是助力于材料研究、生命科学和工业检测等领域的“多面手”。[ 产品特点 ]&bull 独特的Gemini镜筒设计,低电压高分辨,无漏磁&bull 广泛全面的应用场景&bull 丰富灵活的探测手段&bull 智能高效的工作流程&bull 先进可靠的分析系统&bull 强大完善的扩展平台[ 应用领域 ]&bull 材料科学,如纳米材料高分辨成像,高分子聚合物等不导电样品成像,电池材料成分衬度成像,二维材料分析&bull 生命科学,如生物样品超微结构成像,冷冻样品高分辨成像&bull 地质矿物学,如地质样品高分辨成像、成分分析以及原位拉曼联用分析&bull 工业应用,如组件失效分析,工艺诊断&bull 电子半导体行业,如质量控制与分析,6英寸Wafer快速换样,电子束曝光技术(EBL)&bull 钢铁行业,如夹杂物分析,金属材料自动原位成像分析&bull 刑侦、法医学&bull 考古学、文物保护与修复NanoVP lite模式下断裂的聚苯乙烯表面成像氧化铝颗粒高分辨二次电子成像ETSE探测器氧化锌枝晶成像InLens SE探测器氧化锆&氧化铁复合材料成像Sense BSD探测器刺毛苔藓虫超微结构成像aBSD探测器超导合金成像
    留言咨询

超顺磁纳米氧化铁相关的耗材

  • LodeStars Carboxyl 磁珠 磁性颗粒
    Original 和 High Bind 颗粒。LodeStars 2.7 µ m Carboxyl 磁珠被用作各种应用的固相载体。它们具有超顺磁特性,因而非常便于处理和清洗。羧酸表面化学基团能够固定或捕获各种配体,而且颗粒的物理和化学特性使其在手动和基于自动化仪器的分析和分离系统中具有通用性。特性:超顺磁性,2.7 µ m 聚苯乙烯微粒,涂覆羧酸基团适用于共价结合亲和配体,以分离生物样品(包括蛋白质、细胞及其他生物分子)中的目标物微晶氧化铁均匀分散于微粒中,确保在磁场中获得理想性能高度受控的表面大幅提高了偶联效率,减少了非特异性结合LodeStars Carboxyl 磁珠为单分散颗粒,粒度分布较窄,确保获得可重现的结果。LodeStars High Bind 磁珠的结合容量是 LodeStars Original 2.7 µ m 磁珠的两倍多。性能指标:
  • LodeStars 链霉亲和素磁珠 磁性颗粒
    原始颗粒和高度键合的 High Bind 颗粒。LodeStars 2.7 Streptavidin 可以作为多种应用的固相载体。颗粒具有超顺磁特性,非常便于处理和清洗。链霉亲和素表面能够固定或捕获各种生物素化配体,而且颗粒的物理和化学特性使其在手动和基于仪器的自动化分析和分离系统中具有通用性。特性:超顺磁性,2.7 µ m 聚苯乙烯微粒,涂覆链霉亲和素适用于以极高亲和力结合生物素标记的生物分子微晶氧化铁均匀分散于微粒中,确保在磁场中获得最佳性能高度受控的表面最大程度提高了偶联效率,减少了非特异性结合共价结合亲和配体,以分离生物样品(包括蛋白质、细胞及其他生物分子)中的目标物LodeStars 为单分散颗粒,粒度分布较窄,确保获得重现性结果全新 LodeStars High Bind 磁珠拥有超过 LodeStars Original 2.7 µ m 磁珠两倍的结合容量性能指标:
  • 二氧化钛纳米捕获柱 164212
    二氧化钛纳米捕获柱使用 Thermo Scientific™ 二氧化钛纳米捕获柱有助于对磷肽进行富集。订货信息:Nano-Trap ColumnsNano Trap Column, 100 μm i.d. x 1 cm, TiO2, 5 μm, Set of 2164205Nano Trap Column, 100 μm i.d. x 1 cm, TiO2, 5 μm, Set of 2164205Nano Trap Column, 200 μm i.d. x 1 cm, TiO2, 5 μm, Set of 2164215Nano Trap Column, 200 μm i.d. x 2 cm, TiO2, 5 μm, Set of 2164206Nano Trap Column, 100 μm i.d. x 1 cm, TiO2, 5 μm, Set of 2164205Nano Trap Column, 200 μm i.d. x 2 cm, TiO2, 5 μm, Set of 2164206Acclaim PepMap100 Nano Trap Column, C18, 5 μm, 100 A, 100 μm i.d. x 1 cm, Set of 2164197Acclaim PepMap100 Nano Trap Column, C18, 5 μm, 100 A, 100 μm i.d. x 2 cm, Set of 2164199Acclaim PepMap100 Nano Trap Column, C18, 5 μm, 100 A, 200 μm i.d. x 1 cm, Set of 2164212Acclaim PepMap100 Nano Trap Column, C18, 5 μm, 100 A, 200 μm i.d. x 2 cm, Set of 2164213The Titanium-Dioxide Nano-Trap columns support the enrichment of phosphopeptides. They are available in 100 μm and 200 μm i.d. format, and are packed with 5 μm particle size. In addition, a combination of Titanium-Dioxide and Acclaim® PepMap100 C18 is also available. TIO2 Nano Precolumns SpecificationsI.D.100-μm200-μmStationary PhaseTIO2 5-μmTIO2 5-μmTIO2 5-μmTIO2 5-μmBed Length1 cm1 cm2 cm2 cm1 cm / 1 cm1 cm / 1 cmColumnFused-silicaFused-silica
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制