去氢欧夹竹桃甙葡萄糖基洋地黄糖甙

仪器信息网去氢欧夹竹桃甙葡萄糖基洋地黄糖甙专题为您提供2024年最新去氢欧夹竹桃甙葡萄糖基洋地黄糖甙价格报价、厂家品牌的相关信息, 包括去氢欧夹竹桃甙葡萄糖基洋地黄糖甙参数、型号等,不管是国产,还是进口品牌的去氢欧夹竹桃甙葡萄糖基洋地黄糖甙您都可以在这里找到。 除此之外,仪器信息网还免费为您整合去氢欧夹竹桃甙葡萄糖基洋地黄糖甙相关的耗材配件、试剂标物,还有去氢欧夹竹桃甙葡萄糖基洋地黄糖甙相关的最新资讯、资料,以及去氢欧夹竹桃甙葡萄糖基洋地黄糖甙相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

去氢欧夹竹桃甙葡萄糖基洋地黄糖甙相关的资料

去氢欧夹竹桃甙葡萄糖基洋地黄糖甙相关的论坛

  • 葡萄糖基甜菊糖苷基线波动大

    单一的甜菊糖苷与瑞鲍迪A或者是纯度高的葡萄糖基甜菊糖苷的基线波动小,分离也不错。但是有时候做比较杂的葡萄糖基甜菊糖苷,会有小杂峰密集出现并带着基线波动。是按照国标方法做的,求方法解决

  • 葡萄糖基质中B的测定

    请问用ICP-OES测定葡萄糖基质中的B。葡萄糖的浓度比较高大概在20%甚至更高左右。是否需要前处理?怎么做

  • 【原创大赛】HPLC-DAD分析酸浆中木犀草素及木犀草素-7-β-D-葡萄糖甙成分

    【原创大赛】HPLC-DAD分析酸浆中木犀草素及木犀草素-7-β-D-葡萄糖甙成分

    HPLC-DAD分析酸浆中木犀草素及木犀草素-7-β-D-葡萄糖甙成分酸浆(拉丁文名:Physali alkekengi L.)又名红菇娘、挂金灯、戈力、灯笼草、灯笼果、洛神珠、泡泡草、鬼灯等北方称为菇蔫儿、姑娘儿,以果实供食用。化学成分含酸浆苦素A(Physalin A)、酸浆苦素B、酸浆苦素C、木犀草素(Luteolin)及木犀草素-7-β-D-葡萄糖甙。果实含枸橼酸、草酸、维生素C、酸浆红色素(physalien)、酸浆醇(physanol)A,B。花萼含α胡萝卜素、酸浆黄质(physoxanthin)及叶黄素等,种子油的不皂化物中分得多种4α-甲基甾醇,主要为禾本甾醇(gramisterol)和钝叶醇(obtusifoliol)及4种新甾体。此外尚含多种4-脱甲基甾醇,如胆甾醇和24-乙基胆甾醇等。还含有多种三萜3β-一元醇,其中环木菠萝烷醇(cycloartanol)35%,环木菠萝烯醇(cycloartenol)27%、羊毛脂-8-烯-3β-醇(lanost-8-en-3β-ol)。木犀草素(luteolin)是一种天然黄酮类化合物,存在于多种植物中,具有抗炎、抗肿瘤、抗过敏等方面的作用。化学是如下:http://ng1.17img.cn/bbsfiles/images/2016/08/201608311303_607620_2217446_3.jpg目前,国内传统中药有效成分的提取方法普遍存在提取率低、杂质清除率不高、生产周期过长、能耗高、溶剂用量大等缺点。随着中药现代化进程的不断深入,许多现代高新技术不断地被应用到中药有效成分的提取和分离,使得中药有效成分的提取更高效和简便。超声-微波协同萃取技术直接将超声振动与开放式微波两种作用方式相结合,充分利用超声波振动的空化作用以及微波的高能作用,实现了低温常压条件环境下,对固体样品进行快速、高效、可靠的预处理,与常规提取方法相比,超声-微波协同萃取技术具有快速、节能、节省溶剂、污染小等优点。本实验应用超声-微波协同萃取法提取酸浆中的木犀草素及木犀草素-7-β-D-葡萄糖甙,采用高效液相-二极管阵列检测法(HPLC-DAD)测定提取物中木犀草素及木犀草素-7-β-D-葡萄糖甙的含量,药材中二者成分的含量分别为:1.200mg/g 和0.43mg/g,二个峰,木犀草素-7-β-D-葡萄糖甙峰位置分别为:221nm,270nm,木犀草素峰位置分别为:226nm,276nm,由于木犀草素-7-β-D-葡萄糖甙比木犀草素多了一个 β-D-吡喃葡萄糖基团,天麻素二个峰位置都发生了蓝移,样品中二个峰的光谱图与标准品二个峰的光谱图相同,可以进一步确定酸浆中含有木犀草素及木犀草素-7-β-D-葡萄糖甙。主要仪器与试剂主要仪器Agilent1100型四元梯度高效液相色谱仪(美国 Agilent 公司)Agilent TC-C18(ODS)色谱柱(5μm,4.6×250mm,美国 Agilent 公司)CW-2000 超声-微波协同萃取仪(新拓微波溶样测试技术有限公司)DJ-10A 型倾倒式粉碎机(上海隆拓仪器设备有限公司)RE-52AA 型旋转蒸发仪(河南巩义仪器厂)LXJ-IIB 型低速大容量多管离心机(上海安亭科学仪器厂)试剂木犀草素(中检所,含量98%;)木犀草素-7-β-D-葡萄糖甙(中检所,含量98%;)酸浆全草(采于黑龙江)除甲醇、乙腈为色谱纯(国药集团化学试剂有限公司),其余试剂除专门提到外,均为分析醇,实验用水为二次蒸馏水。实验方法供试品溶液的制备 精密称取酸浆粉末1.0g,置于超声-微波萃取仪玻璃容器中,加入50mL70%甲醇,开启超声微波,控制在恒温50℃下提取40min,萃取3次,合并提取液,浓缩至近干,残渣加入甲醇溶解,转移至10mL 量瓶中,加甲醇稀释至刻度,摇匀,过0.45μm 的微孔滤膜,取续滤液,即得。提取条件的考察溶剂的选择:精密称取酸浆粉末1.0g,置于超声-微波萃取仪玻璃容器中,分别用水、70%甲醇、70%乙醇溶液超声-微波协同萃取40min(n=3),萃取3次,合并提取液,浓缩至近干,残渣加入甲醇溶解,转移至10mL 量瓶中,加甲醇稀释至刻度,摇匀,过0.45μm的微孔滤膜,取续滤液,HPLC 测定萃取率。溶剂体积分数的选择:分别用体积分数为40%、50%、60%、70%、80%、90%和纯甲醇溶液超声-微波协同萃取30min(n=3),方法同上。溶剂用量的选择:分别用10mL、20mL、50mL、80mL、100mL70%甲醇提取,方法同上。提取时间的选择:分别用70%甲醇超声-微波协同萃取20min、30min、40min、50min、60min(n=3),方法同上。提取温度的选择:分别在40、45、50、55、60℃下用70%甲醇超声-微波协同萃取40min,方法同上。对照品溶液的制备 分别精密称取常温减压干燥12h 的木犀草素及木犀草素-7-β-D-葡萄糖甙对照品适量,加甲醇配制成木犀草素-7-β-D-葡萄糖甙为200μg/mL、木犀草素为100μg/mL 的混合对照品溶液,冷藏备用。色谱条件 色谱柱:Agilent TC-C18柱(5μm,4.6×250mm);流动相:A-0.1%乙酸水溶液;B-甲醇,线性梯度洗脱:0~30 min,3%~5% B;30~35 min,5%~20%B;35~40min,20%~20%B;检测波长:270nm;流速:1mL/min;柱温:30℃;进样量:20μL。结果与讨论提取条件的优化结果溶剂的优化结果:分别用水、70%甲醇、70%乙醇溶液超声-微波协同萃取30min(n=3),结果表明70%甲醇提取木犀草素-7-β-D-葡萄糖甙的量较高,而木犀草素的量差异不明显,因此选择70%甲醇提取。溶剂体积分数的优化结果:分别用体积分数为40%、50%、60%、70%、80%、90%和纯甲醇溶液超声-微波协同萃取30min(n=3),结果表明,在甲醇体积分数70%时,木犀草素-7-β-D-葡萄糖甙和木犀草素的提取率随着甲醇浓度的增加而增加;但当甲醇体积分数在70%以上时,木犀草素葡萄糖甙的提取率呈现下降趋势,木犀草素没有明显的变化。木犀草素葡萄糖甙属于一种苷,分子量小,极性较大,当甲醇体积分数过高时,溶液极性降低,使得极性较强的木犀草素葡萄糖甙不易溶出,而木犀草素极性相对木犀草素葡萄糖甙小,影响不明显,因此实验选择70%甲醇作为提取溶剂。溶剂用量的优化结果:分别用10mL、20mL、50mL、80mL、100mL70%甲醇提取,结果表明溶剂体积在50mL时木犀草素葡萄糖甙和木犀草素的提取率最高,之后随着溶剂用量的增加,木犀草素葡萄糖甙和木犀草素的提取率趋于稳定,因此溶剂用量选用50mL 进行提取 。提取时间的优化结果:分别用70%甲醇超声-微波协同萃取20min、30min、40min、50min、60min(n=3),结果表明超声-微波协同萃取时间从20~40min的过程中木犀草素葡萄糖甙和木犀草素的提取率逐渐增加;而提取时间超过40min之后,提取率反而逐渐下降。超声-微波协同萃取时间太长,植物中大量细胞细胞破碎,使得大量粘性物质等进入提取液,溶剂杂质增多、粘度增大,影响了有效成分的溶出,有效成分含量反而减少,因此选择提取时间为40min。提取温度的优化结果:分别在40、45、50、55、60℃下用70%甲醇超声-微波协同萃取40min,实验表明,提取温度在50~60℃的范围内,木犀草素葡萄糖甙和木犀草素的提取率没有明显差异,考虑到温度太高容易破坏活性成分,因此选择提取温度为50℃。流动相的考察在实验过程中,流动相首先考察了甲醇-水、乙腈-水等度洗脱对酸浆超声-微波协同萃取样品溶液进行分离,乙腈-水作为流动相时,出峰较快,不能较好地把木犀草素葡萄糖甙和木犀草素与其他杂质成分分离;甲醇-水作为流动相时,出现峰形拖尾现象,分离效果不理想。为改善上述现象,改用0.1%乙酸代替水并采用梯度洗脱,经过反复筛选之后,最终确定流动相组成为 A -0.1%乙酸水溶液, B -甲醇,洗脱程序为0~30 min , 3%~5% B;30~35 min ,5%~20% B ;35~40 min 20%~3% B,木犀草素葡萄糖甙和木犀草素和其他杂质成分能够很好的分离,得到较理想的色谱图。对照品溶液和酸浆萃取样品的HPLC-DAD 分析下图分别显示了在上述的色谱条件下,采用 DAD 进行检测得到的两种混合对照品及酸浆萃取样品的 HPLC 分离色谱图。图1色谱图中木犀草素葡萄糖甙和木犀草素的保留时间分别为18.74min, 26.87min,根据保留时间判断,图2中的 a、b 色谱峰分别初步鉴定为木犀草素葡萄糖甙和木犀草素。图3、4分别显示了混合对照品和酸浆萃取物中保留时间18.74min, 26.87min 的色谱峰进行 DAD 检测后得到的光谱图,木犀草素葡萄糖甙和木犀草素 UV 光谱图形状相似,出现 二个峰,木犀草素葡萄糖甙峰位置分别为:221nm,270nm,木犀草素峰位置分别为:226nm,276nm,由于木犀草素葡萄糖甙比木犀草素多了一个 β-D-吡喃葡萄糖基团,木犀草素葡萄糖甙二个峰位置都发生了蓝移,样品中二个峰的光谱图与

去氢欧夹竹桃甙葡萄糖基洋地黄糖甙相关的方案

去氢欧夹竹桃甙葡萄糖基洋地黄糖甙相关的资讯

  • 欧盟发布氢化葡萄糖浆作为食品添加剂的科学意见
    近日,应欧盟委员会的要求,欧盟食品安全局食品添加剂和营养源科学专家组(ANS Panel)发布氢化葡萄糖浆作为食品添加剂的安全性评估意见。   氢化葡萄糖浆属于氢化淀粉水解产物,主要由麦芽糖醇、山梨糖醇和更高分子量的多羟基化合物组成。对所有年龄段的人来说,早餐的谷物食品、饼干和糕点是氢化葡萄糖浆最重要的潜在来源。对此,专家组进行了一系列的小鼠饲喂试验和人体学试验研究。以个人体重级别来分类,专家组评估了来源于所有推荐的食物中氢化葡萄糖浆的每日最高暴露量。其中,成人对氢化葡萄糖浆的暴露最少。   专家组指出,氢化葡萄糖浆饮食暴露的最高水平小于13周小鼠试验得到的无害作用剂量,其所评估的暴露水平是基于氢化葡萄糖浆应用于所有食物中后存在的假设。专家组认为,从推荐的食物用法和用量水平的角度来说,人体试验中服用的剂量和案例中报道的剂量的暴露水平已经接近于肠胃紊乱的剂量。因此,应该考虑添加其他允许使用的多羟基化合物类食品添加剂来起到通便作用。另外,氢化葡萄糖浆现有的毒理学数据不足以建立其每日允许摄入量(ADI),但是基于现有的资料,可以断定氢化葡萄糖浆目前所推荐的用法和用量不存在安全方面的担忧。
  • 葡萄糖中钠、钾元素对人体的作用
    什么是钠、钾元素?钠是细胞外液中带正电的主要离子,参与水的代谢,保证体内水的平衡,调节体内水分与渗透压;维持体内酸和碱的平衡;钠对ATP的生产和利用,肌肉运动,心血管功能,能量代谢都有关系,此外糖代谢,氧的利用也需要钠的参与;同时钠可以维持血压正常,增强神经肌肉兴奋性。与钠相对,人体中的钾主要(95%以上)在细胞内部,是细胞液中主要的正离子。钾参与糖类、蛋白质的正常代谢。葡萄糖和氨基酸经过葡萄细胞膜进入细胞合成糖原和蛋白质是必须有适量的钾离子参与;维持细胞内正常渗透压,由于钾主要存在于细胞内,因此钾在细胞内渗透压的维持中起着主要作用;维持细胞内外正常的酸碱平衡,钾代谢紊乱时,可影响细胞内外酸碱平衡。钾和钠一起作用,维持体内水分的平衡和心律的正常(钾在细胞内起作用,钠在细胞外起作用);钾和钠平衡失调时会损害神经和肌肉的机能。 实验 本实验根据中国药典2020年版四部通则0406来进行,采用日立ZA3000原子吸收分光光度计进行测试。实验过程:1.复方乳酸钠葡萄糖注射液中钠元素测定配置0μg/ml,2μg/ml,2.5μg/ml,3μg/ml,3.5μg/ml,4μg/ml浓度的标准溶液,同时提取注射液样品中的钠元素,标准溶液及样品液制备完成后,上机进行测试。喷入空气-乙炔火焰,在高温火焰中形成的钠基态原子对钠特征谱线进行吸收,在一定吸光值范围内,其吸光度值和钠的浓度成正比。测试结果: 2.葡萄糖氯化钠钾注射液中钠元素测定配置0μg/ml,0.9μg/ml,1.35μg/ml,1.8μg/ml,2.25μg/ml,2.7μg/ml浓度的标准溶液,同时提取注射液样品中的钠元素,标准溶液及样品液制备完成后,上机进行测试。喷入空气-乙炔火焰,在高温火焰中形成的钠基态原子对钠特征谱线进行吸收,在一定吸光值范围内,其吸光度值和钠的浓度成正比。测试结果: 3.复方葡萄糖电解质MG3注射液中钾元素测定配置 0μg/ml,1.5μg/ml,2.25μg/ml,3μg/ml,3.75μg/ml,4.5μg/ml浓度的标准溶液,同时提取注射液样品中的钾元素,标准溶液及样品液制备完成后,上机进行测试。 喷入空气-乙炔火焰,在高温火焰中形成的钾基态原子对钾特征谱线进行吸收,在一定吸光值范围内,其吸光度值和钾的浓度成正比。 测试结果:结论本次实验对注射液中提取的钠、钾元素进行测试。结果表明,日立ZA3000可以对特征波长589nm的钠元素和766.5nm的钾元素进行准确稳定的分析,测试结果不受注射液中其它共存物质的背景影响,方法稳定可靠。公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 我国科学家实现二氧化碳到葡萄糖和油脂的人工合成
    此前,我国科学家在国际上首次实现了二氧化碳到淀粉的从头合成。那么,二氧化碳除了可以“变”淀粉,还能“变”其他东西吗? 答案是肯定的! 4月28日,《自然催化》以封面文章的形式发表了一项最新研究成果。经过一年半的努力,我国科研人员通过电催化结合生物合成的方式,将二氧化碳高效还原合成高浓度乙酸,并进一步利用微生物合成葡萄糖和脂肪酸(油脂)。 这一成果由电子科技大学夏川课题组、中国科学院深圳先进技术研究院于涛课题组与中国科学技术大学曾杰课题组共同完成。 先把二氧化碳变成“食醋” 或许有人会问,人造的葡萄糖和油脂可以直接吃吗?好吃吗? 对此,曾杰回应:“经过后续纯化处理,可以食用。” 那么,二氧化碳究竟是如何变成葡萄糖和油脂的? “首先,我们需要把二氧化碳转化为可供微生物利用的原料,方便微生物发酵。”曾杰说,在常温常压条件下,清洁、高效的电催化技术是实现这个过程的理想选择,他们就此已经发展了成熟的电催化剂体系。 至于要转化为哪种原料,研究人员将目光瞄准了乙酸。因为它不仅是食醋的主要成分,也是一种优秀的生物合成碳源,可以转化为葡萄糖等其他生物物质。 “二氧化碳直接电解可以得到乙酸,但效率不高,所以我们采取‘两步走’策略——先高效得到一氧化碳,再从一氧化碳到乙酸。”曾杰说。 研究人员发现,一氧化碳通过脉冲电化学还原工艺形成的晶界铜催化合成乙酸的效率可高达52%。 不过,常规电催化装置生产出的乙酸混合着很多电解质盐,无法直接用于生物发酵。 所以,为了“喂饱”微生物,不仅要提升转化效率,保证“食物”的数量,还要得到不含电解质盐的纯乙酸,保证“食物”的质量。 “我们利用新型固态电解质反应装置,使用固态电解质代替传统电催化技术中的电解质盐溶液,直接得到了无需进一步分离的纯乙酸水溶液。”夏川介绍。 微生物“吃醋”产葡萄糖 得到乙酸后,研究人员尝试利用酿酒酵母这一微生物来合成葡萄糖。 “酿酒酵母主要用于奶酪、馒头、酿酒等发酵行业,同时也因其优秀的工业属性,常被用作微生物制造与细胞生物学研究的模式生物。”于涛说,利用酿酒酵母通过乙酸来合成葡萄糖的过程,就像是微生物在“吃醋”,酿酒酵母通过不断地“吃醋”来合成葡萄糖。 “然而,在这过程中,酿酒酵母本身也会代谢掉一部分葡萄糖,所以产量并不高。”于涛表示。 对此,研究团队通过敲除酿酒酵母中代谢葡萄糖的三个关键酶元件,废除了酿酒酵母代谢葡萄糖的能力。之后,实验中的工程酵母菌株在摇瓶发酵的条件下,合成的葡萄糖产量达到1.7g/L。 “我们利用这种生物酿酒酵母‘从无到有’地在克级水平合成了葡萄糖,这代表了该策略较高的生产水平与发展潜力。”于涛说,为进一步提升合成葡萄糖的产量,不仅要废除酿酒酵母的能力,还要加强它本身积累葡萄糖的能力。 于是,研究人员又敲除了两个疑似具备代谢葡萄糖能力的酶元件,同时插入来自泛菌属和大肠杆菌的葡萄糖磷酸酶元件。 于涛表示,泛菌属和大肠杆菌的葡萄糖磷酸酶元件可以“另辟蹊径”,将酵母体内其他通路中的磷酸分子转化为葡萄糖,增加了酵母菌积累葡萄糖的能力。经过改造后的工程酵母菌株的葡萄糖产量达到2.2g/L,产量提高了30%。 新型催化方式有坚实根基 更重要的是,近年来,随着新能源发电的迅速崛起,电力成本下降,二氧化碳电还原技术已经具备与依赖化石能源的传统化工工艺竞争的潜力。 同时,微生物作为活细胞工厂,其优点是产物多样性很高,能够合成许多无法通过人工生产或人工生产效率很低的化合物,是非常丰富的“物质合成工具箱”。比如,在人们常见的白酒、馒头、抗生素等食品药品的加工中,微生物就发挥着重要作用。 “这样,合成葡萄糖和油脂所需要的电力和微生物就有了保障,通过电催化结合生物合成的新型催化方式就有了坚实的根基。”夏川说。 对此,中国科学院院士、中国催化专业委员会主任李灿研究员评价,这项工作耦合了人工电合成与生物合成,发展了一条由水和二氧化碳到含能化学小分子乙酸,然后经工程改造的酵母微生物催化合成葡萄糖和游离的脂肪酸等高附加值产物的新途径,为人工和半人工合成“粮食”提供了新的技术。 “该工作开辟了电化学结合活细胞催化制备葡萄糖等粮食产物的新策略,为进一步发展基于电力驱动的新型农业与生物制造业提供了新范例,是二氧化碳利用方面的重要发展方向。”中国科学院院士、上海交通大学教授邓子新说道。 同时,曾杰也强调,这项成果尚处于实验室的基础研究阶段,如果要推向实用,还需要进一步提高能量效率和产率,降低生产成本。 曾杰表示,接下来,研究团队将进一步研究电催化与生物发酵这两个平台的同配性和兼容性。未来,如果要合成淀粉、制造色素、生产药物等,只需保持电催化设施不改变,更换发酵使用的微生物就能实现。

去氢欧夹竹桃甙葡萄糖基洋地黄糖甙相关的仪器

  • CLAMP System 模块化钳夹试验系统 葡萄糖钳夹技术是目前公认的评价IR和胰岛β细胞功能的金标准方法。然而这项技术在手工操作时代对使用者的经验要求极高,而且繁琐的计算、数据记录和参数调整使得这项技术无法广泛应用。 CLAMP_System模块化葡萄糖钳夹试验平台是一种技术平台和工具。研究人员可以方便的在此技术平台基础上进行更深入的研究和探索,而不会过多的受到实验操作的困扰。同时这套系统可以随时进行手工干预操作,赋予此系统更高的安全性和开放性。毫无疑问,他在药物代谢动力学、新的治疗方案评估、胰岛素和其他激素的作用机制等方面的作用是无可替代的。可实时显示下列数据:以图形方式实时输出试验结果每个检测点的血糖浓度(带时间)该点的葡萄糖输注率该点总的葡萄糖输注的毫升数该点总的葡萄糖输注克数该点胰岛素的输注率该点总的胰岛素输注的毫单位数自动计算试验结果并以EXCEL方式输出报告单※实验数据轨迹记录(记录数据的调整,修改或删除)
    留言咨询
  • 葡萄糖测定仪 400-860-5168转1127
    仪器简介:一、概况 近年来,我国食品发酵和淀粉糖生产控制技术有了较快的发展,生产产量和产品质量有了很大的提高,但还原糖测定技术仍采用已有 80年历史的费林试剂测定法。该方法为手工操作,过程简单,按操作要求可以进行准确的测定。但在实际测定过程中易受很多因素的干扰,如加样量,加水体积,试剂浓度,特别是手工摇动速度和力度、滴定速度、加热时间,严重影响测定的准确性。而不同的操作人员控制这些条件的技术水平不同,测定误差较大,给生产过程控制和产品质量检验带来很多麻烦,严重影响了生产过程高水平精确控制技术的提高。 本技术是根据费林试剂测定原理设计而成的全自动测定仪,现已取得国家发明专利,拥有自主知识产权。测定的各种条件由单片机控制,操作者只需用注射器将微量样品注入反应池即可全自动完成测定过程,并自动显示和打印测定结果,操作简单,使用方便,可最大限度地消除人为误差,提高测定的速度和准确度。该技术测定原理与目前国家标准一致, 不需特殊材料和试剂,各生产厂可直接应用。目前,第三代还原糖测定仪已开始投入生产和应用,分析速度快、准确度高,完全可以满足生产过程还原糖检测的实际需要。  二、基本原理 费林试剂是一种氧化剂,由甲、乙液组成。测定时一定量的甲乙液混合,首先形成氢氧化铜,然后形成酒石酸钾铜络合物。次甲基蓝作为滴定终点指示剂,在氧化溶液中呈蓝色,被还原后呈无色。用标准还原糖滴定时,还原糖首先使铜还原,至铜被还原完毕,才使次 甲基蓝还原成无色,即为滴定终点。 在滴定过程中,溶液颜色逐渐变化:蓝色&rarr 深蓝色&rarr 浅蓝色&rarr 紫红色&rarr 淡紫红色&rarr 在终点时突然变化至无色透明用光电转换装置,检测滴定过程中透光率的变化;根据电压变化曲线由仪器控制系统自动记录、采样、确定滴定终点;根据滴定终点时消耗的标准还原糖量,由控制系统自动计算出样品中的还原糖含量,并显示和打印结果。 三、操作步骤1、电源: 接通电源(220),&ldquo 电源&rdquo 灯(1)亮,进入待机状态。2、设定程序:根据需要可以选择测定程序,以适应不同的测定样品3、开机: 按&ldquo 开/关&rdquo 键, 自动启动 。  4、定标:将标准品注入反应池,仪器自动定标。5、测定:按测定键, 用微量注射器将待测样品注入反应池,仪器自动完成测定过程并打印测定结果。也可直接连续测定。四、试剂:1、费林甲液:硫酸铜35g,1%次甲基蓝溶液5.0ml,共溶后定容至1000ml。2、费林乙液:氢氧化钠126.4g,酒石酸钾钠117.0g,亚铁氰化钾9.4g,以水共溶后定容至1000ml。3、1%标准葡萄糖溶液:无水葡萄糖烘2小时,称10.0 g溶解后定溶至1000 ml。以上试剂按比例调配后使用。技术参数:1、电源:220V 50Hz。2、主机大小:418× 314× 212cm(L× W× H)。3、重量:22.5Kg。4、灵敏度:0.01 % RG。5、线形范围:0 &mdash 1.0% RG 。6、测定周期: 3分钟。主要特点:1、抗干扰能力强,不受样品颜色和浊度的影响, 适合于发酵液、糖化液。2、测定成本低,试剂消耗量低于常规方法。3、操作简单, 用注射器将被测样品注入反应池就可全自动完成。4、测定原理与目前国家标准一致, 不需特殊材料和试剂,各生产厂可直接应用。
    留言咨询
  • 动态葡萄糖监测系统(CGMS)(连续葡萄糖在体检测)可在自由活动的啮齿动物身体上获取实时间质葡萄糖含量,用于消化和代谢研究。本系统利用一种可植于浅皮层的生物探头进行葡萄糖含量测量,连续工作时间超过17天,探头连接到一个背部背包形式的无线蓝牙植入体,专业的CGMS软件用于数据的无线遥测和简单的分析。 该系统具有微创、快速和简单易用的特点。在实验开始前只要更换电池,安置新的探头就可以开展实验。这使得研究者可以在免除动物不必要压力的条件下取得有价值的血糖反应数据。硬件:1.一个耐用、防水、不易撕裂的装置用于放置电池和芯片2.一个低功耗的微型恒电位仪应用偏压输入,传输采集到的信号到蓝牙接收器上3.葡萄糖传感器置于背部皮下4.整套装置由动物马夹固定,并保持探头的稳定软件:(一)数据采集(二)扩展的分析功能:可进行高级的数据分析和定制化的图表、图形和曲线。用户可以使用自定义的变量和设置进行数据处理生成图形 (三)葡萄糖含量水平分布和统计计算各个时间段的葡萄糖水平分布,并定义成超过、低于或在目标范围内。各自的阈值可以自定义。基于每小时的、每天的或者/和所有实验数值自动生成统计数据和图形,并分成超过、低于和正常的葡萄糖水平范围三个部分(四)模式报告利用探头数据的每天趋势、可定义的事件,或者格局等,可轻松的确认葡萄糖水平的有统计意义的趋势变化,以及事件活动。可定制化的数据图表使数据分析一目了然。更多信息,敬请来电咨询。请关注玉研仪器的更多相关产品。如对产品细节和价格感兴趣,敬请来电咨询!
    留言咨询

去氢欧夹竹桃甙葡萄糖基洋地黄糖甙相关的耗材

  • 葡萄糖半定量测试条91348
    葡萄糖半定量测试条91348德国MN葡萄糖测试条,可以检测溶液中葡萄糖的含量,测试过程既简单又快速,30秒钟就可以测出结果。产品编号91348类型QUANTOFIX® 葡萄糖测试条测量范围0 50 100 250 500 1000 2000 mg/L 葡萄糖测试次数100 次保质期2.5 年颜色变化黄 → 蓝绿色
  • 葡萄糖肉浸液肉汤
    葡萄糖肉浸液肉汤 250g 瓶 葡萄糖肉浸液肉汤 250g 瓶 葡萄糖肉浸液肉汤 250g 瓶
  • EE一次性葡萄糖-谷氨酸安瓿瓶
    Environmental Express® 一次性葡萄糖-谷氨酸安瓿瓶免去移液和稀释步骤– 无需再担心样品污染问题– 准备的稀释剂专为 300 mL 的 BOD 瓶制作– 使用简单每小瓶含有 6 mL APHA(美国公共卫生协会)规定浓度的葡萄糖谷氨酸(150 mg/L 葡萄糖和 150 mg/L 谷氨酸)。只需将小瓶彻底摇匀,去除密封打开瓶盖,倒出内容物,用 BOD 水冲洗空瓶两次至供检查的标准溶液。产品有 24 个月的保质期,并提供 SDS。一次性 GGA 标准瓶D1243,24 x 6 mL

去氢欧夹竹桃甙葡萄糖基洋地黄糖甙相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制