当前位置: 仪器信息网 > 行业主题 > >

红外定析方法

仪器信息网红外定析方法专题为您提供2024年最新红外定析方法价格报价、厂家品牌的相关信息, 包括红外定析方法参数、型号等,不管是国产,还是进口品牌的红外定析方法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外定析方法相关的耗材配件、试剂标物,还有红外定析方法相关的最新资讯、资料,以及红外定析方法相关的解决方案。

红外定析方法相关的论坛

  • 近红外分析方法

    近红外方法开发完,并完成方法及方法报告的编写,然后投入使用 。当近红外分析结果异常,补加建模数据后方法参数变了,需要从新编写方法规程吗?是没次改变方法参数都要写方法规程吗?

  • 【分享】应用红外测量技术分析煤质成分的新方法

    目前,快速分析煤质的方法主要有活化中子法、电容法、微波法和双能,射线衰减法等。这些方法具有一定的优点,能快速分析燃煤成分,但是它们只能对燃煤的一个或几个指标进行测量,且具有一定的放射危险性。    利用红外线测量原理分析煤质是目前快速分析煤质的一种新手段。它能快速准确地对燃煤进行全面的分析,而且具有样品准备时间短、信噪比高、非破坏性、能在非接触的条件下进行测量及无放射性等优点,是煤质快速分析技术的一个研究热点。    一、原理    1.1基本原理      在有机物及部分无机物分子中,化学键结合的各种集团(如C=C、N=C、O=C、0=H、N=H)的运动(伸缩、振动、弯曲等)都有它固定的振动频率。当受到红外线照射时,分子被激发而产生振动,同时光的一部分能量被吸收,测量其吸收光可以得到复杂的图谱,这种图谱包含了被测物质的特征信息。被测物质的每一种成分都有特定的吸收特性,就像每一个人都有唯一的指纹。通过图谱解析,可以获得这种成分的含量。燃煤的某一种成分含量越高,对特定波长的红外光吸收能力就越强。    收能力就越强。图1主要描述了四种煤样的三种主要无机物和有机物(芳香族、脂肪氢、甲基或经基)在所对应波长处不同的吸收特性。其中T为透射率,log(1/T)是获得透射率的方式。    傅里叶变换光谱技术可以保证信号的稳定性,减轻传统红外测量所遇到的噪声干扰问题;而相对于单色光,干涉光更能测量煤粉中的各种成分含量。所以,对煤质的红外光谱分析是以傅里叶变换红外光谱干涉仪(FT-MIR)为基础的。傅里叶变换漫反射红外干涉光谱仪分析煤质成分装置。

  • 【分享】红外分析方法通则

    名称:傅里叶变换红外光谱方法通则起草单位:国家教育委员会实施日期:1997.4.1适用范围:本通则规定了傅里叶变换红外光谱仪近红外,中红外,远红外波段的定性,定量分析方法。适用于各种类型的傅里叶变换红外光谱仪。主要技术要求:1,定义 2,方法原理 3,试剂材料 4,仪器 5,样品和制样方法 6,分析步骤 7,分析结果表述出版单位:科学技术文献出版社[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=59753]傅里叶变换红外光谱方法通则[/url]

  • 红外光谱分析制样方法

    红外光谱分析制样方法在红外光谱分析的具体操作中,对于固体样品,常用的制样方法有以下四种:(1)压片法,是把固体样品的细粉,均匀地分散在碱金属卤化物中并压成透明薄片的一种方法;(2)粉末法,是把固体样品研磨成2μm以下的粉末,悬浮于易挥发溶剂中,然后将此悬浮液滴于KBr片基上铺平,待溶剂挥发后形成均匀的粉末薄层的一种方法;(3)薄膜法,是把固体试样溶解在适当的的溶剂中,把溶液倒在玻璃片上或KBr窗片上,待溶剂挥发后生成均匀薄膜的一种方法;(4)糊剂法,是把固体粉末分散或悬浮于石蜡油等糊剂中,然后将糊状物夹于两片KBr等窗片间测绘其光谱[1]。其中最常用的是压片法,但此法常因样品浓度不合适或因片子不透明等问题需要一再返工。 对于液体样品,常用的制样方法有以下三种:(1)液膜法,是在可拆液体池两片窗片之间,滴上1~2滴液体试样,使之形成一薄的液膜[2];(2)溶液法,是将试样溶解在合适的溶剂中,然后用注射器注入固定液体池中进行测试;(3)薄膜法,用刮刀取适量的试样均匀涂于窗片上,然后将另一块窗片盖上,稍加压力,来回推移,使之形成一层均匀无气泡的液膜。其中最常用的是液膜法,此法所使用的窗片是由整块透明的溴化钾(或氯化钠)晶体制成,制作困难,价格昂贵,稍微使用不当就容易破裂,而且由于长期使用也会被试样中微量水分将其慢慢侵蚀,到一定时候这对窗片也就报废了。 现在采用溴化钾压片作片基,在得到同等效果图谱的情况下,降低了重新压片的次数,减少了清洗液体池和窗片的时间,避免了窗片破裂和损耗的可能性,而且此方法成本很低。[img]http://ng1.17img.cn/bbsfiles/images/2006/06/200606272220_20668_1614961_3.gif[/img]

  • 【原创大赛】非色散红外吸收法测定固定污染源排气中 一氧化碳方法确认报告

    [align=center][b]非色散红外吸收法测定固定污染源排气中[/b][/align][align=center][b]一氧化碳方法确认报告[/b][/align][align=center][b]环境室:张文静[/b][/align][b]一、方法原理 [/b]本方法依据HJ/T44——1999。一氧化碳(CO)对4.67μm,4.72μm二波长处的红外辐射具有选择性吸收,在一定波长范围内,吸收值与一氧化碳的浓度成线性关系(遵循朗伯——比尔定律),根据吸收值确定样品中一氧化碳的浓度。本方法适用于固定污染源有组织排放的一氧化碳测定。[b]二、仪器和试剂[/b]1、仪器及设备1.1 非色散红外气体分析仪。抗干扰:对CO[sub]2[/sub]和水分别具有2000:1和1000:1或更好的抗干扰;精确度:3%(满刻度);量程:0~50000mg/m[sup]3[/sup]1.2采样仪器。1.2.1 采样管 用不锈钢 硬质玻璃或聚四氟乙烯材质的管料,其头部塞有时当量的玻璃棉。1.2.2 抽气泵密封隔膜泵或具有同等效果的其他泵。1.2.3 采气袋铝泊复合薄膜气袋。1.2.4 连接管 硅橡胶管,口径与其它连接部件相配。1.2.5 弹簧夹1.2.6 除湿装置一般情况下采用气体吸收瓶中填装玻璃棉,依靠烟气冷却凝结水份除湿;若烟气温度高,含湿量大,需采用冷凝器除湿。2、试剂除非另有说明,分析时均使用符合国家标准的分析纯试剂。2.1 CO标准气体:其浓度应达到仪器满量程的90%~100%。2.2 变色硅胶。2.3:玻璃棉。3.样品的保存:采集到气袋中的样品应尽快分析,室温下保存最长不超过36h。三、[b]分析步骤[/b]1、仪器的调零 通常以环境空气为零气,开启仪器泵电源开关,此时抽取的是环境空气,可视为零点校正气,如果环境中一氧化碳浓度大于待测样品浓度的1%时,需要纯氮校零。2、仪器的校正 以一定浓度的标准气体为基准,对仪器的各量程范围进行校正,校正气浓度应选择在满量程的90%~100%范围内。3.样品的测定 按图装配好实验装置,保证所有部位连接牢固,不透气,把采样管插入烟道采样点位,开动抽气泵,用烟气清洗采样管道,然后开始抽样,记录分析仪读数。 用气袋采集样品,可将其直接接入仪器进气口,开启仪器泵电源,将气袋中的样品气抽入仪器即可进行测定。[b]四、结果计算[/b]1.从仪器读出的一氧化碳百分含量,可按下式换算成mg/m[sup]3[/sup][sup] [/sup] 一氧化碳的质量浓度(mg/m[sup]3[/sup])=Kc(%)其中:K=1.25×10[sup]4[/sup](0℃,101.3kPa)2.一氧化碳的“排放浓度”计算按GB16157——1996中11.1.2或11.1.4计算一氧化碳的“排放浓度”。3.一氧化碳的“排放速率”计算按GB16157——1996中11.4计算一氧化碳的“排放速率”。[b]五、 精密度和准确度 [/b]经过五个实验室分析一氧化碳浓度4.38×10[sup]3[/sup]mg/m[sup]3[/sup]的统一样品,重复性标准偏差11mg/m[sup]3[/sup],重复性相对标准偏差0.25%,重复性31 mg/m[sup]3[/sup];再现性相对标准偏差为0.36%,再现性45mg/m[sup]3[/sup]。测定结果的平均相对误差为0.3%;各实验室测定结果的相对误差于0~0.6%之间。 在实际样品分析中,以在线分析测定两个点的CO浓度,每个点进行6次平行测定的相对标准偏差分别为2.3%及0%;用气袋采集四个点的样品,每个点平行采集6袋气体,然后测定CO浓度的相对标准偏差于0.69%~5.0%之间。[b]六、注意事项[/b]1.采样时如遇负压锅炉,需接大功率泵,以期本身泵关闭。2.采样时注意安全,对一氯化碳浓度较高的采样点,采样开孔应安装防喷装置,采样人员要站在上风处,防止一氧化碳中毒。3.室温下的饱和水蒸气对测定无干扰,但更高的含湿量对测定有正干扰,需采取5.2.6所提到的适当除湿措施。[b]七、结论[/b]本实验室所用仪器、试剂、耗材都经验收合格,人员经专业培训,所使用的物资和实验室用水均经验收合格。 通过对上述指标的测试验证,所得结果均符合方法要求,我们认为使用此方法在技术、仪器和人员配备上是可行的,所以对此方法予以确认。

  • 【有奖讨论】你的近红外预测值与标准方法分析数据可比吗?

    哈哈,本版主从火星回来啦~~~~http://simg.instrument.com.cn/bbs/images/brow/em09502.gif有奖讨论,参与有奖:你的近红外预测值与标准方法分析数据可比吗?你是怎么评价你的近红外预测值是否满足应用需求呢?是通过与标准方法分析数据比较吗?是完全依赖模型的预测偏差吗?标准方法的分析精度是ASTM标准提供的,还是多次实验计算的标准偏差呢?近红外预测值满足标准方法误差要求吗?近红外预测值大于标准方法误差要求,又如何判断数据是否可以接受呢?大家有什么关于近红外数据方面的心得和疑惑,都一起来讨论讨论吧!http://simg.instrument.com.cn/bbs/images/brow/em09505.gif

  • 红外光谱分析制样方法

    在红外光谱分析的具体操作中,对于固体样品,常用的制样方法有以下四种:(1)压片法,是把固体样品的细粉,均匀地分散在碱金属卤化物中并压成透明薄片的一种方法;(2)粉末法,是把固体样品研磨成2μm以下的粉末,悬浮于易挥发溶剂中,然后将此悬浮液滴于KBr片基上铺平,待溶剂挥发后形成均匀的粉末薄层的一种方法;(3)薄膜法,是把固体试样溶解在适当的的溶剂中,把溶液倒在玻璃片上或KBr窗片上,待溶剂挥发后生成均匀薄膜的一种方法;(4)糊剂法,是把固体粉末分散或悬浮于石蜡油等糊剂中,然后将糊状物夹于两片KBr等窗片间测绘其光谱。其中最常用的是压片法,但此法常因样品浓度不合适或因片子不透明等问题需要一再返工。对于液体样品,常用的制样方法有以下三种:(1)液膜法,是在可拆液体池两片窗片之间,滴上1~2滴液体试样,使之形成一薄的液膜;(2)溶液法,是将试样溶解在合适的溶剂中,然后用注射器注入固定液体池中进行测试;(3)薄膜法,用刮刀取适量的试样均匀涂于窗片上,然后将另一块窗片盖上,稍加压力,来回推移,使之形成一层均匀无气泡的液膜。其中最常用的是液膜法,此法所使用的窗片是由整块透明的溴化钾(或氯化钠)晶体制成,制作困难,价格昂贵,稍微使用不当就容易破裂,而且由于长期使用也会被试样中微量水分将其慢慢侵蚀,到一定时候这对窗片也就报废了。 现在采用溴化钾压片作片基,在得到同等效果图谱的情况下,降低了重新压片的次数,减少了清洗液体池和窗片的时间,避免了窗片破裂和损耗的可能性,而且此方法成本很低。

  • 【讲座预告】基于反射技术的红外光谱分析方法

    【讲座预告】基于反射技术的红外光谱分析方法对红外光谱来说,常规的透射分析分析方法已经远远不能满足现在样品多样化的要求。针对没的的样品要设计与之相适应的分析方法,不仅可以得到更加准确的结果,而且可能有效地节省分析时间,简化分析过程。但同时,在分析方法的完善及相关资料的全面性上来说,其它的分析方法还无法与透射法相比,但随着反射法硬件及分析方法的完善,反射分析方法正越来越多地受到重视,本讲座就对利用反射原理来进行样品分析的衰减全反射技术、漫反射技术及镜面反射技术做一个简单的介绍。本讲座分衰减全反射技术、漫反射技术及镜面反射技术三部分。讲座即将上线,大家猜猜:主讲专家会是论坛里何方人物? ——下周一揭晓。

  • 【资料】傅里叶变换红外光谱方法通则

    编号 JY/T 001—1996 名称 (中文)傅里叶变换红外光谱方法通则(英文)General rules for Fourier transform infrared spectrometer 归口单位 国家教育委员会 起草单位 国家教育委员会 主要起草人 胡克良 林 水水 批准日期 1997年1月22日 实施日期 1997年4月1日 替代规程号 无 适用范围 本通则规定了傅里叶变换红外光谱仪近红外、中红外、远红外波段的定性、定量分析方法。适用于各种类型的傅里叶变换红外光谱仪。 主要技术要求 1定义2方法原理3试剂、材料4仪器5样品和制样方法6分析步骤7分析结果表述 是否分级 无 检定周期(年) 附录数目 4 出版单位 科学技术文献出版社 检定用标准物质 相关技术文件 [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=96496]傅里叶变换红外光谱方法通则[/url]

  • 近红外光谱分析方法的弱点

    自从[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析最初在我国应用,到现在已经有20个春秋了。这期间尽管走过了许多风风雨雨,现在我国已经有了自己开发的各种类型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器,应用水平有了很大的提高,但依然存在一些问题。我们只有充分认识[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析方法的不足,才能更好地使用它。为此,借这块宝地,请大家谈谈[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析方法的主要弱点,它的死穴在哪里,谢谢。

  • 【分享】烟草中三种主要成分的近红外光谱分析与化学分析方法比较

    烟草中三种主要成分的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析与化学分析方法比较陈鹰!丁映!乐俊明贵州省农业科学院生物技术研究所 贵阳关键词"烟草![url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析!化学分析!水分!总植物碱!总糖[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=69227]烟草中三种主要成分的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析与化学分析方法比较[/url]

  • 【讨论】PC塑胶表面油污的红外分析方法

    做过工业分析的会经常遇到这样的问题,塑胶表面残留油污,最快的分析方法就是红外光谱分析。1、油污含量比较多,呈珠状,用干净KBr片在塑胶表面轻轻贴一下,将沾有油污的KBr放在红外显微镜下透射扫描,并在空白KBr上扣背景;2、油污含量很少,在强光下看见彩色痕迹,用正己烷或石油醚轻轻洗刷污染区域,将溶剂用干燥气体吹,浓缩至几个ml时,用镊子沾取,滴在KBr片上做透射扫描,并在空白KBr上扣背景。

  • 【原创大赛】【官人按】二维/多维相关光谱方法对热重-红外联用双线性数据的解析

    【原创大赛】【官人按】二维/多维相关光谱方法对热重-红外联用双线性数据的解析

    [align=center][b]二维/多维相关光谱方法对热重-红外联用双线性数据的解析[/b][/align][align=center]郭然,徐怡庄[sup]*[/sup][/align][align=center]北京分子科学国家实验室,稀土材料化学及应用国家重点实验室,北京大学化学与分子[/align][align=center]工程学院,北京 100871[/align][b]摘要:[/b]本工作中,使用基于异步正交的二维/多维相关光谱方法对多类热重-红外联用双线性数据进行分析。结果表明,本方法可以有效地处理包含二组分甚至多组分气体逸出物的热重-红外数据,并得到体系中各纯物质光谱。该方法可以有效识别大量体系中某物质的特征吸收峰,且不需预先得知待差减物质谱图,相比于传统的差减法有较明显的优势。[b]关键字:[/b]二维/多维相关光谱 热重-红外联用[b]背景介绍[/b]热重-红外联用方法被广泛地应用于物质成分鉴定、热分解过程考察等相关研究。在常规的热重-红外联用分析中,不同气体逸出物随加热过程逐渐逸出,并通过红外气体池进行检测。然而,气体逸出物的逸出曲线经常会有重合,在某些情况下,逸出曲线甚至会有严重重叠。例如,两气体组分A及B由同一物质分解产生或是具有接近的沸点,则该两物质的逸出曲线会非常接近。气体逸出物逸出曲线的严重重叠,使得在红外检测过程中,只能得到混合物的红外光谱而非各纯物质光谱,这给气体逸出物的鉴定及后续分析造成了很大困难。一般来说,在对红外光谱进行处理,以期得到各纯物质光谱时,可以通过差减法,将光谱中存在的干扰项去除,从而得到目标物质的光谱。该方法的应用一般需要满足以下条件,即需要扣除的物质及其光谱已知。例如,光谱处理中常见的水汽及二氧化碳背景扣除方法,即是基于水汽和二氧化碳光谱已知的前提下,通过选择合适的峰位,找出差减的比例系数,从而将水汽及二氧化碳光谱从总光谱中移除。然而,随着总光谱复杂程度的加剧,干扰光谱鉴定的物质不仅是水和二氧化碳,而可能包含各类未知且具有不同光谱形状的气体逸出物,单纯进行水和二氧化碳的扣除,对很多体系的分析而言是远远不够的。即使是二氧化碳的扣除,差减法也存在一定问题。在中红外区,二氧化碳的谱峰主要存在于2350cm[sup]-1[/sup]-2200cm[sup]-1[/sup]的光谱区段。由于很少有气体产物在该光谱区段存在吸收峰,目前的二氧化碳扣除算法可以将该区段谱峰全部扣去。然而,实际体系中存在一些物质,在该光谱区段具有具红外活性的振动模式(如乙腈的C≡N三键伸缩振动)。当这些物质对总光谱有贡献时,差减法很难恰好将二氧化碳的成分准确扣除,从而导致得到的谱峰变形,影响后续的数据分析。本工作中,使用本课题组开发的二维/多维相关光谱方法对多类物质的热重-红外数据进行处理,以期得到各纯物质光谱。[b]算法简要介绍[/b]二维及多维异步谱的构建基于以下算法:[align=center] [img=,492,106]https://ng1.17img.cn/bbsfiles/images/2018/09/201809051625044178_4191_3237657_3.jpg!w492x106.jpg[/img][/align]式中,为物质k在[i]t[/i][sub]i[/sub]时刻的逸出浓度,为物质k在[i]v[/i][sub]j[/sub]处的红外吸收,N为Hilbert-Noda变换矩阵。通过基于Hilbert-Noda变换矩阵的异步相关乘法,构建二维异步谱。在异步谱上通过寻找特征性的系统缺峰,得到一级特征峰的吸收信息,并由该处的异步谱截线,得到各纯物质的光谱形状。构建多维异步谱时,在构建二维异步谱方式的基础上,对原始一维光谱进行多级分组,在二维异步谱上取各组相同位置的截线,进行基于公式(2)的高维异步谱构建。可以证明,通过异步光谱的升维算法,可以将体系中各成分对于光谱的贡献逐一去除,进而不断简化光谱形式,最终得到纯物质光谱。通过选择不同的升维路径,可以通过选择不同的特定吸收峰,去除不同成分对总光谱的贡献,从而得到不同的物质光谱(证明略)。本方法已应用在多类体系中,并成功得到了体系中各纯物质红外光谱。下面给出一个应用实例。[b]实验条件[/b]仪器:TGA(TGA-8000)-FTIR (Frontier) 联用仪器 (Perkin Elmer);样品:去离子水、乙腈、乙酸乙酯。实验步骤:配制水/乙腈/乙酸乙酯混合溶液(v:v:v=1:4:1)上样于坩埚,以30℃为起始温度,10℃/min速度升温至90℃,30℃/min升温至150℃。红外光谱采集:分辨率8cm[sup]-1[/sup],每张光谱采集时间约2.7s。[b]结果讨论[/b]水、乙腈、乙酸乙酯三组分的沸点相差不大,通过上述算法,可以将体系中各成分逐级去除,最终得到三组分各自的纯物质光谱。[align=center][b] [img=,690,626]https://ng1.17img.cn/bbsfiles/images/2018/09/201809051625227884_5273_3237657_3.jpg!w690x626.jpg[/img][/b][/align][align=center]图1 基于三维异步相关方法的水/乙腈/乙酸乙酯混合物热重-红外联用数据分析 (A) 二维异步相关谱 (B) 三维异步谱在x=3746cm[sup]-1[/sup]处的二维截面 (C) 三维异步谱在x=2620cm[sup]-1[/sup]处的二维截面 (D) Trace 1-图(B)在y=2620cm[sup]-1[/sup]处的截线,对应乙酸乙酯光谱(Trace 4);(Trace 2)图(B)在y=1768cm[sup]-1[/sup]处的截线,对应乙腈光谱(Trace 5);(Trace 3)图(C)在y=2982cm[sup]-1[/sup]处的截线,对应水光谱(Trace 6)[/align][b]致谢[/b]本工作由国家自然科学基金(No.51373003)赞助。

  • 基于多模型加权预测的近红外定量分析方法

    基于多模型加权预测的近红外定量分析方法

    [b][size=18px][font=宋体]1[/font][font=宋体]、背景介绍[/font][/size][/b][font=宋体] 随着微机电技术的发展,近几年,便携式[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]被广泛应用于食品、饮料、医药、煤炭等各个领域,相较于传统的大型傅里叶变换光谱分析系统,其具有结构简单、成本低廉、携带方便、结果实时可见等优势,目前已成为光谱领域的热门产品。但是便携式[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]易受光源、检测器、使用方法、环境条件等影响,使得采集的光谱数据稳定性差,精度低,进而造成预测结果不稳定、预测准确率低等问题。[/font][font=宋体] 为了解决上述问题,提升便携式[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析结果的稳定性及准确性,目前行业内[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]数据建模优化工作,主要集中于数据源筛选、预处理算法优化、模型筛选算法优化等基于PLS算法的单模型建模优化工作,此类建模算法主要适用于高精度的傅里叶[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]。对于自身硬件分辨率较低的便携式[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url],适用性较差。因此本帖在基于PLS算法建模的基础上,提出多模型加权预测的方法,以特定准则选取相对稳定、准确率较高的若干个光谱模型,结合模型自身系数进行加权预测的方式来提升便携式[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]整体性能,进而提升便携式[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]的预测稳定性及准确率。[/font][b][size=18px][font=宋体]2[/font][font=宋体]、方法解析[/font][/size][font=宋体]2.1[/font][font=宋体]样本集合划分[/font][/b][font=宋体] 使用便携式[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]采集400个待测样品,采用Kennard Stone(K-S)算法对样本进行划分,将样本划分为训练集(200个)、验证集(100个)、盲测集(100个)、避免人为划分样本的主观性。[/font][b][font=宋体]2.2[/font][font=宋体]光谱预处理[/font][/b][font=宋体] 便携式[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]采用常规的单一预处理方式效果不佳,本贴采用双预处理嵌套的方式对样品进行处理,其中第一级、第二级预处理均可设置不同的预处理参数,通过不同预处理方式,预处理参数的设置可以获取多种预处理结果。[/font][align=center][img=双预处理嵌套,690,325]https://ng1.17img.cn/bbsfiles/images/2023/09/202309042103332831_7122_5075516_3.png!w690x325.jpg[/img][/align][b][font=宋体]2.3[/font][font=宋体]光谱建模[/font][/b][font=宋体] [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]定量分析建模方法包括多元线性回归([/font][font='Times New Roman',serif]MLR[/font][font=宋体])、主成分回归([/font][font='Times New Roman',serif][url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url][/font][font=宋体])、偏最小二乘回归([/font][font='Times New Roman',serif]PLS[/font][font=宋体])、人工神经网络([/font][font='Times New Roman',serif]ANN[/font][font=宋体])和支持向量机([/font][font='Times New Roman',serif]SVM[/font][font=宋体])等。其中,[/font][font='Times New Roman',serif]PLS[/font][font=宋体]算法应用最为广泛,选用[/font][font='Times New Roman',serif]PLS[/font][font=宋体]算法进行建模。通过多种预处理结果、不同[/font][font='Times New Roman',serif]PLS[/font][font=宋体]主成分数选择组合建立多个光谱定量分析模型,若设定一级预处理为[/font][font='Times New Roman',serif]M[/font][font=宋体]种,二级预处理为[/font][font='Times New Roman',serif]N[/font][font=宋体]种,[/font][font='Times New Roman',serif]PLS[/font][font=宋体]主成分数选择为[/font][font='Times New Roman',serif]T[/font][font=宋体]种,则通过不同排列组合可以建立合计[/font][font='Times New Roman',serif]M*N*T[/font][font=宋体]个光谱定量分析模型。[/font][align=center][img=多种建模方式,690,198]https://ng1.17img.cn/bbsfiles/images/2023/09/202309042104079253_7276_5075516_3.png!w690x198.jpg[/img][/align][b][font=宋体]2.4[/font][font=宋体]光谱模型选择[/font][/b][font=宋体] 基础模型一:在上述建立的大量光谱定量分析模型中,选择光谱模型最通用的两大表征系数,即模型相关系数([/font][font='Times New Roman',serif]R2[/font][font=宋体]值)以及均方根误差([/font][font='Times New Roman',serif]RMSECV[/font][font=宋体]值)进行基础模型筛选,选择模型相关系数最大的模型为基础模型[/font][font='Times New Roman',serif]A[/font][font=宋体],模型均方根误差最小的模型为基础模型[/font][font='Times New Roman',serif]B。[/font][font=宋体] 基础模型二:在基础模型一中引入验证集,通过训练集建立的多个光谱模型对验证集进行预测,将预测值与验证集标定值进行计算,获取偏差值,选择偏差值最小的光谱模型为基础模型[/font][font='Times New Roman',serif]C。[/font][align=center][img=基础模型C,690,264]https://ng1.17img.cn/bbsfiles/images/2023/09/202309042104332526_3725_5075516_3.png!w690x264.jpg[/img][/align][font=宋体] 基础模型三:在基础模型二中引入准确率,在近红外快检的实际应用中,对于预测偏差值在一定阈值范围内的样本定义为准确预测样本,若超出阈值则为预测错误样本,选择准确率最高的光谱模型为基础模型[/font][font='Times New Roman',serif]D。[/font][align=center][img=基础模型D,690,235]https://ng1.17img.cn/bbsfiles/images/2023/09/202309042104460652_3475_5075516_3.png!w690x235.jpg[/img][/align][b][font=宋体]2.5[/font][font=宋体]权重系数计算[/font][/b][font=宋体] 光谱模型不同,对盲测样本的预测能力不同,结合光谱模型的模型相关系数([/font][font='Times New Roman',serif]R2[/font][font=宋体]值)或者均方根误差([/font][font='Times New Roman',serif]RMSECV[/font][font=宋体]值)计算各个模型的预测权重,以模型相关系数为例:[/font][align=center][font='Times New Roman',serif]Ti=Ri/(R1+R2+R3+R4)[/font][/align][font=宋体] 其中,[/font][font='Times New Roman',serif]R1[/font][font=宋体]为基础模型[/font][font='Times New Roman',serif]A[/font][font=宋体]的模型相关系数,[/font][font='Times New Roman',serif]R2[/font][font=宋体]为基础模型[/font][font='Times New Roman',serif]B[/font][font=宋体]的模型相关系数,依此类推。[/font][font='Times New Roman',serif]Ti[/font][font=宋体]为各个基础模型对应权重系数。[/font][b][font=宋体]2.6[/font][font=宋体]多模型加权预测[/font][/b][font=宋体] 分别采用光谱基础模型[/font][font='Times New Roman',serif]A[/font][font=宋体]、[/font][font='Times New Roman',serif]B[/font][font=宋体]、[/font][font='Times New Roman',serif]C[/font][font=宋体]、[/font][font='Times New Roman',serif]D[/font][font=宋体]对盲测集[/font][font='Times New Roman',serif]100[/font][font=宋体]个样本进行预测,以盲测集单个样本为例,四个光谱模型对应获取四个预测值[/font][font='Times New Roman',serif]a[/font][font=宋体]、[/font][font='Times New Roman',serif]b[/font][font=宋体]、[/font][font='Times New Roman',serif]c[/font][font=宋体]、[/font][font='Times New Roman',serif]d [/font][font=宋体],结合权重系数计算最终单一预测值[/font][font='Times New Roman',serif]S[/font][font=宋体]:[/font][align=center][font=宋体][/font][/align][align=center][font='Times New Roman',serif]S=a*T1+b*T2+c*T3+d*T4[img=多模型加权预测,690,212]https://ng1.17img.cn/bbsfiles/images/2023/09/202309042106560595_5692_5075516_3.png!w690x212.jpg[/img][/font][/align][b][size=18px][font=宋体]3[/font][font=宋体]、实际应用[/font][/size][font=宋体]3.1[/font][font=宋体]硬件信息[/font][/b][font=宋体] 硬件设备为四川长虹研发的[/font][font='Times New Roman',serif]PV800-III[/font][font=宋体]便携式[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url],光谱仪波段范围为[/font][font='Times New Roman',serif]1350nm-2150nm[/font][font=宋体],采样间隔为[/font][font='Times New Roman',serif]6nm[/font][font=宋体],尺寸为[/font][font='Times New Roman',serif]Φ100mm×76.8mm[/font][font=宋体],重量约[/font][font='Times New Roman',serif]750g。[/font][b][font=宋体]3.2[/font][font=宋体]样本采集:[/font][/b][font=宋体] 采集[/font][font='Times New Roman',serif]400[/font][font=宋体]个酒醅样品,其中酒醅水分、淀粉、酸度等理化指标均由车间经验丰富化验员按常规化学方法测定所得。[/font][b][font=宋体]3.3[/font][font=宋体]分析对比[/font][/b][font=宋体] 结合酒醅常用的光谱预处理算法及[/font][font='Times New Roman',serif]PLS[/font][font=宋体]单模型建模算法对本应用中酒醅数据进行建模,通过多种预处理组合优化,有效剔除光谱数据中的大量无用信息,并结合[/font][font='Times New Roman',serif]PLS[/font][font=宋体]算法,将高维光谱数据进行有效降维,提升光谱数据的有效性及准确度。最后以[/font][font='Times New Roman',serif]RMSECV[/font][font=宋体]作为模型筛选指标,利用筛选的最优模型对[/font][font='Times New Roman',serif]100[/font][font=宋体]条未知样本进行模型外验证,图[/font][font='Times New Roman',serif]a~c[/font][font=宋体]依次给出了传统单模型水分、酸度、淀粉[/font][font='Times New Roman',serif]3[/font][font=宋体]个指标的模型外预测分布情况,图中横坐标为标定值,纵坐标为预测值,黄色区域为模型允许的误差范围(水分、淀粉允许误差为绝对偏差[/font][font='Times New Roman',serif]±1[/font][font=宋体],酸度允许误差范围为绝对偏差[/font][font='Times New Roman',serif]±0.3[/font][font=宋体]),采用基于多模型加权预测的近红外定量分析方法对上述酒醅光谱数据进行建模,利用筛选的多个光谱模型对相同的[/font][font='Times New Roman',serif]100[/font][font=宋体]条未知样本进行加权预测,图[/font][font='Times New Roman',serif]d~f[/font][font=宋体]依次依次给出了多模型加权预测方法水分、酸度、淀粉[/font][font='Times New Roman',serif]3[/font][font=宋体]个指标的模型外预测分布情况。[/font][img=酒醅定量分析,690,318]https://ng1.17img.cn/bbsfiles/images/2023/09/202309042105316390_239_5075516_3.png!w690x318.jpg[/img][font=宋体] 多模型加权预测方法相较于传统单模型预测方法,各指标准确率均有不同幅度提升,3个指标准确率平均提升约11%。各指标准确率均达到了企业车间应用要求。[/font][b][size=18px][font=宋体]4[/font][font=宋体]、结论[/font][/size][/b][font=宋体] 利用便携式[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url],分别以传统单模型建模方法、多模型加权预测方法进行酿酒车间酒醅各成分光谱建模,并对[/font][font='Times New Roman',serif]100[/font][font=宋体]个未知样本进行模型外预测分析。结果表明,基于多模型加权预测的近红外定量分析方法,可以有效弥补便携式[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]在采样精度、稳定性等方面的不足。相较于单模型建模预测结果,多模型加权预测方法将酒醅样本各成分预测准确率平均提升了约[/font][font='Times New Roman',serif]11%[/font][font=宋体],甚至可有效逼近大型傅里叶光谱仪设备预测效果,是一种可以在便携式[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]快检领域推广应用的实用方法。[/font]

  • 近红外光谱分析方法的优势

    自从[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析最初在我国应用,到现在已经有20个春秋了。 现在我国已经有了自己开发的各种类型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器,应用水平有了很大的提高,但远没有达到普及程度。为此,借这块宝地,请大家谈谈[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析方法的到底有哪些优点,有什么优势,让更多人了解它,使用它!谢谢。

  • 近红外红外定性分析漆膜。

    我现在有个想法,能不能用红外的方法来给漆膜定性分析。目前具体的样品还没有,所以想先问问各位老师有没有可能用红外ATR来做?油漆总共分15类,如果光树脂我想应该没问题的,问题就是涂膜后,填料会不会造成影响?表面是否应该处理,如何处理才能排除外界的干扰?还有,我想,近红外的方法是不是也可以试试?在定性分析方面,近红外还算强大把?干挠不像红外那么严重。还请各位老师来聊聊 谁有这方面的文献还请发给我一份。这个帖子在红外发过了,不过怕在红外版沉了,在这里置顶一下,[em51]

  • 美、英、欧三部药典近红外光谱分析方法概述

    这是一篇关于美、英、欧三部药典近红外光谱分析方法概述 文献,后面还有美国药典植物药检查方法与中国药典相关项目的比较,不是做药品的,对美国药典不是很明白。百度了一下 美国药典 U.S. Pharmacopeia / National Formulary《美国药典/国家处方集》(简称USP/NF)。由美国政府所属的美国药典委员会(The United States Pharmacopeial Convention)编辑出版。USP于1820年出第一版,1950年以后每5年出一次修订版,到2005年已出至第29版。NF1883年第一版,1980年15版起并入USP,但仍分两部分,前面为USP,后面为NF........希望像zuyu老师说的那样据版药典要大幅强化近红外的作用。

  • 【讨论】滤光片式近红外成分分析仪的建模方法

    滤光片式近红外成分分析仪价格低,一般用于专一对象,像日常的化验室或在线分析,广泛应用于食品、农业及化学工业等多种领域。滤光片式近红外成分分析仪一般配有多个近红外干涉滤光片,允许特定波长的光通过。我以前做过好多全谱分析的,用的是赛默飞世尔科技(Thermo Fisher Scientific)的AntarisII傅立叶变换近红外(FT-NIR)光谱仪和布鲁克的一个,但对于仅有几个滤光片的(对应几个信号值)除多元线性回归MLR,还有其它方法适合吗?个人感觉 像PCR和PLS 对几个滤光片这种 是不是就没有所谓的主成分了,它本身变量就很少,希望有经验的专家朋友不惜赐教!

  • 【分享】如何进行红外光谱分析

    利用红外光谱对物质分子进行的分析和鉴定。将一束不同波长的红外射线照射到物质的分子上,某些特定波长的红外射线被吸收,形成这一分子的红外吸收光谱。每种分子都有由其组成和结构决定的独有的红外吸收光谱,据此可以对分子进行结构分析和鉴定。红外吸收光谱是由分子不停地作振动和转动运动而产生的,分子振动是指分子中各原子在平衡位置附近作相对运动,多原子分子可组成多种振动图形。当分子中各原子以同一频率、同一相位在平衡位置附近作简谐振动时,这种振动方式称简正振动(例如伸缩振动和变角振动)。分子振动的能量与红外射线的光量子能量正好对应,因此当分子的振动状态改变时,就可以发射红外光谱,也可以因红外辐射激发分子而振动而产生红外吸收光谱。分子的振动和转动的能量不是连续而是量子化的。但由于在分子的振动跃迁过程中也常常伴随转动跃迁,使振动光谱呈带状。所以分子的红外光谱属带状光谱。分子越大,红外谱带也越多。红外光谱仪的种类有:①棱镜和光栅光谱仪。属于色散型,它的单色器为棱镜或光栅,属单通道测量。②傅里叶变换红外光谱仪。它是非色散型的,其核心部分是一台双光束干涉仪。当仪器中的动镜移动时,经过干涉仪的两束相干光间的光程差就改变,探测器所测得的光强也随之变化,从而得到干涉图。经过傅里叶变换的数学运算后,就可得到入射光的光谱。这种仪器的优点:①多通道测量,使信噪比提高。②光通量高,提高了仪器的灵敏度。③波数值的精确度可达0.01厘米-1。④增加动镜移动距离,可使分辨本领提高。⑤工作波段可从可见区延伸到毫米区,可以实现远红外光谱的测定。红外光谱分析可用于研究分子的结构和化学键,也可以作为表征和鉴别化学物种的方法。红外光谱具有高度特征性,可以采用与标准化合物的红外光谱对比的方法来做分析鉴定。已有几种汇集成册的标准红外光谱集出版,可将这些图谱贮存在计算机中,用以对比和检索,进行分析鉴定。利用化学键的特征波数来鉴别化合物的类型,并可用于定量测定。由于分子中邻近基团的相互作用,使同一基团在不同分子中的特征波数有一定变化范围。此外,在高聚物的构型、构象、力学性质的研究,以及物理、天文、气象、遥感、生物、医学等领域,也广泛应用红外光谱。 红外光谱解析方法一,IR光谱解析方法二,IR光谱解析实例一,IR光谱解析方法1.已知分子式计算不饱和度不饱和度意义:续前例1:苯甲醛(C7H6O)不饱和度的计算续前2.红外光谱解析程序 先特征,后指纹 先强峰,后次强峰 先粗查,后细找 先否定,后肯定 寻找有关一组相关峰→佐证先识别特征区的第一强峰,找出其相关峰,并进行峰归属再识别特征区的第二强峰,找出其相关峰,并进行峰归属一,IR光谱解析方法二,IR光谱解析实例一,IR光谱解析方法1.已知分子式计算不饱和度不饱和度意义:续前例1:苯甲醛(C7H6O)不饱和度的计算续前2.红外光谱解析程序 先特征,后指纹 先强峰,后次强峰 先粗查,后细找 先否定,后肯定 寻找有关一组相关峰→佐证先识别特征区的第一强峰,找出其相关峰,并进行峰归属再识别特征区的第二强峰,找出其相关峰,并进行峰归属

  • 近红外光谱分析方法预测馏程是否准确?

    [font=宋体]馏程是炼化生产过程物料的重要参数指标,馏程测定是炼厂化验室最繁重的工作任务之一。采用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术可以测定馏程,替代传统分析方法,减轻化验室工作压力。从应用实践来看,采用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术测定初馏点和终馏点误差较大,主要是由于决定初馏点和终馏点的组分在样品中的含量很低,而且与样品的本底接近,比较难以确定它们的数学关系。[/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制