当前位置: 仪器信息网 > 行业主题 > >

红外干扰方法

仪器信息网红外干扰方法专题为您提供2024年最新红外干扰方法价格报价、厂家品牌的相关信息, 包括红外干扰方法参数、型号等,不管是国产,还是进口品牌的红外干扰方法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外干扰方法相关的耗材配件、试剂标物,还有红外干扰方法相关的最新资讯、资料,以及红外干扰方法相关的解决方案。

红外干扰方法相关的论坛

  • 关于微流量红外检测器的测定原理及去干扰的原理

    关于微流量红外检测器的测定原理及去干扰的原理

    最近在了解CEMS上的微流量检测器(FUJI ZRJ和SIEMENS Ultramat 23均有用到),但还是不了解测定的原理和去干扰气体的原理,如图。http://ng1.17img.cn/bbsfiles/images/2011/10/201110210908_325422_1771632_3.jpg资料上说: 红外光源 7 被加热到 600 ℃时发射出红外线 ,由切光片 5 调制成频率为 25/ 3Hz 的间断光束 ,经测量气室 4 进入检测器的接收气室。接收气室由填充了待测组分的多层串联气室组成 ,第一层吸收红外辐射波带中间位置的能量 ,第二层吸收边界能量 ,二者之间通过微流量传感器 3 连接在一起。当切光片处于"接通"位置时 ,第一层接收气室 11 填充的待测组分吸收红外辐射能量后 ,受热膨胀 ,压力增大 ,气流经毛细管通道流向第二层接收气室 2 ;当切光片处于"遮断"位置时 ,第一层气室填充气体冷却收缩 ,压力减小 ,第二层气室的气流经毛细管通道反向流回第一层气室。切光片交替通断 ,气流往返流经微流量传感器 ,便在检测器电桥两端产生了交流信号 ,信号幅度大小与流经传感器的气体流量成正比 ,而与待测组分的浓度成反比。 微流量传感器中有两个被加热到大约 120 ℃的镍格栅 ,这两个镍格栅电阻和两个辅助电阻形成惠斯通电桥。脉冲气流反复流经微流量传感器 ,导致镍格栅电阻阻值发生变化。 接收气室采用串联型结构是为了消除干扰组分对测量结果的影响。在接收气室中 ,除填充待测组分外 ,还根据被测气体组成填充一定比例的干扰组分。干扰组分在第一、 二两层气室中对红外辐射的吸收 ,产生的压力作用方向相反 ,相互抵消。在UL TRAMA T23 中 ,还设有第三层接收气室 12 ,其功能是延长二层气室的光程长度 ,吸收红外辐射边缘能量 ,并可通过滑片调整三层气室的透光孔径大小 ,改变红外吸收 ,最大限度地减少某个干扰组分的影响 ,作用相当于一个可调光锥。我的疑问是:1、为什么中间谱带的能量是在第一个吸收室被吸收,而第二个吸收室不吸收?两个吸收室之间装有滤波片吗?另外,如果两个气室长短、容量不同,里面干扰组分的含量也不相同,怎么能完全抵消呢?2、为什么吸收室内不是待测气体的纯组分,而是要加干扰气体的组分呢?怎么确定加入的比例?刚接触这个,很多东西不懂,希望前辈们能帮忙解答,在此先谢过啦~~

  • 【原创】浅谈高频红外碳硫分析仪的高频干扰问题

    在高频燃烧-红外线吸收法测定碳硫时,由于红外检测部分的池电压要求很高,要求在放大的情况下在1mV内跳动,而高频炉产生的高频达20MHz,而且功率有2千瓦以上,所以对池电压产生了一定幅度的干扰。由于红外检测和高频炉是用屏蔽导线连接,所以这种干扰是肯定存在的。如何解决这个问题,无锡杰博电器科技有限公司在国内独创了通过高速光纤连接的方式彻底解决了干扰。光纤是通过玻璃纤维作为导体,将光信号转化为电信号,从而实现了信号的传输,这种传输方式不通过导体传输,所以从根本上隔离了高频信号的串入。具体可浏览[url=http://www.wxjiebo.com]www.wxjiebo.com[/url]

  • 【分享】红外测温的新方法简介

    红外检测技术采用红外成像检测技术可以对正在运行的设备进行非接触检测,拍摄其温度的分布,测量任何部位的温度值。红外检测技术可以对各种外部及内部故障进行诊断,具有实时、遥测、直观和定量测温等优点,用来检测发电厂、变电所和输电线路的运转设备和带电设备,方便、有效。  红外成像技术已毋庸质疑地成为预防性维护领域最有效的检测工具,它能够在设备发生故障之前,快速、准确、安全的发现故障。利用红外成像仪检测在线电气设备的方法是红外温度记录法。红外温度记录法是工业上用来无损探测,检测设备性能和掌握其运行状态的一项新技术。与传统的测温方式(如热电偶、不同熔点的蜡片等放置在被测物表面或体内)相比,红外成像仪可在一定距离内实时、定量、在线检测发热点的温度,通过扫描,还可以绘出设备在运行中的温度梯度热像图,而且灵敏度高,不受电磁场干扰,便于现场使用。 红外成像仪可以在-20℃~2000℃的宽量程内以0.05℃的高分辨率检测电气设备故障,显示出如导线接头或线夹发热,以及电气设备中的局部过热点等等。但是往往在实际使用中许多的不利限制了红外成像仪的使用,比如透过率,工作中许多的电气设备易发热部位往往在电气设备内部,表面材料严重影响了检测的准确性,甚至有些材料红外波段无法透过比如说有机玻璃,但是这些设备在有负载的状态下又不允许打开,使得红外成像仪不能发挥其应有的作用,造成电力部门仪器的闲置或使用率低。

  • 紫外与红外这两种光学方法分析烟气成分到底有何区别呢?

    目前的形势,光学仪器在烟气分析中的使用越来越多,紫外和红外到底哪种方法准确性更高,测试的范围更广呢?1、我认为从准确性的角度还是紫外吸收的方法更优越一些,因为这种方法对水汽干扰要求不是很高,红外则稍逊色点而且受水分影响很大。2、测量范围肯定是红外更广泛一些,但是红外测不了二氮,需要加转换炉,而紫外呢吸收的范围却只有二硫和一氮、二氮,。两者各有利弊吧,大家也发表一下自己的见解,一起参与讨论与分享吧!

  • 【分享】-----红外光谱仪制样方法

    红外光谱仪制样方法 一、红外光谱法对试样的要求红外光谱的试样可以是液体、固体或气体,一般应要求:  (1)试样应该是单一组份的纯物质,纯度应98%或符合商业规格才便于与纯物质的标准光谱进行对照。多组份试样应在测定前尽量预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱相互重叠,难于判断。  (2)试样中不应含有游离水。水本身有红外吸收,会严重干扰样品谱,而且会侵蚀吸收池的盐窗。  (3)试样的浓度和测试厚度应选择适当,以使光谱图中的大多数吸收峰的透射比处于10%~80%范围内。  二、制样的方法  1 .气体样品气态样品可在玻璃气槽内进行测定,它的两端粘有红外透光的NaCl或KBr窗片。先将气槽抽真空,再将试样注入。  2 . 液体和溶液试样  (1)液体池法  沸点较低,挥发性较大的试样,可注入封闭液体池中,液层厚度一般为0.01~1mm。  (2)液膜法沸点较高的试样,直接直接滴在两片盐片之间,形成液膜。对于一些吸收很强的液体,当用调整厚度的方法仍然得不到满意的谱图时,可用适当的溶剂配成稀溶液进行测定。一些固体也可以溶液的形式进行测定。常用的红外光谱溶剂应在所测光谱区内本身没有强烈的吸收,不侵蚀盐窗,对试样没有强烈的溶剂化效应等。  3 . 固体试样  (1)压片法将1~2mg试样与200mg纯KBr研细均匀,置于模具中,用(5~10)?107Pa压力在油压机上压成透明薄片,即可用语测定。试样和KBr都应经干燥处理,研磨到粒度小于2微米,以免散射光影响。  (2)石蜡糊法将干燥处理后的试样研细,与液体石蜡或全氟代烃混合,调成糊状,夹在盐片中测定。  (3)薄膜法主要用于高分子化合物的测定。可将它们直接加热熔融制或压制成膜。也可将试样溶解在低沸点的易挥发溶剂中,涂在盐片上,待溶剂挥发后成膜测定。  当样品量特别少或样品面积特别小时,采用光束聚光器,并配有微量液体池、微量固体池和微量气体池,采用全反射系统或用带有卤化碱透镜的反射系统进行测量。

  • 终于找到了一种去除温度对近红外光谱的影响的方法

    经过努力终于找到了一种去除温度对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的影响的方法,下面是处理前后的对比图,以供大家参考。[img]http://ng1.17img.cn/bbsfiles/images/2006/03/200603151636_15018_1635780_3.gif[/img]没有去除温度干扰的光谱[img]http://ng1.17img.cn/bbsfiles/images/2006/03/200603151636_15019_1635780_3.gif[/img]已经去除温度干扰的光谱[em62]

  • 成品检测方法干扰

    固体制剂,仿制药,有关物质检测方法,空白溶液(乙腈:水40:60)在第一个色谱峰出峰位置略有干扰,准确说是LOQ浓度时可以完全分开,但限度浓度时则将前面的干扰包裹进去,该仿制药公示板里有句话(第一个色谱峰之前的峰都忽略不计),请问这种现象做方法学验证有问题吗?是否该继续下去?还是重新优化有关物质方法,将第一个色谱峰与干扰峰的分离度拉大?

  • 红外光谱仪制样方法

    98%或符合商业规格才便于与纯物质的标准光谱进行对照。多组份试样应在测定前尽量预先用分馏、萃取、重结晶或进行分离提纯,否则各组份光谱相互重叠,难于判断。  (2)试样中不应含有游离水。水本身有红外吸收,会严重干扰样品谱,而且会侵蚀吸收池的盐窗。  (3)试样的浓度和测试厚度应选择适当,以使光谱图中的大多数吸收峰的透射比处于10%~80%范围内。  二、制样的方法  1 .气体样品气态样品可在玻璃气槽内进行测定,它的两端粘有红外透光的NaCl或KBr窗片。先将气槽抽真空,再将试样注入。  2 . 液体和溶液试样  (1)液体池法  沸点较低,挥发性较大的试样,可注入封闭液体池中,液层厚度一般为0.01~1mm。  (2)液膜法沸点较高的试样,直接直接滴在两片盐片之间,形成液膜。对于一些吸收很强的液体,当用调整厚度的方法仍然得不到满意的谱图时,可用适当的溶剂配成稀溶液进行测定。一些固体也可以溶液的形式进行测定。常用的红外光谱溶剂应在所测光谱区内本身没有强烈的吸收,不侵蚀盐窗,对试样没有强烈的溶剂化效应等。  3 . 固体试样  (1)压片法将1~2mg试样与200mg纯KBr研细均匀,置于模具中,用5~10MPa压力在油压机上压成透明薄片,即可用语测定。试样和KBr都应经干燥处理,研磨到粒度小于2微米,以免散射光影响。  (2)石蜡糊法将干燥处理后的试样研细,与液体石蜡或全氟代烃混合,调成糊状,夹在盐片中测定。  (3)薄膜法主要用于高分子化合物的测定。可将它们直接加热熔融制或压制成膜。也可将试样溶解在低沸点的易挥发溶剂中,涂在盐片上,待溶剂挥发后成膜测定。  当样品量特别少或样品面积特别小时,采用光束聚光器,并配有微量液体池、微量固体池和微量气体池,采用全反射系统或用带有卤化碱透镜的反射系统进行测量。

  • 【分享】应用红外测量技术分析煤质成分的新方法

    目前,快速分析煤质的方法主要有活化中子法、电容法、微波法和双能,射线衰减法等。这些方法具有一定的优点,能快速分析燃煤成分,但是它们只能对燃煤的一个或几个指标进行测量,且具有一定的放射危险性。    利用红外线测量原理分析煤质是目前快速分析煤质的一种新手段。它能快速准确地对燃煤进行全面的分析,而且具有样品准备时间短、信噪比高、非破坏性、能在非接触的条件下进行测量及无放射性等优点,是煤质快速分析技术的一个研究热点。    一、原理    1.1基本原理      在有机物及部分无机物分子中,化学键结合的各种集团(如C=C、N=C、O=C、0=H、N=H)的运动(伸缩、振动、弯曲等)都有它固定的振动频率。当受到红外线照射时,分子被激发而产生振动,同时光的一部分能量被吸收,测量其吸收光可以得到复杂的图谱,这种图谱包含了被测物质的特征信息。被测物质的每一种成分都有特定的吸收特性,就像每一个人都有唯一的指纹。通过图谱解析,可以获得这种成分的含量。燃煤的某一种成分含量越高,对特定波长的红外光吸收能力就越强。    收能力就越强。图1主要描述了四种煤样的三种主要无机物和有机物(芳香族、脂肪氢、甲基或经基)在所对应波长处不同的吸收特性。其中T为透射率,log(1/T)是获得透射率的方式。    傅里叶变换光谱技术可以保证信号的稳定性,减轻传统红外测量所遇到的噪声干扰问题;而相对于单色光,干涉光更能测量煤粉中的各种成分含量。所以,对煤质的红外光谱分析是以傅里叶变换红外光谱干涉仪(FT-MIR)为基础的。傅里叶变换漫反射红外干涉光谱仪分析煤质成分装置。

  • 方法确认时如何排除物质干扰

    各位老师好,我想问一下,在进行方法确认的时候,怎么知道需要在待测物质中添加哪些干扰物质,用于排除干扰的确定。O(∩_∩)O谢谢!

  • 【分享】红外光谱仪制样方法

    一、红外光谱法对试样的要求红外光谱的试样可以是液体、固体或气体,一般应要求:  (1)试样应该是单一组份的纯物质,纯度应98%或符合商业规格才便于与纯物质的标准光谱进行对照。多组份试样应在测定前尽量预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱相互重叠,难于判断。  (2)试样中不应含有游离水。水本身有红外吸收,会严重干扰样品谱,而且会侵蚀吸收池的盐窗。  (3)试样的浓度和测试厚度应选择适当,以使光谱图中的大多数吸收峰的透射比处于10%~80%范围内。  二、制样的方法  1 .气体样品气态样品可在玻璃气槽内进行测定,它的两端粘有红外透光的NaCl或KBr窗片。先将气槽抽真空,再将试样注入。  2 . 液体和溶液试样  (1)液体池法  沸点较低,挥发性较大的试样,可注入封闭液体池中,液层厚度一般为0.01~1mm。  (2)液膜法沸点较高的试样,直接直接滴在两片盐片之间,形成液膜。对于一些吸收很强的液体,当用调整厚度的方法仍然得不到满意的谱图时,可用适当的溶剂配成稀溶液进行测定。一些固体也可以溶液的形式进行测定。常用的红外光谱溶剂应在所测光谱区内本身没有强烈的吸收,不侵蚀盐窗,对试样没有强烈的溶剂化效应等。  3 . 固体试样  (1)压片法将1~2mg试样与200mg纯KBr研细均匀,置于模具中,用(5~10) 107Pa压力在油压机上压成透明薄片,即可用语测定。试样和KBr都应经干燥处理,研磨到粒度小于2微米,以免散射光影响。  (2)石蜡糊法将干燥处理后的试样研细,与液体石蜡或全氟代烃混合,调成糊状,夹在盐片中测定。  (3)薄膜法主要用于高分子化合物的测定。可将它们直接加热熔融制或压制成膜。也可将试样溶解在低沸点的易挥发溶剂中,涂在盐片上,待溶剂挥发后成膜测定。  当样品量特别少或样品面积特别小时,采用光束聚光器,并配有微量液体池、微量固体池和微量气体池,采用全反射系统或用带有卤化碱透镜的反射系统进行测量。

  • 干扰效应及其消除方法

    干扰效应 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]分析中,干扰效应按其性质和产生的原因,可以分为四类:  1、 物理干扰  2、 化学干扰  3、 电离干扰  4、 光谱干扰   3.4.1.1 物理干扰  物理干扰是指试样在转移、蒸发和原子化过程中,由于试样任何物理特性(如粘度、表面张力、密度等)的变化而引起的[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]强度下降的效应。物理干扰是非选择性干扰,对试样各元素的影响基本是相似的。  配制与被测试样相似组成的标准样品,是消除物理干扰最常用的方法。在不知道试样组成或无法匹配试样时,可采用标准加入法或稀释法来减小和消除物理干扰。 3.4.1.2 化学干扰  化学干扰是由于液相或[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]中被测元素的原子与干扰物质组分之间形成热力学更稳定的化合物,从而影响被测元素化合物的解离及其原子化。磷酸根对钙的干扰,硅、钛形成难解离的氧化物、钨、硼、希土元素等生成难解离的碳化物,从而使有关元素不能有效原子化,都是化学干扰的例子。化学干扰是一种选择性干扰。   消除化学干扰的方法有:化学分离;使用高温火焰;加入释放剂和保护剂;使用基体改进剂等。例如磷酸根在高温火焰中就不干扰钙的测定,加入锶、镧或EDTA等都可消除磷酸根对测定钙的干扰。在石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法中,加入基体改进剂,提高被测物质的稳定性或降低被测元素的原子化温度以消除干扰。例如,汞极易挥发,加入硫化物生成稳定性较高的硫化汞,灰化温度可提高到300℃;测定海水中Cu、Fe、Mn、As,加入 NH4NO3,使NaCl转化为NH4Cl,在原子化之前低于500℃的灰化阶段除去。 3.4.1.3 电离干扰  在高温下原子电离,使基态原子的浓度减少,引起[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]信号降低,此种干扰称为电离干扰。电离效应随温度升高、电离平衡常数增大而增大,随被测元素浓度增高而减小。  加入更易电离的碱金属元素,可以有效地消除电离干扰。 3.4.1.4 光谱干扰  光谱干扰包括谱线重叠、光谱通带内存在非吸收线、原子化池内的直流发射、分子吸收、光散射等。当采用锐线光源和交流调制技术时,前三种因素一般可以不予考虑,主要考虑分子吸收和光散射的影响,它们是形成光谱背景的主要因素。  分子吸收和光散射的影响  分子吸收干扰是指在原子化过程中生成的气体分子、氧化物及盐类分子对辐射吸收而引起的干扰,图3.10示出了钠的卤化物分子的吸收谱带。光散射是指在原子化过程中产生的固体微粒对光产生散射,使被散射的光偏离光路而不为检 测器所检测,导致吸光度值偏高。   光谱背景除了波长特征之外,还有时间、空间分布特征。分子吸收通常先于[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]信号之前产生,当有快速响应电路和记录装置时,可以从时间上分辨分子吸收和[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]信号。样品蒸气在石墨炉内分布的不均匀性,导致了背景吸收空间分布的不均匀性。   提高温度使单位时间内蒸发出的背景物的浓度增加,同时也使分子解离增加。这两个因素共同制约着背景吸收。在恒温炉中,提高温度和升温速率,使分子吸收明显下降。  在石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法中,背景吸收的影响比火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法严重,若不扣除背景,有时根本无法进行测定。

  • 红外测温仪的正确使用方法

    选择红外测温仪的正确方法点击次数红外测温技术在产品质量控制和监测、设备在线故障诊断、安全保护以及节约能源等方面发挥了正在发挥着重要作用。近二十年来,非接触红外测温仪在技术上得到迅速发展,性能不断提高,适用范围也不断扩大,市场占有率逐年增长。比起接触式测温方法,红外测温有着响应时间快、非接触、使用安全及使用寿命长等优点。 选择红外测温仪可分为三个方面:性能指标方面,如温度范围、光斑尺寸、工作波长、测量精度、响应时间等;环境和工作条件方面,如环境温度、窗口、显示和输出、保护附件等;其他选择方面,如使用方便、维修和校准性能以及价格等,也对测温仪的选择产生一定的影响。随着技术和不断发展,红外测温仪最佳设计和新进展为用户提供了各种功能和多用途的仪器,扩大了选择余地。 确定测温范围:测温范围是测温仪最重要的一个性能指标。每种型号的测温仪都有自己特定的测温范围。因此,用户的被测温度范围一定要考虑准确、周全,既不要过窄,也不要过宽。根据黑体辐射定律,在光谱的短波段由温度引起的辐射能量的变化将超过由发射率误差所引起的辐射能量的变化,因此,测温时应尽量选用短波较好。 确定目标尺寸:红外测温仪根据原理可分为单色测温仪和双色测温仪(辐射比色测温仪)。对于单色测温仪,在进行测温时,被测目标面积应充满测温仪视场。建议被测目标尺寸超过视场大小的50%为好。如果目标尺寸小于视场,背景辐射能量就会进入测温仪的视声符支干扰测温读数,造成误差。相反,如果目标大于测温仪的视场,测温仪就不会受到测量区域外面的背景影响。 确定光学分辨率(距离系灵敏) 光学分辨率由D与S之比确定,是测温仪到目标之间的距离D与测量光斑直径S之比。如果红外测温仪由于环境条件限制必须安装在远离目标之处,而又要测量小的目标,就应选择高光学分辨率的测温仪。光学分辨率越高,即增大D:S比值,测温仪的成本也越高。 确定波长范围:目标材料的发射率和表面特性决定测温仪的光谱响应或波长。对于高反射率合金材料,有低的或变化的发射率。在高温区,测量金属材料的最佳波长是近红外,可选用0.18-1.0μm波长。其他温区可选用1.6μm、2.2μm和3.9μm波长。由于有些材料在一定波长是透明的,红外能量会穿透这些材料,对这种材料应选择特殊的波长。如测量玻璃内部温度选用1.0μm、2.2μm和3.9μm(被测玻璃要很厚,否则会透过)波长;测量玻璃内部温度选用5.0μm波长;测低区区选用8-14μm波长为宜;再如测量聚乙烯塑料薄膜选用3.43μm波长,聚酯类选用4.3μm或7.9μm波长。厚度超过0.4mm选用8-14μm波长;又如测火焰中的CO2用窄带4.24-4.3μm波长,测火焰中的CO用窄带4.64μm波长,测量火焰中的NO2用4.47μm波长。 确定响应时间:响应时间表示红外测温仪对被测温度变化的反应速度,定义为到达最后读数的95%能量所需要时间,它与光电探测器、信号处理电路及显示系统的时间常数有关。这要比接触式测温方法快得多。如果目标的运动速度很快或测量快速加热的目标时,要选用快速响应红外测温仪,否则达不到足够的信号响应,会降低测量精度。然而,并不是所有应用都要求快速响应的红外测温仪。对于静止的或目标热过程存在热惯性时,测温仪的响应时间就可以放宽要求了。因此,红外测温仪响应时间的选择要和被测目标的情况相适应。 信号处理功能:测量离散过程(如零件生产)和连续过程不同,要求红外测温仪有信号处理功能(如峰值 保持、谷值保持、平均值)。如测温传送带上的玻璃时,就要用峰值保持,其温度的输出信号传送至控制器内。 环境条件考虑:测温仪所处的环境条件对测量结果有很大影响,应加以考虑并适当解决,否则会影响测温精度甚至引起测温仪的损坏。当环境温度过高、存在灰尘、烟雾和蒸汽的条件下,可选用厂商提供的保护套、水冷却、空气冷却系统、空气吹扫器等附件。这些附件可有效地解决环境影响并保护测温仪,实现准确测温。在确定附件时,应尽可能要求标准化服务,以降低安装成本。当烟雾、灰尘或其他颗粒降低测量能量信呈悍,双色测温仪是最佳选择。在噪声、电磁场、震动或难以接近环境条件下,或其他恶劣条件下,光纤双色测温仪是最佳选择。

  • [求助] 空白血浆有干扰,求处理方法!急!

    各位大侠!我是刚毕业的本科生,我做生物等效性的,在处理空白血浆的时候一直有干扰峰,换流动相没法消除,分不开峰,现急求血浆处理方法,我准备用5%高氯酸沉淀蛋白的方法,但是对于高氯酸沉淀后,取上清液直接进样有点担心,PH值合适吗?能直接进样吗?会不会伤柱子啊?请各位大侠帮帮新人!先谢谢啦!我做了好多次了,空白一直有干扰,是新鲜的空白血,应该不会污染到的.

  • 关于化妆品重金属方法验证方案干扰性实验

    关于化妆品汞砷铅镉四项检测中,样品不同基质(粉、霜、乳液、膏、水)对预处理和检测过程中干扰问题,1. 最近在做化妆品这四个元素的方法验证方案,请教各位有大神有必要在方法验证方案里体现并做不同基质的干扰性试验?2. 会因为基质的不同导致干扰,从引起检测值异常吗?3. 通过化妆品技术规范里提到的水浴挥发醇类有机物、赶酸、加改进剂方法,还有什么其他经验之谈的去干扰嘞?4. 回归问题 1我个人感觉方法验证主要是从检出限、定量限、精密度和准确度等几个维度去验证,干扰实验又是一个体系,所以我个人觉得没必要在方法验证方案里提及,而且经验性的东西居多。请教各位认证和实验的大神指点一二~~

  • 近红外红外定性分析漆膜。

    我现在有个想法,能不能用红外的方法来给漆膜定性分析。目前具体的样品还没有,所以想先问问各位老师有没有可能用红外ATR来做?油漆总共分15类,如果光树脂我想应该没问题的,问题就是涂膜后,填料会不会造成影响?表面是否应该处理,如何处理才能排除外界的干扰?还有,我想,近红外的方法是不是也可以试试?在定性分析方面,近红外还算强大把?干挠不像红外那么严重。还请各位老师来聊聊 谁有这方面的文献还请发给我一份。这个帖子在红外发过了,不过怕在红外版沉了,在这里置顶一下,[em51]

  • 【转帖】电磁干扰的屏蔽方法

    EMC问题常常是制约中国电子产品出口的一个原因,本文主要论述EMI的来源及一些非常具体的抑制方法。 电磁兼容性(EMC)是指“一种器件、设备或系统的性能,它可以使其在自身环境下正常工作并且同时不会对此环境中任何其他设备产生强烈电磁干扰(IEEE C63.12-1987)。”对于无线收发设备来说,采用非连续频谱可部分实现EMC性能,但是很多有关的例子也表明EMC并不总是能够做到。例如在笔记本电脑和测试设备之间、打印机和台式电脑之间以及蜂窝电话和医疗仪器之间等都具有高频干扰,我们把这种干扰称为电磁干扰(EMI)。 EMC问题来源 所有电器和电子设备工作时都会有间歇或连续性电压电流变化,有时变化速率还相当快,这样会导致在不同频率内或一个频带间产生电磁能量,而相应的电路则会将这种能量发射到周围的环境中。 EMI有两条途径离开或进入一个电路:辐射和传导。信号辐射是通过外壳的缝、槽、开孔或其他缺口泄漏出去;而信号传导则通过耦合到电源、信号和控制线上离开外壳,在开放的空间中自由辐射,从而产生干扰。 很多EMI抑制都采用外壳屏蔽和缝隙屏蔽结合的方式来实现,大多数时候下面这些简单原则可以有助于实现EMI屏蔽:从源头处降低干扰;通过屏蔽、过滤或接地将干扰产生电路隔离以及增强敏感电路的抗干扰能力等。EMI抑制性、隔离性和低敏感性应该作为所有电路设计人员的目标,这些性能在设计阶段的早期就应完成。 对设计工程师而言,采用屏蔽材料是一种有效降低EMI的方法。如今已有多种外壳屏蔽材料得到广泛使用,从金属罐、薄金属片和箔带到在导电织物或卷带上喷射涂层及镀层(如导电漆及锌线喷涂等)。无论是金属还是涂有导电层的塑料,一旦设计人员确定作为外壳材料之后,就可着手开始选择衬垫。

  • 消除氧化物干扰的方法

    消除氧化物干扰的方法

    书中提出消除氧化物干扰的方法也可以用冷等离子体技术。冷等离子体技术可以减弱氧化物干扰不理解,RF功率小,氧化物不是结合的更多吗,怎么还可以减弱呢?谢谢http://ng1.17img.cn/bbsfiles/images/2012/11/201211190717_405110_2166779_3.jpg

  • 【原创大赛】【官人按】二维/多维相关光谱方法对热重-红外联用双线性数据的解析

    【原创大赛】【官人按】二维/多维相关光谱方法对热重-红外联用双线性数据的解析

    [align=center][b]二维/多维相关光谱方法对热重-红外联用双线性数据的解析[/b][/align][align=center]郭然,徐怡庄[sup]*[/sup][/align][align=center]北京分子科学国家实验室,稀土材料化学及应用国家重点实验室,北京大学化学与分子[/align][align=center]工程学院,北京 100871[/align][b]摘要:[/b]本工作中,使用基于异步正交的二维/多维相关光谱方法对多类热重-红外联用双线性数据进行分析。结果表明,本方法可以有效地处理包含二组分甚至多组分气体逸出物的热重-红外数据,并得到体系中各纯物质光谱。该方法可以有效识别大量体系中某物质的特征吸收峰,且不需预先得知待差减物质谱图,相比于传统的差减法有较明显的优势。[b]关键字:[/b]二维/多维相关光谱 热重-红外联用[b]背景介绍[/b]热重-红外联用方法被广泛地应用于物质成分鉴定、热分解过程考察等相关研究。在常规的热重-红外联用分析中,不同气体逸出物随加热过程逐渐逸出,并通过红外气体池进行检测。然而,气体逸出物的逸出曲线经常会有重合,在某些情况下,逸出曲线甚至会有严重重叠。例如,两气体组分A及B由同一物质分解产生或是具有接近的沸点,则该两物质的逸出曲线会非常接近。气体逸出物逸出曲线的严重重叠,使得在红外检测过程中,只能得到混合物的红外光谱而非各纯物质光谱,这给气体逸出物的鉴定及后续分析造成了很大困难。一般来说,在对红外光谱进行处理,以期得到各纯物质光谱时,可以通过差减法,将光谱中存在的干扰项去除,从而得到目标物质的光谱。该方法的应用一般需要满足以下条件,即需要扣除的物质及其光谱已知。例如,光谱处理中常见的水汽及二氧化碳背景扣除方法,即是基于水汽和二氧化碳光谱已知的前提下,通过选择合适的峰位,找出差减的比例系数,从而将水汽及二氧化碳光谱从总光谱中移除。然而,随着总光谱复杂程度的加剧,干扰光谱鉴定的物质不仅是水和二氧化碳,而可能包含各类未知且具有不同光谱形状的气体逸出物,单纯进行水和二氧化碳的扣除,对很多体系的分析而言是远远不够的。即使是二氧化碳的扣除,差减法也存在一定问题。在中红外区,二氧化碳的谱峰主要存在于2350cm[sup]-1[/sup]-2200cm[sup]-1[/sup]的光谱区段。由于很少有气体产物在该光谱区段存在吸收峰,目前的二氧化碳扣除算法可以将该区段谱峰全部扣去。然而,实际体系中存在一些物质,在该光谱区段具有具红外活性的振动模式(如乙腈的C≡N三键伸缩振动)。当这些物质对总光谱有贡献时,差减法很难恰好将二氧化碳的成分准确扣除,从而导致得到的谱峰变形,影响后续的数据分析。本工作中,使用本课题组开发的二维/多维相关光谱方法对多类物质的热重-红外数据进行处理,以期得到各纯物质光谱。[b]算法简要介绍[/b]二维及多维异步谱的构建基于以下算法:[align=center] [img=,492,106]https://ng1.17img.cn/bbsfiles/images/2018/09/201809051625044178_4191_3237657_3.jpg!w492x106.jpg[/img][/align]式中,为物质k在[i]t[/i][sub]i[/sub]时刻的逸出浓度,为物质k在[i]v[/i][sub]j[/sub]处的红外吸收,N为Hilbert-Noda变换矩阵。通过基于Hilbert-Noda变换矩阵的异步相关乘法,构建二维异步谱。在异步谱上通过寻找特征性的系统缺峰,得到一级特征峰的吸收信息,并由该处的异步谱截线,得到各纯物质的光谱形状。构建多维异步谱时,在构建二维异步谱方式的基础上,对原始一维光谱进行多级分组,在二维异步谱上取各组相同位置的截线,进行基于公式(2)的高维异步谱构建。可以证明,通过异步光谱的升维算法,可以将体系中各成分对于光谱的贡献逐一去除,进而不断简化光谱形式,最终得到纯物质光谱。通过选择不同的升维路径,可以通过选择不同的特定吸收峰,去除不同成分对总光谱的贡献,从而得到不同的物质光谱(证明略)。本方法已应用在多类体系中,并成功得到了体系中各纯物质红外光谱。下面给出一个应用实例。[b]实验条件[/b]仪器:TGA(TGA-8000)-FTIR (Frontier) 联用仪器 (Perkin Elmer);样品:去离子水、乙腈、乙酸乙酯。实验步骤:配制水/乙腈/乙酸乙酯混合溶液(v:v:v=1:4:1)上样于坩埚,以30℃为起始温度,10℃/min速度升温至90℃,30℃/min升温至150℃。红外光谱采集:分辨率8cm[sup]-1[/sup],每张光谱采集时间约2.7s。[b]结果讨论[/b]水、乙腈、乙酸乙酯三组分的沸点相差不大,通过上述算法,可以将体系中各成分逐级去除,最终得到三组分各自的纯物质光谱。[align=center][b] [img=,690,626]https://ng1.17img.cn/bbsfiles/images/2018/09/201809051625227884_5273_3237657_3.jpg!w690x626.jpg[/img][/b][/align][align=center]图1 基于三维异步相关方法的水/乙腈/乙酸乙酯混合物热重-红外联用数据分析 (A) 二维异步相关谱 (B) 三维异步谱在x=3746cm[sup]-1[/sup]处的二维截面 (C) 三维异步谱在x=2620cm[sup]-1[/sup]处的二维截面 (D) Trace 1-图(B)在y=2620cm[sup]-1[/sup]处的截线,对应乙酸乙酯光谱(Trace 4);(Trace 2)图(B)在y=1768cm[sup]-1[/sup]处的截线,对应乙腈光谱(Trace 5);(Trace 3)图(C)在y=2982cm[sup]-1[/sup]处的截线,对应水光谱(Trace 6)[/align][b]致谢[/b]本工作由国家自然科学基金(No.51373003)赞助。

  • 【求助】求ICP测金属中的铅,排除干扰的方法.

    我用 岛津ICPE-9000 测金属里的铅,干扰大?特别是铁合金和铝合金里的铅,不知大家有啥好方法解决干扰。没有AAS可用,下面有附件谱图,请各位大侠们看看~!干扰很大~!铅看不到峰哦~!求祥细的方法,谢谢了!!!!!

  • 【资料】ICP-AES光谱干扰校正方法的研究

    ICP-AES光谱干扰校正方法的研究沈兰荪著 北京工业大学出版社1997年出版简介ICP-AES(电感耦合等离子体原子发射光谱)分析技术作为一种重要的元素分析技术,在国民经济与科学研究的各个方面得到了广泛的应用,光谱干扰的校正是ICP-AES分析技术进一步发展的一个关键问题。本书是一本关于ICP-AES分析技术的专著,研究用现代信号处理的观点与方法校正ICP-AES分析中的光谱干扰,全书共分7章,第1章绪论,第2章ICP-AES分析技术为全书的基本,第3章至第6章,分别讨论了“谱线拟合法”“自适应滤波法”“卡尔曼滤波算法”及“基于数字化谱的方法”等4种主要的校正方法,第7章为光谱干扰的实时校正。本书可供有关专业 高校教师、研究生、高年级大学生、科研人员及工程技术人员使用。目 录前 言第1章绪论1.1ICP-AES中的光谱干扰1.2化学计量学的发展1.3本书内容介绍第2章 ICP-AES分析技术2.1原子发射光谱2.2 ICP-AES分析仪器 2.2.1概述 2.2.2现代ICP-AES分析仪器的典型结构 2.2.3ICP-AES仪器的分析性能 2.2.4仪器函数2.3ICP-AES中光谱干扰校正概述 2.3.1ICP-AES中的干扰现象 2.3.2背景干扰的传统校正方法 2.3.3谱线重叠干扰的传统校正方法 2.3.4传统校正方法的改进2.4讨论第3章 谱线拟合法3.1光谱干扰的数学模型3.2谱线拟合的数学基础 3.2.1Cauchy法 3.2.2直接搜索法 3.2.3Newton-Raphson法 3.2.4单纯形法 3.2.5广义最小二乘法 3.2.6Davison法3.3DFP法用于光谱干扰的校正 3.3.1DFP法[87] 3.3.2模拟数据3.4基于非线性最小二乘法的光谱干扰校正 3.4.1约束条件的处理 3.4.2迭代过程 3.4.3模拟数据 3.4.4实测谱图分析3.5讨论第4章 自适应滤波法4.1Widr0w自适应噪声抵消模型4.2自适应滤波参考输入的选取4.3LMS算法[138,96,158~161]4.4LS算法[138,162,163]4.5自适应滤波法用于背景干扰的校正[98,101,103] 4.5.1模拟数据 4.5.2实测谱图分析4.6自适应滤波法用于谱线重叠干扰的校正[99,102,103] 4.6.1自适应谱线抽取模型的提出 4.6.2模拟数据 4.6.3实测谱图分析4.7ICPAES自适应分析法 4.7.1算法公式 4.7.2模拟数据 4.7.3实测谱图分析4.8用多通道系统识别方法分离光谱重叠峰[91,105] 4.8.1多通道系统识别模型 4.8.2识别算法 4.8.3模拟数据 4.9讨论第5章 卡尔曼滤波算法5.1 Van Veen的卡尔曼滤波算法5.2 Van Veen的卡尔曼滤波算法的模型误差5.3 ICP-AES加权增量卡尔曼滤波算法5.4 讨论第6章 给予数字化谱的方法6.1 数字化谱的获取6.2 模式识别用于光谱分类与识别6.3 高维数据的降维处理6.4 因子分析处理数字化谱第7章 光谱干扰的实时校正7.1 微电子技术的发展7.2 ASIC电路的兴起7.3 WSI技术与三维集成技术7.4 表面安装技术7.5 计算机技术的发展7.6 DSP芯片的进步7.7 采用TMS320C20的光谱干扰实时校正系统7.8 采用Transputer的光谱干扰实时校正系统7.9 讨论

  • AA分析中碰到的几类干扰和解决方法

    AA分析的几类干扰:A. 光谱干扰B. 蒸发干扰C. 电离干扰D. 基体干扰E. 背景吸收A.谱线干扰1. 干扰物与分析物之谱线重叠2. 分析物谱线包含于干扰分子宽谱线中解決方法 :1. 减少狭缝宽度2. 应用其他的光谱线3. 采用化学分离光谱线的重叠干扰在[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析条件下,产生的发射和吸收线较少,常用的分析线更少。分析元素实际常用的最灵敏线之间基本无谱线干扰。(1)吸收线干扰大量实验表明,已观察到的吸收线干扰有13对:分析线干扰吸收线:Ca 4226.73Ge 4226.57Fe 2719.03Pt 2719.04Cd 2288.02As 2288.12Ga 4032.98Mn 4033.07Cu 3247.54Eu 3247.53Pr 4924.95Nd 4924.53Hg 2536.52Co 2536.49Sb 2170.23Pb 2169.99Zn 2138.56Fe 2138.59Sb 2311.47Ni 2310.97Al 3082.15V 3082.11Si 2506.90V 2506.90Co 2521.36In 2521.37(2)发射线干扰目前空心阴极灯的选材已经成熟;倒线色散均优于20A/mm,只要选取小于2A的通带,一般可消除光源中的发射干扰。高温原子化器中,燃烧产物或石墨炉体的热辐射带状分子发射光谱等均会叠加在特征分析线上。通常采用调制光源供电方式,配合相敏检波和相应滤波手段,以消除原子化器中的直流辐射干扰。B蒸发干扰部份样品产生改变挥发速率,或干扰物与分析物产生不易裂解之热稳定物质,使分析物未完全成为自由原子。解決方法:1. 增加火焰温度2. 加入化学释放剂3. 加入保护性试剂4. 化学分离B.离子化干扰分析物因其电离能很低,在火焰中极易离子化,造成灵敏度降低。解決方法:加入大量(100倍以上)更容易离子化元素,例如 Na, K, Cs, Sr.. 來抑制分析物游离。如C2H2/Air 測 Ba 加入 2000 至 5000 ppm 之KClC.基体干扰 雾化过程若测试样品与标准样品溶液之粘稠性或表面张力不同,而造成提升速率或雾化效率不同。解決方法:1.使测试样品于标准样品溶液之成分条件愈接近愈好。于样品前处理时加入酸或是其他试剂时,也需同时加入近似浓度于标准品溶液中。2 标准添加法 ( Standard Addition Method )D.背景吸收当元素灯所发出的特征谱线被分子或固体颗粒遮挡发生能量衰减时产生的。这些分子包括金属氧化物、氢分子、 OH和部分溶剂碎片解決方法:1. D2 校正2. Zeeman 校正

  • 原子荧光法测定水样中汞的干扰消除及水样消解方法

    想咨询一下大家有关汞样品(水)干扰排除及水样消解的问题:目前本人用原子荧光法测废水和地表水中汞时,直接在样品中加入HNO3(量占5%),没做其它前处理措施,做污水处理厂样品时经常会碰到处理前比处理后高的情况,污水实际处理工艺又没听说有加汞,比较困惑,是不是处理前的样品太脏了,有负干扰在里面而导致结果低了(还是处理后的水样中含有正干扰的干扰物)?测水样中汞时都有什么干扰,怎么排除(我已经把硼氰化钾的浓度降至0.5%了)?你们有没有比较成熟的前处理方法?我没找到淡水汞的测定国标(单行本),不知从何下手。本来想用海水汞的消解方法的,但想想基体差别大不知合不合适。有经验的能否传授一下?有好的建议的也可直接发我邮箱:yzhlai@163.com谢谢!

  • 消除ICP-OES的干扰方法

    [font=Arial, Helvetica, sans-serif, 新宋体][size=19px][color=#333333]1. [/color][/size][/font][url=http://www.huaketiancheng.com/][b][font=宋体][size=19px][color=#333333]电感耦合等离子发射光谱仪[/color][/size][/font][/b][/url][font=宋体][size=19px][color=#333333]的干扰消除方法有三种:一种是基体匹配,一种是加内标,一种是数学校正。大家在分析测试过程中往往只采用了其中的一种,但是个人通过实践发现,如果能将其中的两种联合使用效果会更好。[/color][/size][/font][font=Arial, Helvetica, sans-serif, 新宋体][size=19px][color=#333333]2. [/color][/size][/font][font=宋体][size=19px][color=#333333]、基体匹配操作容易,但有些特殊样品,很难进行基体匹配,这是困扰所在。[/color][/size][/font][font=Arial, Helvetica, sans-serif, 新宋体][size=19px][color=#333333]2[/color][/size][/font][font=宋体][size=19px][color=#333333]、加内标,可以有效控制仪器的漂移与一定的干扰。但现在的仪器漂移都很小,内表起到的作用不知道有多大。[/color][/size][/font][font=Arial, Helvetica, sans-serif, 新宋体][size=19px][color=#333333]3[/color][/size][/font][font=宋体][size=19px][color=#333333]、标准加入法可以起到一定作用,但操作过于麻烦,对于每天有很多试样测定的人来说,无疑十不可行的。[/color][/size][/font][font=Arial, Helvetica, sans-serif, 新宋体][size=19px][color=#333333]4[/color][/size][/font][font=宋体][size=19px][color=#333333]、数学校正方法很多,有的是利用分峰,有的是利用最小二乘法等。达到的效果也是不同的。[/color][/size][/font][font=Arial, Helvetica, sans-serif, 新宋体][size=19px][color=#333333][/color][/size][/font][font=宋体][size=19px][color=#333333]对待一些数据的处理有很多种方法,算起来有[/color][/size][/font][font=Arial, Helvetica, sans-serif, 新宋体][size=19px][color=#333333]12[/color][/size][/font][font=宋体][size=19px][color=#333333]种之多用于[/color][/size][/font][font=Arial, Helvetica, sans-serif, 新宋体][size=19px][color=#333333]icp[/color][/size][/font][font=宋体][size=19px][color=#333333]中,可能[/color][/size][/font][font=Arial, Helvetica, sans-serif, 新宋体][size=19px][color=#333333]cid[/color][/size][/font][font=宋体][size=19px][color=#333333]监测器的仪器比较容易实现。[/color][/size][/font][font=Arial, Helvetica, sans-serif, 新宋体][size=19px][color=#333333]5. [/color][/size][/font][font=宋体][size=19px][color=#333333]在[b]原子发射光谱法[/b]中一般将干扰分为光谱干扰和非光谱干扰两种,光谱干扰指的是那些分析线没有被完全分开时所产生的干扰,其中包括背景干扰;非光谱干扰指的是那些已经被完全分开的谱线受基体组分的影响而使其强度增强或减弱效应。采用内标法补偿的是非光谱干扰,采用基体匹配的主要目的也是消除非光谱干扰,而采用数学处理的方法大多数主要是为了克服光谱干扰的影响。理论上讲要做到真正的完全基体匹配是很困难的和很麻烦的,除非样品组成非常简单。加标法可以看成是另一种形式的基体匹配法。对于内标法,如果使用的仪器具有此项功能,则使用起来就非常方便,但这种方法的效果与内标线的选择有很大关系,有的时候可能会因条件所限找不到特别理想的内标。对于数学处理,通常是仪器具有哪些方法我们就只能选择那些方法,如果自己去处理的话,除非你有这方面的软件,否则就非常的麻烦。[/color][/size][/font]

  • 红外气体分析仪中的滤波室

    我在网上看到有很多红外气体分析仪使用滤波室消除掉干扰气体对待测气体的干扰,这种方法有效吗?怎么样才能保证最大限度消除干扰?对滤波器室大小、滤波器室内干扰气体的浓度有什么要求啊?是不是越浓越好?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制