玫瑰红酸二水合物

仪器信息网玫瑰红酸二水合物专题为您提供2024年最新玫瑰红酸二水合物价格报价、厂家品牌的相关信息, 包括玫瑰红酸二水合物参数、型号等,不管是国产,还是进口品牌的玫瑰红酸二水合物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合玫瑰红酸二水合物相关的耗材配件、试剂标物,还有玫瑰红酸二水合物相关的最新资讯、资料,以及玫瑰红酸二水合物相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

玫瑰红酸二水合物相关的资料

玫瑰红酸二水合物相关的论坛

  • 如何使用卡尔?费休试剂对酒石酸钠二水合物进行标定

    如何使用卡尔?费休试剂对酒石酸钠二水合物进行标定 一、准备工作 1.仪器准备 首先要准备好滴定装置,这就像准备好做饭的锅碗瓢盆一样重要。卡尔?费休滴定仪得检查好,确保它能正常工作。比如滴定管要畅通无阻,而且刻度要清晰准确,这样才能精确量取卡尔?费休试剂。还有搅拌装置也要正常运转,因为在滴定过程中,良好的搅拌能让反应更充分。 2.试剂准备 卡尔?费休试剂得是新鲜配制或者妥善保存且未过期的。酒石酸钠二水合物要确保是干燥、纯净的。称取酒石酸钠二水合物的天平也要精准,就像我们称东西的时候得用个准秤一样。天平要提前校准好,精确到小数点后几位,这可关系到标定结果的准确性呢。 3.环境控制 标定的环境很关键。要在一个相对湿度较低的环境中进行,因为卡尔?费休试剂很容易吸收空气中的水分,如果环境湿度大,就会干扰标定结果。就好比在潮湿的天气里晒东西,东西很难晒干是一个道理。理想的相对湿度最好在 40% - 60% 之间。 二、具体标定步骤 1.称取酒石酸钠二水合物 用经过校准的天平准确称取一定量的酒石酸钠二水合物。这个量要合适,不能太多也不能太少。比如说可以称取 0.2 - 0.3 克左右(具体量可以根据实际情况和仪器的精度调整)。把称好的酒石酸钠二水合物小心地放入滴定容器中,就像把宝贝小心翼翼地放进盒子里一样。 2.开始滴定 然后往滴定容器中加入适量的溶剂,这个溶剂要能溶解酒石酸钠二水合物,并且不会和卡尔?费休试剂发生反应。开启搅拌装置,让酒石酸钠二水合物充分溶解。 接下来就可以开始用卡尔?费休试剂进行滴定了。慢慢打开滴定管的阀门,让卡尔?费休试剂一滴一滴地滴入滴定容器中。一边滴一边观察滴定仪上的读数或者颜色变化(如果是用有颜色指示的卡尔?费休试剂的话)。这个过程要特别仔细,就像给花浇水一样,一滴一滴地浇,不能一下子倒很多。 3.确定滴定终点 当达到滴定终点时,就要停止滴定。如果是用电位滴定仪,会有电位的突变来指示终点;如果是用目视法,可能会看到颜色的明显变化。这个终点的判断要准确,一旦判断失误,整个标定结果就错了。就像跑步比赛,冲线的那一刻判断错了,比赛结果就不对了。 4.计算卡尔?费休试剂的浓度 根据酒石酸钠二水合物的质量、它里面结晶水的含量(酒石酸钠二水合物中结晶水的摩尔质量是固定的,可以查出来)以及滴定所消耗的卡尔?费休试剂的体积,就可以计算出卡尔?费休试剂的浓度了。计算的时候要仔细,可不能算错数哦。

  • 哪些因素会影响酒石酸钠二水合物的溶解平衡

    哪些因素会影响酒石酸钠二水合物的溶解平衡 一、温度方面 1.温度高低 温度就像一个调皮的小助手,对溶解平衡影响可大了。如果温度升高,就像给酒石酸钠二水合物的溶解加了把劲儿。因为温度高了,分子运动就变得更活跃了,溶剂分子就更容易把溶质分子(酒石酸钠二水合物)包围起来,让它溶解。就好比天气热的时候,糖在水里溶解得更快更多一样。反过来,如果温度降低,分子运动就慢下来了,酒石酸钠二水合物的溶解能力也会跟着下降,可能本来溶解了不少,温度一低就有一部分析出来了。 二、溶剂的性质 1.溶剂种类 不同的溶剂就像不同的小房子,对酒石酸钠二水合物的容纳能力不一样。如果是一种和酒石酸钠二水合物 “合得来” 的溶剂,那它就容易溶解。比如说,在水里酒石酸钠二水合物能溶解得挺好,但是如果换一种有机溶剂,像乙醇之类的,可能溶解的量就少多了,甚至几乎不溶解。这是因为酒石酸钠二水合物分子和水分子之间的相互作用力比较强,能让它很好地分散在水中,而和乙醇分子的相互作用力就弱很多。 2.溶剂的量 溶剂的量也很关键。如果溶剂很多,就像有很大的空间来容纳酒石酸钠二水合物,那它就能溶解更多的溶质。就像你有一个大杯子装水,能放很多糖溶解在里面;如果杯子很小,水少,能溶解的糖也就少了。不过呢,这里有个极限,就是达到饱和状态后,再增加溶剂也不能再溶解更多的酒石酸钠二水合物了。 三、溶质的状态 1.溶质的颗粒大小 酒石酸钠二水合物本身颗粒的大小也会影响溶解平衡。如果颗粒很大,就像一个大石块,溶剂分子要把它慢慢 “啃碎” 才能溶解,溶解的速度就慢。要是颗粒很细小,就像沙子一样,溶剂分子就能很快把它们包围起来溶解掉。不过这主要影响的是溶解的速度,当时间足够长的时候,最终达到的溶解平衡状态是一样的,只是颗粒小的时候会更快达到平衡。 2.溶质的纯度 纯度高的酒石酸钠二水合物溶解起来比较单纯。如果里面混有杂质,这些杂质就像捣乱的小坏蛋。比如说,杂质可能会占据溶剂分子和酒石酸钠二水合物分子结合的位置,或者改变溶液的性质,从而影响酒石酸钠二水合物的溶解平衡。可能会使它溶解得少一些,或者达到平衡的速度变慢。 四、搅拌情况 1.搅拌与否 搅拌就像给溶液做按摩一样。如果搅拌溶液,就能让酒石酸钠二水合物周围的溶剂不断更新,这样溶剂分子就能更快地接触到溶质分子,加快溶解的速度。不搅拌的话,溶质周围的溶剂很快就饱和了,新的溶剂分子过不来,溶解就慢。不过搅拌不会改变最终的溶解平衡状态,只是影响达到平衡的快慢。

玫瑰红酸二水合物相关的方案

玫瑰红酸二水合物相关的资讯

  • 中科院水合物中心与美国家实验室合作研究
    中科院网站报道:应美国Lawrence Berkeley国家实验室的邀请,中科院可再生能源与天然气水合物重点实验室博士李刚和苏正于8月2日起程到美国Lawrence Berkeley国家实验室地球科学部开展为期三个月的合作研究,并于11月1日顺利返回广州。   在美期间,李刚和苏正与该实验室George Moridis教授和Keni Zhang博士合作开展了南海北部陆坡天然气水合物开采潜力数值模拟研究,同时进行了深入的学术交流活动。此次合作研究是前期双方达成共识的基础上开展合作研究和交流的第一步。李刚和苏正采用美国Lawrence Berkeley国家实验室开发的TOUGH+Hydrate数值模拟软件分别对2007年成功取样的南海北部神狐海域SH2站位和SH7站位海底天然气水合物藏进行了开采潜力的数值模拟研究。数值模拟过程中主要采用降压法和注热法相结合的开采方法,对垂直井和水平井开采海底天然气水合物的异同进行了比较,根据现有的海底水合物实地数据对井口产气产水速率进行了评价,并对海底沉积物的渗透率、水合物饱和度、海底温压条件以及盖层情况进行了参数敏感性分析,比较全面地评价了神狐海域天然气水合物藏的开采前景。合作研究期间,两人分别完成了题为Evaluation of Gas Production Potential from Marine Gas Hydrate Deposits in the Shenhu Area of the South China Sea: Depressurization and Thermal Stimulation Methods和Numerical Investigation of Gas Production Strategy for the Hydrate Deposits in the Shenhu area的学术论文。   合作结束后,重点实验室副主任吴能友和George Moridis教授就未来双方进一步合作的方式、方向和内容进行深入讨论。
  • 高“颜值”产品买不得?玫瑰花茶检测出二氧化硫超标
    p   玫瑰花茶养颜、美容,是不少爱美女士夏季的首选饮品。但网传一些玫瑰花茶用硫黄熏制,事实真的如此吗? /p p   5月23日,记者带着11份网售、微店店主自制的“零添加”玫瑰花茶送检。检测结果显示,除一份样品因颜色过红影响结果判定以外,其他10份样品均检出二氧化硫,其中两份样品含量较高,达到150mg/kg。 /p p   专家提醒消费者,二氧化硫有一定的护色作用,还能防腐保鲜,但国家规定,玫瑰花茶等代茶及茶饮料不允许添加。“网售、微店售卖的所谓零添加的产品未必真的零添加,建议消费者到大超市选购大品牌的产品,买玫瑰花茶不要看‘颜值’,玫瑰花干制的过程中会褐变,越鲜艳的产品越不安全。” /p p    strong 实验目的 /strong /p p strong   玫瑰花茶硫黄熏? /strong /p p   夏天到了,单位空调开得很足,能养颜、美容的玫瑰花茶成了不少爱美女士的首选。但网传一些玫瑰花茶经硫黄熏制。记者调查发现,不少年轻人为了避免买到硫黄熏的产品,青睐在网上购买“零添加”的自制玫瑰花茶,“店主自家产自家制的,什么也没加。” /p p   法晚记者登录不少网店、微店了解到,店主大多宣称自家有玫瑰园,玫瑰花天然烘干,百分百“零添加”。记者随后从网店、微店购买了11个样品送检。 /p p   一位淘宝店主除了寄来自家的商品,还贴心地寄来了一小份“对照含硫样本”。这位商家说,他家的产品保证没用硫黄熏过,但不少人卖的就是“含硫”的产品,让大家仔细分辨,切莫上当。那么,这些自制产品真的零添加吗?真能放心饮用吗? /p p   5月23日,法晚记者带着11份样品送检,并在新浪、北京时间、腾讯、凤凰网对测试过程进行直播,观众达50万人。 /p p    strong 实验准备 /strong /p p   样品来源:网店、微店购买的11份店主自制玫瑰花茶样品。 /p p   检测项目:玫瑰花茶中二氧化硫的含量检测。 /p p   检测目的和原因:有些商家为了让玫瑰花颜色更好看,或者为了延长保质期,用二氧化硫熏制。 /p p   检测单位:北京智云达食品安全检测中心(检测为快速检测方法,属于初筛,只对样品负责,检测结果不具备法律效力)。 /p p   检测试剂:二氧化硫快速检测盒。 /p p   检测依据:代茶及茶饮料不允许添加二氧化硫。 /p p    strong 检测过程 /strong /p p   称取样品1g,加入50ml蒸馏水,搅拌均匀,浸泡10分钟,过滤后备用 在1.5ml离心管中先滴加2滴检测液A,1滴检测液B,上下摇动、混匀 然后加入1ml样品液,立即盖塞混匀,放置5分钟,对比色卡。 /p p    strong 检测结果 /strong /p p   编号 SO2 /p p   1 40 /p p   2 50 /p p   3 40 /p p   4 150 /p p   5 30 /p p   6 30 /p p   7 30 /p p   8 70 /p p   9 无法检测 /p p   10 70 /p p   11 150 /p p   12 50(对照样品) /p p   单位:(mg/kg) /p p    strong 结果分析 /strong /p p strong   送对照样品商家 自家产品也检出二氧化硫 /strong /p p   检测结果显示,5号样品二氧化硫为30mg/kg,12号对照样品二氧化硫含量为50mg/kg,两个样品均不符合国家标准的要求。 /p p   需要说明的是,5号样品的卖家就是同样提供了“含硫对照样品”的贴心卖家,意外的是,他自家的产品也检出了二氧化硫,只是比他提供的“含硫样本”含量略低一些。 /p p   9号样品颜色干扰检测 其他均检出二氧化硫 /p p   检测人员杨宇斯表示,9号样品玫瑰花茶与其他样品不同,其他样品均为花骨朵,只有9号样品是花朵干制而成,颜色为深紫色。溶于水后,迅速变成深紫色的水溶液。过滤后颜色仍较深。样品溶液放入二氧化硫检测试剂后,迅速变成红色,无法与色卡比对。所以,9号样品无法判定结果。 /p p   除9号样品外,其他样品均检出二氧化硫,“其中4号和11号含量较高,从外观也可以看出,这两款玫瑰花颜色比较鲜艳,不像天然干制后的颜色。” /p p    strong 专家观点 /strong /p p strong   加二氧化硫熏制 是为了让玫瑰花更鲜艳 /strong /p p   北京智云达食品安全检测消费者体验中心技术经理张玉萍告诉记者,玫瑰花干制的过程中会发生“非酶促褐变”反应,导致颜色逐渐加深。一些商贩为了让玫瑰花茶看上去更好看,可能使用了漂白剂。 /p p   常用的漂白方法是硫黄熏蒸或亚硫酸盐浸泡法,在漂白过程中起作用的就是二氧化硫,二氧化硫不仅具有漂白作用,还能保持较好的色泽,具有防腐保鲜的作用,可谓一举多得。按照国家规定,玫瑰花茶不允许添加二氧化硫,可以说,本次网店、微店自制的产品均不符合国家标准要求。 /p p   二氧化硫具有一定的刺激性气味,又溶于水,长期摄入二氧化硫超标的食物,可能引发一定的胃肠道反应,如恶心、呕吐等,另外二氧化硫进到人体内会形成亚硫酸,亚硫酸是酸性物质,影响人体对钙的吸收,还会促进身体钙的流失。 /p p   张玉萍提醒消费者,买玫瑰花茶,闻一下有没有刺激性气味,饮用后有没有不适反应,“不要轻信网售自制产品零添加,如果销量大了,卖主为了颜色好看,为了延长保存期,也可能用二氧化硫熏制。切记购买时不要看‘颜值’,鲜艳的产品安全隐患大。” /p p br/ /p
  • 广州能源所用原位拉曼测量技术揭示气体水合物中气体分子特性 | 前沿用户报道
    供稿:周雪冰成果简介中国科学院广州能源研究所天然气水合物重点实验室近期发布最新研究成果,利用高压原位拉曼测量技术成功获得了多种水合物形成/分解过程的原位拉曼图,揭示了气体水合物中气体分子的吸附和扩散特性。相关成果已在Energy Fuels, J. Phys. Chem. C, Chemical Engineering Journal, scientific reports等期刊上发表。背景介绍气体水合物是在一定压力和温度条件下在气-水混合物中自然形成的冰状固体化合物。在气体水合物晶体中,水分子依靠氢键相互结合在一起形成笼状晶格,而气体分子作为客体分子分布在晶格中并对水其稳定作用。例如,天然气水合物是人们在自然环境中发现的一类常见的笼状水合物,在科学和工业领域有着广泛的创新应用,有研究者就利用在海洋下形成的气体水合物来封存烟气中的二氧化碳。图1 气体水合物的三种主要的晶体结构。结构I(sI),通常由较小的客体分子(0.4–0.55nm)形成,是地球上最丰富的天然气水合物结构;结构II(sII),通常由较大的客体分子(0.6–0.7nm)和结构H(sH)形成,通常需要小分子和大客体分子形成。气体水合物的水合物热力学和动力学特性会直接受两种因素的影响:水合物中的气体种类、气体对水合物笼型结构的占有率。这也是气体水合物表征的重点。然而,由于晶体生长的环境条件比较苛刻,常规测量手段难以对上述表征重点直接观测。拉曼光谱能够根据气体水合物中客体分子的拉曼光谱特征峰和特征峰的峰面积来确定气体水合物的晶体结构,以及定量计算不同笼型结构中气体的孔穴占有率。近年来,耐低温高压的拉曼辅助测量装置的研发成功,水合物原位测量技术得以应用,这为研究气体水合物的形成/分解/置换等晶体结构的动力学行为提供了重要的研究途径。图文导读广州能源所天然气水合物重点实验室采用共聚焦拉曼光谱仪和原位拉曼光谱测量装置对甲烷、二氧化碳及其混合气体水合物的形成、分解和置换过程进行了测量和分析。实验中使用HORIBA LabRAM HR拉曼光谱仪,配备有开放式显微镜系统和高精度三维自动平台及Linkam BSC型冷热台,冷热台采用液氮冷却。图2 原位拉曼光谱测量装置1. 纯CO2、烟气和沼气中水合物的形成过程在271.6K温度下,以2800~3800cm-1的水分子拉曼特征峰为参考,对水合物相中气体的拉曼峰进行了表征和归一化。结果表明,水合物的形成过程首先是不饱和水合物核的形成,然后是气体持续吸附。在三种水合物形成过程中均发现,水合物核中的CO2浓度仅为对应饱和状态时的23-33%。在烟气合成水合物过程中,N2水合物相中的浓度在晶核形成时就达到饱和状态。在沼气合成水合物过程中,CH4和CO2分子会发生竞争吸附,而N2分子在水合物形成过程中几乎不发生演化。研究认为N2和CO2等小分子在水合物晶核形成过程中更为活跃,而CO2分子则在随后的气体吸附过程中发生优先吸附。[1]图3 271.6K下通过原位拉曼测量方法观察到的CO2、N2和CH4的特征峰图4 纯CO2水合物生长过程中的原位拉曼光谱。(a)CO2分子在水合物和气相中的拉曼特征峰 (b)水分子的拉曼特征峰2. CO2-CH4置换过程在273.2~281.2 K温度范围内对气态CO2置换CH4的过程进行了多尺度研究,并根据测量结果对基于气体扩散理论的水合物置换动力学模型进行了修正。原位拉曼测量发现,水合物大笼和小笼中的CH4连续下降,没有显著波动,这表明CH4的置换反应并非先分解再生成的过程。800小时的测量结果表明,置换过程首先是快速表面反应,随后是缓慢的气体扩散。温度的升高能有效提高水合物相的气体交换速率,增强水合物相的气体扩散。修正后的水合物置换反应动力学模型揭示了水分子的迁移率是限制了置换反应速率的主要因素。[2]图5 置换过程中CH4在水合物大笼和小笼中的比例变化图6 CO2置换水合物中CH4的原位拉曼光谱图7 水合物CO2-CH4置换反应机理示意图3. CH4-CO2混合气体水合物的分解过程对CH4-CO2混合气体水合物的分解过程进行了原位拉曼光谱测量并与纯CH4和纯CO2水合物的熔融过程进行了对比分析。研究结果发现,混合CH4-CO2水合物的晶体结构为Ⅰ型结构,且不随气体浓度的改变而发生变化。分解过程中,气体在水合物大笼和小笼中的特征峰强均会下降,同时峰面积之比始终保持稳定,表明水合物晶体以晶胞为单位解离。水合物晶体的分解时间具有随机性,与水合物粒子的多晶性质一致。有趣的是,在含有CH4的水合物中,水合物相中CH4和CO2的拉曼特征峰在水合物分解过程中出现了短暂的连续上升,表明位于样品颗粒内部的水合物发生了气体迁移扩散,这种现象的产生可以归因于水合物在样品颗粒内部的部分分解和“自保护”效应。[3]图8 CH4-CO2混合气体水合物在253K常压环境下分解过程的原位拉曼光谱图9 CH4(大笼: 2906cm-1)和CO2的在水合物中的特征峰(1383cm-1)随水合物分解的变化曲线。根据时间零点拉曼峰的强度,峰被归一化。总结展望拉曼光谱与表面增强拉曼光谱都是是非常强大的分析手段,凭借快速获取样品表面光谱信息的能力,拉曼测量技术在天然气水合物等矿物学领域颇受青睐。据了解,在接下来的研究中,天然气水合物重点实验室将应用原位拉曼测量技术对天然气水合物在多孔介质和添加剂等复杂环境中的反应动力学过程展开研究,以进一步揭示它的形成/分解/置换过程的动力学机理。中国科学院天然气水合物重点实验室简介中国科学院天然气水合物重点实验室是国内天然气水合物研究的重要基地。重点研究天然气水合物的物理化学性质、生长动力学、生成/分解过程等相关基础问题以及水合物开采、天然气固态储运、天然气水合物管道抑制、二氧化碳捕集与封存。联系作者周雪冰 Phone: 15002016003仪器推荐工欲善其事,必先利其器。本实验中全程使用了HORIBA LabRAM HR拉曼光谱仪进行原位拉曼光谱测量。作为升级版,LabRAM HR Evolution 高分辨拉曼光谱仪在保留了LabRAM HR所有性能的同时,实现了高度自动化。配备科研级正置/ 倒置显微镜,可实现UV-VIS-NIR 全光谱范围拉曼检测。焦长达到800mm,具有超高的光谱分辨率和空间分辨率。LabRAM HR Evolution 高分辨拉曼光谱仪如果您对上述产品感兴趣,欢迎扫描二维码留言,我们的工程师将会及时为您答疑解惑。文献信息[1] Zhou, X., Zang, X., Long, Z. et al. Multiscale analysis of the hydrate based carbon capture from gas mixtures containing carbon dioxide. Sci Rep 11, 9197 (2021). 文章链接:https://doi.org/10.1038/s41598-021-88531-x[2] Xuebing Zhou, Fuhua Lin, and Deqing Liang. Multiscale Analysis on CH4–CO2 Swapping Phenomenon Occurred in Hydrates. The Journal of Physical Chemistry C 2016 120 (45), 25668-25677. 文章链接:https://pubs.acs.org/doi/10.1021/acs.jpcc.6b07444[3] Xuebing Zhou, Zhen Long, Shuai Liang et al. 1. In Situ Raman Analysis on the Dissociation Behavior of Mixed CH4–CO2 Hydrates. Energy & Fuels 2016 30 (2), 1279-1286. 文章链接:https://pubs.acs.org/doi/abs/10.1021/acs.energyfuels.5b02119[4] Xuebing Zhou, Deqing Liang, Enhanced performance on CO2 adsorption and release induced by structural transition that occurred in TBAB26H2O hydrates, Chemical Engineering Journal, Volume 378, 2019, 122128, ISSN 1385-8947,文章链接:https://www.sciencedirect.com/science/article/pii/S1385894719315220?via%3Dihub

玫瑰红酸二水合物相关的仪器

  • ■ 应用 在线连续监控磷酸盐含量:● 电厂炉水、给水和蒸汽● 供水领域■ 特点● 多通道操作(1~6)● 极低的运行成本● 运行维护量小● 自动操作系统的水厂可选远程控制● 简单友好的用户编程系统● 内置数据记录仪● 自动两点校准(化学零点和斜率)■ 操作原理 样水通过样水选择电磁阀进入仪表,每路样水的流量都能通过针型阀调节。在一路样水进入测 量池之前,它有足够的流动时间来冲洗整个水路和溢流槽。然后,样水阀打开,样水进入测量 池。一旦测量池被冲洗完毕并且充满样水,样水阀关闭,并顺序注入试剂。 可以用两个不同的方法:a) 测量范围: 钒酸盐方法:0~50 ppm PO4称做“黄色钼钒酸盐” 法 试剂1:浓硫酸+ 二水合钼酸钠+ 偏钒酸铵b) 测量范围: 钼酸盐方法:0~5 ppm PO4称做“蓝色ANSA”法 试剂1:浓硫酸+ 二水合钼酸钠 试剂2:1-氨基-2 奈酚- 4 硫酸(ANSA)+ 偏硫酸二钠+ 亚硫酸钠注意:对于试剂的输送现在已由微活塞泵代替了传统的蠕动泵 测量池配有加热器和磁性搅拌器以保证试剂的充分混合和完全反应。在磷钼兰化合物形成之前, 仪表要进行参比光密度测量,光的吸收量被计算出,磷的浓度由校准曲线得出
    留言咨询
  • 中文名称:7-[(3-氯-6-甲基-5,5-二氧代二苯并[1,2]硫氮杂卓-11-基)氨基]庚酸半硫酸盐一水合物中文别名:噻奈普汀半硫酸盐一水合物;噻唑平-11-基氨基庚酸半硫酸盐一水合物英文名称:7-[(3-chloro-6-methyl-5,5-dioxo-diphenzo[1,2]thiazepine- 11-)amino]heptanoic acid hemisulfate monohydrate;Tianeptine Semisulfate Monohydrate;(Thiazepin-11-ylAmino)Heptanoic Acid Semisulfate MonohydrateCAS号:1224690-84-9分子式:C42H56Cl2N4O14S3分子量:1008.01344含量:99.5%外观:白色结晶粉末包装: 1公斤每袋
    留言咨询
  • 水合物摇摆槽 400-860-5168转0811
    应用: 动态水合抑制剂分析 水合物阻蚀剂影响分析 水合物抑制剂浓度选择 质量控制 德国RC5型水合物摇摆槽(Rocking Cell)是PSL公司公司最新推出的用于可燃冰检测的利器。它可以分析天然气水合过程中的水合物动态水合抑制剂和水合物阻蚀剂效果。   水合物摇摆槽的测试原理是基于其配置的稳固的冷却倾斜台,以及由压力的测试槽。当倾斜的时候,在腔体里面的一个小球会在腔体长度的位置来回振动,这种振动会加速液体和气体之间的混合作用。小球的运动为摇摆槽提供了强大的剪切力和紊乱,因而,我们可以创建一个类似管道传输的模拟环境。 测试中,腔体装满了测试液体和某种抑制剂,然后根据设定的温度进行冷却,然后,我可以再摇摆槽内分别的通入不同压力的气体,最高为200 bar (2,900 psi).   水合物摇摆槽5个可以轴向活动的摇摆槽同时被放置在封闭的冷却槽里面,只有这个轴才测试的时候会稍微翘起来,这样带来的好处是只有测试的摇摆槽是可以活动的,而不是冷却槽。这个系统可以最多扩充为10个测试槽,测试腔体是用磁力固定的,因此,当清洗或者填充样品的时候都很方便。 一个完整的实验由3个步骤组成: 1. 流动条件:测试槽可以用给定的频率和角度摇摆,其间,他们被给予一定的温度。这个过程可以由直接冷却或者由设定温度程序带来。 2. 关闭:测试槽保持一个给定的位置(最大可以调节至40o),并被加热或者冷却到给定温度。 3. 重启流动条件:摇摆槽又以一个可调频率、可调角度振动开始倾斜,分别的达到指定温度。   然气水合分析专用摇摆槽在整个测试过程中,温度以及压力情况都会被记录下来。这样,你可以用不同的压力情况来监测水合形成过程,PSL公司软件WinRC可以自动记录和分析数据,还可以设定不同测试条件以及不同的测试时间来完成高度自动化的测试。   软件可以观察的参数有: 温度、振动频率、摇摆角度、实验持续时间、实验暂停时间、实验暂停时腔体的各种参数等。 高达30天以上的持续实验都可以进行。而摇摆槽是用不锈钢构成来实现现实的环境 技术参数: 1. 5-10个摇摆槽可以任意选择。 2. 振动频率:1-20Min-1 3. 振动角度:1-45o 4. 压力范围:最高200 bar (2,900 psi) 5. 温度范围:-10 ° C ... +60 ° C 6. 测试槽体积:40.13 cm3 7. 测试槽材质:不锈钢 8. 数据采集:1-30s 9. 冷却液:水-乙二醇 10.电源:220v,2900w
    留言咨询

玫瑰红酸二水合物相关的耗材

  • 柠檬酸/碳酸氢钠提取管(4g硫酸镁,1g氯化钠,0.5g柠檬酸钠二元1.5水合物,1g柠檬酸钠三元二水合物)
    柠檬酸/碳酸氢钠提取管(4g硫酸镁,1g氯化钠,0.5g柠檬酸钠二元1.5水合物,1g柠檬酸钠三元二水合物) 12ml离心管,50根/包 适用于萃取 ~10g 食品/农产品样品。使用柠檬酸盐将提取液缓冲到 pH 5.0 - 5.5。在该 pH 值下,大部分酸和碱不稳定性农药均能保持稳定。使用碳酸氢钠进一步稳定酸不稳定性农药。 分散固相萃取(DSPE),通常被称为&ldquo QuEChERS&rdquo ,方法快速,简便,廉价,有效,耐用,安全,是一个新兴的样品制备技术,该方法使用散装固相萃取吸附剂提取和净化食品、农产品等样品用于农药残留分析,由于其操作简便正日趋普及。 使用QuEChERS方法,首先将食品和农产品样品加入到提取管中,提取管中装有 预先精确称量的高含量盐(如氯化钠和硫酸镁)和缓冲试剂(如柠檬酸盐),盐和缓冲试剂可以促进两相分离和稳定住遇酸碱容易变化的农药,然后在提取管中加入水溶性溶剂(如乙腈)进行提取。将提取管进行震荡和离心后取出部分有机相层加到分散SPE(dSPE)净化管中做进一步处理。分散SPE(dSPE)净化管不同于传统的SPE小柱,它是将精确称量好的SPE填料如Supelclean PSA,ENVI-Carb,Discovery DSC-18和Supel&trade QuE Z-Sep混合在一起的离心管,在净化管中加入提取液,样品在提取液和散装SPE填料之间进行分配或吸附,从而实现对基质样品的净化。这种方法简便快速。净化后的样品经过震荡离心后,上清液可直接或经过简单处理后进入到下一步分析中。 Supelco除了提供一系列预装好填料的分散SPE提取管和净化管用于欧盟EN 15662和美国AOCO2007.01方法,还可以根据用户定制不同规格的分散SPE产品
  • 柠檬酸提取管 (4g硫酸镁,1g氯化钠,0.5g柠檬酸钠二元1.5水合物,1g柠檬酸钠三元二水合物)
    柠檬酸提取管 (4g硫酸镁,1g氯化钠,0.5g柠檬酸钠二元1.5水合物,1g柠檬酸钠三元二水合物) 12ml离心管,50根/包 适用于萃取 ~10g 食品/农产品样品。使用柠檬酸盐将提取液缓冲到 pH 5.0 - 5.5。在该 pH 值下,大部分酸和碱不稳定性农药均能保持稳定。 分散固相萃取(DSPE),通常被称为&ldquo QuEChERS&rdquo ,方法快速,简便,廉价,有效,耐用,安全,是一个新兴的样品制备技术,该方法使用散装固相萃取吸附剂提取和净化食品、农产品等样品用于农药残留分析,由于其操作简便正日趋普及。 使用QuEChERS方法,首先将食品和农产品样品加入到提取管中,提取管中装有 预先精确称量的高含量盐(如氯化钠和硫酸镁)和缓冲试剂(如柠檬酸盐),盐和缓冲试剂可以促进两相分离和稳定住遇酸碱容易变化的农药,然后在提取管中加入水溶性溶剂(如乙腈)进行提取。将提取管进行震荡和离心后取出部分有机相层加到分散SPE(dSPE)净化管中做进一步处理。分散SPE(dSPE)净化管不同于传统的SPE小柱,它是将精确称量好的SPE填料如Supelclean PSA,ENVI-Carb,Discovery DSC-18和Supel&trade QuE Z-Sep混合在一起的离心管,在净化管中加入提取液,样品在提取液和散装SPE填料之间进行分配或吸附,从而实现对基质样品的净化。这种方法简便快速。净化后的样品经过震荡离心后,上清液可直接或经过简单处理后进入到下一步分析中。 Supelco除了提供一系列预装好填料的分散SPE提取管和净化管用于欧盟EN 15662和美国AOCO2007.01方法,还可以根据用户定制不同规格的分散SPE产品
  • 1,10-菲啉一水合物 GR ACS
    1,10-菲啉一水合物 GR ACS

玫瑰红酸二水合物相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制