盒式探头与机

仪器信息网盒式探头与机专题为您提供2024年最新盒式探头与机价格报价、厂家品牌的相关信息, 包括盒式探头与机参数、型号等,不管是国产,还是进口品牌的盒式探头与机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合盒式探头与机相关的耗材配件、试剂标物,还有盒式探头与机相关的最新资讯、资料,以及盒式探头与机相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

盒式探头与机相关的厂商

  • 400-860-5168转1934
    北京信测科技有限公司是专业的电磁兼容测试测量设备供应商。是以北京为中心,通过遍布全国的销售网络与各地经销商,覆盖包括香港、澳门在内的中国所有地区。我们为客户提供完善的电磁兼容测试测量解决方案,在深入了解您现有资源与需求后,为您规划可持续发展的解决方案。为您提供量身定做的全套测试解决方案的交钥匙工程。测试满足民用及军用标准。应用涵盖信息通信、工业、科学、医疗设备、家用电器电动工具、电气照明、电力、电能表等产品测试。此外,我们还提供汽车电子、车辆、船舶、航空航天等特殊领域的测试应用。北京信测科技有限公司甄选全球测试测量优秀品牌,涉及精密仪器有电场探头、磁场探头、场强探头、机架式场强仪、手持式场强计、EMI测量接收机、功率放大器、射频信号源、人工电源网络、功率计等上千种产品。北京信测与多家国际著名的电磁兼容测试设备制造商深度合作,作为他们在中国市场的总代理或一级代理商,负责他们在中国的品牌形象推广、渠道管理、产品的销售、技术支持以及售后服务等。整合这些国际品牌的优势,为中国用户提供全方位解决方案。北京信测是Narda意大利(PMM)在中国的总代理,同时也是美国奥飞尔(Ophir)功率放大器系统及模块在中国的总代理。我们在北京所设的技术服务中心,其中包括有Narda意大利(PMM)中国售后服务中心与美国奥飞尔(Ophir)功放亚太维修中心。并为客户提供:方案咨询、技术支持、应用培训、专题讲座、设备维修,“开放试验室”以及整改服务等。技术中心每年还在国内举办数次技术研讨会、用户见面会,与大家分享先进的、创新的测试测量技术成果,并为国内用户搭建了一个高端的国际交流平台。北京信测科技为客户提供“最合适的仪器与最专业的本地化服务”(Local Service)!
    留言咨询
  • 公司简介 深圳市金博宇科技有限公司自创立以来,一直秉承"专业出色,诚信服务"的理念。致力于向客户提供电力电工测试测量仪器,环境工程测试测量仪器,工业设备诊断检测,计量检测等仪器以及提供医疗药品及器械检测方案,实验室大型设备及解决方案。广泛应用于发电、输电、供电、电信、电子制造、计量、医疗、冶金、铁路、机械制造、科研院校、石油化工、建筑、环保、净化工程等行业和部门。   公司经销产品包括:数字万用表、热像仪、精密电源、柔性探头、虚拟逻辑分析仪、数字源表、纳伏表、数据采集器、电子负载、安规测试、高低压探头、红外测温仪、数字示波器、漏电开关测试仪、多功能电气测试仪、工业电力电气测量仪器、钳形漏电流/电流/高低压/谐波/功率表、高低压绝缘电阻/接地电阻/回路电阻/微电阻测试仪、相序/开关/电气设备测试仪、变压器/避雷器/电磁场检测仪、转速、温湿度/照度/噪音表、风速/风温/风湿/风压/风量仪、环境/空气品质测试仪、粒子/粉尘/各种气体测试仪、距离/水分/电池/粘度/热流测试仪及各类过程控制校准仪表。   经过我们的不懈努力,成为吉时利Keithley;英国PEM;万用MULTI;菲利尔FLIR;安捷伦Agilent;共立KYORITSU;皇晶ACUTE;理音RION;加野KANOMAX;法国CA;日置HIOKI;福禄克FLUKE;美瑞克Rek;费思泰克Faithtech等公司的合作伙伴。 不断追求更好的服务,为广大客户提供性能稳定,价格合理的各种产品,用来满足更高的测试要求。期望各界朋友莅临指导或电函咨询。我们愿与您携手共创美好未来!经营理念 我公司一贯坚持“质量第一,用户至上,优质服务,信守合同”的宗旨,凭借着高质量的产品,良好的信誉,优质的服务,产品畅销全国近三十多个省、市、自治区以及远销香港、台湾、欧洲等国家和地区。 我们竭诚与国内外众多品牌商家双赢合作多年,并期待与您的合作,共同发展,共创辉煌!代理品牌 英国PEM柔性探头中国区一级代理商 台湾皇晶ACUTE虚拟仪器大陆区授权代理商 美国泰克Tektronix基础仪器授权一级代理商 美国福禄克FLUKE工业测试产品一级代理商 美国吉时利Keithley中国区一级代理商 美瑞克Rek安规测试产品中国区一级代理商 费思泰克Faithtech测试产品中国区一级代理商 美国安捷伦Agilent测试仪器授权经销商 美国菲利尔FLIR授权一级代理商
    留言咨询
  • 深圳市品控科技开发有限公司,位于广东省深圳市,是一家集生产、研发、贸易为一体的公司,贸易部在福永,工厂在公明。我公司技术人员有着深厚的测量测控技术基础,承接各种自动化非标设备产品开发及工业自动化产品检测监控软件开发。 品控科技是一支一流的产品服务队伍,我们的宗旨是为客户省钱,并解决产品问题。 公司产品有:应变测试、应力测试仪、应变片、电路板分板机、温度验证系统、温度探头、无线温度传感器,并承接系统工程解决方案。代理品牌:西门子触摸屏、西门子PLC,阿克蒙德应变片、KYOWA应变片、NMB应变片、阿克蒙德应力测试仪Pentronic温度探头、铂热温度探头、温度验证系统、走刀式分板机等。 公司一贯坚持“质量第一,用户至上,优质服务,信守合同”的宗旨,凭借着高质量的产品,良好的信誉,优质的服务,产品畅销全国近三十多个省、市、自治区。竭诚与国内外商家双赢合作,共同发展,共创辉煌!
    留言咨询

盒式探头与机相关的仪器

  • A2B 改装套件固体核磁探头续用计划用户在将其他品牌核磁谱仪更新为布鲁克核磁谱仪时,可以利用 A2B 套件保留原有昂贵的固体核磁探头。 通常这类探头的价值较高,而且部分特殊探头不在布鲁克探头生产名录中,因此 A2B 套件为用户续用这些宝贵探头提供了独一无二的机会。A2B 套件可确保 Varian、Agilent 及 Chemagnetics 生产的固体探头能够在布鲁克最新 AVANCE 谱仪上继续正使。 产品描述A2B 套件由 Revolution NMR 公司生产并提供服务,主要包括以下部件: 用于将探头安装于布鲁克匀场线圈上的转接盘用于变温传输套管(VT-transfer stack)的机械转换接头用于 Johnston 接头的机械转换接头用于运行变温传输套管的接口盒用于利用布鲁克 MASIII 气动单元进行 MAS 控制的电子适配器 详细信息 A2B 套件中各部件均由 Revolution NMR 公司生产,还可加配制冷变温单元,如使用方便且功能强大的 BCU2。 BCU2 的气体传输管长为5米或8米,可选择合适的管长连接到磁体上方;其出口气流速度可达3000升/小时,制冷气体温度可低至-80℃。其他制冷变温单元还包括液氮换热器,可用于更低温度的制冷,其配有3米、5米或7米长的不锈钢真空传输管。 A2B 套件中包括了将探头安装于布鲁克匀场线圈上的转接盘、用于变温传输套管的机械转换接头以及用于连接 Johnston 接头的机械转换接头。为实现制冷气体从换热器或制冷单元到探头或变温传输套管中的最佳传输,所有的现代布鲁克探头都采用了Johnston 接头。 为实现变温控制功能,即完全由布鲁克变温控制器运行原有的变温传输套管,A2B 套件包括了所有必须的接口盒,其利用了现代谱仪设计中的所有优势,实现了制冷或加热气流的大流量管理以及加热和制冷设备的控制。这使得续用探头具备了与布鲁克探头相同的最新的自动且安全的可操作技术。 订购专属于您的 A2B 套件 为了将配有固体核磁探头的 Agilent 、Varian 及 Chemagnetics 谱仪机柜升级为布鲁克谱仪,布鲁克销售人员将提供一份 A2B 清单供您填写。该清单将为 Revolution NMR 及布鲁克提供必需的信息以确定您的 A2B 套件部件。根据该 A2B 清单,Revolution NMR 及布鲁克将为您提供专属定制的 A2B 套件方案,并作为机柜或谱仪升级方案的一部分。 例如,每一个被认定可以续用的探头都将配有其专属的匀场线圈转接盘。若用户有需求,对于标准腔(或者窄腔)谱仪,我们将提供一套由 Revolution NMR 特制的标准腔变温传输套管(SB-VT transfer stack)。对于实验室天花板高度受限的磁体,Revolution NMR 将提供一种双片式 SB-VT 套管;对其他所有类型的实验室则配置单片式套管。SB-VT 套管所需的长度是根据 A2B 清单中的磁体信息而确定的。对于宽腔系统,如需配置制冷设备,则可根据磁体高度确定变温制冷单元的传输管长度。 A2B 套件的安装 A2B 套件的安装将与新谱仪或者新机柜一起进行,布鲁克将负责安装并测试其功能,确保续用固体探头能够正常工作。
    留言咨询
  • ■光电二极管高灵敏激光功率计探头◆ 高灵敏度,10pW-3W;◆ 波长范围覆盖193nm-1800nm;◆ 适合于HeNe激光器、半导体激光器、DPSS激光器、HeCd激光器等小功率激光测量; 产品参数: 产品型号产品特点探头口径波长范围功率范围PD300自动背景光扣除10× 10mm350-1100nm1nW-300mWPD300-1W自动背景光扣除10× 10mm350-1100nm1nW-1WPD300-3W高功率10× 10mm350-1100nm1nW-3WPD300-IR红外&Phi 5mm700-1800nm5nW-300mWPD300-UV宽波长范围且噪声低10× 10mm200-1100nm10pW-300mWPD300-UV-193宽波长范围,193nm额外校准10× 10mm200-1100nm10pW-300mWPD300-IRG红外,低噪声&Phi 5mm800-1700nm10pW-150pWPD300-BB430-1100nm内光谱谱线平10× 10mm430-1100nm50pW-4mWPD300-CIE模拟人眼响应曲线,单位Lux2.4× 2.8mm400-700nm20m Lux-200K LuxPD300-TP4mm厚探头 10× 10mm350-1100nm50pW-1WPD200低成本功率计(选择一到两个测量波长)10× 10mm400-1100nm20nW-200mWBC20用于扫描光束,速度可达30000inch/s10× 10mm633, 650, 675nm50uW-20mW ■热电堆激光功率计探头◆ 测量功率范围60uW-10kW,光谱范围0.19-20um;◆ 可用于单发脉冲能量测量,还提供美容IPL光专用测试探头;◆ 提供光纤适配器、BNC模拟输出等附件; ■产品参数: 产品型号产品特点探头口径波长范围功率范围能量范围3A高灵敏探头&Phi 9.5mm0.19-20um60uW-3W15uJ-2J3A-FS高灵敏探头,石英光窗&Phi 9.5mm0.19-20um60uW-3W15uJ-2J3A-P高灵敏探头,适用于短脉冲激光&Phi 12mm0.15-6um60uW-3W20uJ-2J10A10W通用探头&Phi 16mm0.19-20um20mW-10W6mJ-2J10A-P适用于短脉冲激光&Phi 16mm0.15-6um40mW-10W10mJ-10J12A12W探头,宽动态范围&Phi 16mm0.19-20um2mW-12W1mJ-30J12A-P适用于短脉冲激光&Phi 16mm0.5-6um2mW-12W1mJ-30J20C-SH紧凑探头&Phi 12mm0.19-20um20mW-20W6mJ-10J30A30W通用探头&Phi 17mm0.19-20um20mW-30W6mJ-30J30A-P适用于短脉冲激光&Phi 17mm0.15-6um20mW-30W6mJ-30J30A-P-DIF适用于短脉冲激光,高损伤阈值&Phi 17mm0.15-6um50mW-30W30mJ-30J30A-N专用于YAG激光&Phi 17.5mm1064, 532nm60mW-30W30mJ-200JL30A中等口径30W探头&Phi 29mm0.19-20um80mW-30W20mJ-30JL30A-EX适用于准分子激光和CO2激光&Phi 29mm0.15-0.4um, 10.6um80mW-30W20mJ-30JL30A-10MM超薄30W探头&Phi 26mm0.15-20um80mW-30W20mJ-60JL30C-SH紧凑探头&Phi 26mm0.19-20um80mW-50W20mJ-30JL50A通用50W探头&Phi 29mm0.19-20um80mW-50W20mJ-100J30(150)A30W连续测量,150W间断测量&Phi 17.5mm0.19-20um50mW-150W20mJ-300J30(150)A-LP1长脉冲及连续激光高损伤阈值&Phi 17.5mm0.25-2.2um50mW-150W20mJ-300J30(150)A-HE30W连续测量,150W间断测量高平均功率调Q YAG激光&Phi 17mm0.19-0.625um, 1.064um,2.1um, 2.94um50mW-150W50mJ-200J30(150)A-HE1红宝石激光,铒激光&Phi 17mm0.19-0.76um, 2.9um50mW-150W50mJ-200J30(150)A-HE-DIF30W连续测量,150W间断测量用于超高损伤阈值调Q YAG激光&Phi 17mm0.19-3um except for625-900nm50mW-150W50mJ-30J30(150)A-SV超高损伤阈值,适用于聚焦激光&Phi 17mm0.19-12um50mW-150W50mJ-300JL30(150)A-LP1长脉冲及连续激光高损伤阈值&Phi 29mm0.25-2.2um, 2.94um80mW-150W80mJ-300JL40(150)A大口径探头30W连续测量,150W间断测量 &Phi 50mm0.19-20um200mW-150W80mJ-300JL40(150)A-LP1长脉冲及连续激光高损伤阈值&Phi 50mm0.25-2.2um200mW-150W80mJ-300JL40(150)A-EX准分子激光,CO2激光&Phi 50mm0.15-0.4um, 10.6um200mW-150W80mJ-300JL50(150)A50W连续测量,150W间断测量大口径探头&Phi 50mm0.19-20um200mW-150W80mJ-300JL50(300)A超大口径探头&Phi 65mm0.19-20um500mW-300W120mJ-300JL50(300)A-LP1长脉冲及连续激光高损伤阈值&Phi 65mm0.25-2.2um500mW-300W120mJ-300JF100A-HE风冷,适用于高能量激光 &Phi 24mm0.19-0.625um, 1.064um,2.1um, 2.94um120mW-100W 50mJ-200J100C-SH紧凑探头&Phi 18mm0.19-20um60mW-20W20mJ-5JF150A风冷150W探头&Phi 17.5mm0.19-20um60mW-150W20mJ-100J150C-SH紧凑探头&Phi 18mm0.19-20um60mW-60W20mJ-100JFL250A风冷250W探头&Phi 50mm 0.19-20um200mW-250W50mJ-300JFL250A-LP1 长脉冲及连续激光高损伤阈值&Phi 50mm0.25-2.2um200mW-250W50mJ-300JFL250A-EX风冷探头用于准分子激光,CO2激光&Phi 50mm0.15-0.4um, 10.6um200mW-250W50mJ-200JFL250A-LP1-DIF连续及长脉冲激光高损伤阈值&Phi 33mm0.4-3um200mW-250W200mJ-600JL250W水冷,超薄250W探头&Phi 50mm0.19-20um4W-250W200mJ-200JFL300A风冷300W探头&Phi 50mm0.19-20um200mW-300W50mJ-300JFL300A-LP连续及长脉冲激光高损伤阈值&Phi 50mm0.14-1.5um, 10.6um200mW-300W50mJ-300JL300W-LP水冷,超薄300W探头&Phi 50mm0.14-1.5um, 10.6um3W-300W 200mJ-300JL50(300)A-IPL美容IPL光测量 &Phi 65mm0.5-1um500mW-300W120mJ-300JFL500A风冷500W探头&Phi 65mm0.19-20um500mW-500W120mJ-600JFL500A-LP1高损伤阈值 &Phi 65mm0.25-2.2um500mW-500W120mJ-600JL100(500)A大口径探头75W连续测量,500W间断测量&Phi 65mm0.19-20um500mW-500W120mJ-600J 1000W水冷1000W探头&Phi 34mm0.19-20um5W-1000W300mJ-300J L1500W水冷1500W探头&Phi 50mm0.19-20um20W-1500W500mJ-200J L1500W-LP高损伤阈值 &Phi 50mm0.19-3um, 10.6um20W-1500W 500mJ-200J 5000W水冷5000W探头&Phi 50mm0.19-20um100W-5000W N.A. 5000W-LP高损伤阈值 &Phi 50mm0.19-1.5um, 10.6um100W-5000W N.A. 10K-W高损伤阈值水冷10kW探头 &Phi 45mm0.8-1.1um, 10.6um200W-10,000W N.A. Comet 1K手持式,经济型,1kW功率计 &Phi 50mm0.2-20um20W-1000W N.A. Comet 10K手持式,经济型,10kW功率计&Phi 100mmCO2, YAG and Diode200W-10,000W N.A.Comet 10K-HD手持式,经济型,10kW功率计高损伤阈值 &Phi 110mmCO2200W-10,000W N.A. ■积分球功率计探头 ◆积分球探头,用于发散激光测量; ◆波长范围350nm-1700nm; ■产品参数: 产品型号产品特点探头口径波长范围功率范围3A-IS3W积分球探头,用于发散激光&Phi 12mm420nm-1100nm 1uW-3W 3A-IS-IRG红外3W积分球探头,用于发散激光 &Phi 12mm800-1700nm1uW-3WF100A-IS 100W积分球探头,用于发散激光&Phi 16mm350-1300nm 50mW-100W
    留言咨询
  • 湿热探头(中低温)型号:TCAL-T-8m温度范围:-100℃to180℃,T型热电偶,特氟龙涂层、防水、抗震,可360°弯曲有效抗压、拧等机械冲击,有激光编号,截面尺寸:1.8*2.2(mm),长度:8m,可定制任意长度。顶端1英寸密封。湿热探头(Teflon)型号:7ST1-GE-8mTeflon探头, 双股铜/康铜超高级热电偶线制做加工。7ST- 7芯,22美国线规,进口线1- 顶端1英寸特氟龙密封,探头长度26.3英尺长(8米),Y- 每根探头首尾数码标号(高达连续耐受温度为200°C,低温-100℃)干热探头(中高温)型号:TCAL-K-8m温度范围:0℃to482℃,K型热电偶,聚酰亚胺绝缘导线和不锈钢屏蔽网,抗震可360°弯曲有效抗压、拧等机械冲击,有激光编号,截面尺寸2.2*3.0(mm),长度:8m,可定制任意长度。3mm不锈钢管密封。干热探头(Kapton)型号:K30-GE-8mKapton探头 K- Kapton-H绝热材料热电偶线加工,1英寸不锈钢封头,探头长度26.3英尺长(8米),,单芯,22美国线规,进口线。( 高达连续耐受温度为400°C)。1、行业中纯度和一致性较好热电偶探头,在温度验证过程中,测温性能更稳定。2、每轴热电偶线的质量控制和测试确保完整的测量结果,以保证其满足规定的精度。3、具有隔热材料7芯T 型热电偶线,精度相比单芯的热电偶线或者探头精度更高。4、验证探头测温段进行密封,延长使用寿命、减少氧化、方式水蒸气进入SIM盒。1、材质:双股铜/康铜超高级热电偶线制做加工 ,感温度较快防水、抗震、可360°弯曲,具有屏蔽电磁场环境干扰作用。2、绝缘隔热材料:Glass/Stainless(采用高温玻璃纤维和不锈钢屏蔽网,可有效抗拉、拧、压等强机械冲击,并能耐受高温)3、有明晰的激光雕刻序列号和编号。4、探头:特氟龙套管、不锈钢套管密封,防水不易氧化。导线:全封闭式热电偶导线,有效防止探头进水。5、稀有气体下焊接,不会因为空气中杂质影响精度。6、Fluke测温系统专用,终身免费维修。所有的焊接点都是在氩气保 护下完成,保证焊接过程无氧化7、与SIM 盒使用,具有冷端温度补偿功能
    留言咨询

盒式探头与机相关的资讯

  • 电导率方法转换的桥接试验:从使用台式仪和探头转换为使用自动化的Sievers M9 TOC分析仪
    究目的本研究的目的是证明使用配置了电导率选项的Sievers® M9总有机碳(TOC)分析仪和使用台式仪表和探头来测量《中国药典》2020版通则与USP 规格样品水第1阶段电导率这两种方法同样有效,并帮助用户从使用台式仪表和探头转换为使用配置电导率选项的Sievers M9 TOC分析仪。制药用水的电导率是指样品水在已知电势差上传导因离子运动而形成电流的能力值。电导率的计算方法是用电流强度除以电场强度。可以用离线的台式仪表和探头或者在线的电导率传感器来测量电导率1。随着温度和pH值变化,水分子自然离解成离子,从而使样品水具有可计算的电导率。外来离子也会影响样品水的电导率,并对样品水的化学纯度以及样品水在制药应用中的适用性产生较大影响。因此,国际通用的药典都有关于测量制药用水电导率的专论,给出了水的纯度和适用性的接受标准。USP 还对测量电导率的仪器规定了具体要求,并规定了具有不同接受标准的三个测量阶段,以帮助用户进行在线或离线测量。第1阶段测量的接受标准最严格,但此阶段最容易实施。第2和第3阶段测量则要求实验室人员进行离线的、耗时的实验台操作。对于制药商而言,最想进行的测量是离线或在线的第1阶段测量。根据USP ,如果要进行离线测量,测量就必须在合适的容器中进行。离线测量电导率所使用的合适容器的制造材料,不可以在与样品接触时浸出离子。传统的硼硅酸盐玻璃瓶会在样品水中浸出钠离子和其它离子,因此不适用于测量制药用水。Sievers电导率和TOC双用途瓶(DUCT,Dual Use Conductivity and TOC)的瓶体、瓶盖、垫片的测试表明,即使用DUCT瓶保存样品长达5天,也不会对样品的TOC和电导率产生明显的贡献。2,3目前许多制药商在测量制药用水的电导率时使用台式仪表和探头离线进行第1或第2阶段测量。这种测量方法有几个无法避免的缺点,比如数据不安全、样品的安全性不足、样品暴露于空气中、资源的使用效率低等。测量制药用水电导率的先进方法应当是进行自动化的第1阶段电导率测量,而存放和传输数据的电子安全数据库应完全符合21 CFR Part 11法规和最新的数据完整性法规。配置了电导率选项的Sievers M9 TOC分析仪就为用户提供了这种理想的第1阶段电导率测量方法。以下路线图显示如何从使用台式仪表和探头来离线测量第1阶段电导率,转换为使用配置了电导率选项的Sievers M9 TOC分析仪来自动测量第1阶段电导率。料配置了电导率选项的Sievers M9便携式TOC分析仪(SN#0043)配置了InLab 741 ISM电导率探头的梅特勒-托利多SevenCompact 仪(Mettler Toledo SevenCompact Meter)一盒Sievers DUCT电导率和TOC双用途样品瓶(HMI 77500-01)两套Sievers 100 μS/cm KCl电导率校准标样(STD 74470-01)(如果适用)一瓶500毫升Ricca 100 μS/cm KCl标样,25°C(CAT#5887-16)10毫升和1000微升移液器和吸头析步骤01通过DataPro2(请见下图)中的“样品电导率校准(Sample Conductivity Calibration)”系统任务,或者用M9的触摸屏,用100 μS/cm标样组(STD 74470-01)来校准M9分析仪,确保校准正确。02用100 μS/cm标样组(STD 74470-01)来校准梅特勒-托利多SevenCompact仪和InLab 741 ISM电导率探头,确保校准正确。请务必选用正确的电导率校准值。对于梅特勒-托利多SevenCompact仪,请选择以下校准标样路径:菜 单(Menu)/校准(Calibration),设置(Settings)/校准标样(Calibration Standard)/定制标样(Customized Standard)。输入100 μS/cm KCl标样,25°C。03为了最大程度上减少样品在传送过程中或转移到二级容器过程中被空气中的二氧化碳所污染,所有标样都应直接制备在DUCT样品瓶中² 。请采用正确的样品制备技术,用100μS/cm KCl储备溶液分别制备30毫升DUCT瓶装的100、75、50、25、12.5、10、5、2.5、1.25、1 μS/cm浓度的标样² 。最佳做法是按从高浓度到低浓度的顺序来制备标样,这样就可以在制备和分析各种敏感的低浓度标样之间花费最短的时间。所需要的稀释体积,请参考表1。04低浓度电导率标样非常敏感,因此必须先运行最低电导率标样,最后运行最高电导率标样,方法条件如图1所示。M9分析仪报告原始电导率、温度、温度补偿电导率。USP 指出,对未知水样的所有阶段1的电导率测试是非温度补偿的。在进行校准、确认、比较研究时,应使用已知化合物的纯标样。例如,上述校准标样在25°C时为100 μS/cm KCl。为了正确地将测量值与此标准值进行比较,必须将电导率测量值补偿回参考温度25°C时的标准值。同样,由于是在两个电导率测量平台上测量这些纯净的已知标样,因此必须进行温度补偿以确保进行正确的比较。05采用正确的取样技术,用100 μS/cm KCl储备溶液分别制备DUCT瓶装的100、75、50、25、12.5、10、5、2.5、1.25、1.00 μS/cm浓度的标样,用于台式仪表和探头测量。低浓度标样非常敏感,因此必须最先在仪表和探头上运行最低电导率标样,最后运行最高电导率标样,方法条件如图1所示。确保将探头完全浸入DUCT瓶中。样品水在转移时可能会洒出来,因此建议将样品瓶放在二次容器(即防洒容器)中,以便在操作过程中用二次容器接住洒出来的水。06对于梅特勒-托利多SevenCompact仪表,确保选择25°C作为参考温度,并对测量值进行温度补偿。在仪表和M9上选择准确的补偿曲线和参考温度,这一点非常重要。KCl在低浓度时有非线性温度校正曲线,因此建议在仪表上选择非线性补偿曲线。测量时请将探头放入样品中,然后按“读取(Read)”键。待测量稳定后,表会提示“保存(Save)”或“退出(Exit)”。所有样品的测量数据都会记录在仪表上,然后导出用于分析。结果和讨论图2是配置了InLab 741 ISM电导率探头的梅特勒-托利多仪测量的电导率数据,包括实测响应和预期响应的数据对比。响应值连成直线,可以看到R² 值和斜率,便于进行方法比较。图2中的数据显示,配置了InLab 741 ISM电导率探头的梅特勒-托利多仪的电导率线性非常适用于测量制药用水的第1阶段电导率。图3是Sievers M9 TOC分析仪测量的电导率数据,包括实测响应和预期响应的数据对比。响应值也连成直线,可以看到R² 值和斜率,便于进行方法比较。图3中的数据显示,Sievers M9 TOC分析仪的电导率线性也适用于测量制药用水的第1阶段电导率。表2是配置了InLab 741 ISM电导率探头的梅特勒-托利多仪和配置了电导率选项的Sievers M9 TOC分析仪的线性方法对比数据。这两种不同设备的实测响应数据显示,Sievers M9的R² 和斜率响应均略优于配置了InLab 741 ISM电导率探头的梅特勒-托利多仪的R² 和斜率响应。本研究中的数据不仅确认了这两种设备方法都可以有效地测量电导率,更进一步证明了配置电导率选项的Sievers M9 TOC分析仪更具优势。用这两种设备方法的结果差异,部分归因于样品与周围空气能否有效隔离。当使用Sievers M9 TOC分析仪时,电导率和TOC标样都装在DUCT样品瓶里进行分析,从而有效地隔离了空气。而当使用梅特勒-托利多仪和探头时,需在测量过程中打开样品瓶的盖子以便插入探头。打开瓶盖后,空气中的二氧化碳就会污染样品。在测量电导率时,Sievers M9分析仪比传统的台式仪表和探头有更好的线性、斜率响应、样品处理。除此之外,Sievers M9分析仪还有其它优势。台式仪表和探头测量的数据通常以txt或csv格式存放在仪表上。这都不是安全的数据格式,容易被审计机构审查。而Sievers M9分析仪采用安全的数据文件格式,数据不会受到机构审查。此外,在使用台式仪表和探头时,通常需要用USB设备来从仪表向电脑传送数据,而使用USB来传送数据时,容易被审计机构审查数据完整性。M9分析仪的数据可以通过以太网自动导出到LIMS系统、SCADA系统、或其它数据管理平台。最后,台式仪表和探头需要专门的操作人员来制备和运行样品,费时费力。由于对温度、搅拌、测量稳定性的要求,每份样品的第2阶段电导率测量时间需长达30分钟。而将自动进样器和配置了电导率选项的Sievers M9 TOC分析仪一起使用时,就可以实现自动化的样品分析和数据采集。考虑到Sievers M9 TOC分析仪的上述诸多优点,及其卓越的分析结果,那么制药商放弃使用传统的台式仪表和探头,转而使用配置了电导率选项的Sievers M9 TOC分析仪来自动测量电导率,就成为非常明智的选择。两种设备方法的优缺点比较,请见表3。结论改变现行的分析方法通常是复杂的过程,而从传统的台式分析转换为自动分析可能更加复杂。本研究旨在说明如何从使用台式仪表和探头转换为使用配置了电导率选项的Sievers M9 TOC分析仪来测量电导率。本研究证明了台式设备和自动设备在测量USP 第1阶段电导率时具有同等分析性能,从而证明了从台式分析转换为自动分析的可行性。本研究还显示,用户可以相对容易地完成这一转换。最后如表3所示,当使用Sievers M9分析仪代替台式仪表和探头来测量电导率时,可以有诸多优点,例如数据可靠性、样品完整性、自动化运行等,这就使得从台式分析到自动分析的转换对寻求精益工艺流程的制药商极具吸引力。参考文献Sievers Lean Lab: Simultaneous Stage 1 Conductivity and TOC Lab Testing of Pharmaceutical Water (300 40030).DUCT Vial Performance and Stability (300 00297).Reserve Sample Bottles for Conductivity and TOC (300 00299).Low Level Linearity Conductivity Study on the Sievers M9 TOC Analyzer (300 00339).◆ ◆ ◆联系我们,了解更多!
  • 光谱仪小百科 | 光纤与探头日常维护的5个技巧
    海洋光学的光纤附件、探头和配件可让用户在我们的光谱仪上传输和收集光。从现成的光纤跳线和定制光纤到专门设计的 OEM 附件,您的光纤选项和应用一样多种多样。以下是确保光纤和探头性能可靠、持久的一些技巧。 技巧1:做出明智的选择模块化光谱系统的优异性能取决于各个部分的总和。在选择光谱仪时要注意的方面应与选择光源、取样光学元件、光纤或探头相同。您是否在测量吸光度或反射率?您是否在测量低于 270 nm 的波长,在该波长下紫外线照射会使某些光纤受到曝晒?光纤将放置在您实验的什么位置?样品环境是否具有化学刺激性?确定这些标准将有助于我们指导您找到满足需求并适应样品条件的最佳组件(包括光纤)。技巧2:小心处理光纤连接器和末端如果保养不当,SMA 905 和其他光纤连接器可能会被划伤或损坏,从而影响测量。有时,客户甚至会因端部拉力过猛将连接器或套圈从光纤或探头上意外拉出。由于光纤端部磨损最大,设计了具有额外应力消除和护套保护的末端。但是,在取下端罩时要小心,用一只手握住连接器的光纤,用另一只手拉开端罩。海洋光学XSR 抗紫外老化光纤更进一步,它有一个端罩,用螺丝固定在光纤的末端 -- 无需拉动。技巧3:注意弯曲半径尽管光纤和探头在光谱仪周围移动光,但是这些组件可以承受的弯曲程度是有限的。光纤的弯曲半径表示在光纤发生损坏之前可以承受的弯曲程度。这种损坏程度可能会使光纤衰减和断裂,从而导致更严重的光损耗。这就是为什么定期检测光纤确保光传输的很好方法。光纤断裂,会使光停止传输。海洋光学报告了长时间弯曲半径(LTBR)和短时间弯曲半径(STBR)。LTBR 是存放条件下建议的最小弯曲半径。STBR 是光纤使用期间建议的最小弯曲半径。可见-近红外光、紫外-可见光、SR 和 XSR 光纤的弯曲半径技巧4:避免过热避免超过光纤材料的温度阈值:对于标准光纤,硅纤维的温度阈值为 300 °C,而环氧树脂和 PVDF 管的温度为 100 °C。对于高级光纤,整个组件的额定温度为 220 °C。包括不锈钢 BX 在内的护套可提供更好的保护,但最好咨询您的海洋光学代表,寻求在恶劣环境下的应用帮助。正如一位大学教授最近与我们分享的那样,他大一时化学实验室中的一些海洋光学光纤在初学化学家手中“存活”了 20 年。这些光纤可持续更长时间,但一些学生将这些光纤太靠近他们在测量的本生燃烧火焰,导致光纤护套和 PVDF 管熔化。耐化学性是您应用很重要的另一项标准。避免将光纤浸入可损坏石英、镍、钢、铝或环氧树脂的材料中。在恶劣的样品环境中,选择耐用的护套材料(包括硅胶单线圈或不锈钢 BX)是您不错的选择。定制套筒和套圈是另一种选择。技巧5:记住小东西虽然这并不总是可行,但在不用光纤连接器时,更换光纤连接器的端罩很有用。这有助于防止划伤,避免灰尘和指纹污染。此外,我们建议定期用透镜纸和蒸馏水、酒精或丙酮清洁光纤端部,避免划伤表面。本
  • 易轻忽之肯綮:扫描电镜工作距离与探头的选择(上)——安徽大学林中清32载经验谈(9)
    p style=" text-align: justify text-indent: 2em " strong 【作者按】 /strong 工作距离和探头的选择,主要影响着扫描电镜的信息接收。选择的是否合适,对形成怎样的样品表面形貌像起着举足轻重的作用。实际测试工作中,我们往往只关注信息的产生,也就是加速电压与束流的选择,而对工作距离和探头的选择往往存在轻忽甚至误解的现象。 /p p style=" text-align: justify text-indent: 2em " 关于形貌像分辨率的主流观点:工作距离越小,形貌像分辨率越好。其依据是:1.束斑说:工作距离越小,束斑越小,束斑越小分辨率越好。2.球差说:工作距离越小,物镜球差对结果的影响越小,故分辨率也越佳。球差及束斑说都有一定道理,但都不是影响表面形貌像分辨力的最根本因素。 /p p style=" text-align: justify text-indent: 2em " 形成上述观点,与电镜厂家力推小工作距离的理念有关。特别是有些厂家几乎放弃对使用样品仓探头获取样品信息的研究,仅将其作为一个低倍寻找样品测试位置的工具。这将限制我们的视野,获取的表面形貌信息也极其贫乏。 /p p style=" text-align: justify text-indent: 2em " 本人所用品牌的时候冷场电镜由于对早期样品仓探头结构设计的继承,使得本人充分体会到:各种不同的工作距离和探头组合,将带来怎样不同的样品表面形貌信息,而这些不同的信息又恰恰是我们能够正确且充分观察和分析样品的基石。 /p p style=" text-align: justify text-indent: 2em " 下面将从形貌衬度,这一形成表面形貌像的主导因素为切入点,以实例来展示并详细探讨:不同工作距离和探头的组合与形貌衬度的形成有何关联?对表面形貌像的获取及图像的分辨能力有何影响?各种组合都具有怎样的优缺点? /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " strong span style=" color: rgb(0, 176, 80) font-size: 18px font-family: 宋体, SimSun " 一 、工作距离和探头的选择与形貌衬度的形成& nbsp /span /strong /h1 p style=" text-align: justify text-indent: 2em " 扫描电镜形貌像的形成如同用眼睛去观察一个物体。物体图像的形态并不取决于眼睛从物体上获取了怎样的光线,而是基于从那个角度去观察这个物体。对图像细节的影响来自四个方面,光线的能量和强度、眼睛的视力及观察角度,其中观察角度是根基。物体细节越粗,观察角度的影响越大。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/7446c1ff-2094-4dea-9c24-fd02dc025494.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: justify text-indent: 2em " 二次电子和背散射电子是形成样品表面形貌像的信息源,如同形成图像的光。探头如同人的眼睛,它获取样品表面形貌像的形貌衬度信息,如同从不同角度去观察这个样品。信息到达探头的角度是形成表面形貌像的基础。 /p p style=" text-align: justify text-indent: 2em " 正如本人在经验谈(4、5、6)中给大家所描述,形貌衬度是由样品表面形貌高低差异所形成的信息衬度。形成该衬度的主导因素随以下两个不同层级的信息需求而不同: /p p style=" text-align: justify text-indent: 2em " A. 低倍率,观察的样品表面形貌起伏较大(二十纳米以上)。探头、样品及电子束三者之间的夹角所形成的形貌衬度才能满足形貌像的形成需求,此时这个夹角就是主导因素。 /p p style=" text-align: justify text-indent: 2em " B. 高倍下,观察的空间差异小于十几纳米,形貌衬度小,电子信息溢出角度所形成的形貌衬度就完全满足需求。由于信息扩散对这类细节影响极大,靠近镜筒,从样品顶部获取更多二次电子是最佳方案,此时低角度信息就变为主导因素。 /p p style=" text-align: justify text-indent: 2em " 选择不同的工作距离和探头,就是为了调控探头所接收的样品信息类型及信息的接收角度,以形成充分的图像衬度。 /p p style=" text-align: justify text-indent: 2em " 工作距离与探头的选择是如何调控探头获取样品表面形貌像的形貌衬度信息,进而影响表面形貌像的细节形成及分辨?下面将结合实例来给大家做详细的展示及描述。 /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " strong span style=" color: rgb(0, 176, 80) font-size: 18px font-family: 宋体, SimSun " 二、表面形貌像与工作距离和探头的选择 /span /strong /h1 p style=" text-align: justify text-indent: 2em " 选择不同的工作距离和探头,能对图像形貌衬度的获取形成调控。那是如何调控?又是如何影响样品表面形貌像? /p p style=" text-align: justify text-indent: 2em " strong 2.1不同工作距离下各探头对表面信息的接收示意图 /strong /p p style=" text-align: justify text-indent: 2em " 以某公司冷场电镜为例(样品:介孔硅,孔径& lt 10nm): /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/b8cc6b0c-010b-4077-97bc-4e1558635e77.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp a.样品台不加减速场:到达顶探头的主要是间接的、能量较高的高角度背散射电子(HA BSE)。图像特性表现为:信息量不足、细节分辨差、但受荷电影响小。(SBA-15颗粒) /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/f6e11aa0-c8f0-462d-99c9-6787b93e2ac6.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: justify text-indent: 2em " 工作距离越大顶探头接收的信息越少,基本不存在测试意义。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/db70895c-9571-49ac-af9a-286cbaa168d2.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp & nbsp & nbsp & nbsp br/ /p p style=" text-align: justify text-indent: 2em " b.采用减速模式:二次电子能量得到加强,使顶探头接收的样品信息改以高角度二次电子为主。图像特性:二次电子衬度及边缘效应增加、形貌立体感较差、荷电及电位衬度较大。 /p p style=" text-align: justify text-indent: 0em " span style=" text-indent: 2em " /span /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/4333ec84-2237-4e5f-9c47-c7424021ada4.jpg" title=" 5.png" alt=" 5.png" / span style=" text-indent: 2em text-align: justify " & nbsp /span /p p style=" text-align: justify text-indent: 2em " 顶探头图像的Z衬度会更强烈一些,但要求样品有较强的信息量,故应用领域不广,实例较少。具体可参看经验谈(6)。 /p p style=" text-align: justify text-indent: 2em " 总之,该公司扫描电镜设置的探头中:顶探头要求样品本身有较高的信息产额,仅利于在小工作距离条件下获取某些特殊的图像衬度信息,如:Z衬度及电位衬度,故使用频率少。 /p p style=" text-align: justify text-indent: 2em " 对于大部分样品信息的获取,起主力军作用的是上、下探头,因此下面讨论的重点将针对这两个探头展开。实例的展示及探讨将以介孔硅KIT-6为样本,按高、低倍分组来进行。 /p p style=" text-align: justify text-indent: 2em " WD& lt 3mm、低倍:10万倍以下,观察的细节大于20纳米。& nbsp & nbsp /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/ee3af742-eeab-4911-acf1-ccd39b700db4.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-align: justify text-indent: 2em " 高倍(20万倍):观察10纳米以下细节。这类细节的起伏小,形貌衬度要求低,不同角度的二次电子就足以形成表面形貌像所需的形貌衬度。此时信息扩散对细节影响将变成主导因素,更多的接收二次电子就成为获取高分辨细节的关键。 /p p style=" text-align: justify text-indent: 2em " 如上示意图,EXB系统对进入上探头的信号进行分离,使其接收的基本是二次电子,对细节影响小;通过信息转换板,探头又接收到更多的低角度信息,因此利于形成细节为10纳米以下的形貌像。各探头形成图像的具体结果如下: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/cbe76ddb-a22b-4bd5-ad70-c9057c2641ae.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-align: justify text-indent: 2em " 该工作距离,下探头无信号,信息混合后结果倒向上探头。采用减速模式将帮助上探头获取更充分的样品信息。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/b3ba0c5c-c2a3-49cb-a4fa-8653853454d2.jpg" title=" 8.png" alt=" 8.png" / span style=" text-indent: 2em text-align: justify " & nbsp & nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " B)工作距离适中(WD=8.1mm): /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/7a1ebaf2-fb73-4803-a009-cd97a2aa8a65.jpg" title=" 9.png" alt=" 9.png" / /p p style=" text-align: justify text-indent: 2em " 低倍:10万倍以下,观察的样品细节主要在20纳米以上。在这个工作距离下:上探头形貌衬度较差,下探头信号量不佳,故单独观察都有较大问题。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/c8c01847-39c9-4150-a862-5ed7dc40b2bf.jpg" title=" 10.png" alt=" 10.png" / /p p style=" text-align: justify text-indent: 2em " 高倍:20万倍,观察的样品表面细节在10纳米以下& nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/367f675f-d917-4132-b5b5-dc72868ef096.jpg" title=" 11.png" alt=" 11.png" / /p p style=" text-align: justify text-indent: 2em " 上、下探头的混合结果:上探头获取的信息较多,是主要信息源。故整体偏向上探头获取的图像特性。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/202006/uepic/aa45b67b-1415-461d-9ee6-5594b663afdf.jpg" title=" 12.png" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/202006/uepic/10a2946a-c21a-4b3b-9c3a-46579b607c42.jpg" title=" 13.png" / /p p style=" text-align: justify text-indent: 2em " C)大工作距离(WD=15.1 mm) /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/841a1b4a-39c8-4cea-9114-5c93b196ba13.jpg" title=" 14.png" alt=" 14.png" / /p p style=" text-align: justify text-indent: 2em " 低倍:10万倍以下,观察20纳米以上的细节。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/5adb4e8e-4576-4e0e-aa67-2b72bfdf8f99.jpg" title=" 15.png" alt=" 15.png" / /p p style=" text-align: justify text-indent: 2em " 高倍:20万倍,观察细节10纳米以下。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/e2dd614b-b1c3-439f-8eca-4a481eae9dcb.jpg" title=" 15.png" alt=" 15.png" / /p p style=" text-align: justify text-indent: 2em " 上、下探头混合后,结果倒向下探头。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/aa741213-5299-4f63-9dc8-2f210ade6e28.jpg" title=" 16.png" alt=" 16.png" / /p p style=" text-align: justify text-indent: 2em " 细节较粗样品(磁粉),7万倍、大WD,三种探头组合对比: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/84e4cc1f-b36b-4df0-a035-30045f6a1fc2.jpg" title=" 18.png" alt=" 18.png" / /p p style=" text-align: justify text-indent: 2em " strong 2.2不同探头组合在不同工作距离(WD)上的图像比对 /strong /p p style=" text-align: justify text-indent: 2em " 上节实例展示了在不同工作距离上,各种探头组合所获取的图像特性。本节以介孔硅SBA-15的测试结果为例,采用高、低倍分组,直球对决的形式,对比三种探头组合分别在三个不同工作距离上所获取的测试结果。评判出各种工作距离与探头组合的优缺点,以充分认识它们的适用范围。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/83a00b53-10d8-4142-bd5e-b16c67491618.jpg" title=" 19.png" alt=" 19.png" / /p p style=" text-align: justify text-indent: 2em " 低倍的综合结果:选择15mm工作距离、下探头组合测试效果最佳。空间伸展最好、信号量足、细节丰富、无荷电影响。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/73bb557c-f665-4f26-bfaa-d80bb19cb871.jpg" title=" 20.png" alt=" 20.png" / /p p style=" text-align: justify text-indent: 2em " 高倍(20万倍)的结果:& nbsp 2mm工作距离,混合探头组合二次电子含量足,低角度二次电子信息含量的占比较多,故图像荷电现象较弱,空间信息好,细节充分,结果最佳。 /p p style=" text-align: justify text-indent: 2em " 15mm工作距离、下探头组合,细节几乎看不见,结果最差。 /p p style=" text-align: justify text-indent: 2em " 综合以上所有实例可以得出这样的结论: /p p style=" text-align: justify text-indent: 2em " 10万倍以下观察20纳米以上细节,大工作距离拥有优势,且倍率越低用下探头观察的优势越明显。10万倍以上观察10纳米以下的细节,小工作距离、上探头获得效果更好。 /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " strong span style=" color: rgb(0, 176, 80) font-size: 16px " 三、工作距离和探头的选择与图像的分辨力 /span /strong /h1 p style=" text-align: justify text-indent: 2em " 前面实例充分表明:小工作距离、镜筒探头(上探头)最适用于将图像放大到10万倍以上,去观察小于10纳米的样品细节,而对于观察20纳米以上的细节却未必有利。 /p p style=" text-align: justify text-indent: 2em " 下面将以充分的事例展示:采用大工作距离、样品仓探头(下探头)组合,即便在10万倍以上的高倍率,图像清晰度受大量背散射电子的影响而略显不足,但对20纳米以上样品细节的分辨力却占据优势。 /p p style=" text-align: justify text-indent: 2em " 泡沫镍上生长的氢氧化钴,储电材料。该材料的片状氢氧化钴表面有许多大于10纳米的沟纹状细节,故比表面积较大。存在这种结构也正是其拥有极佳储电能力的基础。 /p p style=" text-align: justify text-indent: 2em " 接下来通过对这些沟纹信息的观察,来对比大工作距离、下探头组合与较小工作距离、上探头组合在的辨析度上优劣。 /p p style=" text-align: justify text-indent: 2em " 为了说明结果的普适性,对比将从一组zeiss SEM的照片开始。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/63ec7b13-bd9e-4d65-9328-1ef32e4aa0b1.jpg" title=" 21.png" alt=" 21.png" / /p p style=" text-align: justify text-indent: 2em " 结果:采用WD=8mm、混合探头(M)组合& nbsp PK& nbsp & nbsp WD=15mm、下探头组合的结果。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/829f8ebf-1b67-40ff-ae48-b248d4a661d7.jpg" title=" 22.png" alt=" 22.png" / /p p style=" text-align: justify text-indent: 2em " 以上实例充分展示:工作距离与探头的选择对分辨能力的影响也遵循着辨证的关系。样品的特性以及观察信息的不同是我们选择合适工作距离与探头的依据。 /p p style=" text-align: justify text-indent: 2em " 将小工作距离、镜筒探头做为获取高分辨像的唯一正确选择,进而扩展为扫描电镜主要测试条件的观念存在极大偏颇,不利于充分获取样品信息。大部分样品信息适合在大工作距离,采用多种探头组合来获取,这将在下篇有更充分的展示。 /p p style=" text-align: justify text-indent: 2em " 电镜的性能是否优异,考察其在大工作距离下是否也能获取优异的高倍率形貌像应当是重点。以下是几个实例: /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " S-4800大工作距离高倍率图片 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/395c6a02-3f78-47bb-9a45-4aa553a3ebb7.jpg" title=" 23.png" alt=" 23.png" / /p p style=" text-align: justify text-indent: 2em " Regulus 8230的大工作距离高倍率图片 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/3eb0b9d9-d016-4e1b-aa6a-16c5555ca0a2.jpg" title=" 24.png" alt=" 24.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/69da8d82-e400-4dc0-9331-cf795b27a49a.jpg" title=" 25.png" alt=" 25.png" / /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " strong span style=" font-size: 18px color: rgb(0, 176, 80) " 四、不同工作距离和探头组合的优缺点 /span /strong /h1 p style=" text-align: justify text-indent: 2em " 前面分析了,改变工作距离主要影响的是镜筒内探头和样品仓探头对样品表面形貌信息的接收效果。 /p p style=" text-align: justify text-indent: 2em " 工作距离越小,带来的结果是:镜筒内探头(U)接收到的样品信息越多,样品仓探头(L)接收的样品信息越少。当样品紧靠物镜时,样品仓探头基本获取不到样品的信息。 /p p style=" text-align: justify text-indent: 2em " 随着工作距离加大,样品仓探头接收到的样品信息会加强。要形成样品仓探头对样品表面信息接收的最佳固体角,必然存在一个最佳工作距离。这个值各电镜厂家并不一样,我所用的场发射扫描电镜的这个值与附件能谱仪的最佳工作距离相重合(WD=15mm)。 /p p style=" text-align: justify text-indent: 2em " 不同位置的探头形成样品表面形貌像的主导因素不同。 /p p style=" text-align: justify text-indent: 2em " 样品仓探头:探头、样品及电子束三者之间的夹角是主导。获取的形貌衬度信息有利于呈现起伏较大的表面形貌像。 /p p style=" text-align: justify text-indent: 2em " 镜筒内探头:从顶部接收样品信息,电子信息的溢出角是形成表面形貌像的主导因素。获取的形貌衬度小,只适合表现起伏较小(几十纳米)的表面形貌像。工作距离越大,镜筒内探头接收到的高角度二次电子占比越多,图像空间感越差,荷电现象也越明显。具体实例可参看前文经验谈(5)。 /p p style=" text-align: justify text-indent: 2em " 样品表面形貌像的细节会受到样品电子信息扩散的影响,这个影响受到样品特性及信息需求的限制。当样品比较松散,而所要展示的样品信息又极小(10纳米以下细节)时,信号扩散会成为影响测试结果的主体,选用小工作距离、镜筒探头最为有利。除此以外,在大工作距离下选择不同探头组合将更有利于获取充分的样品表面信息。 /p p style=" text-align: justify text-indent: 2em " 大、小工作距离对样品进行测试的优缺点对比列表如下 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/ae51a279-a821-44a9-8ff7-f3f675295dcb.jpg" title=" 26.png" alt=" 26.png" / /p p style=" text-align: justify text-indent: 2em " 从以上列表可以看到,选择大工作距离给测试结果带来的优点比选择小工作距离要多得多,小工作距离仅在极少数情况下具有较好的测试结果。因此个人认为将常规的测试条件放在大工作距离上,是一个明智的选择。 /p p style=" text-align: justify text-indent: 2em " 以个人使用扫描电镜十来年的测试经历来看,绝大部分样品信息都可在大工作距离下获取更好的效果,必需采用小工作距离的情况相对来说比较少。 /p p style=" text-align: justify text-indent: 2em " 下一篇将用更多实例来给大家充分的展示并分析,选用合适的工作距离和探头组合将会带来怎样有利的测试结果? span style=" text-indent: 2em " & nbsp /span /p p style=" text-align: justify text-indent: 2em " 参考书籍: /p p style=" text-align: justify text-indent: 2em " 《扫描电镜与能谱仪分析技术》张大同2009年2月1日& nbsp span style=" text-indent: 2em " 华南理工出版社 /span /p p style=" text-align: justify text-indent: 2em " 《微分析物理及其应用》 丁泽军等 & nbsp & nbsp & nbsp 2009年1月& nbsp span style=" text-indent: 2em " 中科大出版社 /span /p p style=" text-align: justify text-indent: 2em " 《自然辩证法》 & nbsp 恩格斯 & nbsp 于光远等译 1984年10月& nbsp span style=" text-indent: 2em " 人民出版社& nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " 《显微传》 & nbsp 章效峰 2015年10月& nbsp span style=" text-indent: 2em " 清华大学出版社 /span /p p style=" text-align: justify text-indent: 2em " 日立S-4800冷场发射扫描电镜操作基础和应用介绍& nbsp span style=" text-indent: 2em " 北京天美高新科学仪器有限公司 高敞 2013年6月 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" text-indent: 2em " 作者简介: /span /strong span style=" text-indent: 2em " img style=" max-width: 100% max-height: 100% width: 75px height: 116px float: left " src=" https://img1.17img.cn/17img/images/202006/uepic/c94c8e90-8a70-4116-8cfa-768d11d59f9e.jpg" title=" 123.jpg" alt=" 123.jpg" width=" 75" height=" 116" border=" 0" vspace=" 0" / 林中清,1987年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。& nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " strong span style=" text-indent: 2em color: rgb(0, 176, 240) " & nbsp 延伸阅读: /span /strong /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200515/538555.shtml" target=" _self" style=" text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline " span style=" text-indent: 2em color: rgb(0, 176, 240) " 如何正确选择扫描电镜加速电压和束流 ——安徽大学林中清32载经验谈(8) /span /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200414/536016.shtml" target=" _self" style=" text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline " span style=" text-indent: 2em color: rgb(0, 176, 240) " 扫描电镜操作实战技能宝典——安徽大学林中清32载经验谈(7)& nbsp /span /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200318/534104.shtml" target=" _self" style=" text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline " span style=" text-indent: 2em color: rgb(0, 176, 240) " 扫描电镜的探头新解——安徽大学林中清32载经验谈(6) /span /a span style=" text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline " & nbsp /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200218/522167.shtml" target=" _self" style=" text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline " span style=" text-indent: 2em color: rgb(0, 176, 240) " 二次电子和背散射电子的疑问(下)——安徽大学林中清32载经验谈(5) /span /a span style=" text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline " & nbsp /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200114/520618.shtml" target=" _self" style=" text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline " span style=" text-indent: 2em color: rgb(0, 176, 240) " 二次电子和背散射电子的疑问[上]-安徽大学林中清32载经验谈(4) /span /a span style=" text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline " & nbsp /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191224/519513.shtml" target=" _self" style=" text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline " span style=" text-indent: 2em color: rgb(0, 176, 240) " 电子枪与电磁透镜的另类解析——安徽大学林中清32载经验谈(3)& nbsp /span /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191126/517778.shtml" target=" _self" style=" text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline " span style=" text-indent: 2em color: rgb(0, 176, 240) " 扫描电镜放大倍数和分辨率背后的陷阱——安徽大学林中清32载经验谈(2)& nbsp /span /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191029/515692.shtml" target=" _self" style=" text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline " span style=" text-indent: 2em color: rgb(0, 176, 240) " 扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈 /span /a /p

盒式探头与机相关的方案

盒式探头与机相关的资料

盒式探头与机相关的试剂

盒式探头与机相关的论坛

  • 【求购】预购固体探头

    我单位有BrukerAV-600和AV-400两台液体核磁,配有TXI和BBO探头,最近欲购买固体探头,请教下买哪种探头较为合适.应该如何配置,谢谢

  • 示波器电流探头,探头的选择及使用

    正确的探头选择会扩展和增强仪器的性能,而错误的探头选择往往会降低你的系统性能。对探头特性的深思熟虑会帮助保证你的仪器性能满足你的应用要求。虽然对合适的探头主要考虑是它的负载影响和信号逼真度的传送。但物理参数例如:探头尺寸大小、电缆长度和与被测装置互相连接的适配器对你测量的成功可能更重要。在高频段正确使用探头也是很重要的。 许多信号源都有一个接地参考点(OV),用无源的或有源的单端探头都能很好地工作。如果信号源的参考点不是OV,就应使用差分测量法,否则会发生短路现象,损坏仪器。 不要把示波器与地隔离开而浮置起来。用单端探头做差分测量是很危险的。通常示波器的输入端与地之间接有10pF或15pF电容,也有少数大型示波器在输入端与地之间接有100pF的电容,若用它做差分测量,由于存在不平衡的容性负载,使信号扭曲。 量无零点参考信号时,用差分探头能解决这些问题,用两个探头分别接在示波器的两个通道上,设置示波器显示出两者相减的结果,此两探头应选用匹配好的一对,所谓匹配好实际上是指两探头的电缆要一样长,即对信号的延迟要一样,其输入电容、电阻和衰减也一样。用微调电容可以减小两者的差别。 多信号源都有一个接地参考点(OV),用无源的或有源的单端探头都能很好地工作。如果信号源的参考点不是OV,就应使用差分测量法,否则会发生短路现象,损坏仪器。 以上信息由Agitek整理,希望对大家有所帮助。

盒式探头与机相关的耗材

  • 浸入式光纤探头,石英,10毫米固定光程
    Cary 分光光度计与各种光纤探头兼容,因此您可以在分光光度计的样品室外测量样品。使用探头就不必再将液体倒入样品池,这对于需要快速分析大量样品的质量控制实验室进行定量分析时特别有用。远程测量也完全适用于小体积样品、不能放入样品室的大体积样品、容器中的化学反应、中试测量、有毒或危险样品、无菌环境样品,以及高温或高压条件下的样品。 我们提供浸入式探头和普通探头,用于测量透射、反射和吸收。您也可以购买定制的光纤探头支架和长度以满足实验室的特殊需求。 快速分析 — 与传统蠕动泵附件不同,光纤探头无装液延迟且无需等待气泡逸出。 交叉污染少 — 快速、高效地清洁浸入式探头。样品间的快速冲洗减少了交叉污染。 维护少 — 无需昂贵的流通池且安装后不需要调试。 可更换的探头、防护罩和远程测量开关 适用于多种温度条件的探头(环境温度、85 ℃、150 ℃) 有不锈钢、石英和 Torlon 可供选择 透射、反射和吸收探头 为方便起见,提供探头支架和更长的光纤。 订购详情
  • 浸入式光纤探头,仅主体为不锈钢;需使用不锈钢头
    Cary 分光光度计与各种光纤探头兼容,因此您可以在分光光度计的样品室外测量样品。使用探头就不必再将液体倒入样品池,这对于需要快速分析大量样品的质量控制实验室进行定量分析时特别有用。远程测量也完全适用于小体积样品、不能放入样品室的大体积样品、容器中的化学反应、中试测量、有毒或危险样品、无菌环境样品,以及高温或高压条件下的样品。 我们提供浸入式探头和普通探头,用于测量透射、反射和吸收。您也可以购买定制的光纤探头支架和长度以满足实验室的特殊需求。 快速分析 — 与传统蠕动泵附件不同,光纤探头无装液延迟且无需等待气泡逸出。 交叉污染少 — 快速、高效地清洁浸入式探头。样品间的快速冲洗减少了交叉污染。 维护少 — 无需昂贵的流通池且安装后不需要调试。 可更换的探头、防护罩和远程测量开关 适用于多种温度条件的探头(环境温度、85 ℃、150 ℃) 有不锈钢、石英和 Torlon 可供选择 透射、反射和吸收探头 为方便起见,提供探头支架和更长的光纤。 订购详情
  • 光纤浸入式探头,不锈钢,10 毫米固定头
    Cary 分光光度计与各种光纤探头兼容,因此您可以在分光光度计的样品室外测量样品。使用探头就不必再将液体倒入样品池,这对于需要快速分析大量样品的质量控制实验室进行定量分析时特别有用。远程测量也完全适用于小体积样品、不能放入样品室的大体积样品、容器中的化学反应、中试测量、有毒或危险样品、无菌环境样品,以及高温或高压条件下的样品。 我们提供浸入式探头和普通探头,用于测量透射、反射和吸收。您也可以购买定制的光纤探头支架和长度以满足实验室的特殊需求。 快速分析 — 与传统蠕动泵附件不同,光纤探头无装液延迟且无需等待气泡逸出。 交叉污染少 — 快速、高效地清洁浸入式探头。样品间的快速冲洗减少了交叉污染。 维护少 — 无需昂贵的流通池且安装后不需要调试。 可更换的探头、防护罩和远程测量开关 适用于多种温度条件的探头(环境温度、85 ℃、150 ℃) 有不锈钢、石英和 Torlon 可供选择 透射、反射和吸收探头 为方便起见,提供探头支架和更长的光纤。 订购详情
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制