丙炔醇乙氧基化合物

仪器信息网丙炔醇乙氧基化合物专题为您提供2024年最新丙炔醇乙氧基化合物价格报价、厂家品牌的相关信息, 包括丙炔醇乙氧基化合物参数、型号等,不管是国产,还是进口品牌的丙炔醇乙氧基化合物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合丙炔醇乙氧基化合物相关的耗材配件、试剂标物,还有丙炔醇乙氧基化合物相关的最新资讯、资料,以及丙炔醇乙氧基化合物相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

丙炔醇乙氧基化合物相关的资料

丙炔醇乙氧基化合物相关的论坛

  • 丙炔醇与氯化亚砜反应吗?

    我打算想用丙炔醇和氯化亚砜反应制取丙炔氯,有经验高手帮忙看看可行不?需要加敷酸剂吗?反应还需要注意些什么?

  • 碘丙炔醇丁基氨甲酸脂可以用FID检测吗

    目前实验室配备的气相色谱只有FID,现在想检测碘丙炔醇丁基氨甲酸脂(CAS:55406-53-6),找到一份文件上说要用ECD检测,请问各位大虾,有没有人做过这个实验,用FID可以检测吗?谢谢了!

丙炔醇乙氧基化合物相关的方案

丙炔醇乙氧基化合物相关的资讯

  • 综述 l 芳香化合物连续硝化应用进展(一)
    综述 l 芳香化合物连续硝化应用进展(一)康宁用“心"做反应让阅读成为习惯,让灵魂拥有温度芳香化合物的硝化是常用的生产工艺,目前化工领域普遍采用的硝化方法是以混合酸作硝化剂、在釜式反应器中进行间歇式反应,在生产的各个环节都存在着资源、环境、安全、能源等问题。微通道反应器相对于釜式反应器拥有持液量少,换热效率高,传质效率好,过程可控等诸多优势,能有效解决硝化反应中的传质,换热,安全性等问题。随着微化工技术的发展,越来越多地被用于芳香化合物的硝化反应。小编将分两部分向读者介绍微通道反应器在芳香化合物硝化反应中应用进展的综述[1],希望可以对您有所启发和帮助。微通道反应器在以苯型芳香烃为底物的硝化反应中的应用1以一取代苯型芳香烃为底物的硝化反应氯苯的硝化氯苯的硝化为快速强放热反应,在传统釜式反应器中,反应液搅拌不均匀、反应放出的热量无法及时导出、反应温度不能精确控制,导致副反应发生,不能保障生产安全。微通道反应器具有良好的传热、传质能力,可以有效解决上述问题。余武斌等[2]利用微通道反应器研究了反应温度、原料配比、体积流速等主要因素对氯苯硝化(图1)的选择性、转化率的影响。结果:在最佳条件下单硝化产物n(对硝基氯苯)∶n(邻硝基氯苯)=1:0.56,与釜式反应器相比,副产物明显减少,转化率明显提高,生产能力提高了4个数量级,并且可以实现工艺的连续化操作苯甲醇硝化合成邻硝基C7H6O和间硝基C7H6O硝基C7H6O是许多精细化学品的重要中间体。Russo等[3]采用微通道反应器在高温和强酸条件下,由苯甲醇合成邻硝基C7H6O和间硝基C7H6O(图2);并将动力学模型应用在该工艺开发过程,通过优化反应条件来提高反应选择性。结果:在最佳条件下反应温度提高到68℃,邻硝基C7H6O和间硝基C7H6O的收率分别提高到42%和96%,这是传统釜式反应器不可能达到的,该方法为硝基C7H6O的工业化生产提供了一个很好的选择。三氟甲氧基苯的硝化4-(三氟甲氧基)硝基苯(NFBM)是三氟甲氧基苯胺的原料,是农药、药品和液晶材料的中间体。在用混合酸硝化三氟甲氧基苯的反应(图3)中, Wen等[4]应用微通道反应器进行工艺开发,基于其优异的传热性能和低滞留率,提出了一个准均相反应动力学模型,用于研究三氟甲氧基苯连续硝化的动力学和传质特性;并应用动力学模型对高硫酸强度下的反应进行了预测。结果:实验收率与模型预测值吻合较好。表明在未来的数字化生产中,微通道反应器有着广阔的发展前景。2以二取代苯型芳香烃为底物的硝化反应3-氟三氟甲苯硝化Chen等[5]在连续流微通道反应器中,以3-氟三氟甲苯为反应物、混合酸为硝化剂合成了5-氟-2-硝基三氟甲苯(图4);通过建立传热平衡模型来探索反应条件。结果:在最佳条件下的收率可达96.4%。该方法具有工艺安全性高、合成过程中杂质可控等优点,对促进未来微通道反应器在工业上的应用具有重要意义。连续安全合成邻硝基对叔丁基苯酚邻硝基对叔丁基苯酚是一种重要的有机化工中间体和化工原料。传统工艺是以对叔丁基苯酚为原料,在搪瓷反应釜中与稀硝酸进行硝化反应得到。该工艺反应剧烈放热,反应时间长,生产安全性较差。尚朝辉等[6]针对上述问题开发了一种在微通道反应器中连续安全合成邻硝基对叔丁基苯酚的方法(图5),通过加热柱塞泵实现对叔丁基苯酚的连续进料,在微通道反应器中实现对叔丁基苯酚和高浓度硝酸连续快速硝化。结果:在最佳条件下,对叔丁基苯酚的转化率达到98.7%,邻硝基对叔丁基苯酚的收率达到79.9%。在提高反应选择性的同时也提高了反应安全性。选择性快速硝化1-甲基-4-(甲基磺酰基)苯1-甲基-4-(甲基磺酰基)-2-硝基苯是合成除草剂甲基磺草酮的重要原料。Yu等[7]采用微通道反应器选择性快速硝化1-甲基-4-(甲基磺酰基)苯(图6)。结果:如果您想要了解更多硝化应用案例,欢迎您直接留言
  • SPE-GC/MS法检测纯油脂中邻苯二甲酸酯类化合物
    ——《不同基质食品中邻苯二甲酸酯的检测的系统解决方案》更新之二 一、实验目的 以某食用植物油为样品,利用GC/MS和Cleanert PAE固相萃取柱建立对16种邻苯二甲酸酯类化合物的检测方法。 二、仪器及试剂 仪器:Agilent7890/5975 GC/MS;离心机;万分之一天平;涡旋混合器;超声仪;氮吹仪; 试剂: Cleanert PAE柱为天津博纳艾杰尔科技有限公司产品;16种邻苯二甲酸酯混标(1000ppm);乙腈(色谱纯);正己烷(色谱纯);乙酸乙酯(色谱纯); 三、实验过程 3.1 样品处理 用万分之一天平取0.1g食用植物油,置于玻璃样品瓶中,加入3mL乙腈,涡旋2min,超声2min,以4000r/m离心2min,将上清液转移至另一干净样品瓶中,于40℃氮气吹干,加入1mL正己烷,摇匀,作为待净化液。 SPE过程如下: (1)活化:用5mL正己烷活化Cleanert PAE柱; (2)上样:将待净化液全部上样; (3)淋洗:10mL乙酸乙酯/正己烷(1:99,v/v); (4)洗脱:5mL乙酸乙酯/正己烷(1:1,v/v); 将洗脱液于40℃下氮气吹干,加入1mL乙腈,涡旋混合1min,超声1min,4000r/m离心2min,取上清液进GC/MS测定。 3.2 标准曲线绘制 将16种邻苯二甲酸酯混标用正己烷稀释成20ppb、50ppb、100 ppb、200 ppb、500 ppb、1ppm、2ppm,用GC/MS进行测定,根据定量离子绘制标准曲线。所选定量离子及各个物质的标准曲线见附录1、附录3。 3.3 GC/MS条件 色谱柱:DA-5MS 30m*0.25mm*0.25μm 进样口:250℃,不分流进样 程序升温:50℃(1min)20℃/min 220℃(1min)5℃/min 280℃(4min) 进样量:1μL 流速:1 mL/min 接口温度:280℃ 电离方式:EI 电离能量:70eV 溶剂延迟:7min 四、实验结果 4.1 谱图在上述色谱条件下,16种邻苯二甲酸酯类化合物的谱图如图1所示。 图1 16种邻苯二甲酸酯类化合物选择离子色谱图(500ppb) 出峰顺序依次为:邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二异丁酯(DIBP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二(2-甲氧基)乙酯(DMEP)、邻苯二甲酸二(4-甲基-2-戊基)酯(BMPP)、邻苯二甲酸二(2-乙氧基)乙酯(DEEP)、邻苯二甲酸二戊酯(DPP)、邻苯二甲酸二己酯(DHXP)、邻苯二甲酸丁基苄基酯(BBP)、邻苯二甲酸二(2-丁氧基)乙酯(DBEP)、邻苯二甲酸二环己酯(DCHP)、邻苯二甲酸二(2-乙基)己酯(DEHP)、邻苯二甲酸二苯酯、邻苯二甲酸二正辛酯(DNOP)、邻苯二甲酸二壬酯(DNP) 4.2 加标回收率及精密度 取5份食用油,在食用油中加入一定量的标准品,按照样品处理方法(3.1)做5份平行样品,回收率及方法精密度见表1。所得色谱图见附录2。 表1 食用油中16种邻苯二甲酸酯类化合物的添加回收率及精密度 峰号 化合物 简称 保留时间 加标浓度100ppb 加标浓度500ppb 平均回收率 RSD(n=5) 平均回收率 RSD(n=5) 1 邻苯二甲酸二甲酯 DMP 8.315 150.35% 15.19% 165.61% 3.72% 2 邻苯二甲酸二乙酯 DEP 9.185 141.48% 15.09% 109.62% 2.99% 3 邻苯二甲酸二异丁酯 DIBP 10.96 121.48% 8.11% 70.87% 6.94% 4 邻苯二甲酸二丁酯 DBP 11.723 80.13% 15.75% 91.53% 25.75% 5 邻苯二甲酸二(2-甲氧基)乙酯 DMEP 12.073 111.25% 10.09% 98.52% 5.55% 6 邻苯二甲酸二(4-甲基-2-戊基)酯 BMPP 12.828 102.90% 8.50% 82.96% 3.85% 7 邻苯二甲酸二(2-乙氧基)乙酯 DEEP 13.167 104.08% 7.08% 95.11% 3.73% 8 邻苯二甲酸二戊酯 DPP 13.54 92.05% 6.62% 88.51% 4.17% 9 邻苯二甲酸二己酯 DHXP 15.718 91.04% 5.48% 89.17% 4.95% 10 邻苯二甲酸丁基苄基酯 BBP 15.875 100.67% 5.69% 97.01% 5.20% 11 邻苯二甲酸二(2-丁氧基)乙酯 DBEP 17.342 89.50% 5.72% 96.64% 5.34% 12 邻苯二甲酸二环己酯 DCHP 18.006 84.37% 6.96% 88.87% 5.52% 13 邻苯二甲酸二(2-乙基)己酯 DEHP 3.96% 15 邻苯二甲酸二正辛酯 DNOP 20.669 79.56% 7.48% 82.41% 5.88% 16 邻苯二甲酸二壬酯
  • “左右开弓”——为什么说 HILIC 也是您纯化极性化合物时所需方法?
    当我们面对一些实验的时候,潜意识里总是更倾向于用自己非常熟悉的某种方式或方法并尝试进行稍微调整就可以让它适用于当前面对的所有应用研究。但这就像是说,您拥有一把切菜非常好用的刀并不意味着它是锯木的最佳方法。亲水相互作用色谱(HILIC)今天呢,“小布”同学在这里和您再介绍一种分离方法:亲水相互作用色谱(HILIC)。认识它,熟悉它,装备它!让您面对不同实验可以做到“左右开弓”!OK!让我们看看它可以为您的极性化合物的纯化做些什么!HILIC 是分离高极性化合物的理想选择高极性化合物通常不能用我们熟知的典型色谱柱分离,即正相色谱(NP)或反相色谱(RP)。在正相色谱当中,由于化合物本身相对极性固定相来说过于粘稠,所以会导致洗脱时间过长。而高极性化合物的特点是在水性流动相中具有良好的溶解性,并且与典型的 NP 所用溶剂不兼容。而即使使用 RP 体系,高极性化合物却几乎不与非或弱极性的固定相进行相互作用,最终与溶剂前沿一起被洗脱,达不到分离的目的。每当遇到这种情况的时候,就是 HILIC 的 Showtime!它的分离往往发生在极性固定相且可使用水的反相溶剂条件下。在这种情况下,与无水的流动相相比,含水流动相在极性固定相的表面形成了富水层。梯度洗脱从低极性有机溶剂开始,通过增加极性水的比例来洗脱极性化合物。在正相色谱中固定相具有更高的极性,在反相色谱中流动相通常由水与有机溶剂组成,而水则是色谱常用流动相体系当中使用的最强极性洗脱剂。因此,HILIC 结合了正相色谱的固定相与反相色谱的流动相的特点来专门“对付”高极性化合物。简单总结就是:HILIC 采用反相色谱流动相体系,而按照正相色谱顺序出峰。尽管 HILIC 的混合模式机制至今仍在研究中,但主要的保留机制被认为是化合物在富含有机物的流动相和后来的富含水的流动相之间分配系数的不同。除此之外,还包括其他相互作用,如氢键、静电相互作用和偶极-偶极相互作用都有助于 HILIC 分离:如果您对 HILIC 色谱也感到跃跃欲试的话,我推荐您使用乙腈,因为它与水具有良好的互溶性以及良好的 HILIC 保留和低粘度特点。当然,您也可以根据实验具体情况选择其他有机溶剂。HILIC 中的相对溶剂强度如下:丙酮 就您的色谱固定相而言,任何极性相均可用于 HILIC 分离。例如:固定相示例中性二醇;酰胺带电离子Slica;氨基丙基相两性离子氨基酸、氨基磺酸固定相相组成中性极性官能团,如:酰胺、天冬酰胺、二醇、交联二醇、氰基和环糊精带电离子阴离子或阳离子官能团两性离子永久带正电荷(铵)和带负电荷(磺酸)的官能团适用应用中性亲水化合物和混有中性、阴离子、阳离子的混合物带电离子中性极性化合物氨丙基相的伯氨基带正电荷;因此,它对阴离子酸性化合物表现出较高亲和力。Slica 表面含有 pKa 为 3.5 的酸性表面硅烷醇基团,这意味着 ≥3.5 pKa 的 pH 值时,这些基团将被离子化,从而使 Slica 固定相可以作为阳离子交换剂,与带正电荷的碱基相互作用并对待分析物进行保留。两性离子由于它们的亲水性和弱离子交换特性,这些固定相适用于分离中性、酸性和碱性分析物以及极性和亲水性化合物以及无机离子。保留机制中性亲水相互作用;无静电相互作用带电离子来自阴离子或阳离子官能团的强静电相互作用两性离子弱静电相互作用选择理想 HILIC 固定相的一个好的原则是,通常来讲中性化合物的亲水性低于带电化合物,而高亲水性固定相需要保留它们(例如两性离子和酰胺固定相)。另一方面,由于静电引力,带电化合物在带电色谱柱上的保留太强,因此中性和两性离子相提供更好的结果。其实,不管正相色谱、反相色谱还是 HILIC 色谱等,都有其最适合的应用领域。即便 HILIC 结合了正相色谱与反相色谱的部分特征,也不代表其满足所有应用。就如同我们日常吃饭时,吃面往往用筷子是最简单高效的方式;喝汤则是用勺子最佳。实验亦如此,所以在实验过程中还是要根据实际情况选择最佳纯化方式。好啦,今天“小布”同学关于 HILIC 色谱的分享就到这里啦,相信诸位小伙伴们也对其有了一定的了解。希望在今后的实验当中它能够助您摆脱纯化高极性化合物的麻烦!各位,我们下期再见!低复杂度样品纯化左右滑动色块查看系统适合的应用范围↓对于低复杂度样品,可以轻松或妥善地分离感兴趣的峰与杂质。使用中至大粒径 (15 - 60 μm) 颗粒是标准应用最经济的解决方案高复杂度样品纯化左右滑动色块查看系统适合的应用范围↓高复杂度样品难以分离并显示出部分重叠的峰需要使用小粒径 (5 - 15 μm) 硅胶颗粒以提供出色的分离度 (=纯度),但会产生高背压从低到高样品浓度的进样左右滑动色块查看系统适合的应用范围↓可支持上样量最大 300g可支持 Flash 预填充色谱柱尺寸:最大 5000g可支持耐高压玻璃柱尺寸:直径 46-100mm支持固体上样和液体上样两种方式低样品浓度进样左右滑动色块查看系统适合的应用范围↓可支持上样量最大 1g可支持高压色谱柱直径尺寸:4.6-70mm支持液体进样检测生色团化合物左右滑动色块查看系统适合的应用范围↓生色团化合物吸收紫外波段或可见光波段 (200 - 800 nm) 的光线适用于紫外线检测的化合物通常含有不饱和键、芳族基或含杂原子的官能团。检测非生色团化合物左右滑动色块查看系统适合的应用范围↓非生色团化合物不吸收光,因此不能通过紫外线检测器显现典型化合物为碳水化合物非生色团化合物可通过蒸发光散射 (ELS) 检测装置来检测

丙炔醇乙氧基化合物相关的仪器

  • 产品概述针对我国当前饮水用源、生活饮用水中异味物质在线监测需求,谱育科技自主研发了EXPEC 2100 全自动水中异味化合物监测系统。该系统基于先进的气相色谱-质谱联用分析方法,基于全自动样品前处理平台,集取样、加标、在线萃取、富集、进样、质谱监测和数据处理于一体,整个流程可全自动、无人值守连续运行,实现对水中异味化合物土臭素及2-甲基异莰醇的筛查和定量分析。性能优势 全流程自动化样品从采样、前处理、固相微萃取、检测分析到数据报告全流程自动监测自动实时内标采用高精度定量泵准确定量水样与内标液,可自动取样及加内标高度集成化系统采用一体式机柜设计,集采样、前处理、固相微萃取、检测仪、数据采集传输于一体长期无人值守系统全自动运行,运行维护周期≥7天(4h/次)高频在线监测常规监测频次4h/次,可根据季节不同自行调节频次 应用领域饮用水源地、水厂取水口
    留言咨询
  • 51i 型总碳氢化合物分析仪采用氢火焰离子检测技术低维护量的火焰离子器技术自动优化燃料和空气混合比例四个独立的温度控制区域故障诊断功能可显示仪器的各项工作状态参数量程1,10,100,1000,5000,10000 ppmc噪声0.025 ppmc (10秒平均时间)最低检测限0.05 ppm carbon零漂(24小时)0.50 ppm准确度2% 读数值或±0.1ppm(取大值)响应时间15秒(满量程90%,1秒平均时间)采样流量0.75-1.5LPM燃料气体25毫升/分钟高纯度氢气或110毫升/分钟氢气、氦气混合气
    留言咨询
  • minispec 碳氢化合物含氢量测定全新 ASTM* D 7171:基于脉冲时域核磁共振的国际标准方法采用时域核磁共振技术分析诸如柴油或航空煤油等碳氢化合物的含氢量。采用时域核磁共振技术测定含氢量快速、无损、无溶剂质量控制/质量保证测定支持所有官方国际标准方法(ASTM D 7171、ASTM D 3701和ASTM D 4808)利用少量市售化合物轻松完成校准最低限度试样制备高投资回报率卓越的可再现性配备改良版软件的专用分析仪 氢含量分析带来的经济效益碳氢化合物和植物油精炼通常包括加氢处理。氢消耗是精炼厂的重要成本问题,氢含量被用作精炼进度的重要指示。含氢量是诸如航空煤油和柴油等产品必须满足的技术规范之一。为了证明产品符合官方技术规范,同时尽可能降低氢用量,必须采用精确、可靠的分析方法。minispec核磁共振方法符合工艺控制对精确度、准确度和速度的要求。操作minispec不要求技术娴熟的人员。仪器设计十分稳健,维护要求很低。进行含氢量分析的其他原因含氢量越高,汽油燃烧越好,质量越高积碳、废气、热辐射等随含氢量的下降而增加 minispec校准两种校准方法可行:采用从化学品供应商处购得的纯碳氢化合物——如十二烷采用用户提供的试样和参考值 试样处理和试管直径这种方法通常采用两种试管直径:18毫米或40毫米直径试管。可提供带杆 PTFE 试管塞,用以避免试样蒸发。 哪怕在长期运行中,大多数时候都使用金属块恒温器对试样进行预加热,这仅需用电。 典型测定用时试样生成很强核磁共振信号。这可实现很高信噪比,从而将典型测定用时缩短至短短一分钟。 minispec 在石化行业的其他应用煤的总含氢量蜡/石蜡的含油量测定油页岩和油砂的含油量测定油粘度测定国际方法国际标准方法推荐使用纯碳氢化合物进行校准。最新 ASTM D 7171 方法列出了推荐校准物质及相应的含氢量值。 氢百分比含量计算由于化学式众所周知,并且物质纯度很高,亦可直接计算出化合物的含氢量。 国际方法列表ASTM D 7171 ( 2005年发布,基于脉冲核磁共振),适用于中间馏分石油产品ASTM D 4808 (轻质和中间馏分、瓦斯油和渣油)ASTM D 3701 (航空涡轮机用燃油) 通过将原来的连续波核磁共振仪器更换为脉冲核磁共振仪器minispec,可以满足甚或超出 ASTM 方法 D 3701 和 D 4808 的要求。脉冲核磁共振分析方法更快速、更灵敏、更精确,并且适用于更多应用。
    留言咨询

丙炔醇乙氧基化合物相关的耗材

  • Rt-TCEP色谱柱-汽油中芳香烃和含氧化合物
    Rt-TCEP 色谱柱(熔融石英)(高极性固定相,1,2,3 - 三[2-氰基乙氧基]丙烷—非键合). 通用柱,是分析汽油中的芳烃和含氧化合物的理想选择。. 温度范围: 0 °C至135 °C。汽油大多含有C12(正十二烷)以下的脂肪烃。为了便于对芳烃和含氧化合物的定性,希望苯能控制在C11之后出峰,甲苯在C12之后出峰。高极性的Rt-TCEP固定相使苯的保留指数大于1100,因此可以使醇类和芳香烃同汽油中的脂肪烃分离开。Rt-TCEP柱与TCEP填充柱具有同样的高极性,TCEP填充柱用作为ASTM D4815(石油含氧化合物的分析法)方法中预分离柱。采用Rt-TCEP色谱柱之后,由于色谱柱的柱效高,使其成为能分析许多化合物的分析柱。Rt-TCEP柱在这方面的效能是其它高极性聚硅氧烷柱不能达到的。Rt-TCEP柱采用非键合固定相,涂在表面上用于增强聚合物的稳定性和延长色谱柱的使用寿命。溶剂清洗应当避免,当在接近最大使用温度的情况下使用Rt-TCEP柱时,有必要对操作进行调节。IDdf温度限度30米60米0.25 mm0.40 μm0 to 135 °C1099810999
  • 汽油中芳香烃和含氧化合物-Rt-TCEP色谱柱
    Rt-TCEP 色谱柱(熔融石英)(高极性固定相,1,2,3 - 三[2-氰基乙氧基]丙烷—非键合). 通用柱,是分析汽油中的芳烃和含氧化合物的理想选择。. 温度范围: 0 °C至135 °C。汽油大多含有C12(正十二烷)以下的脂肪烃。为了便于对芳烃和含氧化合物的定性,希望苯能控制在C11之后出峰,甲苯在C12之后出峰。高极性的Rt-TCEP固定相使苯的保留指数大于1100,因此可以使醇类和芳香烃同汽油中的脂肪烃分离开。Rt-TCEP柱与TCEP填充柱具有同样的高极性,TCEP填充柱用作为ASTM D4815(石油含氧化合物的分析法)方法中预分离柱。采用Rt-TCEP色谱柱之后,由于色谱柱的柱效高,使其成为能分析许多化合物的分析柱。Rt-TCEP柱在这方面的效能是其它高极性聚硅氧烷柱不能达到的。Rt-TCEP柱采用非键合固定相,涂在表面上用于增强聚合物的稳定性和延长色谱柱的使用寿命。溶剂清洗应当避免,当在接近最大使用温度的情况下使用Rt-TCEP柱时,有必要对操作进行调节。IDdf温度限度30米60米0.25 mm0.40 μm0 to 135 °C1099810999
  • 碱性化合物的分析-Rtx-5 Amine色谱柱
    Rtx-5 Amine 色谱柱(熔融石英)(低极性固定相 Crossbond技术键合 5% 二苯基/95% 二甲基聚硅氧烷). 分析胺和其他碱性成分的通用柱,包括烷基胺、二元胺、三元胺、乙醇胺及含氮杂环。. 温度稳定至315 °C。活泼的碱性化合物需要衍生作用,或者交替分析技术才能在其它柱中分析,但是可以直接使用Rtx-5 Amine分析。管柱经过化学性质方面的改变,减少了碱性化合物的色谱峰拖尾现象。Rtx-5 Amine是分析多种碱性化合物的理想工具,但突破性的技术使该柱也可以分析中性化合物,以及带对氢键合敏感的氧基团的吸附化合物。每一根Rtx-5 Amine柱都经过测试,确保可分析ppm级的胺类化合物,而且确保在最高操作温度时保持低流速。IDdf温度限度15米30米0.25mm0.25 μm-60 to 315 °C12320123230.50 μm-60 to 300/315 °C12335123381.00 μm-60 to 300/315 °C12350123530.32 mm1.00 μm-60 to 300/315 °C12351123541.50 μm-60 to 290/305 °C12366123690.53 mm1.00 μm-60 to 290/305 °C12352123553.00 μm-60 to 280/295 °C1238212385
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制