当前位置: 仪器信息网 > 行业主题 > >

红外表征方法

仪器信息网红外表征方法专题为您提供2024年最新红外表征方法价格报价、厂家品牌的相关信息, 包括红外表征方法参数、型号等,不管是国产,还是进口品牌的红外表征方法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外表征方法相关的耗材配件、试剂标物,还有红外表征方法相关的最新资讯、资料,以及红外表征方法相关的解决方案。

红外表征方法相关的资讯

  • 3D打印的基石——粉末材料的性能表征方法
    一、 概述在金属3D打印技术中,粉末材料作为“基石”,很大程度上决定了最终打印成品的质量和性能。金属3D打印技术的未来发展,也与材料本身的性能密切相关,包括材料的粒径、孔隙率、密度、流动性等。金属3D打印大多采用选择性激光烧结(SLS)与选择性激光熔化(SLM)技术,打印过程中均涉及铺粉这一关键步骤,要求形成均匀的粉层,因此需要考察金属粉末的成堆状态和流动性能,这也将影响最终烧结成件的表面粗糙度和抗拉强度等关键性能指标。二、 材料性能评价按照最新国标GB/T 39251-2020《增材制造 金属粉末性能表征方法》的要求,3D打印用金属粉末的粒径、孔隙率、有效密度、振实密度和流动性等特性都需要进行检测。因此,选择最合适的表征方法确定相关参数,并建立金属粉末原料的数据库尤为重要,可为材料研发和生产环节提供指导。金属粉末由于其固有属性,通常粒径较小、孔隙率较低、流动性较好,对表征方法的灵敏度和适用性都提出了一定的要求。本文将针对上述3D打印用金属粉末的关键参数表征技术进行介绍。1. 亚筛分法测量金属颗粒粒径测试原理:利用双压力传感器测量空气通过床层前后的压力变化,通过改变样品高度和孔隙率,同时控制一定流速通过颗粒床层,使用Kozeny-Carman方程确定特征表面积SSA和平均粒径。应用领域:符合ASTM B330-12标准,用于测量金属粉末以及相关化合物的粒径。全自动亚筛分粒径分析仪MIC SAS II(点击图片了解仪器详情)2. 压汞法计算孔隙率测试原理:在精确控制的压力下将汞压入材料的多孔结构中,通过测量不同外压下进入孔隙中汞的量,就可知道相应孔体积的大小。应用领域:孔隙率会显著减低材料的抗压强度与疲劳性能,无法满足材料的正常使用需求。压汞法可用于计算多孔材料或打印产品的总孔体积、孔径分布和孔隙率等参数。AutoPore V系列高性能全自动压汞仪(点击图片了解仪器详情)3. 气体置换法获得有效密度测试原理:使用气体置换法,常用惰性气体如氦气或氮气作为置换介质取代材料的孔隙体积,根据理想气体定律PV=nRT确定样品体积,并结合样品质量算得骨架密度,即有效密度。应用优势:气体置换法测密度比液体浸透法更准确,重复性更好;可测量材料或小型成件的有效密度。全自动气体置换法真密度仪ACCUPYC II 1345(点击图片了解仪器详情)4. 全自动振实密度分析测试原理:使用刚性球状颗粒作为替代介质,紧密裹覆在材料外表面并填充材料间隙,精确测出样品的包裹体积并算得密度。替代介质的颗粒很小,在混合过程中与样品表面紧密贴合,但不会进入样品孔隙。应用优势:与传统的振实密度相比,全自动振实密度分析仪能够更快速、更安静地获取更高重复性的精确结果;可测量材料或小型成件的振实密度。GeoPyc 1365全自动包裹密度分析仪(点击图片了解仪器详情)5. 流动性测试原理:使用独特的技术测量粉体在运动状态下流动的阻力。精密的桨叶旋转向下穿越粉体,建立精确的颗粒相互作用模式,粉体对桨叶所施加的阻力则代表了颗粒间相对运动的难易程度,即粉体的流动性能。同时集成自动化剪切盒,也能够测量密度、可压性和透气性等整体属性。应用优势:符合ASTM D7891标准,用于测量金属粉末的流动性。相比现有技术(霍尔流速计所用漏斗法)更加自动化,该技术灵敏度更高,能够精确表征批次间的微小差异,评价不同供应商和制造方法的影响以及评估原料筛分前后的差异。FT4粉体流变仪(点击图片了解仪器详情)三、 小结通过上述现代化评价手段,有助于优化3D打印用金属粉末的性能,从而实现重复利用;同时可避免因检测技术的不适用性而花费大量金钱和时间,减少成品的不合格率,帮助企业降本增效。作者:麦克默瑞提克(上海)仪器有限公司
  • 高分子表征技术专题——二维相关红外光谱分析技术在高分子表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题 高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!二维相关红外光谱分析技术在高分子表征中的应用Applications of Two-dimensional Correlation Infrared Spectroscopy in the Characterization of Polymers本文作者:侯磊,武培怡 作者机构:东华大学化学化工与生物工程学院,上海,201620作者简介:武培怡,男,1968年生. 1985年,南京大学化学系获学士学位,1998年,德国ESSEN大学获博士学位. 1998~2000年在日本触媒研究中心从事研究工作,2000~2017年任复旦大学高分子科学系教授,2017年起任东华大学化学化工与生物工程学院教授. 2001年入选上海市科委启明星计划、上海市教委曙光计划,2003年入选上海市科委白玉兰科技人才计划,2004年入选上海市科委启明星跟踪计划,获得国家杰出青年基金资助、上海市引进海外高层次留学人员专项资金资助,2005年度入选教育部首届新世纪人才计划,2007年入选上海市优秀学科带头人计划,2016年入选英国皇家化学会会士,2017年获陶氏化学“Dow Innovation Challenge Award”. 主要研究方向包括二维相关光谱在聚合物体系中的应用、智能仿生材料、聚合物功能膜等.摘要二维相关光谱作为一种先进的光谱分析方法,具有提高谱图分辨率、解析动态过程等优势,近来在高分子表征中引起了越来越多的关注. 高分子体系涉及了丰富的相互作用和复杂的结构,分子光谱是常用的表征手段,而借助二维相关光谱分析技术,能够有效识别精细结构、判别动态变化机制,从而显著丰富和完善分析结果. 本文重点围绕二维相关红外光谱,简述了发展历史和基本原理,随后结合实际过程,介绍了相关实验和分析技巧,最后列举了其在高分子表征中的典型应用,展示了二维相关红外光谱分析的特点,具体涉及温度响应高分子的响应机制、可拉伸离子导体中复杂相互作用、小分子在聚合物基质中的扩散、天然高分子的结构表征等研究. 希望通过本文的介绍,能够帮助读者更好地理解二维相关光谱,进一步拓展其在高分子领域中的应用.AbstractTwo-dimensional correlation spectroscopy (2Dcos) is an advanced analysis method, which holds great advantages in improving spectral resolutions and interpreting dynamic processes, and has attracted great attention in the field of polymers. Molecular spectroscopy is frequently applied in the characterization of polymers, which involves abundant molecular interactions and complex structures. Under the help of 2Dcos analysis, fine structures as well as dynamic mechanisms within the polymer systems can be effectively identified, thus significantly enriching and improving the analysis results. In this paper, we will mainly focus on the two-dimensional correlation infrared spectroscopy (2DIR). Firstly, the history and basic principles of 2Dcos are briefly introduced. Then, some relevant experimental and analytical techniques are presented based on the actual process. Finally, typical applications of 2DIR in the polymer characterization are demonstrated and the features thereinto are also shown. Particularly, the response mechanisms of temperature-responsive polymers, complex molecular interactions in stretchable ionic conductors, diffusion processes of small molecules in polymer matrix and structures of natural polymers are investigated. It is hoped that this paper will help readers better understand 2Dcos and further expand its applications in the field of polymers.关键词分子光谱   二维相关光谱   高分子   分子相互作用 KeywordsMolecular spectroscopy   Two-dimensional correlation spectroscopy   Polymer   Molecular interactions  高分子材料体系涉及丰富的相互作用和多级结构,这是决定材料最终性能的关键. 分子光谱(红外、拉曼光谱)作为表征高分子材料的常用手段,一方面可以检测不同化学结构/组分所对应的官能团,依据特征吸收峰强度和位置,实现对高分子化学结构的鉴别,另一方面,可以基于不同官能团特征吸收峰的强度和位置变化,判别基团所处的物理或化学环境,实现对体系中复杂相互作用的解析. 随着高分子材料的发展,体系趋向多样化、多功能化,而传统的一维分子光谱存在谱峰重叠严重、分辨能力有限等问题,一定程度限制了分子光谱在复杂高分子体系的应用拓展.二维相关光谱(Two-dimensional correlation spectroscopy,2Dcos)作为一种先进的光谱分析手段,尤其适合于从分子水平探讨各类外扰作用下复杂高分子体系涉及的结构和相互作用变化. 相较于传统的一维光谱,二维相关光谱的优势在于:(1)对于包含许多重叠峰的复杂谱图,起到图谱简化的作用;(2)通过将原始谱图在第二维度上延伸,能够明显提高原始一维谱图的分辨率;(3)谱峰的相关性可帮助判断体系中的相互作用以及峰归属;(4)可用于确定外界刺激下不同过程的发生次序. 本文首先将结合二维相关光谱的发展历史,介绍其基本原理. 其次,围绕动态谱图获取和二维相关分析,介绍二维相关光谱的一些实验和分析技巧. 最后,结合具体体系,重点阐述二维相关光谱在高分子表征中的应用.1 基本原理1.1 发展历史二维相关光谱分析方法的基本概念最早起源于核磁共振(NMR)领域. 二维核磁共振(2DNMR)谱通过多脉冲技术激发核自旋,采集原子核自旋弛豫过程的衰减信号,最后经双重傅里叶变换得到[1]. 通过将核磁信号扩展到第二维度,可以显著提高谱图的分辨率,并且有效简化包含许多重叠峰的复杂光谱. 与此同时,通过选择相关的光谱信号,可以鉴别和研究分子内/间的相互作用. 尽管二维光谱技术在核磁领域取得了快速发展,却在很长一段时间内未能深入到其他光谱分支,如红外、拉曼、紫外-可见吸收、荧光光谱等. 阻碍二维光谱技术发展的一个根本原因在于多重射频脉冲的二维核磁技术可以成功地在精密而昂贵的核磁仪器上实施,却不能在普通的红外、拉曼和紫外-可见吸收等光谱仪器上实现. 因为这类光谱的时间标尺(time scale)远小于核磁共振[2]. 一般来说,核磁时间标尺数量级在毫秒到微秒之间,而红外吸收光谱观察分子振动的时间标尺在皮秒数量级,因此产生二维红外光谱必须采用特殊的新途径.二维相关光谱概念上的突破是由特拉华大学(University of Delaware)的化学家Noda[3,4]提出的. 他把核磁实验中的多重射频励磁看作是一种对体系的外扰(外部扰动). 施加于体系的外扰可以多种多样,如热、磁、机械、电场、化学甚至声波等. 每种外扰对体系的影响是独特而有选择性的,并由特定的宏观刺激和分子相互作用的机理所决定. 因此,包含在动态光谱中的信息类型是由外扰的方式和电磁波的种类所决定的. 外扰的波形没有任何限制,从简单的正弦波、脉冲、到随机的噪音或静态的物理量(如时间、温度、压力等)的变化均可应用于外扰. 由此,Noda设计出一种完全不同的二维光谱实验技术,他用外扰来激发被检测体系的分子,由于被激发分子的弛豫过程慢于振动光谱的时间标尺,因而可使用时间或温度等外扰分辨振动光谱(红外、拉曼)技术来跟踪研究被检测体系受外界扰动而产生的动态变化,结合数学中的相关分析技术,将原有的光谱信号扩展到第二维度,从而得到二维相关光谱(如图1所示). 二维相关光谱实际研究的就是动态光谱的变化[5,6]. 此后,随着二维相关光谱技术的发展,逐渐在荧光光谱、X射线衍射谱、凝胶渗透色谱等也得到了应用. 总体而言,二维相关光谱分析在红外光谱中的应用最为成功,这主要是由于红外光谱的信噪比相对较高,具有高灵敏度、高选择性和非破坏性等特点,能够在分子结构和链段运动等方面提供丰富信息. 另一方面,红外光谱的谱峰重叠严重,解析起来存在一定困难,二维相关光谱的引入可以很好地解决这一问题. Fig. 1 Acquisition procedure of generalized 2D correlation spectra. In the 2D synchronous and asynchronous spectra, red colors represent positive intensities while green colors represent negative ones.1.2 计算原理二维相关光谱考虑外扰变量下(如时间、温度、压力、浓度、电场、磁场等)光谱强度y(v, p)的变化情况,其中v为光谱变量,可以为任何光谱量化的参数,如红外波数、拉曼位移、紫外波长、X射线散射角等,p为外扰变量,可以是任意合理的物理或化学变量,如时间、温度、压力、电场强度、浓度、pH、离子强度等. 对于体系在一定外扰区间(1~N)下引起的动态光谱y˜(v, p)定义为[2,5]:y¯(v)为体系的参考光谱,通常选为平均谱. 参考光谱的定义为实际过程中,可以选择某一个参考点p = Pref处的光谱作为参考光谱. 参考点可以是实验的初始状态或结束状态,也可以直接简单地设为0,这种情况下,动态光谱即为我们观察到的光谱强度.二维相关强度X(v1, v2)表示在外扰变量区间内,对光谱变量v1和v2光谱强度变化y˜(v, p)的函数进行比较. 由于相关函数是计算2个互不依赖的光谱变量v1和v2处强度的变化,因此可以将X(v1, v2)转变为复数形式[2]:这里,组成复数的相互垂直的实部和虚部分别称作同步和异步二维相关强度. 同步二维相关强度Ф(v1, v2)表示随着p值的变化,v1和v2处光谱强度的相似性变化,而异步二维相关强度Ѱ(v1, v2)则表示光谱强度的相异性变化.二维相关光谱的快速计算方式在于对动态光谱进行Hilbert-Noda变换,将其从外扰域转换到频率域上,最终得到二维相关光谱[2,5].二维相关同步谱:二维相关异步谱:其中Mjk代表Hilbert-Noda转变矩阵的第j行第k列的元素,表示为:1.3 解谱规则二维相关光谱图包含同步谱和异步谱2类,图1展示了典型的同步和异步谱图.1.3.1 二维相关光谱同步谱图二维相关光谱同步谱图表现了给定2波数v1和v2处光谱强度的同步或者一致变化. 同步谱图沿对角线(对应于光谱坐标v1 = v2)方向对称,其中相关峰可以出现在对角线上,也可以出现在对角线外. 落在对角线上的相关峰称作自动峰,自动峰强度对应于外扰过程中光谱变化的自相关函数. 在同步谱中,自动峰的强度始终为正,代表了对应波数下光谱强度动态波动的整体程度. 所以,在动态谱图中表现出更大程度强度变化的区域对应的自动峰越强,而那些基本保持不变的峰自动峰强度小甚至没有自动峰. 交叉峰处于同步谱图的非对角线区域,表现了不同波数光谱信号的同步变化. 这样一种同步的变化,反过来,预示着2波数间可能存在一定的相关性. 尽管自动峰的强度始终为正,但交叉峰的强度可正可负. 如果2波数的交叉峰为正,说明这2个波数对应的光谱强度在外扰下同时增加或者同时降低;如果两波数的交叉峰为负,说明这2个波数对应的光谱强度一个增加另一个降低.1.3.2 二维相关光谱异步谱图异步谱图呈现了2个给定波数v1和v2处光谱强度的异步或者相继变化,它关于对角线反对称. 异步谱图中只有交叉峰,而无自动峰. 异步交叉峰只有在2个给定波数的光谱强度发生异相(如延迟或加快)变化时才出现. 这一特点尤其可以帮助区分光谱中的来源不同的重叠峰. 于是,外扰过程中,混合物中的不同组分、材料中的不同相或者化学基团经历不同的变化对光谱强度的贡献能够得以辨别. 即使是2个谱带靠的很近,只要它们的瞬间特征或者时间依赖光谱强度变化模式存在本质不同,它们之间便会出现异步交叉峰. 所以异步交叉峰的出现意味着这些谱带有着不同的来源或者是不同分子环境下的官能团. 异步谱图的交叉峰可正可负,而异步谱图中交叉峰的符号可以用来辅助判断谱带在外扰过程中的变化次序.1.3.3 二维相关光谱读谱规则利用同步和异步谱图的交叉峰,可以获得外扰条件下光谱强度发生变化的先后次序关系. 为方便表述,将同步谱图中(v1, v2)处的峰强度记为Φ(v1, v2),将异步谱图中(v1, v2)处的峰强度记为Ψ(v1, v2). 根据Noda规则[5]:(1)当Φ(v1, v2) 0时,如果Ψ(v1, v2) 0,则v1谱带处的强度变化发生先于v2谱带处的强度变化(表示为v1→v2),而如果Ψ(v1, v2) 0,则v2→v1;(2)当Φ(v1, v2) 0时,如果Ψ(v1, v2) 0,则v2→v1,而如果Ψ(v1, v2) 0,则v1→v2. 简单说来,如果(v1, v2)在同步和异步谱图的交叉峰符号一致(都为正或者都为负),则v1→v2;如果(v1, v2)在同步和异步谱图的交叉峰符号不一致(一个为正而另一个为负),则v2→v1.2 实验技巧二维相关光谱作为一种有效的光谱分析手段,是针对一系列动态光谱的数学分析,具体可分为2个过程:动态谱图获取和二维相关分析. 本节将结合实际操作过程,介绍二维相关红外光谱的一些实验和分析技巧.2.1 动态谱图获取2.1.1 样品制备对于固体聚合物样品,溴化钾压片法制备的样品可直接用于透射红外光谱测试;另外,还可使用溶液铸膜(solution casting)法在红外窗片上直接制备得到适合透射红外光谱测试的薄膜. 对于溶液样品,主要应考虑样品的密封问题,避免测试过程中溶剂的挥发. 此外,水溶液或者水凝胶样品,为避免H2O分子的红外吸收对高分子链上C―H和C=O基团吸收峰的影响,可以用D2O作溶剂.2.1.2 测试条件测试模式方面,为得到高信噪比的红外光谱图,一般使用透射模式进行数据采集. 特殊的样品也可选用其他附件,例如对样品表面进行研究时可选用ATR附件. 测试条件方面,为兼顾扫描时间和信噪比,可设置红外谱图分辨率为4 cm-1,扫描次数为32次.2.1.3 测试环境二维相关光谱的特点在于只对光谱的变化敏感,能够显著放大一系列动态光谱的变化情况. 不论样品浓度、厚度如何,如果其处于静态,不发生变化,则对应的二维相关光谱无任何信号. 因此,为了使二维相关光谱的信号只来源于样品本身的结构变化,需要保证测试过程中环境的相对稳定,排除测试环境变化引起的水或二氧化碳吸收峰变化的干扰. 通常,可以借助干燥空气或者氮气吹扫,待测试环境稳定后进行背景采集,随后开展一系列动态光谱的采集.2.2 二维相关光谱分析将采集的一系列动态光谱在特定的软件上进行数学处理,即可得到二维相关光谱同步和异步谱图. 目前,能够快速获得二维相关光谱的软件种类很多[7],大都是免费获取或者是商业化的软件,包括2D Shige、TDCOS、Mat2DCorr、2DCS、Midas 2010、R corr2D、Python Scikit Spectra、Python NumPy等. 关于二维相关光谱的谱图分析,重点在两部分:精细结构的分辨和动态过程的解析. 二维相关光谱异步谱可以区分光谱中来源不同的重叠峰,将异步谱中谱峰对应的波数进行基团归属,即可分辨体系的精细结构. 此外,通过结合同步谱和异步谱交叉峰的符号,可以获得外扰条件下光谱强度发生变化的先后次序关系. 为了方便解析复杂体系谱峰响应的先后次序,根据Noda规则,本课题组提出了一种简便的判断方式[8]. 如表1、2所示,分别读出了图1异步谱中所有谱峰对应的波数及其在同步和异步谱中交叉峰的符号(强度正负),之后将其对应一一相乘,结果如表3所示. 该表中每一个正值都代表它所对应的横轴的波数先于或快于纵轴的波数响应,而每一个负值代表它所对应的横轴的波数后于或慢于纵轴的波数响应. 基于此,可以直观地得出对应动态过程的谱峰响应次序(“→”表示先于或快于):1647→1628→1622→1615 cm-1.Table 1 Signs of cross-peaks in synchronous spectrum (corresponding to Fig. 1).Table 2 Signs of cross-peaks in synchronous spectrum (corresponding to Fig. 1).Table 3 The final results of multiplication on the signs of each cross-peak in synchronous and asynchronous spectra.3 典型应用基于二维相关光谱在判断精细结构和解析动态过程的优势,本节将结合本课题组的研究工作,介绍二维相关光谱在高分子表征中的应用,主要涉及温度响应高分子的响应机制、可拉伸离子导体中复杂相互作用、小分子在聚合物基质中的扩散机理等.3.1 温度响应高分子的响应机制温度响应高分子能够在外界温度发生变化时改变自身的物理或化学性质,形成对环境的感应并产生反馈,在智能传感、药物缓释、可控驱动、过滤分离、智能窗户等领域得到了广泛关注和应用[9~11]. 温度响应高分子的响应过程往往源于分子结构或链构象的变化,分子光谱(红外、拉曼光谱)对分子基团及相应的相互作用十分敏感,非常适合于研究其中的响应机理. 传统的一维分子光谱存在谱峰重叠严重、分辨能力低以及难以捕捉动态过程等不足,借助二维相关光谱分析,可以对温度响应高分子的精细结构和动态响应机制进行深入解析,探讨其中的构效关系.聚(N-异丙基丙烯酰胺)(PNIPAM)在水溶液中呈现LCST (lower critical solution temperature)型转变,即升温过程发生相分离,相转变温度约为32 ℃[12]. PNIPAM分子链同时存在亲水的酰胺基团和疏水的碳链骨架、异丙基侧基,利用变温红外光谱对PNIPAM水溶液升温过程进行跟踪,观察到vas(CH3)和vs(CH2)吸收峰波数的降低以及Amide I区域1625和1649 cm-1处吸收峰的相互转化,表明聚合物链C―H基团的脱水和分子间/内氢键C=O… H―N的形成. 基于二维相关光谱分析,获取了PNIPAM水溶液相分离的微观动力学机理:温度升高首先发生侧基CH3的两步脱水,随后是主链的塌缩和聚集,最后为酰胺氢键的形成,并最终导致了相分离[13].PNIPAM的LCST型转变对溶剂组成也十分敏感. 尽管水和甲醇都是PNIPAM的良溶剂,但在两者以一定比例混合的状态下对PNIPAM则为不良溶剂. 例如:当甲醇和水的体积比为0.35:0.65时,PNIPAM在该混合溶剂中的LCST约为-7.5 ℃,这种现象称为“共不溶”现象. 利用红外光谱和二维相关光谱分析研究PNIPAM在水/甲醇混合溶剂中温度响应行为[14],传统一维红外光谱分析表明,相比于纯水溶液,PNIPAM链在水/甲醇混合溶剂中处于塌缩的状态,并且PNIPAM和甲醇的相互作用明显被削弱了,这主要归因于混合溶剂中水-甲醇团簇的形成导致了PNIPAM链水合位点的减少. 进一步的二维相关红外光谱分析证实了水-甲醇团簇对PNIPAM链水合过程的抑制作用.除此之外,本课题组还探讨了其他LCST型聚合物的转变机理[15~19]、共聚(无规共聚、嵌段共聚)结构对温敏聚合物相变行为的影响[20~22]、温度响应水/微凝胶的体积转变过程[23~25]等,相关工作已进行过系统总结[26,27],这里不再赘述.水凝胶结构与生物组织十分相近,在仿生皮肤等领域获得了广泛关注. 将两性离子单体与丙烯酸(acrylate acid, AA)共聚,通过调节盐浓度,制备得到具有优异可塑性、可拉伸性、自愈合性的超分子聚电解质水凝胶[28]. 同时,聚电解质的离子传输性质赋予了水凝胶对温度、应变、应力的多重感知功能. 基于对干态和湿态凝胶的红外光谱解析,获取了该水凝胶涉及的丰富的分子间/内相互作用,包括聚丙烯酸(PAA)链段羧基之间的氢键相互作用、两性离子链段中磺酸根与季铵盐的静电相互作用、PAA链段羧酸根和两性离子链段季铵盐的静电相互作用等,而这些丰富的分子间/内相互作用是该超分子水凝胶力学性能的决定性因素. 在此基础上,用甲基丙烯酸(methyacrylate acid, MAA)取代丙烯酸,即在PAA链段引入疏水的α-甲基,通过调节MAA和两性离子单体的比例,实现了超分子水凝胶在LCST和UCST (upper critical solution temperature)行为之间的转变[29],如图2所示. 具体地,当两性离子单体与MAA质量比大于1时,聚合物在水溶液中表现出UCST行为;当两性离子单体与MAA质量比等于1时,聚合物在宽的温度范围(10~80 ℃)内均不溶于水;两性离子单体与MAA质量比小于1时,聚合物在水溶液中表现出LCST行为. 同时,LCST和UCST可以通过两性离子和MAA单体的共聚比例方便地进行调节. 二维相关红外光谱从分子水平有效揭示了这一体系独特相行为的产生原因. 结果表明,羰基氢键结构的转化是LCST型水凝胶相行为的驱动力,而磺酸根涉及相互作用(水合作用、静电作用等)的变化是UCST型水凝胶相行为的驱动力.Fig. 2 (a) The chemical structure of the polyzwitterion Turbidity curves and typical photos for the (b) UCST- and (c) LCST-type hydrogels Temperature-dependent FTIR spectra (d, e) and 2D correlation spectra (f, g) of typical UCST- and LCST-type hydrogels (Reprinted with permission from Ref.[29] Copyright (2018) American Chemical Society).在天然的阳离子多糖(季铵化壳聚糖)中原位聚合亲水的阴离子单体(AA),构筑了具有温度、pH、机械力、电学等刺激响应行为的双网络聚电解质水凝胶. 该水凝胶同时集成了生物相容、离子传输、黏附、可拉伸、自愈合等多种功能,可作为仿生离子皮肤用于监测压力、温度、pH、电信号等刺激引起的生理信号变化[30]. 值得注意的是,该离子皮肤具有温度可调的黏附性,即升温黏附强度提升,降温黏附强度下降,例如水凝胶在猪皮上37 ℃下的黏附强度是20 ℃下的5.5倍,且具有良好的循环稳定性,这主要源于聚电解质水凝胶的UCST型转变. 季铵化壳聚糖由疏水主链和亲水的季铵盐基团组成,具有两亲性结构,通过改变聚合过程中AA组分的比例,可以实现对双网络聚电解质水凝胶相变行为的调控. 利用温度分辨红外光谱及二维相关分析对水凝胶的温度响应机理进行研究,结果表明体系的UCST型转变源于焓变驱动的季铵化壳聚糖与PAA链段间离子相互作用的解离和氢键作用的增强. 关于水凝胶的黏附性,涉及了丰富的分子相互作用,如PAA与基体间的氢键、季铵化壳聚糖与基体间的疏水相互作用、离子相互作用等. 二维相关红外光谱分析表明,升温相变过程中离子对解离,释放了大量解离的羧基,促使了PAA链段中羧基二聚体之间强氢键以及与季铵化壳聚糖链段羟基之间氢键的形成,提高了水凝胶的强度. 同时,水凝胶中羧基二聚体的形成有利于氨基的质子化,从而改善了组织黏附性.聚甲基丙烯酸(PMAA)在合适的水环境中也可表现出LCST型相转变[31]. 通过在PMAA水溶液中引入AlCl3等无机盐,调节盐浓度,实现了体系相转变温度的广泛可调,并构筑了具有多级结构、可实现紫外-可见-红外宽谱带光管理的新型水玻璃. 该水玻璃不仅可以可逆地切换可见光区域的透射率,阻挡紫外和红外光,还具有缺口不敏感性、自我修复断裂和划痕的功能. 借助二维相关红外光谱可对该水玻璃的动态响应机制进行解析,经分析,PMAA链段上不同化学基团在升温过程的响应次序为:α-甲基→亚甲基→羧基,表明疏水的α-甲基的脱水合是该体系相转变过程的驱动力,导致了聚合物主链的塌缩以及羧基之间氢键结构的解离. 此外,温度分辨小角X射线散射(SAXS)、微小角中子散射(VSANS)光谱证实了聚合物链塌缩引起的散射强度增加,从而产生可见光透过率的变化.一些聚电解质复合物在水溶液中也表现出热致相转变行为[32]. 通过调节典型聚电解质复合物——聚苯乙烯磺酸盐/聚二烯丙基二甲基铵在溴化钾水溶液中的浓度,同时观察到了LCST和UCST型相转变现象:低浓度下,聚电解质复合物呈现UCST型固液相转变;高浓度下,聚电解质复合物则表现为LCST型液液相分离. 基于温度分辨拉曼光谱和二维相关光谱分析,深入研究了体系中的水合效应和阴-阳离子相互作用. 研究发现,在水溶液中,聚电解质复合物的阴-阳离子相互作用呈现2种状态:直接接触型离子对(contact ion pairs, CIPs)和溶剂分离型离子对(solvent-separated ion pairs, SIPs). 聚合物浓度较低时,疏水的聚电解质链段使得阴-阳离子直接结合,CIPs占主导,而温度的升高导致了CIPs的解离,从而引起体系的UCST型转变;聚合物浓度较高时,CIPs比例低,升温导致了阴-阳离子的结合,从而引起体系的LCST型转变. 二维相关拉曼光谱分析则给出了相转变过程中的基团衍化次序,进一步揭示了聚电解质复合物两种截然不同的相转变机理:UCST型体系升温呈现出阴-阳离子相互作用逐渐减弱的解离过程,即“CIPs→SIPs→自由离子”,而LCST型体系升温呈现出阴-阳离子相互作用逐渐增强的缔合过程,即“自由离子→SIPs→CIPs”(图3). Fig. 3 2D correlation synchronous and asynchronous Raman spectra of polyelectrolyte complexes with (a) UCST- and (b) LCST-type transitions (c) Schematic illustration of the phase transition mechanisms (Reprinted with permission from Ref.[32] Copyright (2020) American Chemical Society).将温度响应聚合物引入分离膜,能够赋予膜材料温度响应功能,实现可控的物质分离[33]. 利用温敏性聚N-乙烯基己内酰胺(PVCL)和非温敏性聚乙烯基吡咯烷酮(PVP)协同稳定金属有机框架(MOF)纳米片,并进一步抽滤得到层层堆叠的温度响应纳米片复合膜. 其中PVCL提供温敏性,PVP提供支撑作用,PVCL和PVP的协同作用使得在升降温循环过程中,层间纳米孔道体积既可以同步增大和缩小,而层间距维持稳定. 所得MOF纳米片复合膜水通量及对染料截留能力具有温度敏感性. 温度升高,PVCL链塌缩使得层间纳米孔道体积增大,因而水通量增大,且升降温循环过程稳定性良好. 将尺寸相近的3种染料分子(亮绿、中性红、结晶紫)混合液进行过滤测试发现,随温度升高,尺寸较小的亮绿和中性红分子截留率下降明显高于结晶紫. 值得注意的是,对不同温度下滤液的紫外-可见光谱进行二维相关光谱分析,可以得到不同染料随温度升高的流出顺序:亮绿→中性红→结晶紫,证实了复合膜中纳米孔道尺寸随温度升高而逐渐增大. 利用二维相关红外光谱进一步对纳米片复合膜的温度响应机制进行了解析,结果显示,PVCL链段在升温过程的脱水和塌缩作为复合膜温敏行为的驱动力,降低了MOF纳米片的界面润湿性,最终导致纳米孔道的变化,而PVP链段在这一过程中并未发生明显变化,主要起到层间支撑作用(图4).Fig. 4 (a) Temperature-dependent FTIR spectra of the composite membrane (30-60 ℃). The arrows indicate the spectral variation trends at different wavenumbers (b) 2D correlation synchronous (left) and asynchronous (right) spectra of the composite membrane (c) Schematic illustration of the "smart" membrane separation performance (Reprinted with permission from Ref.[33] Copyright (2020) Springer Nature).3.2 可拉伸离子导体中复杂相互作用的揭示生命系统的生理活动与离子传导密切相关,譬如皮肤和神经纤维须通过离子传导电信号实现环境感知和运动反馈. 可拉伸离子导体是模拟弹性生物组织离子传输的重要材料,在仿生皮肤、人工肌肉、可拉伸储能、软机器人等领域取得了广泛应用.在进行可拉伸离子导体的构筑时,往往需要兼顾力学和离子传导等性能,其中涉及了丰富的分子相互作用. 本课题组围绕可拉伸离子导体,在对体系分子内/分子间相互作用机理的研究基础上,提出了一系列调控力学、电学和光学性质的分子设计. 例如:利用纳米级无定形矿物粒子和天然多糖的离子作用,调节物理交联PAA的黏弹性,所构筑的仿生皮肤可以快速自修复,且具有更高的应力响应灵敏度[34];基于AA和两性离子共聚物,选择结构匹配的离子液体,通过带电荷基团之间的离子协同效应构筑了导电纳米通道,氢键作用实现了导电通道和动态交联网络之间的协同效应,所制备的本征可拉伸导体材料透明性好、可拉伸性能突出(10000%)[35];基于聚阴离子和聚阳离子间的弱氢键相互作用构筑了一种聚离子弹性体,所得聚离子弹性体高度透明,具有接近生物组织的力学性能和感知功能,并且可以实现同步的致动和反馈效果[36];利用含氟聚离子液体与离子液体之间的离子-偶极和离子-离子相互作用,设计了一种可水下通信的光学伪装离子凝胶,该离子凝胶透明、力学性能可调、可3D打印,且具有水下自愈合、水下黏附、导离子等功能[37]. 二维相关红外光谱的优势在于从动态过程中识别体系的精细结构和复杂相互作用,因而是研究离子凝胶/弹性体中分子相互作用机制的有效手段.通过合理调控分子间/内相互作用,设计制备了一种基于天然小分子α-硫辛酸(α-thioctic acid, TA)的可涂覆离子凝胶油墨(图5)[38]. 在离子液体1-乙基-3-甲基咪唑硫酸乙酯([EMI][ES])存在的条件下,TA室温即可进行浓度诱导的自发开环聚合,得到稳定、透明、高拉伸且自愈合的离子凝胶弹性体. 该弹性体易溶于乙醇,因而能够方便地涂覆到任意表面,赋予涂覆体稳定的离子导电能力和应变感知功能. 利用红外光谱等手段探讨了离子凝胶中离子液体对聚硫辛酸(polyTA)的稳定机制:相比于纯的polyTA体系,离子凝胶的COOH伸缩振动区域在1734 cm-1出现了明显的肩峰,而离子液体的S=O伸缩振动峰在离子凝胶中呈现了明显的红移,表明polyTA的羧基与硫酸乙酯阴离子形成了COOH… [ES]氢键. 分子动力学模拟结果表明了COOH… [ES]氢键的热力学稳定性,同时该氢键能够有效降低polyTA的势能. 因此,离子液体主要通过阴离子ES与polyTA基间形成强氢键而稳定polyTA. 二维相关红外光谱则揭示了离子凝胶升温过程不同化学基团的响应次序:COOH… [ES]氢键→羧酸二聚体→自由羧基,说明COOH… [ES]氢键对温度变化最敏感,进一步证实了COOH… [ES]氢键对于稳定polyTA离子凝胶的重要作用. Fig. 5 (a) Schematic illustration of the COOH[ES] H-bonding in the ionogel (b) ATR-FTIR spectral comparison among ionogel, [EMI][ES] and neat polyTA (c) Temperature-variable FTIR spectra of the ionogel in the C=O stretching region from 25 °C to 151 °C Perturbation-correlation moving window (d) and 2D correlation synchronous and asynchronous spectra (e) generated from (c). (Reprinted with permission from Ref.[38] Copyright (2021) Wiley).受指纹结构启发,构筑了一种具有共形和可重复编辑褶皱结构的本征可拉伸离子导电芯鞘纤维[39],其中,纤维芯层为离子凝胶弹性体,鞘层为氟橡胶,芯鞘界面借助共价交联网络和离子-偶极相互作用实现协同拓扑互锁和物理黏附. 经过表面褶皱结构的优化,该离子纤维拉伸应变感知灵敏度(gauge factor)可提升至10以上,超过了绝大多数可拉伸离子导体应变传感器. 利用红外光谱对离子凝胶芯层的分子相互作用进行研究,发现其中涉及了离子液体阳离子咪唑环上C―H与聚合物侧基乙氧基间的氢键、聚合物链段C=O间的偶极-偶极相互作用、离子液体阴-阳离子间的弱静电相互作用等,而这些都对离子凝胶的高拉伸行为做出了重要贡献. 基于对芯层和鞘层力学性能的研究,发现表面褶皱形成的主要原因在于,高模量的氟橡胶鞘层弹性回复率显著低于离子凝胶芯层,在应变回复过程中造成了芯层和鞘层的界面失稳. 随着预应变的增加,弹性回复率差异变大,从而导致更加密集的褶皱结构. 此外,形成的表面褶皱可通过加热至60 ℃完全消除,从而赋予纤维可重复编辑褶皱的能力. 二维相关红外光谱揭示了离子凝胶芯层高温下残余应变的消除主要源于聚合物链段C=O间偶极-偶极相互作用的减弱和构象重排,而氟橡胶鞘层由C―F间偶极-偶极相互作用锚定的链构象也可以通过加热消除.通过在强氢键交联的PAA网络中引入熵驱动的弱交联两性离子超分子网络,产生竞争机制,设计制备了一系列透明、抗冻、保湿、黏附、高拉伸、高回弹、自愈合、应变硬化、导质子、可重复加工等综合性能优异的离子皮肤(图6)[40]. 不同于传统水凝胶和离子凝胶,该离子弹性体不含大量溶剂,仅含有少量达到吸湿平衡的水分子,这使得分子间的羧酸二聚体氢键足以交联PAA分子链而形成强交联网络,而弱交联的两性离子超分子网络则提供柔性. 通过红外光谱、核磁共振谱和力学松弛等实验探讨了这一二元网络体系中的分子相互作用. 其中,具有较低pKa值的两性离子的存在使得PAA轻度去质子化,游离的质子是主要载流子. 去质子化的PAA与两性离子的阳离子端也可以发生离子缔合. 利用变温红外光谱并结合二维相关光谱分析,验证了体系中的3种主要分子相互作用,并根据它们对于温度的响应顺序判别了其结合强度,即PAA链段羧酸二聚体氢键 PAA-甜菜碱离子相互作用 甜菜碱-甜菜碱离子相互作用,这一光谱表征结果为该离子皮肤强弱协同竞争网络的分子设计提供了重要依据. Fig. 6 (a) Temperature-variable FTIR spectra of PAA/betaine ionic elastomer upon heating (b) 2D correlation synchronous and asynchronous spectra generated from (a) FTIR (c) and 1H-NMR (d) spectra of PAA, betaine, and PAA/betaine (e) Schematic illustration of PAA/betaine elastomer and the order of interaction strength among the three main interacting pairs (Reprinted with permission from Ref.[40] Copyright (2021) Springer Nature).3.3 小分子在聚合物基质中的扩散聚合物生产和加工的许多工序都涉及小分子物质在聚合物基体的扩散,研究这类扩散行为具有重要的理论和实践意义. ATR-FTIR光谱可对小分子在聚合物基质中的扩散过程进行实时、原位、快速、多组分检测,能够同时获取扩散系数和分子层面相互作用等信息. 扩散装置示意图如图7所示,聚合物基体处于ATR晶体和扩散物质之间,当扩散物质从聚合物基体的上表面扩散至下表面时即可被检测到. 随着时间的增加,与扩散物质相关的特征吸收峰强逐渐增大直至扩散平衡(扩散谱图,图7(b)). 以扩散时间为横坐标、扩散物质特征吸收峰强度/面积为纵坐标作图,即可得到扩散曲线(图7(c)). 结合二维相关光谱分析,可以提供动态扩散过程结构与相互作用的变化信息,有助于解析扩散机制[41~45].Fig. 7 (a) Schematic illustration of the diffusion experiments by ATR-FTIR spectroscopy (b) typical diffusion spectra (c) a typical diffusion curve.基于朗伯比尔定律和菲克扩散模型,Fieldson等[46]建立了基于ATR-FTIR光谱测试计算扩散系数的公式:其中这里,At为扩散时间t时,特征红外吸收峰的强度或面积;A∞为扩散达到平衡时,特征红外吸收峰的强度或面积;L为聚合物薄膜基体的厚度;D为扩散剂的扩散系数;γ为光波在聚合物基体中渗透深度的倒数,可表示为:其中,θ (θ = 45o)为红外光的入射角;n1和n2分别为聚合物和ATR晶体的折光指数;λ为红外光的波长. 基于以上扩散方程对ATR-FTIR光谱测试得到的扩散曲线进行拟合,即可得到相关扩散系数. 此外,根据曲线拟合情况可以判断该扩散过程的扩散模型.利用时间分辨ATR-FTIR光谱并结合二维相关光谱分析技术对水分子在乙基纤维素(EC)基薄膜中的扩散行为进行系统研究[47]. 分析表明,水分子在EC中的扩散行为符合菲克扩散模型,通过对扩散曲线的拟合计算得到了相关的扩散系数. 此外,探讨了EC中增塑剂(柠檬酸三乙酯)含量对水分子扩散行为的影响,结果表明,增塑剂的添加不影响水分子的扩散模型,主要起到加速水分子扩散的作用,这主要源于增塑剂的加入改善了EC链的活动性而提高了EC基体的自由体积(free volume). 利用二维相关光谱对水分子羟基伸缩振动区域扩散谱图进行解析,观察到在整个扩散过程中,主要存在着4种类型的水分子,即本体水(强氢键作用)、团簇水(中等强度氢键作用)、相对自由的水分子(弱氢键作用)以及自由的水分子(极弱氢键作用). 依据Noda规则,判别出不同状态水分子扩散的先后顺序:团簇水→本体水→相对自由的水分子或自由的水分子,表明扩散首先来自体积较小、相对弱氢键结合的团簇水,其次才是大量的本体水,而随着扩散过程的进行,部分水分子与聚合物基体相互作用而脱离团簇水或本体水,产生了(相对)自由的水分子.EC被广泛用作药物包衣材料以实现药物缓释的功能,利用ATR-FTIR光谱对药物分子在EC基薄膜中的扩散行为进行实时监测可以有效模拟这一药物缓释过程(图8),从而为EC基药物包衣材料的配方优化提供理论指导[48]. 扩散谱图直观呈现了体系中各组分的变化情况,包括水分子(1637 cm-1)和药物分子(1569 cm-1)特征吸收峰强度的上升,增塑剂(1737 cm-1)特征吸收峰强度的下降等,表明水分子和药物分子在EC基薄膜中的扩散以及薄膜中增塑剂的部分溶解. 定量分析结果表明,扩散主要包含3个阶段:(A)水分子扩散;(B) EC膜吸水饱和,水扩散停止并溶解EC基体中的致孔剂;(C) 随着致孔剂的溶解,EC薄膜中形成孔道,使得药物分子和水分子共同扩散,同时增塑剂溶解. 二维相关红外光谱分析结果进一步证实了C阶段的各组分变化顺序:水分子扩散→药物分子扩散→增塑剂溶解,并且显示药物分子始终处于水合状态. 此外,通过改变药物分子的水溶性、致孔剂的种类以探讨膜配方对扩散行为的影响,结果表明随着致孔剂水溶性的增加和/或药物分子水溶性的降低,B阶段将缩短甚至消除. Fig. 8 (a) Time-resolved ATR-FTIR spectra collected during the water and drug diffusion (b) 2D correlation synchronous and asynchronous spectra during the diffusion of Stage C (c) Schematic illustration of water and drug diffusion across the EC-based film (Reprinted with permission from Ref.[48] Copyright (2015) Elsevier).氢氧化物/尿素是溶解纤维素的重要组合,其中尿素可稳定纤维素的疏水部分,有利于形成包合物从而促进纤维素的溶解. 在分子层面上,尿素溶液对纤维素的作用机理尚不明确. 采用ATR-FTIR光谱并结合二维相关光谱衍生的外扰相关移动窗口(perturbation-correlation moving window,PCMW)技术研究了不同浓度尿素水溶液(0,20 wt%、40 wt%和50 wt%)在黏胶纤维膜中的扩散行为,在分子水平揭示了尿素溶液的动态扩散行为以及与黏胶纤维的相互作用机制[49]. 从扩散谱图的变化规律以及对应的扩散曲线看,尿素溶液的扩散过程可大致分为2个步骤,水分子首先通过黏胶纤维膜,随后带动尿素分子一起通过. PCMW谱图显示,尿素浓度越高,尿素分子扩散滞后现象越明显. 根据菲克扩散模型,尿素分子在黏胶纤维膜的扩散系数随尿素浓度的增加而减小. 在红外光谱中,特征谱峰出现位移表明相应官能团相互作用的变化. 基于扩散过程Amide Ⅲ(尿素)和CH2-O(6)H伸缩振动(纤维素)的峰位移变化趋势,尿素水溶液在黏胶纤维中的扩散过程可以概括为:首先水分子破坏黏胶纤维膜无定形区的氢键网络,与羟基形成新的纤维素-水氢键,随后尿素分子在水分子的“桥连”作用下形成纤维素-水-尿素氢键,从而间接作用于纤维素. 低浓度下,水分子相对含量较大,可以快速打开扩散通道带动尿素分子通过黏胶纤维膜. 而高浓度下,尿素分子发生聚集且固定了大量水分子,从而在宏观上延缓了尿素溶液的扩散.热转移印花是纺织品印花方法之一,本质上是分散染料向聚酯纤维动态扩散的过程. 借助ATR-FTIR光谱对分散红9 (DR 9)在聚对苯二甲酸乙二醇酯(PET)薄膜中的扩散过程进行了原位跟踪,模拟了热转移印花过程,并结合二维相关光谱探讨了分散染料-分散染料、分散染料-PET相互作用机制,在分子水平上阐释了其扩散机理(图9)[50]. DR 9在PET薄膜中的扩散过程符合菲克扩散模型. 温度越高,扩散速度越快,这主要归因于:(1) 温度升高导致了PET基体自由体积的增加和分子链热运动的增强;(2) DR 9在高温下分子运动的增强. 此外,将不同温度下的扩散系数按照Arrhenius公式进行线性拟合,可以计算得到DR 9在PET中扩散活化能为15.33 kJ/mol. 通过对扩散过程中不同阶段的红外谱图进行对比,观察到了体系中存在丰富的分子间/内相互作用,包括PET和DR 9的C=O基团间偶极-偶极相互作用、芳香基团间π-π相互作用以及DR 9分子内氢键等. 二维相关红外光谱分析进一步细化了扩散体系中不同化学基团的分子间/内相互作用及其在扩散过程中的变化情况. 高温下,随着DR 9分子热运动增强,DR 9分子之间的相互作用减弱. 借助DR 9和PET中C=O基团之间的偶极-偶极相互作用,DR 9扩散进入PET基体. 在扩散过程中,DR 9中形成了较强的分子内氢键,从而提高了DR 9的平面性,促进了扩散过程. 随着越来越多的DR 9分子扩散到PET基体中,DR 9和PET的芳香基团之间的π-π相互作用成为主导,DR 9的分子内氢键减弱. Fig. 9 (a) Time-resolved ATR-FTIR spectra and (b) 2D correlation synchronous and asynchronous spectra of DR 9 diffusion in PET at 140 ℃ (c) Schematic diagram of DR 9 diffusion into PET (Reprinted with permission from Ref.[50] Copyright (2020) American Chemical Society).采用时间分辨ATR-FTIR光谱对不同温度下碳酸丙烯酯(PC)-双三氟甲磺酰亚胺锂(LiTFSI)在聚偏氟乙烯-六氟丙烯共聚物(P(VDF-HFP))中的扩散行为进行了原位监测,同时获得了凝胶聚合物电解质中各扩散组分的扩散系数和分子层面相互作用信息[51]. 基于PC中C=O伸缩振动区域的二阶导数分析,推断出PC在凝胶电解质主要存在四种状态,即与P(VDF-HFP)发生偶极-偶极相互作、PC分子间发生偶极-偶极相互作用、与锂离子发生强离子-偶极相互作用、与锂离子发生弱离子-偶极相互作用. 同时,LiTFSI参与的分子相互作用也得以识别,包括锂离子与PC中C=O之间的离子-偶极相互作用,锂离子与P(VDF-HFP)中C―F之间的离子-偶极相互作用、TFSI-的溶剂化作用等. 扩散过程中,首先是PC分子以溶剂团簇的形式扩散进入P(VDF-HFP),PC分子中的C=O与P(VDF-HFP)中的C―F发生偶极-偶极相互作用,一定程度减弱了P(VDF-HFP)聚合物链间的偶极-偶极相互作用,从而有利于锂盐的扩散. 随后,借助锂离子与C=O的离子-偶极相互作用,锂离子随着PC分子扩散进入P(VDF-HFP),TFSI-在扩散过程中也一直处于溶剂化状态. 这里,PC分子既充当了增塑剂的角色,同时也是离子(包括阴离子和阳离子)扩散的载体. 本工作在分子水平上揭示了PC-LiTFSI在P(VDF-HFP)的传导机制,对高性能凝胶聚合物电解质的结构设计和性能优化具有一定的指导意义.3.4 天然高分子的结构表征海藻酸钠(SA)作为一类天然多糖,生产成本低、无毒且具有良好的生物相容性、可降解性,在食品工业、制药、纺织印染等领域得到了广泛应用. 随着实验室和工业对SA的日趋重视,理解SA内部的氢键结构也变得越发重要. 利用红外光谱对SA升温过程特征基团的变化进行原位监测,结合二维相关光谱等分析手段从分子水平研究了SA体系的相互作用机制,探讨了温度扰动下SA分子间/内、SA与水分子间氢键结构的演变历程[52]. 研究发现,加热过程可分为30~60 ℃和60~170 ℃ 2个阶段:第一阶段为弱氢键结合的水分子脱除,第二阶段为强氢键结合的水分子脱除. 二维相关红外光谱结果表明:30~60 ℃区间内,随脱水过程发生,SA与水分子的氢键逐步断裂,SA中C―OH和COO-基团逐渐参与形成分子间/内氢键(O3H3⋯O5和O2H2⋯O=C―O-),因此水分子的存在一定程度破坏了SA中原有的氢键结构;60~170 ℃区间内,强结合水脱除,SA与水分子的氢键进一步断裂,同时SA分子间/内氢键相互作用逐步减弱,出现了部分相对自由的C―OH和COO-基团(图10). 由于相对自由的COO-比C―OH更早出现,可以推测C―OH形成的分子间/内氢键相互作用比COO-更强.Fig. 10 2D synchronous and asynchronous spectra of the SA film during heating between (a) 30-60 °C and (b) 60-170 °C (c) Schematic illustration of the heat-induced hydrogen bonding transformation in the SA film[52] (Reprinted with permission from Ref.[52] Copyright (2019) Elsevier).多元羧酸与纤维素的羟基反应,能使纤维素大分子间形成立体的交联网络结构,从而赋予棉纤维织物抗皱性能. 1,2,3,4-丁烷四羧酸(BTCA)作为一类典型的用于棉纤维织物抗皱整理的多元羧酸,其与纤维素的酯化过程受到了广泛关注,但其中关于分子水平相互作用机制及动态反应机理仍不清晰. 利用FTIR光谱对加热过程中纤维素与BTCA在催化剂次亚磷酸钠(SHP)作用下的酯化反应过程进行原位跟踪,并借助二维相关光谱分析技术探讨了该反应的分子机理,重点关注了分子层面相互作用机制以及反应全过程中的化学基团转变历程[53]. 分析表明,室温下,体系中的O―H和C=O等极性基团有强氢键相互作用. SHP存在时,碱金属离子(Na+)与羧基反应并将其转化为相应的羧酸盐,从而一定程度削弱了BTCA间的氢键相互作用. 在30~100 ℃的加热过程中,体系中的氢键部分断裂,导致一些O―H和C=O处于相对自由的状态. 这里,SHP的存在和加热过程都会导致体系中氢键相互作用的减弱,从而使相应的化学基团更自由,有利于酸酐生成和酯化反应. 当加热至100 ℃以上后,羧酸盐和自由羧酸开始脱水形成环酐. 一旦形成环酐,就会与纤维素大分子链上的O―H反应生成酯. 通过逐步成酐和酯化反应过程,BTCA实现了对纤维素的交联. 该结果对多元羧酸的抗皱整理工艺优化及寻找更有效的多元羧酸类抗皱整理剂和催化剂具有一定的指导作用.4 总结与展望本文主要介绍了二维相关光谱的基本原理、实验和分析技巧等,并结合具体的体系(如温度响应高分子、可拉伸离子导体、小分子在聚合物中的扩散过程、天然高分子等),简述了二维相关光谱在高分子表征中的应用. 这里,二维相关光谱不仅能够有效鉴别高分子体系涉及的丰富相互作用,还能提供外扰作用下动态过程发生的分子机制. 相关研究结果一方面有助于启发新型功能高分子材料的结构设计,另一方面也可以为实际工艺过程的配方优化和参数调整提供指导.二维相关光谱作为一种先进的光谱分析手段,在高分子材料体系的表征中得到了越来越多的关注. 随着高分子材料涉及的体系越来越复杂、功能越来越强大,这为二维相关光谱的应用提供了更多的机遇,但同时也带来了更多的挑战. 在后续的研究工作中,二维相关光谱分析可以重点关注以下几方面:(1) 光谱手段的多样性. 目前关于二维相关光谱在高分子体系中的应用主要是基于中红外光谱,关注的是分子层面相互作用信息. 一方面,中红外光谱也有一定的局限性,例如低浓度溶液体系信号弱、水的吸收峰干扰严重等. 对于中红外光谱难以表征的体系,可以尝试其他分子光谱手段,如拉曼光谱、近红外光谱等,开展二维相关光谱分析. 另一方面,其他光谱手段,包括荧光光谱、圆二色谱、紫外-可见吸收光谱、X射线衍射谱等,都可以进行二维相关光谱分析,以获取多层面丰富的结构信息. 目前,这些光谱在处理二维相关分析时,大部分因信噪比低而导致噪音被显著放大,使得结构解析变得困难,如何有效解决这一问题是丰富二维相关分析光谱手段的关键.(2) 外扰变量的丰富性. 时间、温度便于控制,是目前获取动态光谱最常用的外扰变量. 然而,影响高分子结构和性能的因素是多种多样的,例如湿度变化能够引起高分子力学性质的改变、紫外光照射可以引起高分子的老化等,尤其是刺激响应高分子,可以对温度、压力、电场、磁场、pH、浓度等丰富的外扰产生响应,引起物理或化学性质的变化. 最近,Li等[54]利用二维相关红外光谱研究了乙醇诱导聚丙烯酰胺/Pluronic 127水凝胶相分离的机理,获取了氢键解离和无定形-结晶转变等信息. 因此,利用二维相关光谱探讨不同刺激下高分子结构的演变机制,将进一步拓宽二维相关光谱的应用范围. 需要注意的是,对于测试过程无法原位施加的外扰变量,应尽量避免其他因素改变而引起的光谱变化,否则将影响二维相关光谱分析结果的真实性和可靠性.(3) 多种分析手段的关联. 一方面,通过二维相关光谱交叉谱的计算和解析,可以将不同分析手段所得结果进行关联,这能够帮助理解高分子不同层面结构的内在联系. 另一方,二维相关光谱分析结果涉及丰富的相互作用和结构变化,经过与其他分析表征手段的结果进行比对和相互验证,可有效加深人们对二维相关光谱分析结果的理解. 参考文献1Ernst R R, Bodenhausen G, Wokaun A. Principles of Nuclear Magnetic Resonance in one and Two Dimensions. Oxford: Clarendon Press, 19872Noda I, Dowrey A, Marcott C, Story G, Ozaki Y. Appl Spectrosc, 2000, 54(7): 236A-248A. doi:10.1366/0003702001950454 3Noda I. J Am Chem Soc, 1989, 111(21): 8116-8118. doi:10.1021/ja00203a008 4Noda I. Appl Spectrosc, 1990, 44(4): 550-561. doi:10.1366/0003702904087398 5Noda I. Appl Spectrosc, 1993, 47(9): 1329-1336. doi:10.1366/0003702934067694 6Noda I. Anal Sci, 2007, 23(2): 139-146. doi:10.2116/analsci.23.139 7Park Y, Jin S, Noda I, Jung Y M. J Mol Struct, 2020, 1217: 128405. doi:10.1016/j.molstruc.2020.128405 8Sun S, Tang H, Wu P, Wan X. Phys Chem Chem Phys, 2009, 11(42): 9861-9870. doi:10.1039/b909914j 9Kim Y J, Matsunaga Y T. J Mater Chem B, 2017, 5(23): 4307-4321. doi:10.1039/c7tb00157f 10Chilkoti A, Dreher M R, Meyer D E, Raucher D. Adv Drug Deliv Rev, 2002, 54(5): 613-630. doi:10.1016/s0169-409x(02)00041-8 11Weber C, Hoogenboom R, Schubert U S. Prog Polym Sci, 2012, 37(5): 686-714. doi:10.1016/j.progpolymsci.2011.10.002 12Tang L, Wang L, Yang X, Feng Y, Li Y, Feng W. Prog Mater Sci, 2021, 115: 100702. doi:10.1016/j.pmatsci.2020.100702 13Sun B, Lin Y, Wu P, Siesler H W. Macromolecules, 2008, 41(4): 1512-1520. doi:10.1021/ma702062h 14Sun S, Wu P. Macromolecules, 2010, 43(22): 9501-9510. doi:10.1021/ma1016693 15Sun S, Wu P. J Phys Chem B, 2011, 115(40): 11609-11618. doi:10.1021/jp2071056 16Wang H, Sun S, Wu P. J Phys Chem B, 2011, 115(28): 8832-8844. doi:10.1021/jp2008682 17Sun B, Lai H, Wu P. J Phys Chem B, 2011, 115(6): 1335-1346. doi:10.1021/jp1066007 18Sun S, Wu P. Macromolecules, 2013, 46(1): 236-246. doi:10.1021/ma3022376 19Zhang B, Tang H, Wu P. Macromolecules, 2014, 47(14): 4728-4737. doi:10.1021/ma500774g 20Hou L, Wu P. Soft Matter, 2014, 10(20): 3578-3586. doi:10.1039/c4sm00282b 21Hou L, Wu P. Soft Matter, 2015, 11(14): 2771-2781. doi:10.1039/c5sm00026b 22Sun W, An Z, Wu P. Macromolecules, 2017, 50(5): 2175-2182. doi:10.1021/acs.macromol.7b00020 23Hou L, Ma K, An Z, Wu P. Macromolecules, 2014, 47(3): 1144-1154. doi:10.1021/ma4021906 24Li T, Tang H, Wu P. Soft Matter, 2015, 11(10): 1911-1918. doi:10.1039/c4sm02812k 25Sun S, Hu J, Tang H, Wu P. J Phys Chem B, 2010, 114(30): 9761-9770. doi:10.1021/jp103818c 26Sun S, Wu P. Chinese J Polym Sci, 2017, 35(6): 700-712. doi:10.1007/s10118-017-1938-1 27Sun Shengtong(孙胜童), Wu Peiyi(武培怡). Materials Science and Technology(材料科学与工艺), 2017, 25(1): 1-9. doi:10.11951/j.issn.1005-0299.20160386 28Lei Z, Wu P. Nat Commun, 2018, 9(1): 1134. doi:10.1038/s41467-018-03456-w 29Lei Z, Wu P. ACS Nano, 2018, 12(12): 12860-12868. doi:10.1021/acsnano.8b08062 30Shi X, Wu P. Small, 2021, 17(26): 2101220. doi:10.1002/smll.202101220 31Lei Z, Wu B, Wu P. Research, 2021, 2021: 4515164. doi:10.34133/2021/4515164 32Ye Z, Sun S, Wu P. ACS Macro Lett, 2020, 9(7): 974-979. doi:10.1021/acsmacrolett.0c00303 33Jia W, Wu B, Sun S, Wu P. Nano Res, 2020, 13(11): 2973-2978. doi:10.1007/s12274-020-2959-6 34Lei Z, Wang Q, Sun S, Zhu W, Wu P. Adv Mater, 2017, 29(22): 1700321. doi:10.1002/adma.201700321 35Lei Z, Wu P. Nat Commun, 2019, 10(1): 3429. doi:10.1038/s41467-019-11364-w 36Lei Z, Wu P. Mater Horiz, 2019, 6(3): 538-545. doi:10.1039/c8mh01157e 37Yu Z, Wu P. Adv Mater, 2021, 33(24): 2008479. doi:10.1002/adma.202008479 38Wang Y, Sun S, Wu P. Adv Funct Mater, 2021, 31(24): 2101494. doi:10.1002/adfm.202101494 39He C, Sun S, Wu P. Mater Horiz, 2021, 8(7): 2088-2096. doi:10.1039/d1mh00736j 40Zhang W, Wu B, Sun S, Wu P. Nat Commun, 2021, 12(1): 4082. doi:10.1038/s41467-021-24382-4 41Shen Yi(沈怡), Peng Yun(彭云), Wu Peiyi(武培怡), Yang Yuliang(杨玉良). Progress in Chemstry(化学进展), 2005, (3): 499-513. doi:10.3321/j.issn:1005-281X.2005.03.016 42Liu M, Wu P, Ding Y, Chen G, Li S. Macromolecules, 2002, 35(14): 5500-5507. doi:10.1021/ma011819f 43Tang B, Wu P, Siesler H W. J Phys Chem B, 2008, 112(10): 2880-2887. doi:10.1021/jp075729+ 44Wang M, Wu P, Sengupta S S, Chadhary B I, Cogen J M, Li B. Ind Eng Chem Res, 2011, 50(10): 6447-6454. doi:10.1021/ie102221a 45Lai H, Wang Z, Wu P, Chaudhary B I, Sengupta S S, Cogen J M, Li B. Ind Eng Chem Res, 2012, 51(27): 9365-9375. doi:10.1021/ie300007m 46Fieldson G T, Barbari T A. Polymer, 1993, 34(6): 1146-1153. doi:10.1016/0032-3861(93)90765-3 47Hou L, Feng K, Wu P, Gao H. Cellulose, 2014, 21(6): 4009-4017. doi:10.1007/s10570-014-0458-1 48Feng K, Hou L, Schoener C A, Wu P, Gao H. Eur J Pharm Biopharm, 2015, 93: 46-51. doi:10.1016/j.ejpb.2015.03.011 49Dong Y, Hou L, Wu P. Cellulose, 2020, 27(5): 2403-2415. doi:10.1007/s10570-020-02997-y 50Yan L, Hou L, Sun S, Wu P. Ind Eng Chem Res, 2020, 59(16): 7398-7404. doi:10.1021/acs.iecr.9b07110 51Li H, Hou L, Wu P. Chinese J Polym Sci, 2021, 39(8): 975-983. doi:10.1007/s10118-021-2571-6 52Hou L, Wu P. Carbohydr Polym, 2019, 205: 420-426. doi:10.1016/j.carbpol.2018.10.091 53Hou L, Wu P. Cellulose, 2019, 26(4): 2759-2769. doi:10.1007/s10570-019-02255-w 54Li Y, Wang D, Wen J, Liu J, Zhang D, Li J, Chu H. Adv Funct Mater, 2021, 31(22): 2011259. doi:10.1002/adfm.202011259 《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2021.21362DOI:10.11777/j.issn1000-3304.2021.21362
  • 浅谈纳米材料的表征与测试方法
    p style=" text-align: justify text-indent: 2em " 纳米材料被誉为“21 世纪最重要的战略性高技术材料之一”。随着应用领域的扩大和增强,近年来,纳米材料的毒性与安全性也受到广泛关注。表征与测试技术是科学鉴别纳米材料、认识其多样化结构、评价其特殊性能及优异物理化学性质、评估其毒性与安全性的根本途径,也是纳米材料产业健康持续发展不可或缺的技术手段。 /p p style=" text-align: justify text-indent: 2em " strong 1 纳米材料的表征 /strong /p p style=" text-align: justify text-indent: 2em " 纳米材料的表征是对纳米材料的性质和特征进行的客观表达,主要包括尺寸、形貌、结构和成分等方面的表征。 /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " 纳米材料的表征 /span /p p style=" text-align: center " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/2ffdf5f4-5465-4b3a-849e-1934933722b0.jpg" title=" 纳.png" alt=" 纳.png" / /strong /p p style=" text-align: justify text-indent: 2em " strong 2 纳米材料的测试技术 /strong /p p style=" text-align: justify text-indent: 2em " 2.1 光子相关光谱法(photo correlation spectroscopy,PCS) /p p style=" text-align: justify text-indent: 2em " PCS常用于纳米粒子尺寸及尺寸分布的测试,相关标准已有GB/T 19627 等,其适用于尺寸为3nm~3μm的悬浮液,可获得准确的尺寸分布,测试速度也相当快,特别适合于工业化产品粒径的检测。但采用该方法时,必须要解决好纳米材料的分散问题,须获得高度分散的悬浮液,否则所反映的结果只是某种团聚体的尺寸分布。由于该方法是一种绝对方法,因此测量仪器可以不必校准;但在仪器首次安装、调试期间或有疑问时,必须使用有证标准纳米颗粒分散体系对仪器进行验证。如采用PCS法测定平均粒径小于100nm的、粒度分布较窄的聚苯乙烯球形颗粒分散体系,则要求测得的平均粒径与标定的平均粒径的相对误差应在2%之内。 /p p style=" text-align: justify text-indent: 2em " 2.2 X 射线衍射法(X-ray diffraction,XRD) /p p style=" text-align: justify text-indent: 2em " X射线衍射法可用于纳米晶体材料结构分析、尺寸测试和物相鉴定。该方法测定的结果是最小不可分的粒子的平均尺寸;因此,只能得到较宏观的测量结果。此外,采用该方法进行测试时,需要用X 射线衍射仪校正标准物质对仪器进行校正。目前,该方法已建立有关的国家标准包括GB/T 23413、GB/T 15989、GB/T15991 等。XRD物相分析可用于未知物的成分鉴定,但分析的不足之处在于灵敏度较低,一般只能测定含量在1%以上的物相;且定量分析的准确度也不高,一般在1%的数量级。同时,所需要的样品量较大,一般需要几十至几百毫克,才能得到比较准确的结果。由于非晶态的纳米材料不会对X射线产生衍射,所以一般不能用此法对非晶纳米材料进行分析。 /p p style=" text-align: justify text-indent: 2em " 2.3 X 射线小角散射法(small angle X-ray scattering,SAXS) /p p style=" text-align: justify text-indent: 2em " SAXS可用于纳米级尺度的各种金属、无机非金属、有机聚合物粉末以及生物大分子、胶体溶液、磁性液体等颗粒尺寸分布的测定;也可对各种材料中的纳米级孔洞、偏聚区、析出相等的尺寸进行分析研究。其测试范围为1~300nm,测量结果所反映的是一次颗粒的尺寸,具有典型的统计性,且制样相对比较简单,对粒子分散的要求也不像其他方法那样严格。但该方法本身不能有效区分来自颗粒或微孔的散射,且对于密集的散射体系,会发生颗粒散射之间的干涉效应,导致测量结果有所偏低。关于该方法的标准有GB/T 13221、GB/T 15988等。为了保证测试结果的可靠性和重复性,应对仪器的性能和操作方法进行校核,一般推荐采用粒度分布已定值的纳米粉末标样或经该方法测定过粒度分布的特定样品进行试验验证,其中粒径偏差应控制在10%以内。 /p p style=" text-align: justify text-indent: 2em " 2.4 电子显微镜法(electron microscopy) /p p style=" text-align: justify text-indent: 2em " 电子显微镜法是对纳米材料尺寸、形貌、表面结构和微区化学成分研究最常用的方法,一般包括扫描电子显微镜法(scanning electron microscopy,SEM)和透射电子显微镜法(transmission electronmicroscopy,TEM)。 /p p style=" text-align: justify text-indent: 2em " SEM的特点是放大倍数连续可调,从几倍到几十万倍,样品处理较简单;但一般要求分析对象是具有导电性的固体样品,对非导电样品需要进行表面蒸镀导电层。扫描电镜与能谱仪相结合,可以满足表面微区形貌、组织结构和化学元素三位一体同位分析的需要。能谱仪可对表面进行点、线、面分析,分析速度快、探测效率高、谱线重复性好,但是一般要求所测元素的质量分数大于1%。关于电镜在纳米材料应用中的标准较多,如GB/T 15989、GB/T 15991、GB/T 20307、ISO/TS 10798等。 /p p style=" text-align: justify text-indent: 2em " TEM法是集形貌观察、结构分析、缺陷分析、成分分析的综合性分析方法,已成为纳米材料研究的最重要工具之一。除了具有与SEM的相同功能外,利用电子衍射功能,TEM可对同素异构体加以区分。相较于XRD,还能对含量过低的某些相进行分析,且可以结合形貌分析,得到该相的分布情况。TEM法的主要局限是对样品制备的要求较高,制备过程比较繁琐,若处理不当,就会影响观察结果的客观性。目前,TEM在纳米材料方面的应用正逐步被开发出来,其相关标准也在不断增加,如GB/Z 21738、GB/T 24490、GB/T 24491、ISO/TS 11888、GB/T 28044等。 /p p style=" text-align: justify text-indent: 2em " 由于电镜法测试所用的纳米材料极少,可能会导致测量结果缺乏整体统计性,实验重复性差,测试速度慢;且由于纳米材料的表面活性非常高,易团聚,在测试前需要进行超声分散;同时,对一些不耐强电子束轰击的纳米材料较难得到准确的结果。采用电镜法进行纳米材料的尺寸测试时,需要选用纳米尺度的标准样品对仪器进行校正。 /p p style=" text-align: justify text-indent: 2em " 2.5 扫描探针显微镜法(scanning probe microscopy,SPM) /p p style=" text-align: justify text-indent: 2em " SPM法是研究物质表面的原子和分子的几何结构及相关的物理、化学性质的分析技术。尤以原子力显微镜(atomic force microscopy,AFM)为代表,其不仅能直接观测纳米材料表面的形貌和结构,还可对物质表面进行可控的局部加工。与电镜法不同的是,除了真空环境外,AFM还可用于大气、溶液以及不同温度下的原位成像分析;同时,也可以给出纳米材料表面形貌的三维图和粗糙度参数。除此之外,AFM 还可用于研究纳米材料的硬度、弹性、塑性等力学及表面微区摩擦性能。 /p p style=" text-align: justify text-indent: 2em " 近年来,SPM技术在纳米材料测量和表征方面的独特性越来越得到体现,如GB/Z 26083-2010、国家项目20078478-T-491等。但由于SPM纵向与横向分辨率不一致、压电陶瓷可能引起的图像畸变、针尖效应等,使得还有一些问题有待解决,如SPM探针形状测量和校正、SPM最佳化应用及不确定度评估、标准物质的制备、仪器性能的标准化、数值分析的标准化、制样指南和标准制定等。目前,虽有仪器校正的标准ASTM E 2530和VDI/VDE 2656颁布,但由于标准物质的缺少,在实际操作中缺乏实施性。 /p p style=" text-align: justify text-indent: 2em " 2.6 X 射线光电子能谱法(X-ray photoemissionspectroscopy,XPS) /p p style=" text-align: justify text-indent: 2em " XPS 法也称为化学分析光电子能谱(electron spectroscopy for chemical analysis,ESCA)法。从X 射线光电子能谱图指纹特征可进行除氢、氦外的各种元素的定性分析和半定量分析。作为一种典型的非破坏性表面测试技术,XPS主要用于纳米材料表面的化学组成、原子价态、表面微细结构状态及表面能谱分布的分析等,其信息深度约为3~5nm,绝对灵敏度很高,是一种超微量分析技术,在分析时所需的样品量很少,一般10-18g左右即可;但相对灵敏度通常只能达到千分之一左右,且对液体样品分析比较麻烦。通常,影响X射线定量分析准确性的因素相当复杂,如样品表面组分分布的不均匀性、样品表面的污染物、记录的光电子动能差别过大等。在实际分析中用得较多的是对照标准样品校正,测量元素的相对含量;而关于该仪器的校准,GB/T 22571-2008中已有明确规定。 /p p style=" text-align: justify text-indent: 2em " 2.7 俄歇电子能谱法(aguer electron spectroscopy,AES) /p p style=" text-align: justify text-indent: 2em " AES法已发展成为表面元素定性、半定量分析、元素深度分布分析和微区分析的重要手段,可以定性分析样品表面除氢、氦以外的所有元素,这对于未知样品的定性鉴定非常有效。除此之外,AES还具有很强的化学价态分析能力。AES的分析范围为表层0.5~2.0nm,绝对灵敏度可达到10-3个单原子层,特别适合于纳米材料的表面和界面分析。但需要注意的是,对于体相检测,灵敏度仅为0.1%,其表面采样深度为1.0~3.0 nm。AES技术一般不能给出所分析元素的绝对含量,仅能提供元素的相对含量;而且,采用该方法进行测试时,需要相应的元素标样,元素鉴定方法在JB/T 6976-1993中已明确给出。 /p p style=" text-align: justify text-indent: 2em " 2.8 其他方法 /p p style=" text-align: justify text-indent: 2em " 除此之外,还有一些其他的测试技术和方法用于纳米材料的表征,如紫外/可见/近红外吸收光谱方法用于金纳米棒的表征(GB/T 24369.1)、紫外-可见吸收光谱方法用于硒化镉量子点纳米晶体表征(GB/T24370)、纳米技术-用紫外-可见光-近红外(UV-Vis-NIR)吸收光谱法表征单壁碳纳米管(ISO/TS 10868)。 /p p style=" text-align: justify text-indent: 2em " strong 3 结束语 /strong /p p style=" text-align: justify text-indent: 2em margin-bottom: 15px " 纵观当前纳米材料的表征与测试技术,要适应纳米材料产业的快速发展,规范化表征和准确可靠测试纳米材料尚存在一定挑战。 /p p style=" text-align: justify text-indent: 2em " 基于此,仪器信息网将于 span style=" color: rgb(255, 0, 0) " 2019年12月18日 /span 组织举办 strong 第二届“纳米表征与检测技术”主题网络研讨会 /strong ( a href=" https://www.instrument.com.cn/webinar/meetings/nano2/" target=" _blank" textvalue=" 免费报名中" i span style=" color: rgb(255, 0, 0) " 免费报名中 /span /i i span style=" color: rgb(255, 0, 0) " /span /i /a ),邀请该领域专家,围绕纳米材料常用表征和检测技术,从成分、形貌、粒度、结构以及界面表面等方面带来精彩报告,为纳米材料工作者及相关专业技术人员提供线上互动交流互动平台,进一步加强学术交流,共同提高纳米材料研究及应用水平。 /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/webinar/meetings/nano2/" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/14b28169-cfe6-44ba-8dc5-f47132b97366.jpg" title=" 540_200.jpg" alt=" 540_200.jpg" / /a /p p style=" text-align: justify " a href=" https://www.instrument.com.cn/webinar/meetings/nano2/" target=" _blank" textvalue=" 报名链接:第二届“纳米表征与检测技术”主题网络研讨会" strong span style=" color: rgb(255, 0, 0) " 报名链接 /span /strong : i strong span style=" color: rgb(112, 48, 160) " 第二届“纳米表征与检测技术”主题网络研讨会 /span /strong /i /a /p p style=" text-align: center " strong 扫一扫,参与报名 /strong /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/d2e686ea-3308-4d6f-8795-e26e3d0f062d.jpg" title=" 报名.PNG" alt=" 报名.PNG" / /p p style=" text-align: center " strong 扫一扫,进入纳米表征与检测技术群 /strong /p p style=" text-align: center " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/33e39f0a-8ef0-4aeb-b662-03350301ed05.jpg" title=" 群.PNG" alt=" 群.PNG" / /strong /p p style=" text-align: justify " strong i style=" margin: 0px padding: 0px color: rgb(127, 127, 127) font-family: 宋体, " arial=" " white-space:=" " 文章摘自: /i /strong /p p style=" text-align: justify " strong i style=" margin: 0px padding: 0px color: rgb(127, 127, 127) font-family: 宋体, " arial=" " white-space:=" " span style=" font-family: " microsoft=" " font-size:=" " background-color:=" " 谭和平, 侯晓妮, 孙登峰, et al. 纳米材料的表征与测试方法[J]. 中国测试, 2013(01):17-21. /span /i /strong /p
  • 面向红外芯片的光谱与界面功能关系研究的多尺度表征系统项目启动
    2023年4月14日,国家重大科研仪器研制项目“面向红外芯片的光谱与界面功能关系研究的多尺度表征系统”启动会在上海技物所召开。咨询专家代表匡定波院士、祝世宁院士、龚新高院士、贾金锋院士,国家自然科学基金委员会数学物理学部常务副主任董国轩、中国科学院条件保障与财务局副局长曹凝、监理专家和上海市科委相关处室领导等出席启动会。上海技物所党委书记龚海梅、副所长陈建新、项目负责人陆卫等50余人参加 会议。   该项目由上海技物所牵头,联合中国科技大学和上海科技大学承担,旨在通过发展对界面态敏感的红外光谱与应用技术,为研究和理清复杂界面中具有光电作用功效的电子态如何决定高端红外芯片极限性能的核心问题提供先进方法和表征手段,具有显著的科学价值和应用前景。项目基于对红外芯片界面关系的深厚理解和实际应用需求,提出了“谱效”关系新思路,展示了技术方案的创新性。拟研制的装置包括4个核心子系统和2个辅助子系统。项目中的关键技术如红外调制光谱、红外成像光谱、纳米探针光电谱、界面电子态预测和数据驱动算法等已有研究积累,具有很好的实施基础。   会上成立了项目咨询专家组,并向受聘专家颁发了聘书。专家组和监理组认真听取了项目实施方案报告,并认为该项目研制目标明确,预期技术指标先进,整体设计路线清晰。针对核心科学问题以及研制过程中可能遇到的技术难点和其他困难,项目团队提出了合理的预案,有望为我国红外探测芯片技术基础研究领域发展做出贡献。   董国轩在讲话中要求项目牵头单位和项目组加强组织管理,确保项目按期高质量实现目标。项目推荐部门和地方科技主管部门分别表示将积极支持项目承担单位和项目团队开展相关科技攻关工作。
  • 火星探测中的近红外光谱矿物表征
    北京时间2月19日凌晨4时55分,在“天问一号”进入火星轨道一周后,“毅力”号(Perseverance)火星车不经变轨直接突入火星大气层,并成功着陆。本轮火星探测季也进入了新的阶段。毅力号火星车毅力号的着陆地点是位于北纬18度的耶泽罗陨击坑(Jezero crater)。有证据表明曾经有河流流入耶泽罗陨击坑,形成了一个早已干涸的三角洲。而毅力号在此处着陆,一项重要目标便是识别和收集该地区的沉积岩和土壤样本,探寻可能存在的火星生命迹象,同时测试人类在火星生存的技术。火星表面矿物分布提供了火星起源、地质及环境演化线索,火星表面卤水种类及分布提供了火星气候/水文演变信息。此外,毅力号还将通过对表面岩石、土壤物理化学特征的分析,帮助人类理解火星地质以及大气环境。Raman(拉曼)与NIR(近红外)光谱技术是从分子层面识别火星表面及次表面物质成分、丰度及分布特征的重要手段,是多国火星车的必备科学设备。位于毅力号火星车桅杆单元的SurperCam(超级相机)搭载了Raman和NIR光谱仪对火星进行巡视探测,将Raman与NIR数据融合进行联合矿物表征分析,并开展火星表面卤水及其它与水相关物质的分析具有重要科学意义。对地外行星探测来说, 近红外光谱技术具有几乎无需样品制备、信号易获取、探测矿物种类丰富、对H2O/OH探测响应灵敏等特点。马尔文帕纳科(Malvern Panalytical)旗下ASD TerraSpec Halo矿物近红外光谱分析仪以其宽广的光谱范围(350-2500nm)、超高光能动态范围、高光谱分辨率及重现性及体积小巧坚固结实等特性被选择使用于为人类重返月球、探測火星准备的多项重要研究中,以提高人类勘探行星资源的能力。其中之一是由NASA赞助的研究项目,地理发现操作策略测试(GeoHeuristic Operational Strategies Test-GHOST),选择了由马尔文帕纳科赞助和提供的涵盖VIS-NIR-SWIR波段的ASD TerraSpec HALO,以提高火星车样品收集的速度、效率和科学回报。该项目使用光谱仪模拟火星科学实验室(MSL)的ChemCam和2020火星车的SuperCam.SurperCam(超级相机)于毅力号火星车位置示意图分子在红外光谱内的吸收产生于分子振动或转动的状态变化或分子振动或转动状态在不同的能级间跃迁。能量跃迁包括基频跃迁(对应分子振动状态在相邻振动能级之间的跃迁)、倍频跃迁(对应于分子振动状态在相隔一个或几个振动能级之间的跃迁)和合频跃迁(对应于分子两种振动状态的能级同时发生跃迁)。由于近红外光谱谱峰较宽,实际样品中各种成分的吸收峰重叠严重,需要用化学计量学方法对近红外光谱进行化学成分的定量分析。蒙脱石/黑色,伊利石/亮蓝色,白云母/深蓝色的可见-近红外光谱曲线SuperCam超级相机桅杆单元内部(装配前)TerraSpec Halo矿物近红外光谱分析仪是勘探地质市场上最便携的近红外(NIR)仪器,它是手持一体式全量程的仪器。扣动一下扳机,这款创新性的仪器可以即时在仪器上获得矿物分析结果。这些近乎实时显示的结果极大地加快了勘探的工作力度,提高了效率,有助于进行分析和决策,最终为采矿经营者节省了宝贵的时间和金钱。TerraSpec HALO还被广泛地应用于例如考古和采矿行业中,包括陶瓷、陶器的成份分析,艺术品的鉴定和修复,矿藏的勘探,开采和加工等等。TerraSpec HALO矿物分析近红外光谱仪TerraSpec HALO光谱库内置超过150种矿物质的700种以上的光谱,来源于大学、个人采集、国际研究所、以及美国地质勘探局(USGS)的矿物质目录,并可由客户自定义添加光谱库,以进行矿物质的快速识别,且具有GPS和语音备忘录功能。TerraSpec HALO采用专利的矿物质匹配算法,通过将未知物质光谱与内置矿物质谱库匹配,计算匹配矿物后,将其从未知物质光谱中被扣除。使用扣除后的未知物质光谱,继续匹配,最多可以生成7种相关矿物成份的识别。将获取光谱导入计算机Halo Manager软件中可分析多达9种矿物成份。随机自带矿物质评级显示于屏幕右侧,描述矿物结晶程度或构成性质,允许地质学家了解地质或地热的情况,以指引潜在的矿物。参考文档:1. https://mars.nasa.gov/mars2020/spacecraft/instruments/supercam/2. https://finance.sina.com.cn/tech/2021-02-19/doc-ikftssap6896673.shtml3. http://www.globenewswire.com/news-release/2019/07/16/1883283/0/en/Renowned-Researchers-Leverage-Malvern-Panalytical-s-ASD-TerraSpec-Halo-Mineral-Identifier-to-Advance-Investigation-of-Life-on-Mars.html4. https://www.materials-talks.com/blog/2019/07/10/asd-terraspec-halo-used-in-space-based-research/5. 徐伟杰 火星表面模拟矿物和卤水的光谱鉴别研究[D] 山东大学 2018年
  • 工欲善其事,必先利其器——从重大科学仪器基金看表界面化学表征方法的发展
    ■ 高飞雪,吴凯,伊晓东本文总结了国家自然科学基金委员会化学科学部催化与表界面化学学科相关的国家重大科研仪器研制项目的资助概况及已批准项目的研制目标、仪器构成与应用领域,在此基础上,提出了项目申请与管理的一些建议与思考。前言 “创新科学仪器”是科学发展的原动力。运用科学仪器进行实验可以判定科学理论的正确性和准确性,发现新的现象,提出新问题,从而促进技术进步,推动相关领域的发展。国家自然科学基金委员会(以下简称“基金委”)于2011年设立国家重大科研仪器研制项目,面向科学前沿和国家需求,以科学目标为导向,资助对促进科学发展、探索自然规律和开拓研究领域具有重要作用的原创性科研仪器与核心部件的研制,以提升我国的原始创新能力【1】。我国“催化与表界面化学”近十年来得到了快速发展,某些领域的研究成果得到了国际上的肯定和关注,特别是在创新仪器研制方面瞄准国际前沿,超前部署,为今后做出原创性工作提供有力的技术支撑。希望这些与“催化与表界面化学”相关的创新仪器的成功研制将进一步推动“催化与表界面化学”的发展。一、重大科学仪器基金项目资助概况国家重大科研仪器研制项目包括部门推荐和自由申请两个亚类。自重大科学仪器研制项目设立以来,化学科学部共资助6项部门推荐的重大科研仪器项目,其中与“催化与表界面化学”相关的有4项,具体的重大仪器项目(部门推荐和自由申请)资助情况见表1和表2。表1 “催化与表界面化学”相关重大仪器研制项目(部门推荐)信息表表2 “催化与表界面化学”相关重大仪器研制项目(自由申请)信息表二、部门推荐类重大仪器研制项目在这里,我们重点介绍部门推荐类重大仪器研制项目的研制目标、仪器构成以及应用领域。1、高分辨多功能化学成像系统问题的提出:化学成像是近年来兴起的新型表征技术,它将光学成像与谱学测量相结合,可同时获得化学成份的含量和空间分布信息。由于时间和空间分辨率的限制,现有化学成像技术大多难以实现分子水平的原位检测;而且基本上是单一模式成像,难以进行分子结构和分子间相互作用的多组分/多参数分析和验证。研制目标:复杂体系中表界面分子结构和性能变化的原位、实时研究,突破材料化学、生命化学等前沿交叉领域研究的技术瓶颈。仪器构成与功能:高分辨多功能化学成像系统,以超分辨受激辐射耗尽STED光学成像为基础,将具有超高空间分辨的光学成像和质谱、光谱等谱学技术及扫描探针显微成像技术相结合,在对物质的形貌进行成像的同时,对其化学组成、表界面分子结构、分子间相互作用及其动态变化等进行分子水平的原位、实时、多参数表征。在此基础上,发展了纳米尺度和分子水平的化学成像新技术和新原理。仪器构成示意图见图1。应用领域:该仪器的建成和使用促进纳米化学、能源化学和生命化学等领域的研究取得新突破,为绿色化学、生物医药、电子工业、环境治理、能源资源等高新技术产业的发展提供高水平的综合实验平台。图1 高分辨多功能化学成像系统示意图2、基于可调极紫外相干光源的综合实验研究装置问题的提出:绝大部分现有能源和新洁净能源都涉及原子分子的物理化学过程,因此研究原子分子在气相和表面的化学物理过程一直是能源基础研究极其重要的方向。极紫外波段光源在气相原子分子和表面物种的探测中发挥着不可替代的作用。但是, 现有光源亮度较弱大大限制了在这一方向的研究能力。研制目标:研制一套基于高增益谐波产生模式的、超高亮度且具有超快时间特性的可调极紫外相干光源的综合实验装置,将先进相干光源的发展和原子分子和自由基的高灵敏度探测方法发展紧密结合起来, 将先进相干光源装置的研制与能源相关的基础物理化学研究装置的研制紧密结合起来, 希望在较短的时间内使该综合实验研究装置成为世界上独特的的基础物理化学实验研究平台。仪器构成与功能:该大型综合实验装置主要由高品质的电子直线加速器、极紫外激光高增益谐波产生放大器、极紫外光束线和实验站(含基元反应实验装置、表面光化学反应实验装置、分子束表面散射化学反应实验装置、生物质谱实验装置、中性团簇实验装置等)组成,产生的极紫外激光脉冲能量超过100 uJ,重复频率可达50 Hz,波长在极紫外区域(50-150 nm)完全连续可调,脉冲长度可实现30 fs/100 fs/1 ps切换。结合传统激光技术、离子成像技术、原子分子和自由基高灵敏度电离技术、高分辨质谱技术以及独特的UV-EUV泵浦-探测技术,该装置可以被广泛地用于研究光化学动力学、团簇结构及动力学、表面化学动力学、燃烧化学动力学、生物分子结构等能源化学相关过程的重要基础科学问题。仪器构成示意图见图2。图2 基于可调极紫外相干光源的综合实验研究装置结构图应用领域:该大型综合实验装置可用于燃烧、能源催化、大气化学、星际化学、表面科学和生物质谱分析等领域的研究。3、基于可调谐红外激光的能源化学研究大型实验装置问题的提出:化石能源的高效利用、能量转换与储存中的多相催化反应和电化学反应都是发生在表面和界面上的物理化学过程。研制基于可调谐红外激光的能源化学研究大型实验装置,从微观的原子分子尺度检测上述物理化学过程涉及的多种表面反应关键中间物种、自由基和激发态,对化石能源的优化利用和洁净能源的开发起着非常关键的作用。研制目标:国内第一个红外自由电子激光用户装置,同时也是国际上第一个面向能源化学研究的红外自由电子激光装置,使我国在低增益FEL振荡器装置研究方面达到国际先进水平,解决能源化学前沿科学问题。仪器构成与功能:结合当前自由电子激光等技术领域最新成果,该仪器由中红外到远红外波段连续可调的红外自由电子激光,和以其为光源的表界面反射吸收红外光谱、纳米红外光谱(空间分辨光谱)、和频光谱(时间分辨光谱)、光解离光谱和光激发光谱五条实验线站组成。该大型实验装置显著提升了从原子分子水平研究多相表界面过程(如(电)催化剂活性中心位本质、(电)催化剂作用机理和(电)催化反应机理)、团簇结构及其反应动力学和红外振动态激发分子反应动力学的能力。实现了原位/在线/工况探测过去只能间接推测而无法直接从实验上获知的能源化学反应关键中间体(如氧物种、表面-吸附分子成键振动等)的结构、解析相关的团簇结构及其动力学、获取分子振动激发对化学反应影响等全新的信息。发现新现象、揭示新规律,取得实验和理论的突破。仪器构成示意图见图3。应用领域:该仪器的建成将为解决能源化学的瓶颈问题的提供研究平台,使能源化学和材料化学相关领域研究取得突破性进展。图3 基于可调谐红外激光的能源化学研究大型实验装置结构图4、超高时-空分辨的离子化学研究系统问题的提出:离子是物质科学中的基本粒子之一,是稀土分离、核废料处理、离子电池、分子磁体、发光、相转移催化、土壤污染修复和离子通道等领域中重点研究对象。溶剂介质中离子化学的核心科学问题是离子溶剂化效应。溶剂化离子的结构复杂而动态,造成研究手段匮乏,理论处理棘手。研制目标:建造一套具有超高时-空分辨能力的离子化学研究系统,探索与发现离子化学中的新现象和新性质。仪器构成与功能:该系统的建成将为相对稳定的金属正离子和非金属负离子的制备提供普适的方法;所产生离子束通过电化学系统的加速、抽取、偏转、漂移和减速,软着陆到介质表界面或其它指定位置;综合利用软着陆离子束、分子束、低温和超高真空技术,实现原位制备单离子、溶剂化离子、离子对、离子配合物和聚集体等;结合超高空间分辨成像技术和超高时间分辨的超快多维光谱技术、测量单个离子的本征结构,研究受控的离子溶剂化过程,探究溶剂化离子的大小、结构、电荷和能量转移等;监控单一离子在多相表界面的迁移动力学,研究离子迁移与介质表界面结构、离子种类、离子大小和溶剂化效应等之间的内在关系;对具有特殊功能性质的稀土发光和磁学配合物,测量单个裸露离子或配位(或溶剂化)离子的光学及磁学性质等。整套仪器的主要参数指标包括:在空间分辨上约为0.01 ~ 0.1 Å;时间分辨上为fs ~ ns(不同能量测量范围);在能量分辨上能达到0.1 ~ 1 meV;为达到软着陆目的,离子束的能量小于1 eV。仪器构成示意图见图4。应用领域:该仪器将在我国超纯稀土萃取、高端稀土功能材料开发、土壤污染中重金属处理、核废料处理中的放射性离子提取与转化、磁性分子材料的设计与制备、离子电池和储能材料的研制等重大应用过程提供技术平台。图4 超高时-空分辨离子化学研究装置的主要系统功能划分上述四项仪器研制项目(部门推荐)从可调谐极紫外自由电子激光到中远红外自由电子激光,使原可探测的光谱段扩展和增强。利用其对表界面活性中间物种等进行探测,特别是对很难探测到的甲烷等的关键中间物种、自由基和激发态进行有效探测及其随时间演化的动力学过程,以及中间体物种与催化剂表面成键的探测(大多在远红外区)等,为催化及能源化学领域反应路径和机理的理解提供了重要的直接实验证据。同时,成像与光谱和质谱结合,可同时获取表界面反应的物种定量和定性以及化学组成信息,为反应机制提供可视化证据。特别是结合超高空间分辨的成像技术和超快时间分辨的多维光谱技术,研究离子的本征性质和行为,是离子化学研究的前沿,将为能源、材料和环境等领域提供重要的技术平台。上述仪器的成功研制和发展的实验方法将进一步推动“催化与表界面化学”的发展,加速创新性原创成果的产生,为“催化与表界面化学”未来发展提供了重要技术储备,同时也反映了表界面化学表证方法的发展趋势。三、创新仪器和表征方法的发展态势表界面结构与性质的演变是表界面化学的研究核心,必须借助于先进的实验技术和表征方法,既要注重挖掘和综合利用现有的实验技术,又要注重利用新的科学原理来建立新的表征方法【2】。在材料结构表征技术中,原子分辨电子三维/四维技术、基于X射线、自由电子激光和同步辐射光源的三维相干衍射成像技术、4D扫描透射显微技术(4D-STEM)和电子叠层成像术(Electron ptychography)在原子水平上研究材料体系的组成、分布、结构与性质的时空变化,对于表界面物理化学至关重要。在真实催化反应条件下与同一时间尺度下,综合使用原位X射线吸收谱学(XAS, X-ray adsorption spectroscopy)、原位X射线掠入式衍射(GID, grazing incidence X-ray diffraction)、原位傅立叶变换红外光谱(IR,infrared Fourier transform spectroscopy)、引入外加扰动(如同位素切换)的瞬变动力学分析(TKA,transient kinetic analysis)、原位光电子能谱、原位固体核磁、光催化电荷转移过程全时空域成像、球差校正扫描透射电镜二次电子成像等多种表征技术,可以同时获得多种信息,有助于人们深入理解真实催化过程和催化作用机制,总结催化活性与催化剂的内在规律,为新型高效催化剂的研制提供科学依据。通过反应器的创新设计,在电极材料与电化学表界面(固液两相及气液固三相界面)工作条件下,协同联用和同步耦合原位X光吸收光谱、表面增强振动(红外和拉曼)光谱、扫描探针显微技术(SPM)与微分电化学质谱等原位表征技术是电化学前沿研究的强大工具。原位界面和频振动光谱(SFG)、液体环境中的电化学STM、引入光、电、力、温度等外场和液体、气氛等化学环境的透射电镜(TEM)、液固界面AFM、介质环境下的X射线吸收精细结构谱(XAFS)、液相体系中的圆二色谱法等是目前介质环境下表征技术的重点与难点。基于石英音叉轻敲模式的非接触原子力显微镜(Qplus NC-AFM)技术、非弹性电子隧道谱(IETS)、针尖增强拉曼光谱(TERS)、二维飞秒红外光谱、秒X射线激光脉冲、时间,空间与能量分辨的超快超宽频多维光谱、将皮秒级太赫兹脉冲耦合到STM针尖的太赫兹(THz)STM等技术是化学键与能量迁移表征技术发展的方向。四、建议与思考我国表界面化学的研究起步较晚,作为跨度宽广、应用普遍和意义重大的一门交叉学科,表界面化学在我国经过几十年的艰苦发展,其触角已经深入到物理、化学和其他相关学科的诸多研究方向,受到人们越来越多的重视。得益于我国经济的快速发展以及国家对基础科学研究的大量投入,近十几年来一批高端精密设备被引进、改造、创制并投入到实际研究之中,在解决催化及相关方向的关键科学问题取得了重要进展。但是,目前我国高端精密仪器的制造和创制能力还不足。一方面,重要的表面分析仪器和设备都是国外垄断,制约我国表面化学乃至基础科学的发展。另一方面,我国表界面化学的研究也在一定程度上依然存在着“跟风”和急于求成现象,导致研究创新性相对缺乏,在一些需要啃硬骨头和相对冷门的方向和领域的研究动力不足。例如,人们更多关注表面反应的静态表征,但对于表面反应的动态过程研究十分有限,理论研究也比较薄弱。再如,表面扩散动力学以及低维结构的生长动力学研究等缺乏足够的重视和深入的探讨,在表面量子态调控等方面也几乎是空白。重大科学仪器研制项目是科学基金资助体系中环境支撑的重要部分,是推动科学问题导向的创新仪器研制和原创成果产生的重要平台。科学基金在持续资助创新仪器的同时,不断完善仪器基金的后续管理和支撑条件。2018年化学部学科重组后,设立了仪器创制与大科学装置应用的申请代码(B0407)。表界面化学(B02)仪器项目的申请可选择任一代码。仪器基金的会评是在学科或学部函评的基础上,学部推荐后统一由计划局组织评审。近三年来,表界面化学相关仪器项目(自由申请)的申请数不多,结题项目的优秀率也不高。对于已经结题的仪器(部门推荐)项目,结题两年后还要开展后评估工作。主要考察仪器的科学目标和应用目标完成情况、依托仪器取得的重大科研成果情况、关键核心技术的掌握和推广应用情况、仪器核心器件自主可控情况和仪器运行及其稳定性,另外还考察组织管理情况,例如:依托单位履行职责情况(包括基础设施和配套设施建设、人员配备、运行经费保障、国有资产管理等)。同时注重考察仪器研制技术团队建设和人才培养情况,成果转化及对经济社会的影响。建议依托大科学装置和基金委资助的仪器研制项目,充分发挥研制仪器在解决相关科学问题中的重要作用。针对表界面的关键科学问题,鼓励高端精密仪器的制造和基于新原理的原创性仪器研制,注重挖掘和提升现有仪器的综合有效利用,发展基于大数据和AI技术的表界面研究新方法和新范式,注重培养仪器研制、设计加工和维护专业技术人才队伍,提升我国表界面化学创新仪器的研制能力,促进学科的全面快速发展。【参考文献】[1] 2021年度国家自然科学基金项目指南[2] 高飞雪, 伊晓东. 催化与表界面化学“十四五”发展规划概述, 中国科学: 化学, 2021, 51(7): 932. doi: 10.1360/SSC-2021-0121
  • 先进材料表征方法
    先进材料表征方法利用电子、光子、离子、原子、强电场、热能等与固体表面的相互作用,测量从表面散射或发射的电子、光子、离子、原子、分子的能谱、光谱、质谱、空间分布或衍射图像,得到表面成分、表面结构、表面电子态及表面物理化学过程等信息的各种技术,统称为先进材料表征方法。先进材料表征方法包括表面元素组成、化学态及其在表层的分布测定等。后者涉及元素在表面的横向和纵向(深度)分布。先进材料表征方法特点表面是固体的终端,表面向外一侧没有近邻原子,表面原子有部分化学键伸向空间,形成“悬空键”。因此表面具有与体相不同的较活跃的化学性质。表面指物体与真空或气体的界面。先进材料表征方法通常研究的是固体表面。表面有时指表面的单原子层,有时指上面的几个原子,有时指厚度达微米级的表面层。应用领域航空、汽车、材料、电子、化学、生物、地质学、医学、冶金、机械加工、半导体制造、陶瓷品等。X射线能谱分析(EDS)应用范围PCB、PCBA、FPC等。测试步骤将样品进行表面镀铂金后,放入扫描电子显微镜样品室中,使用15 kV的加速电压对测试位置进行放大观察,并用X射线能谱分析仪对样品进行元素定性半定量分析。样品要求非磁性或弱磁性,不易潮解且无挥发性的固态样品,小于8CM*8CM*2CM。典型图片PCB焊盘测试图片成分分析测试谱图聚焦离子束技术(FIB)聚焦离子束技术(Focused Ion beam,FIB)是利用电透镜将离子束聚焦成非常小尺寸的离子束轰击材料表面,实现材料的剥离、沉积、注入、切割和改性。随着纳米科技的发展,纳米尺度制造业发展迅速,而纳米加工就是纳米制造业的核心部分,纳米加工的代表性方法就是聚焦离子束。近年来发展起来的聚焦离子束技术(FIB)利用高强度聚焦离子束对材料进行纳米加工,配合扫描电镜(SEM)等高倍数电子显微镜实时观察,成为了纳米级分析、制造的主要方法。目前已广泛应用于半导体集成电路修改、离子注入、切割和故障分析等。聚焦离子束技术(FIB)可为客户解决的产品质量问题(1)在IC生产工艺中,发现微区电路蚀刻有错误,可利用FIB的切割,断开原来的电路,再使用定区域喷金,搭接到其他电路上,实现电路修改,最高精度可达5nm。(2)产品表面存在微纳米级缺陷,如异物、腐蚀、氧化等问题,需观察缺陷与基材的界面情况,利用FIB就可以准确定位切割,制备缺陷位置截面样品,再利用SEM观察界面情况。(3)微米级尺寸的样品,经过表面处理形成薄膜,需要观察薄膜的结构、与基材的结合程度,可利用FIB切割制样,再使用SEM观察。聚焦离子束技术(FIB)注意事项(1)样品大小5×5×1cm,当样品过大需切割取样。(2)样品需导电,不导电样品必须能喷金增加导电性。(3)切割深度必须小于50微米。应用实例(1)微米级缺陷样品截面制备(2)PCB电路断裂位置,利用离子成像观察铜箔金相。俄歇电子能谱分析(AES)俄歇电子能谱技术(AES)俄歇电子能谱技术(Auger electron spectroscopy,简称AES),是一种表面科学和材料科学的分析技术,因检测由俄歇效应产生的俄歇电子信号进行分析而命名。这种效应系产生于受激发的原子的外层电子跳至低能阶所放出的能量被其他外层电子吸收而使后者逸出,这一连串事件称为俄歇效应,而逃脱出来的电子称为俄歇电子,通过检测俄歇电子的能量和数量来进行定性定量分析。AES应用于鉴定样品表面的化学性质及组成的分析,其特点在俄歇电子来极表面甚至单个原子层,仅带出表面的化学信息,具有分析区域小、分析深度浅和不破坏样品的特点,广泛应用于材料分析以及催化、吸附、腐蚀、磨损等方面的研究。俄歇电子能谱分析(AES)可为客户解决的产品质量问题(1)当产品表面存在微小的异物,而常规的成分测试方法无法准确对异物进行定性定量分析,可选择AES进行分析,AES能分析≥20nm直径的异物成分,且异物的厚度不受限制(能达到单个原子层厚度,0.5nm)。(2)当产品表面膜层太薄,无法使用常规测试进行厚度测量,可选择AES进行分析,利用AES的深度溅射功能测试≥3nm膜厚厚度。(3)当产品表面有多层薄膜,需测量各层膜厚及成分,利用D-SIMS(AES)能准确测定各层薄膜厚度及组成成分。注意事项(1)样品最大规格尺寸为1×1×0.5cm,当样品尺寸过大需切割取样。(2)取样的时候避免手和取样工具接触到需要测试的位置,取下样品后使用真空包装或其他能隔离外界环境的包装, 避免外来污染影响分析结果。(3)由于AES测试深度太浅,无法对样品喷金后再测试,所以绝缘的样品不能测试,只能测试导电性较好的样品。(4)AES元素分析范围Li-U,只能测试无机物质,不能测试有机物物质,检出限0.1%。应用实例样品信息:样品为客户端送检LED碎片,客户端反映LED碎片上Pad表面存在污染物,要求分析污染物的类型。失效样品确认:将LED碎片放在金相显微镜下观察,寻找被污染的Pad,通过观察,发现Pad表面较多小黑点。X射线光电子能谱分析(XPS)X射线光电子能谱技术X射线光电子能谱技术(X-ray photoelectron spectroscopy,简称XPS)是一种表面分析方法, 使用X射线去辐射样品,使原子或分子的内层电子或价电子受激发射出来,被光子激发出来的电子称为光电子,可以测量光电子的能量和数量,从而获得待测物组成。XPS主要应用是测定电子的结合能来鉴定样品表面的化学性质及组成的分析,其特点在光电子来自表面10nm以内,仅带出表面的化学信息,具有分析区域小、分析深度浅和不破坏样品的特点,广泛应用于金属、无机材料、催化剂、聚合物、涂层材料矿石等各种材料的研究,以及腐蚀、摩擦、润滑、粘接、催化、包覆、氧化等过程的研究。X射线光电子能谱分析(XPS)可为客户解决的产品质量问题(1)当产品表面存在微小的异物,而常规的成分测试方法无法准确对异物进行定性定量分析,可选择XPS进行分析,XPS能分析≥10μm直径的异物成分以及元素价态,从而确定异物的化学态,对失效机理研究提供准确的数据。(2)当产品表面膜层太薄,无法使用常规测试进行厚度测量,可选择XPS进行分析,利用XPS的深度溅射功能测试≥20nm膜厚厚度。(3)当产品表面有多层薄膜,需测量各层膜厚及成分,利用D-SIMS能准确测定各层薄膜厚度及组成成分。(4)当产品的表面存在同种元素多种价态的物质,常规测试方法不能区分元素各种价态所含的比例,可考虑XPS价态分析,分析出元素各种价态所含的比例。注意事项(1)样品最大规格尺寸为1×1×0.5cm,当样品尺寸过大需切割取样。(2)取样的时候避免手和取样工具接触到需要测试的位置,取下样品后使用真空包装或其他能隔离外界环境的包装, 避免外来污染影响分析结果。(3)XPS测试的样品可喷薄金(不大于1nm),可以测试弱导电性的样品,但绝缘的样品不能测试。(4)XPS元素分析范围Li-U,只能测试无机物质,不能测试有机物物质,检出限0.1%。应用实例样品信息:客户端发现PCB板上金片表面被污染,对污染区域进行分析,确定污染物类型。测试结果谱图动态二次离子质谱分析(D-SIMS)飞行时间二次离子质谱技术二次离子质谱技术(Dynamic Secondary Ion Mass Spectrometry,D-SIMS)是一种非常灵敏的表面分析技术,通过用一次离子激发样品表面,打出极其微量的二次离子,根据二次离子的质量来测定元素种类,具有极高分辨率和检出限的表面分析技术。D-SIMS可以提供表面,薄膜,界面以至于三维样品的元素结构信息,其特点在二次离子来自表面单个原子层(1nm以内),仅带出表面的化学信息,具有分析区域小、分析深度浅和检出限高的特点,广泛应用于物理,化学,微电子,生物,制药,空间分析等工业和研究方面。动态二次离子质谱分析(D-SIMS)可为客户解决的产品质量问题(1)当产品表面存在微小的异物,而常规的成分测试方法无法准确对异物进行定性定量分析,可选择D-SIMS进行分析,D-SIMS能分析≥10μm直径的异物成分。(2)当产品表面膜层太薄,无法使用常规测试进行膜厚测量,可选择D-SIMS进行分析,利用D-SIMS测量≥1nm的超薄膜厚。(3)当产品表面有多层薄膜,需测量各层膜厚及成分,利用D-SIMS能准确测定各层薄膜厚度及组成成分。(4)当膜层与基材截面出现分层等问题,但是未能观察到明显的异物痕迹,可使用D-SIMS分析表面超痕量物质成分,以确定截面是否存在外来污染,检出限高达ppb级别。(5)掺杂工艺中,掺杂元素的含量一般是在ppm-ppb之间,且深度可达几十微米,使用常规手段无法准确测试掺杂元素从表面到心部的浓度分布,利用D-SIMS可以完成这方面参数测试。动态二次离子质谱分析(D-SIMS)注意事项(1)样品最大规格尺寸为1×1×0.5cm,当样品尺寸过大需切割取样,样品表面必须平整。(2)取样的时候避免手和取样工具接触到需要测试的位置,取下样品后使用真空包装或其他能隔离外界环境的包装, 避免外来污染影响分析结果。(3)D-SIMS测试的样品不受导电性的限制,绝缘的样品也可以测试。(4)D-SIMS元素分析范围H-U,检出限ppb级别。应用实例样品信息:P92钢阳极氧化膜厚度分析。飞行时间二次离子质谱分析(TOF-SIMS)飞行时间二次离子质谱技术飞行时间二次离子质谱技术(Time of Flight Secondary Ion Mass Spectrometry,TOF-SIMS)是一种非常灵敏的表面分析技术,通过用一次离子激发样品表面,打出极其微量的二次离子,根据二次离子因不同的质量而飞行到探测器的时间不同来测定离子质量,具有极高分辨率的测量技术。可以广泛应用于物理,化学,微电子,生物,制药,空间分析等工业和研究方面。TOF-SIMS可以提供表面,薄膜,界面以至于三维样品的元素、分子等结构信息,其特点在二次离子来自表面单个原子层分子层(1nm以内),仅带出表面的化学信息,具有分析区域小、分析深度浅和不破坏样品的特点,广泛应用于物理,化学,微电子,生物,制药,空间分析等工业和研究方面。飞行时间二次离子质谱分析(TOF-SIMS)可为客户解决的产品质量问题(1)当产品表面存在微小的异物,而常规的成分测试方法无法准确对异物进行定性定量分析,可选择TOF-SIMS进行分析,TOF-SIMS能分析≥10μm直径的异物成分。(2)当产品表面膜层太薄,无法使用常规测试进行成分分析,可选择TOF-SIMS进行分析,利用TOF-SIMS可定性分析膜层的成分。(3)当产品表面出现异物,但是未能确定异物的种类,利用TOF-SIMS成分分析,不仅可以分析出异物所含元素,还可以分析出异物的分子式,包括有机物分子式。(4)当膜层与基材截面出现分层等问题,但是未能观察到明显的异物痕迹,可使用TOF-SIMS分析表面痕量物质成分,以确定截面是否存在外来污染,检出限高达ppm级别。飞行时间二次离子质谱分析(TOF-SIMS)注意事项(1)样品最大规格尺寸为1×1×0.5cm,当样品尺寸过大需切割取样。(2)取样的时候避免手和取样工具接触到需要测试的位置,取下样品后使用真空包装或其他能隔离外界环境的包装, 避免外来污染影响分析结果。(3)TOF-SIMS测试的样品不受导电性的限制,绝缘的样品也可以测试。(4)TOF-SIMS元素分析范围H-U,包含有机无机材料的元素及分子态,检出限ppm级别。应用实例样品信息:铜箔表面覆盖有机物钝化膜,达到保护铜箔目的,客户端需要分析分析苯并咪唑与铜表面结合方式 。
  • 大连化物所成功研制红外光谱仪真空吸附及表面反应原位表征系统
    6月13日,由中科院大连化学物理研究所公共分析测试组(DNL2001)邵建平承担的中国科学院仪器设备功能开发技术创新项目——“红外光谱仪的真空吸附及表面反应原位表征系统研制”顺利通过项目验收。验收专家组由中科院东北先进制造与材料制备区域中心梁爽副研究员、长春应化所科技处朱琳副处长、沈阳自动化所刘金德研究员、沈阳金属所刘萌副研究员、中科院大连化学物理研究所王峰研究员组成,朱琳副处长担任组长。   验收专家组听取了项目负责人的项目研制工作报告和财务报告、测试专家组的测试报告,审查了相关技术资料,并对研制成果的运行情况进行了现场核查。专家组认为:所研制开发的新型真空吸附和表面反应红外光谱原位表征实验系统、及新型石英红外池,设计理念先进,工艺精巧,可靠性、实用性强,为拓展红外光谱仪用于催化材料性质的原位表征提供了有效的实验技术支撑。该项目成果具有重要的实验应用价值和一定的推广价值。该项目实现了设备功能开发目标,完成了实施方案规定的各项任务,一致同意该项目通过验收。   该项目是科学院首批立项支持的仪器设备功能开发项目。项目的认真执行、规范验收和实际成果,对中科院大连化学物理研究所后续该类项目的申请、执行和组织验收起到了积极的示范意义。
  • 【小贝开讲】粒度表征常用方法、优缺点及高分辨粒度表征的重要性
    课程主题:【小贝开讲】粒度表征常用方法、优缺点及高分辨粒度表征的重要性课程时间:2021-4-9 14:00课程简介:随着科技的发展,关于颗粒粒度的表征方法已从最初简单的筛分,发展到各种原理的检测方法,包括静态激光衍射法、动态激光散射法、离心沉降法、光阻法、电阻感应法、拍照图像法等,这些方法各有优缺点和适用性,对这些方法的了解有助于我们使用合适的工具对我们的产品或中间产物或原料进行有效的研究和质控。 高分辨的粒度表征技术是科学与产品不断发展的必然要求。因为研发人员需要依靠粒度数据做出决策,QC需要及时发现批次间细微的差异。只有高分辨粒度表征技术,才能帮助客户发现关键细节,实现精准表征,获得更加真实的粒度信息。然而,当前很多时候我们都是第一时间使用激光粒度仪,而这其中有时会面临着测试结果遗漏了关键细节的风险。 此次研讨会将对以上内容一一向您做介绍。姚金龙 贝克曼库尔特生命科学研究生毕业后先后在中科院上海有机所,上海高等研究院和某著名颗粒分析厂家工作,2019年正式加入贝克曼库尔特公司。在激光粒度仪,纳米粒度和Zeta电位分析仪、颗粒图像分析仪、纳米可视追踪分析仪和粉体颗粒流变仪等具有5-10年的操作应用经验,负责全国粒度相关产品售前、售后应用技术支持。
  • 催化剂表征更快、更简单的5种方法
    2022年6月,全球专业的材料表征技术公司 Micromeritics 宣布新品 AutoChem III 的上市。AutoChem III 的动态化学吸附和程序升温分析在开发新催化剂材料至关重要的性能指标中发挥着极其重要的作用,助力碳捕获和利用、氢清洁能源以及其他净零等技术的发展。新升级的 AutoChem III 能够显著提高实验效率和灵敏度。Micromeritics AutoChem III 的全新设计旨在简化关键实验步骤,每天能够为用户节省几个小时,减少测试时间,提高实验效率。全新产品带来让催化剂表征更快、更简单五种方法!● 冷却更快全新 AutoCool 比压缩空气冷却时间快 30 分钟,无需液体或外部帮助。● TPR 无需另外准备水蒸汽捕获冷却浴全新 AutoTrap 为 TPR 实验提供高效的蒸汽捕获,无需制备冷却浴。● 自动 TCD 校准 专利的 (美国专利号:#10487954 B2) 气体混合阀和智能程序使 TCD 校准更简单更准确。● 样品管安装便捷全新专利(美国专利号:#11105825 B2)保护的 KwikConnect 样品管安装比传统设计更快、更容易、更可靠。独立组件数量是传统设计的一半,没有螺纹接头。● 直观可视化的实验方法开发通过流程图实现个性化编程和程序可视化。想要了解更多关于 AutoChem III 的技术与资料内容,欢迎访问 Micromeritics 官方网站相关页面,并免费索取产品资料册。关于麦克默瑞提克Micromeritics 是提供表征颗粒、粉体和多孔材料的物理性能、化学活性和流动性的全球高性能设备生产商。我们能够提供一系列行业前沿的技术,包括比重密度法、吸附、动态化学吸附、压汞技术、粉末流变技术、催化剂活性检测和粒径测定。公司在美国、英国和西班牙均设立了研发和生产基地,并在美洲、欧洲和亚洲设有直销和服务业务。Micromeritics 的产品是全球具有创新力的知名企业、政府和学术机构旗下 10,000 多个实验室的优选仪器。我们拥有专业的科学家队伍和响应迅速的支持团队,他们能够将 Micromeritics 技术应用于各种要求严苛的应用中,助力客户取得成功。
  • 红外多光子解离用于Top-Down表征膜蛋白复合物和G蛋白偶联受体
    大家好,本周为大家分享一篇来自Angewandte Chemie - International Edition的文章:Infrared Multiphoton Dissociation Enables Top-Down Characterization of Membrane Protein Complexes and G ProteinCoupled Receptors[1],文章的通讯作者是牛津大学化学系的Carol V. Robinson教授。  非变性质谱(Native MS)是结构生物学中一个成熟的工具。在电喷雾电离过程中使用非变性缓冲液可以保存多组分蛋白质复合物之间的非共价相互作用,以及它们的配体、辅因子或其他结合蛋白。它可以用于探究蛋白质复合物的相互作用和功能,因为结合事件导致质量变化,可以在质谱仪中跟踪和剖析。然而,由于膜蛋白的疏水性,使得它们在传统的非变性质谱缓冲液中不溶且容易聚集,因此在非变性质谱中呈现出独特的挑战。目前采用的方法是将蛋白质复合物溶解到膜类似物中,例如:去垢剂、纳米脂质盘、两性聚合物等,再将这些膜类似物通过碰撞激活去除。其中去垢剂是应用的最广泛的一种。然而由于碰撞激活的能量在应用中受到限制,该方法并不能在质量分析前很好地去除去垢剂。此外,在非变性质谱条件下,键的断裂也受到非共价相互作用强度的影响(例如蛋白质-蛋白质、蛋白质-去垢剂剂以及去垢剂胶束内的相互作用)。  基于光子的方法,如紫外光解离(UVPD)和红外多光子解离(IRMPD)已被证明有利于可溶性蛋白质及其复合物的Top-Down质谱分析。与此同时,基于光子的膜蛋白Top-Down模式的应用正在兴起。原理上,激光束路径中的离子被连续地驱动到振动激发态。因此,在基于光子的方法中,能量储蓄通常与前体离子的电荷状态和分子量无关。然而,电荷状态和分子量仍然会影响肽键解离需要的输入能量。先前报道的通过UVPD对79 kDa的五聚体的大电导机械敏感通道(MscL)Top-Down的断裂得到了令人印象深刻的54%的序列覆盖。然而,对于氨通道(AmtB)一个127 kDa的同源三聚体,通过碰撞激活和UVPD两种不同的方式破碎,仅实现了20%的序列覆盖率。事实上,相对较低的序列覆盖率是由于大分子量以及三聚体中增加的非共价相互作用影响的结果。尽管这些工具能够在非变性状态下实现Top-Down质谱分析,但其在膜蛋白表征中的应用仍不广泛。这就要求建立一种能使低电荷密度的高分子量蛋白质稳定地产生蛋白质序列离子的方法,而膜蛋白嵌入异质膜或膜类似物则使这一问题更加复杂。虽然IRMPD之前被用于从去垢剂中释放膜蛋白,但使用IRMPD对非变性的膜蛋白进行测序的研究相对较少。  图1. (A)改进的Orbitrap Eclipse Tribrid的原理图,其中包括一个红外激光器直接进入四极线性离子阱(QLIT)的高压细胞。离子化的蛋白质胶束被转移到高压QLIT中,在那里整个离子群受到红外光子的照射,然后被转移到Orbitrap进行质量分析。通过调节激光输出功率(W)和照射时间(ms),可以使膜蛋白从去垢剂胶束中完全解放出来。(B)三聚氨通道(AmtB)在3.0 W输出功率和200ms辐照时间下的非变性质谱。(C)在3.3 W输出功率和200ms辐照时间下AmtB的非变性质谱。  因此,作者利用改进的Orbitrap Eclipse Tribrid质谱仪,与连续波远红外(IR) CO2激光器连接,使光束聚焦到双四极杆线性离子阱(QLIT)的高压池中(图1A)。红外激活可以有效地去除蛋白质复合物中的去垢剂胶束,随后通过IRMPD使得膜蛋白碎片化。在这种安排下,由纳米电喷雾电离产生的蛋白质复合物被转移到高压池中。在转移到Orbitrap进行检测或m/z分离和随后的碎片化之前,整个离子群将受到943cm-1红外光子的照射。利用红外的方法去除去垢剂胶束,红外激光有两个可调控参数:激光输出功率(高达60瓦)和照射时间(毫秒到秒)。因此,可以更好地控制从蛋白质胶束中释放膜蛋白,确保非变性复合物的保存,同时完全去除包裹复合物中的去垢剂。通过对激光输出功率和照射时间的优化,作者发现红外激活的参数是高度可调的,不同的激光功率和照射时间的组合也可以产生分辨率相当的谱图。其中例如在3.3 W下照射200 ms时,可以得到多个电荷态的三聚体峰(~6500 m/z),也可以观察到三聚体与脂质结合的峰,而且对于图谱中的单体也能观察到与脂质结合的峰(图1C)。作者还对不同的去垢剂产生分辨率较高的图谱所需要红外参数进行了评估,从而评价了这几种去垢剂得到高分辨率图谱的难易程度(图2)。  图2. 红外辐射去除膜蛋白离子中的去垢剂是高度可调的。增加激光输出功率对三种常用的MS兼容去垢剂(C8E4,G1和DDM) AmtB三聚体峰外观的影响。辐照时间固定为200 ms,激光输出功率分别为2.1、2.4、3.0和3.6 W。去垢剂在真空中按易去除的顺序显示,这是由完全释放膜蛋白复合物所需的激光输出功率决定的,从而在m/z光谱中产生良好分辨的电荷状态峰。为了探究IRMPD分离蛋白质和去垢剂胶束的机制,作者对三种不同的去垢剂:四聚乙二醇单辛醚(C8E4)、树突状低聚甘油(G1)和十二烷基-β-D-麦芽糖苷(DDM)的溶液相和气相红外光谱进行了表征,并利用密度泛函理论(DFT)计算得到了C8E4头部基团的红外谐波光谱,用来验证所得到的红外吸收光谱会受到振动耦合的影响,对于质子化的去垢剂离子,氢键和富氧去垢剂内的质子共享可以改变观察到的振动频率。结果表明C8E4胶束的溶液相吸收光谱包含一个与预期激光波数943cm-1重叠的显著带,这就解释了为何较低的激光能量可以将去垢剂胶束和蛋白质复合物分离。而在谐波光谱中在预期的激光波数处的确产生了峰,并推测该峰来自于O-H伸缩、C-C伸缩,C-H弯曲和C-O伸缩振动的耦合。而G1和DDM的最大吸收则偏离了943cm-1的预期波数,作者认为这是不同去垢剂氢键作用的结果。而蛋白质在真空中的红外吸收能力较弱,由此推测在IRMPD的过程中,去垢剂是主要的吸收对象。所以仅需要较低的能量就可以使蛋白质从复合物中剥离而不至于破坏蛋白质的非共价作用。完整的蛋白质离子还支持串联质谱的实验,为了得到蛋白质的序列信息,作者分离了m/z在6674处(电荷态为+19)的AmtB三聚体蛋白,并将其置于高激光输出功率(9 W)下照射5 ms,在m/z 1750~4000之间产生密集的多电荷态离子片段,并得到了26%的序列覆盖,这优于之前基于碰撞激活的方法(  图3. 三聚体AmtB的IRMPD。(A)在m/z 6674处分离19+电荷态离子阱后,IRMPD后观察到的碎片离子MS2谱。多重带电碎片被高亮显示 来自相同地点的重复片段用虚线分组。为了清楚起见,许多指定的离子没有注释 (B)片段丰度相对于裂解原点(残基数)的条形图,其中丰度表示来自每个位点的片段归化一强度之和。条形图的颜色强度表示每个片段的加权平均电荷。将AmtB的拓扑域叠加在条形图上 α-螺旋跨膜区域用黄色方框表示,编号为1到11。跨膜区由质周环和细胞质环连接,用灰色线表示。(C)主干裂解位点覆盖在AmtB (PDB: 1U7G)的结构上。蓝色和红色阴影区域分别代表b型和y型离子。颜色强度对应于所分配片段的丰度。从气相分子动力学模拟中得到的高温(500 K)下的跨膜螺旋快照用虚线圈标出。为了验证这一个推测,作者又对另外两种GPCR蛋白:β -1-肾上腺素能受体(β1AR)和腺苷A2A受体(A2AR)用IRMPD进行了MS2图谱的测定,结果也观察到了片段离子相似的二级结构定位,在跨膜结构区域有着高丰度的片段,但是在二硫键相连的螺旋中并没有观察到丰富的离子片段。并再次利用分子动力学模拟研究了两种GPCR的结构对断裂的影响。在500 K下的最终结构中显示,两种GPCR中都保留了α-螺旋特征,并与观察到的裂解位点密切相关。此外,还对这两种蛋白进行了HCD和IRMPD的比较分析。对于β1AR, IRMPD产生的片段离子平均分子量为8866 Da,高于HCD产生的5843 Da。IRMPD产生的片段离子也保留了更高的平均电荷(4.7 + vs 3.6+ z)。最终,IRMPD的碎片化导致β1AR的序列覆盖率更高,为28%,而HCD为17%。在A2AR中也观察到类似的趋势,IRMPD的覆盖率为19%,而HCD为9%。  总的来说,作者证明了可以在改进的Orbitrap Eclipse质谱仪的高压QLIT下,通过红外照射可以完全释放一系列去垢剂胶束中的膜蛋白。然后,通过增加激光输出功率,获得直接从膜蛋白及其复合物中释放的序列信息片段离子,证明红外光去除去垢剂是通用的和高度可控的,为保存和鉴定膜蛋白和配体之间脆弱的非共价相互作用构建了一个可靠的方法。而且还对片段离子的产生机制做了阐述,即质子可以通过沿蛋白质骨架迁移来稳定和诱导连续的肽键裂解。  撰稿:李孟效  编辑:李惠琳  文章引用:Infrared Multiphoton Dissociation Enables Top-Down Characterization of Membrane Protein Complexes and G ProteinCoupled Receptors  参考文献  Lutomski, C.A., El-Baba, T.J., Hinkle, J.D., et al. Infrared multiphoton dissociation enables top-down characterization of membrane protein complexes and g protein-coupled receptors[J]. Angewandte Chemie-International Edition,2023.
  • 高分子表征技术专题——拉曼光谱技术在高分子表征研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!拉曼光谱技术在高分子表征研究中的应用Application of Raman Spectroscopy in the Characterization of Polymers作者:袁媛,王梦梵,曲云菲,张泽军,张建明作者机构:青岛科技大学高分子科学与工程学院 橡塑材料与工程教育部重点实验室,青岛,266042 北京化工大学 碳纤维及复合材料教育部重点实验室,北京,100029 北京航空航天大学化学学院,北京,100191作者简介:张建明,男,1973年生. 山东省泰山学者特聘教授,博士生导师. 2003年毕业于中科院化学所并取得博士学位,师从著名的光谱学家沈德言先生. 自2009年1月起在青岛科技大学工作. 研究方向为高分子凝聚态结构及其相变行为、生物质纳米材料制备及功能复合材料构筑,已发表SCI学术论文130余篇,所发论文被引6000余次,H-指数为38,获批中国发明专利20余件. 先后获日本JSPS博后奖、德国洪堡资深学者、山东省泰山学者、山东省杰出青年、山东省自然科学二等奖及中国石化联合会青年科技突出贡献奖等荣誉或奖励.摘要拉曼光谱作为一种强大的工具,被广泛应用于聚合物结构的表征. 随着共振拉曼光谱、扫描角度拉曼光谱、高分辨率拉曼成像、极化拉曼光谱、表面增强拉曼散射等拉曼技术的迅速发展,拉曼光谱的应用范围不断扩大. 本文首先介绍了拉曼光谱设备的基本原理和组成,总结了拉曼技术的实验技巧和数据处理中需要注意的问题,讨论了红外光谱和拉曼光谱的区别,在此基础上,综述了近十年来拉曼技术在聚合物结构表征领域的最新应用和研究进展. 其应用包括以下六个方面:高分子链的构象、聚合物的聚集状态、聚合物结晶度的计算、高分子链的取向、外场作用下的结构转化、高分子共混物化学或物理成分的识别. 最后,对拉曼光谱在聚合物研究中的发展进行了展望. 希望本文能够对试图从拉曼光谱中获取聚合物结构信息的学者有所帮助.AbstractAs a powerful tool, Raman spectroscopy is widely used in the characterization of polymer structures. Along with the rapid development of Raman technology such as resonance Raman spectroscopy, scanning angle Raman spectroscopy, high-resolution Raman imaging, polarized Raman spectroscopy, and surface-enhanced Raman scattering, the application range of Raman spectroscopy has been continuously extended. In this paper, we first introduced the basic principle and the composition of the Raman equipment, and then we summarized the experimental skills of Raman technology and the issues that need attention in data processing. The difference between the infrared spcectroscopy and the Raman spectroscopy was discussed. Afterwards, we reviewed the latest applications and research progress in the fields of polymer structure characterization by using Raman technology in recent decade. The applications include the following six aspects: the macromolecular chain conformation, the aggregation state of polymers, the calculation of the polymer crystallinity, the macromolecular chain orientation, the structural transformation under the external fields, and the identification of the chemical or physical composition in polymer blends. Last, the development of Raman spectroscopy in polymer research was prospected. It is hoped that this review could be helpful for the one who tried to obtain the information about the polymer structure from Raman spectroscopy.关键词拉曼光谱  结构表征  原理  应用KeywordsRaman spectroscopy  Structure characterization  Principle  Application 拉曼散射现象是由印度科学家Raman于1928首先发现并报道的,但拉曼散射信号只相当于瑞利散射百万分之一,在拉曼散射现象被发现之初由于没有足够功率的光源而并未被广泛的应用. 近半世纪以来随着激光光源以及显微技术在拉曼光谱仪中的应用,拉曼光谱迸发出了旺盛的生命力.拉曼光谱与红外光谱同属分子振动光谱,但其原理与红外光谱截然不同. 如今拉曼光谱在高分子领域中已经有广泛的应用,包括分子链构象、取向、结晶度等方面的研究等. 本文在结合拉曼基本原理及实验技巧的基础上,总结了近年来拉曼光谱在高分子表征中的最新研究进展.1基础原理1.1光的散射当光线遇到分子时,绝大部分的光子(多于99.999%)都会发生弹性散射(即瑞利散射),瑞利散射具有与入射光相同的波长. 然而,少部分的光子(少于0.001%)会发生能量(频率)偏离的非弹性散射(即拉曼散射). 光散射过程可以用量子力学进行描述,如图1所示,当一束光照射到某体系时,体系中粒子吸收光的能量而被激发,从而发生能级跃迁过程,同时辐射出散射波. 不同的跃迁方式决定了不同的散射类型,例如(拉曼)斯托克斯散射、瑞利散射、(拉曼)反斯托克斯散射(高分子样品测试中常用的拉曼散射范围)[1~7]. 在拉曼测试过程中,经常也会出现荧光信号,与拉曼散射不同,荧光过程中粒子被激发至能量更高的电子能级而非拉曼散射中的虚态. 因此短波长比长波长激光更易产生荧光效应.Fig. 1Quantum mechanics description of Rayleigh, Raman scattering and florescence.1.2拉曼散射与拉曼光谱1.2.1拉曼散射的基本原理假设一束频率为v0的光照射在一个分子上,分子中电子会被入射光的电场激发做受迫局域运动而出现极化现象,产生电偶极矩,假设入射光电场可以表示为:式中E0为光电场的振幅,则由于分子运动所产生的偶极矩可以表示为:式中α为极化率,极化率的变化是分子的核外电子云受外部电场诱导而产生的(通过平衡位置两边的)形变而导致的.如果分子的极化电场所释放出的光与入射光频率相同,则把这种散射过程称为瑞利散射. 而如果α被分子的振动所调制(modulated),则α可以展开为关于振动简正坐标q的级数:q由以下公式得出:则有:以上公式表明在当前情况下频率为(v0±vk)的(拉曼)散射会与频率为v0的瑞利散射同时出现. 某一分子振动为拉曼散射活性的前提条件为(∂α∂q)0的值不为0,也就是说分子的极化率随分子振动而改变[8,9].如图2所示,假设频率为v0电场(入射光)可以诱导分子的偶极矩P产生同频率(v0)的振动. 如果此时分子极化率具有随时间变化的极低频的振动vm,那么经过以上2种不同频率的振动调制后的散射光将包含3种不同频率的光,分别为v0(瑞利散射)、v0+vm(反斯托克斯散射)、v0-vm(斯托克斯散射). 反之如果分子的振动不能使极化率产生低频振动,则不会有调制的出现,进而不会出现拉曼散射效应[8,10].Fig. 2Schematic representing of Rayleigh and Raman scattering: (a) the incident radiation makes the induced dipole moment of the molecule oscillate at the photon frequency (v0) (b) the molecular vibration can induce the polarizability,α,to have a frequency ofvm the result as shown in (c) is an amplitude modulated dipole moment oscillation,and three components with steady amplitudes which can emit electromagnetic radiation can be achieved as:v0 (Rayleigh component), v0+vm (Raman anti-Stokes component), and v0+vm (Raman Stokes component), as shown in (d).由于诱导分子偶极矩P与电场E均为矢量,且一般情况下两者方向不同,因而连接这2个物理量的极化率α可以用一个二阶张量来表达,则P=αE可以表示为其中,x,y,z为分子在笛卡尔坐标系中的坐标. 极化率为对称的二阶张量矩阵,包含了6个独立的元素,αxx、αyy、αzz、αxy、αyz、αxz. 上式的意义为,例如沿x方向电场Ex诱导了沿y方向的偶极矩Py,则可表示为Py=αxyEx. 此式在通过偏振拉曼研究分子对称性时具有重要意义[9].1.2.2拉曼活性的判据如上所述,非弹性散射源于在平衡位置附近分子的极化率关于简正坐标q的导数不为0,这一关系为小分子的拉曼散射提供了“选择定律”的基础. 以对称双原子分子的对称伸缩振动(symmetric stretching vibration)为例,如图3(a)所示,当两原子的位置无限接近时,体系电子密度分布类似于单一原子的电子密度;而当两原子的位置无限远离时,体系电子密度分布近似于2个独立的单原子的电子密度. 因此对于双原子分子的对称振动,其极化率沿简正坐标方向成单调增长模式,因此其在平衡位置导数不为0,为拉曼活性振动. 而对于分子偶极矩,对称伸缩振动过程中其正负电荷中心并没有产生位移,所以偶极矩没有发生变化,因此为红外非活性振动. 例如氧气与氮气分子的对称伸缩振动只能使用拉曼光谱进行研究,因为在红外谱图中不会出现吸收峰.Fig. 3The derivatives of polarizability (red) and dipole moment (blue) are schematically depicted for the normal modes of a two (a) and a three (b) atomic molecule. Based on these intuitive considerations,conclusions on the IR and Raman activityof the modes can be drawn.线性三原子分子比双原子分子稍显复杂,例如二氧化碳分子. 对于其对称伸缩振动,如图3(a)所示,极化率的变化类似于双原子分子的对称伸缩振动,为拉曼光谱活性,红外光谱非活性. 对于非对称伸缩振动(antisymmetric stretching vibra-tion)以及变角振动(bending vibration) (图3(b)),极化率在平衡位置两边的变化虽不为0,但是其变化是关于平衡位置对称的. 因此极化率在平衡位置周围变化可以认为是简谐的,也就是说(∂α∂q)q0=0,因此非对称伸缩振动与变角振动均为拉曼非活性;而偶极矩在平衡位置两侧的方向是反转的,因此(∂μ∂q)q0≠0,表现为红外活性[11].2实验技巧为了得到更丰富的样品信息,我们希望拉曼光谱在准确的基础上具有尽可能高的信噪比(signal-noise ratio,SNR). 关于拉曼散射的强度IR一般有如下关系式:其中,v和I0为入射激光的频率及强度;N为参与散射过程的分子数量;(∂α∂q)2是与分子结构有关的参数.上式表明,使用短波长激光并增加激光能量密度的同时增加样品量可以增强拉曼散射信号(注:拉曼光谱位移不随入射波长的变化而改变). 但在实际的测试过程中,不同类型的样品需要根据其自身的特点选择与其匹配的波长的激光以及激光能量,不能为了增强拉曼信号就去用短波长激光去测试所有样品,很多高分子样品在短波长激光下可能没有拉曼信号或者拉曼散射被很强的荧光信号所淹没.2.1样品制备2.1.1固态样品相对于无机样品,有机高分子样品的拉曼信号相对较弱(一部分原因是由于高分子样品中存在大量的无序结构). 对于高分子粉末或膜样品,一般需要保证沿光的入射方向有一定的厚度并同时使其表面尽量平整,以便于显微镜的聚焦. 对于透明样品,可将其放置于铝箔上进行测试(因为金属一般都有增强拉曼信号的作用,用铁片作为基底同样有着很好的效果). 或者,由于拉曼接收的是散射光,太薄的透明样品极易被激光穿透从而打到基底上,因此为了得到更好的拉曼信号,制样时要尽可能增大薄膜厚度. 另外由于激光一般都是偏振的,因此对于取向样品,例如纤维,需首先确定入射光的偏振方向,之后再确定样品的(某一)取向轴与入射光偏振方向平行(或垂直),再开始测试,这样才能得到正确的结构信息.2.1.2液态样品由于拉曼可以聚焦到几十微米下检测一定深度的样品信号,无需担心盖玻片和毛细管对拉曼信号的影响,因此高分子液态样品的拉曼测试相对于红外测试比较便捷,可以直接进行测试. 一般可以使用凹面载玻片或者金属制液体样品槽承载液体样品. 测试时可先将激光聚焦于液体表面,然后将样品平台沿激光方向上抬,使激光聚焦于液体样品内部,这样可以得到较好的光谱. 如果液体易挥发,可以使用盖玻片将样品封闭于容器内或将液体封入毛细管内.2.2设备调试2.2.1拉曼装置的构成随着拉曼仪器的发展,如今在一般情况下,背散射模式,也就是入射激光与散射激光平行,已经足够应对大部分高分子样品的测试需求. 对于一些特殊情况,例如取向或单晶样品的偏振拉曼测试,需要使用到90°入射的模式,也就是入射光路方向与散射光路方向为90°,原因可以参考上节极化率的二阶张量公式.以雷尼绍(Renishaw,UK) inVia型拉曼光谱仪为例,如图4所示,拉曼装置一般包括入射激光光源、入射光路系统(包括扩束器)、显微镜及样品台系统、滤波器、衍射光栅及CCD检测器. 在实际测试过程中,我们需要选择合适的入射光波长及显微镜物镜.Fig. 4Schematic diagram of the Raman instrument.当今市场上主要的拉曼仪器根据应用的场景可分为手持型、便携型以及桌面型拉曼光谱仪. 手持型拉曼光谱仪集成性很高,小巧轻便,操作非常简单,几乎可以在各种需要的地点、时间对从原材料到成品进行鉴定分析. 便携型拉曼光谱仪集成性相对较高,并具有一定的扩展性,可作为小型移动实验室使用. 桌面型拉曼光谱仪体积较大且不可移动,如图4中示意图即为桌面型拉曼光谱仪,但这类光谱仪具有极强的扩展性,几乎可以变更从入射激光光源、入射光路、样品平台至光栅等所有组成部分,从而可以为不同样品以及不同条件的测试创造可能.2.2.2激光波长的选择激光波长与能量密度成反比,使用短波长激光可以得到较强的拉曼散射信号,例如532 nm要比785 nm激光的拉曼散射强度强. 但对于高分子样品来说使用532 nm激光产生荧光干扰的可能性也会增加. 所以在一些情况下可以选择785 nm的光源. 如前所述,样品产生的拉曼位移不会随激发光源的波长改变而改变,因此只要可以避开荧光效应可以自由选择激光波长. 需要注意,虽然拉曼位移不随激光波长而改变,但使用同一物镜下,不同波长可以到达的空间分辨率不同. 例如,物镜的数值孔径(NA)为0.9,532 nm激光的空间分辨率可达0.72 μm,而在同样条件下使用785 nm激光时,空间分辨率仅为1.1 μm.另一种情况,如果样品内的分子振动与入射激光可以产生共振效应,那么可以以此来选择入射激光波长,则可以得到较强的拉曼散射信号.2.2.3显微镜的选择通常显微镜的物镜上会标注2个参数,分别为放大倍数(5×、10×、20× 等)与数值孔径(numerical aperture,NA,是与镜头光通量有关的参数,一般为0.05~0.95). 一般放大倍数与数值孔径成正相关关系,而数值孔径决定空间分辨率,有如下公式 [12]:其中,R为最大空间分辨率. 在实际测试时需要注意激光能量会随光斑尺寸(空间分辨率)变化,更高的空间分辨率意味着激光密度会更大,此时需要注意样品可能会被激光热解. 对于高分子样品来说,一般要先从低激光功率测试开始尝试,如果此时拉曼散射信号很弱,则少量增加激光功率,但同时要注意观察样品是否被热解,如此反复尝试直到找到最适宜测试的激光强度.2.2.4Ne灯校准一般除用单晶硅对拉曼位移进行校准,另外使用内置的Ne灯也可以达到校准的效果. 一般在测试样品时与Ne灯同时使用,则所得到的拉曼谱图中同时包括样品与Ne灯的峰,由于Ne灯的拉曼峰位置已确定,因此可用于校正样品的峰位置.2.2.5测试参数设置在确定适宜样品的激光波长及显微镜倍数的前提下,为了提高信噪比,可以首先在不损伤样品的前提下尽量提高入射激光的强度,其次适当延长曝光时间(有效的提高散射信号强度),同时也可以增加循环(cycling)测试的次数(有效降低噪音的影响). 但需要注意曝光时间不宜过长,因为过长会导致检测器的饱和,例如当同时需要较强与较弱的拉曼散射峰时,较弱的散射峰由于信噪比较低而难以使用时,可以固定曝光时间并增加循环测试次数来降低最终谱图中噪音的Koenig J L.Spectroscopy of Polymers.Netherlands:Elsevier,1999.207-252.doi:10.1016/b978-044410031-3/50005-03Chalmers J,Griffiths P.Handbook of Vibrational Spectroscopy, 5 volumes set.New Jersey:John Wiley & Sons,2002.1-174Sasic S,Ozaki Y. Raman,Infrared, andNear-Infrared Chemical Imaging.New Jersey: John Wiley & Sons,2011.1-215Schrader B.Infrared and Raman Spectroscopy: Methods and Applications.New Jersey:John Wiley & Sons,2008.7-616
  • 赛默飞世尔科技傅立叶红外光谱有效表征生物质燃料计划中藻类生物分子
    麦迪逊,威斯康星州(2010年4月19日)——全球科学服务领域的领导者赛默飞世尔科技今天宣布,该公司开发的傅立叶红外(FT-IR)采样技术为生物体系(如藻类植物中油脂)的化学成分分析提供了经济有效的解决方案。藻类是成功实施生物质燃料计划所需大量生物质的潜在来源。   业内领先的Thermo Scientific 开发的用于药物高效筛选的自动采样的红外技术,也可有效用于藻类分析。该解决方案简单方便,通过将仪器、附件和软件相结合,显著增加了自动分析的生物样品数。根据分析目的和样品制备方法的不同,有衰减全反射(ATR)、透射、漫反射和显微红外光谱四种配置供不同行业选择。   作为不可再生燃料的替代燃料,藻类和其它水生物是转化为生物质燃料所需大量生物质的潜在来源。研究人员认为,实施生物质燃料计划,必须提高藻类的油脂产量。因此,急需一种能有效分析藻类化学成分的有效技术。FT-IR已广泛用于菌体、单细胞和组织等生物样品化学组成的分析。最近,有文献提及该技术还用于藻类生物质样品中蛋白质、糖类和油脂含量的分析。然而,为了增加可检测的样品数量并获得良好的重复性,样品制备是该分析技术的关键步骤。赛默飞世尔公司提供了全系列的FT-IR采样技术,并基于这些技术开发了一种快速筛选方法,用于测量生物质燃料领域中微生物样品的油脂含量。  Thermo Scientific红外采样技术可表征藻类化学组成。Thermo Scientific Nicolet iS10 FT-IR光谱仪,结合Smart iTR金刚石附件或Smart OMNI-透射附件,可得到干燥的藻类样品光谱。Thermo Scientific Nicolet 6700 FT-IR系统,配备自动多孔板阅读器和Thermo Scientific OMNIC Array Automation阵列自动化软件,以简单经济的方式获得多个样品的反射光谱。最后,利用Thermo Scientific Nicolet 6700和配置X,Y二维自动平台的Continuum™ 显微红外光谱仪,可获得可靠的显微红外透射数据。   关于Thermo Fisher Scientific(赛默飞世尔科技)   赛默飞世尔科技 (Thermo Fisher Scientific)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过100亿美元,拥有员工约3万5千人,在全球范围内服务超过35万家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于Thermo Scientific和Fisher Scientific这两个主要的品牌,帮助客户解决在分析化学领域所遇到的从常规测试到复杂研发的各种挑战。Thermo Scientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。Fisher Scientific为卫生保健、科学研究、安全和教育领域的客户提供一系列实验室装备、化学药品及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科学研究的飞速发展不断改进工艺技术,提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。更多信息,请浏览公司网站:www.thermofisher.com(英文) 或www.thermo.com.cn(中文)。
  • 六种表面分析技术与材料表征方法简介
    利用电子、光子、离子、原子、强电场、热能等与固体表面的相互作用,测量从表面散射或发射的电子、光子、离子、原子、分子的能谱、光谱、质谱、空间分布或衍射图像,得到表面成分、表面结构、表面电子态及表面物理化学过程等信息的各种技术,统称为先进材料表征方法。先进材料表征方法包括表面元素组成、化学态及其在表层的分布测定等。后者涉及元素在表面的横向和纵向(深度)分布。先进材料表征方法特点表面是固体的终端,表面向外一侧没有近邻原子,表面原子有部分化学键伸向空间,形成“悬空键”。因此表面具有与体相不同的较活跃的化学性质。表面指物体与真空或气体的界面。先进材料表征方法通常研究的是固体表面。表面有时指表面的单原子层,有时指上面的几个原子,有时指厚度达微米级的表面层。应用领域航空、汽车、材料、电子、化学、生物、地质学、医学、冶金、机械加工、半导体制造、陶瓷品等。X射线能谱分析(EDS)应用范围PCB、PCBA、FPC等。测试步骤将样品进行表面镀铂金后,放入扫描电子显微镜样品室中,使用15 kV的加速电压对测试位置进行放大观察,并用X射线能谱分析仪对样品进行元素定性半定量分析。样品要求非磁性或弱磁性,不易潮解且无挥发性的固态样品,小于8CM*8CM*2CM。典型图片PCB焊盘测试图片成分分析测试谱图聚焦离子束技术(FIB)聚焦离子束技术(Focused Ion beam,FIB)是利用电透镜将离子束聚焦成非常小尺寸的离子束轰击材料表面,实现材料的剥离、沉积、注入、切割和改性。随着纳米科技的发展,纳米尺度制造业发展迅速,而纳米加工就是纳米制造业的核心部分,纳米加工的代表性方法就是聚焦离子束。近年来发展起来的聚焦离子束技术(FIB)利用高强度聚焦离子束对材料进行纳米加工,配合扫描电镜(SEM)等高倍数电子显微镜实时观察,成为了纳米级分析、制造的主要方法。目前已广泛应用于半导体集成电路修改、离子注入、切割和故障分析等。聚焦离子束技术(FIB)可为客户解决的产品质量问题(1)在IC生产工艺中,发现微区电路蚀刻有错误,可利用FIB的切割,断开原来的电路,再使用定区域喷金,搭接到其他电路上,实现电路修改,最高精度可达5nm。(2)产品表面存在微纳米级缺陷,如异物、腐蚀、氧化等问题,需观察缺陷与基材的界面情况,利用FIB就可以准确定位切割,制备缺陷位置截面样品,再利用SEM观察界面情况。(3)微米级尺寸的样品,经过表面处理形成薄膜,需要观察薄膜的结构、与基材的结合程度,可利用FIB切割制样,再使用SEM观察。聚焦离子束技术(FIB)注意事项(1)样品大小5×5×1cm,当样品过大需切割取样。(2)样品需导电,不导电样品必须能喷金增加导电性。(3)切割深度必须小于50微米。应用实例(1)微米级缺陷样品截面制备(2)PCB电路断裂位置,利用离子成像观察铜箔金相。俄歇电子能谱分析(AES)俄歇电子能谱技术(Auger electron spectroscopy,简称AES),是一种表面科学和材料科学的分析技术,因检测由俄歇效应产生的俄歇电子信号进行分析而命名。这种效应系产生于受激发的原子的外层电子跳至低能阶所放出的能量被其他外层电子吸收而使后者逸出,这一连串事件称为俄歇效应,而逃脱出来的电子称为俄歇电子,通过检测俄歇电子的能量和数量来进行定性定量分析。AES应用于鉴定样品表面的化学性质及组成的分析,其特点在俄歇电子来极表面甚至单个原子层,仅带出表面的化学信息,具有分析区域小、分析深度浅和不破坏样品的特点,广泛应用于材料分析以及催化、吸附、腐蚀、磨损等方面的研究。俄歇电子能谱分析(AES)可为客户解决的产品质量问题(1)当产品表面存在微小的异物,而常规的成分测试方法无法准确对异物进行定性定量分析,可选择AES进行分析,AES能分析≥20nm直径的异物成分,且异物的厚度不受限制(能达到单个原子层厚度,0.5nm)。(2)当产品表面膜层太薄,无法使用常规测试进行厚度测量,可选择AES进行分析,利用AES的深度溅射功能测试≥3nm膜厚厚度。(3)当产品表面有多层薄膜,需测量各层膜厚及成分,利用D-SIMS(AES)能准确测定各层薄膜厚度及组成成分。注意事项(1)样品最大规格尺寸为1×1×0.5cm,当样品尺寸过大需切割取样。(2)取样的时候避免手和取样工具接触到需要测试的位置,取下样品后使用真空包装或其他能隔离外界环境的包装, 避免外来污染影响分析结果。(3)由于AES测试深度太浅,无法对样品喷金后再测试,所以绝缘的样品不能测试,只能测试导电性较好的样品。(4)AES元素分析范围Li-U,只能测试无机物质,不能测试有机物物质,检出限0.1%。应用实例样品信息:样品为客户端送检LED碎片,客户端反映LED碎片上Pad表面存在污染物,要求分析污染物的类型。失效样品确认:将LED碎片放在金相显微镜下观察,寻找被污染的Pad,通过观察,发现Pad表面较多小黑点。X射线光电子能谱分析(XPS)X射线光电子能谱技术X射线光电子能谱技术(X-ray photoelectron spectroscopy,简称XPS)是一种表面分析方法, 使用X射线去辐射样品,使原子或分子的内层电子或价电子受激发射出来,被光子激发出来的电子称为光电子,可以测量光电子的能量和数量,从而获得待测物组成。XPS主要应用是测定电子的结合能来鉴定样品表面的化学性质及组成的分析,其特点在光电子来自表面10nm以内,仅带出表面的化学信息,具有分析区域小、分析深度浅和不破坏样品的特点,广泛应用于金属、无机材料、催化剂、聚合物、涂层材料矿石等各种材料的研究,以及腐蚀、摩擦、润滑、粘接、催化、包覆、氧化等过程的研究。X射线光电子能谱分析(XPS)可为客户解决的产品质量问题(1)当产品表面存在微小的异物,而常规的成分测试方法无法准确对异物进行定性定量分析,可选择XPS进行分析,XPS能分析≥10μm直径的异物成分以及元素价态,从而确定异物的化学态,对失效机理研究提供准确的数据。(2)当产品表面膜层太薄,无法使用常规测试进行厚度测量,可选择XPS进行分析,利用XPS的深度溅射功能测试≥20nm膜厚厚度。(3)当产品表面有多层薄膜,需测量各层膜厚及成分,利用D-SIMS能准确测定各层薄膜厚度及组成成分。(4)当产品的表面存在同种元素多种价态的物质,常规测试方法不能区分元素各种价态所含的比例,可考虑XPS价态分析,分析出元素各种价态所含的比例。注意事项(1)样品最大规格尺寸为1×1×0.5cm,当样品尺寸过大需切割取样。(2)取样的时候避免手和取样工具接触到需要测试的位置,取下样品后使用真空包装或其他能隔离外界环境的包装, 避免外来污染影响分析结果。(3)XPS测试的样品可喷薄金(不大于1nm),可以测试弱导电性的样品,但绝缘的样品不能测试。(4)XPS元素分析范围Li-U,只能测试无机物质,不能测试有机物物质,检出限0.1%。应用实例样品信息:客户端发现PCB板上金片表面被污染,对污染区域进行分析,确定污染物类型。测试结果谱图动态二次离子质谱分析(D-SIMS)飞行时间二次离子质谱技术二次离子质谱技术(Dynamic Secondary Ion Mass Spectrometry,D-SIMS)是一种非常灵敏的表面分析技术,通过用一次离子激发样品表面,打出极其微量的二次离子,根据二次离子的质量来测定元素种类,具有极高分辨率和检出限的表面分析技术。D-SIMS可以提供表面,薄膜,界面以至于三维样品的元素结构信息,其特点在二次离子来自表面单个原子层(1nm以内),仅带出表面的化学信息,具有分析区域小、分析深度浅和检出限高的特点,广泛应用于物理,化学,微电子,生物,制药,空间分析等工业和研究方面。动态二次离子质谱分析(D-SIMS)可为客户解决的产品质量问题(1)当产品表面存在微小的异物,而常规的成分测试方法无法准确对异物进行定性定量分析,可选择D-SIMS进行分析,D-SIMS能分析≥10μm直径的异物成分。(2)当产品表面膜层太薄,无法使用常规测试进行膜厚测量,可选择D-SIMS进行分析,利用D-SIMS测量≥1nm的超薄膜厚。(3)当产品表面有多层薄膜,需测量各层膜厚及成分,利用D-SIMS能准确测定各层薄膜厚度及组成成分。(4)当膜层与基材截面出现分层等问题,但是未能观察到明显的异物痕迹,可使用D-SIMS分析表面超痕量物质成分,以确定截面是否存在外来污染,检出限高达ppb级别。(5)掺杂工艺中,掺杂元素的含量一般是在ppm-ppb之间,且深度可达几十微米,使用常规手段无法准确测试掺杂元素从表面到心部的浓度分布,利用D-SIMS可以完成这方面参数测试。动态二次离子质谱分析(D-SIMS)注意事项(1)样品最大规格尺寸为1×1×0.5cm,当样品尺寸过大需切割取样,样品表面必须平整。(2)取样的时候避免手和取样工具接触到需要测试的位置,取下样品后使用真空包装或其他能隔离外界环境的包装, 避免外来污染影响分析结果。(3)D-SIMS测试的样品不受导电性的限制,绝缘的样品也可以测试。(4)D-SIMS元素分析范围H-U,检出限ppb级别。应用实例样品信息:P92钢阳极氧化膜厚度分析。飞行时间二次离子质谱分析(TOF-SIMS)飞行时间二次离子质谱技术(Time of Flight Secondary Ion Mass Spectrometry,TOF-SIMS)是一种非常灵敏的表面分析技术,通过用一次离子激发样品表面,打出极其微量的二次离子,根据二次离子因不同的质量而飞行到探测器的时间不同来测定离子质量,具有极高分辨率的测量技术。可以广泛应用于物理,化学,微电子,生物,制药,空间分析等工业和研究方面。TOF-SIMS可以提供表面,薄膜,界面以至于三维样品的元素、分子等结构信息,其特点在二次离子来自表面单个原子层分子层(1nm以内),仅带出表面的化学信息,具有分析区域小、分析深度浅和不破坏样品的特点,广泛应用于物理,化学,微电子,生物,制药,空间分析等工业和研究方面。飞行时间二次离子质谱分析(TOF-SIMS)可为客户解决的产品质量问题(1)当产品表面存在微小的异物,而常规的成分测试方法无法准确对异物进行定性定量分析,可选择TOF-SIMS进行分析,TOF-SIMS能分析≥10μm直径的异物成分。(2)当产品表面膜层太薄,无法使用常规测试进行成分分析,可选择TOF-SIMS进行分析,利用TOF-SIMS可定性分析膜层的成分。(3)当产品表面出现异物,但是未能确定异物的种类,利用TOF-SIMS成分分析,不仅可以分析出异物所含元素,还可以分析出异物的分子式,包括有机物分子式。(4)当膜层与基材截面出现分层等问题,但是未能观察到明显的异物痕迹,可使用TOF-SIMS分析表面痕量物质成分,以确定截面是否存在外来污染,检出限高达ppm级别。飞行时间二次离子质谱分析(TOF-SIMS)注意事项(1)样品最大规格尺寸为1×1×0.5cm,当样品尺寸过大需切割取样。(2)取样的时候避免手和取样工具接触到需要测试的位置,取下样品后使用真空包装或其他能隔离外界环境的包装, 避免外来污染影响分析结果。(3)TOF-SIMS测试的样品不受导电性的限制,绝缘的样品也可以测试。(4)TOF-SIMS元素分析范围H-U,包含有机无机材料的元素及分子态,检出限ppm级别。应用实例样品信息:铜箔表面覆盖有机物钝化膜,达到保护铜箔目的,客户端需要分析分析苯并咪唑与铜表面结合方式。
  • 电池膨胀行为研究:圆柱电芯膨胀特性的表征方法
    圆柱电芯的膨胀力主要源于电池内部的化学反应和充放电过程中的物理变化。在充电过程中,正极上的活性物质释放电子并嵌入负极,导致正极体积减小,负极体积增大。同时,电解液在充电过程中发生相变及产气副反应,也会造成一定的体积变化。这些因素共同作用,使得圆柱电芯在充放电过程中也会产生膨胀力。随着充放电次数的增加,这种膨胀力逐渐累积,导致电芯的尺寸发生变化。这种尺寸变化不仅会影响电池的外观和使用寿命,还可能对电池的安全性产生影响。因此,准确表征圆柱电芯的膨胀力对于优化电池设计、提高电池性能和安全性具有重要意义。表征圆柱电芯膨胀行为的方法电池的膨胀行为分为尺寸上的膨胀量和力学上的膨胀力测量。目前,对于软包电池、方壳电池膨胀行为的测量表征,已有较多研究和相应的测试手段及设备,在此不再赘述。但对于圆柱型电池的膨胀行为研究相对较少,也没有较好的商业化膨胀力评估手段。目前在文献资料中,常见的圆柱电芯膨胀行为的表征手段主要有以下几种:1、估算法如图1和图2所示,有研究表明圆柱型电池的膨胀变化与电池的SOC和SOH状态具有一定的相关性。但该方法建立在圆柱型电池的膨胀在整个圆周上是均匀的。图 1 单次充放电过程中,圆柱型电池的可逆膨胀变化图 2 电池老化过程中,圆柱型电池的SOH变化与不可逆膨胀之间的关系直接测量法通过在圆柱电芯外部施加压力,通过贴附应变片测量应变,该方式计算复杂,无法直观体现膨胀力。2、影像分析法影像分析法是一种无损检测方法,如利用CT断层扫描、中子成像、X射线、超声波等影像技术观察电芯内部的形变情况,通过分析影像的变化来测算电芯尺寸变化。这种方法适用于多种类型的圆柱电芯,且对电芯无损伤。然而,影像分析法需要使用昂贵的专业设备,且测量精度易受到设备性能和操作人员经验的影响。3、薄膜压力法一般需解剖圆柱电池,在电芯内部嵌入薄膜压力传感器或压敏纸的方式,从而获得圆柱电芯在不同方位上的膨胀力分布情况。但薄膜压力传感器精度一般较低,成本高;而压敏纸分析,具有滞后性。该测试均为破坏性测试。表征圆柱电芯膨胀行为存在的问题有研究表明,圆柱型电池电池实际的膨胀是明显偏离预期的均匀膨胀,在周长上会形成膨胀和收缩的区域,这取决于圆柱型电池的卷芯卷绕方向。因此,使用体积变化来研究老化或预测SOC需要特别谨慎,因为膨胀会因测量位置而显著不同,测量结果可能因测量方法而有偏差。电弛膨胀测试解决方案电弛自主研发的电池膨胀测试系统,高度集成了温控、充放电、伺服控制、高精度传感器等模块,并提供企业级系统组网功能。该系统可对多种电池种类和电池形态的电池进行膨胀行为测试,包括碱金属离子电池(Li/Na/K)、多价离子电池(Zn/Ca/Mg/Al)、其他二次金属离子电池(金属-空气、金属-硫)、固态电池,以及单层极片、模型扣式电池(全电池、半电池、对称电池、扣电三电极)、软包电池、方壳电池、圆柱电池、电芯模组。同时,可为不同形态电池提供定制化夹具,开展手动加压、自动加压、恒压力、脉冲恒压、恒间距、压缩模量等不同测试模式的研究。本产品还可方便扩展与电池产气测试、内压测试、成分分析的定制集成。为锂电池材料研发、工艺优化、充放电策略的分析研究提供了良好的技术支持。参考文献Jessica Hemmerling, 2021. Non-Uniform Circumferential Expansion of Cylindrical Li-Ion Cells—The Potato Effect. Batteries, 7, 61.
  • 直播预告:日化行业中表界面常用的表征方法及应用实例分析
    活动背景表界面参数在日化行业中扮演着重要的作用,可以影响产品的触感、功能、效果、和稳定性。因此,在日化产品的研发和生产过程中,越来越多的厂商开始重视表界面参数并通过标准化的测量程序实现对产品性能的多维度评价。本月19日上午10:00克吕士将举办主题为《日化行业中表界面常用的表征方法及应用实例分析》的线上研讨会。这次我们非常荣幸能够邀请到纳爱斯集团有限公司日用化工领域高级工程师徐杰作为本期讲座的嘉宾,徐杰作为项目负责人主导完成了日化产品泡沫多维度评价方法研究工作,探索了动态泡沫分析仪的实际应用,并通过差异化的自动测试程序实现了泡沫性能的多维度评价,在本次讲座中也将从分析仪器、常用参数、应用实例等多个方面和大家进行分享。KRÜ SS的应用专家张晶晶也会解析表界面参数在日化行业(比化妆品中的乳化、分散、增溶、发泡和清洁等)的作用,并结合多个实例进行介绍和讲解。本次研讨会完全免费热诚期待您的参加!专家团队:讲座安排:报名方法2023年10月19日(周四)上午10:00开始本次讲座通过微吼进行,可通过手机APP或PC客户端参与直播。您可以通过以下链接或者关注我司公众微信号(克吕士科学仪器),在底部“互动”选项中选择“直播大厅”即可找到这期活动的直播入口,进行报名,期待您的参与!。
  • 高分子表征技术专题——热重分析技术及其在高分子表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题 高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意! 热重分析技术及其在高分子表征中的应用Thermogravimetric Analysis Technology and Its Application in Polymer Characterization作者:谢启源,陈丹丹 ,丁延伟*作者机构:中国科学技术大学,火灾科学国家重点实验室,合肥,230026 中国科学技术大学,合肥微尺度物质科学国家研究中心,合肥,230026  作者简介:  丁延伟,男,1975年生. 博士、中国科学技术大学合肥微尺度物质科学国家研究中心教授级高级工程师. 自2002年开始从事热分析与吸附技术的分析测试、实验方法研究等工作,现任中国化学会化学热力学与热分析专业委员会委员、全国教育装备标准化委员会化学分委会委员、中国分析测试协会青年学术委员会委员. 曾获中国分析测试协会科学技术奖(CAIA奖)二等奖,主持修订教育行业标准《热分析方法通则》(JY/T 0589.1~4-2020),以主要作者发表SCI论文30余篇,获授权专利7项. 编著《热分析基础》《热分析实验方案设计与曲线解析概论》.    摘要  热重分析技术(TGA)是在程序控制温度和设定气氛下表征材料受热过程中的质量随温度或时间变化的高精度研究工具,具有重复性好、灵敏度高和热过程控制精准等优点. 近年来,TGA技术在高分子材料领域得到了广泛应用,促进了高分子材料热稳定性、组成分析以及热分解机理等材料细观热响应特性的深入研究. 本文分别从热重分析基本原理、仪器校准、实验方案设计、实验操作、热重曲线综合解析以及各环节中易出现的不当操作、异常数据与解决方案等方面进行阐述,并给出了在高分子科学研究领域中的典型应用案例、未来发展趋势及机遇与挑战. 在实际的应用中,基于TGA与傅里叶红外光谱(FTIR)、示差扫描量热法(DSC)、气相色谱-质谱联用(GC/MS)等技术的联用分析,将有利于进一步揭示高分子材料在不同气氛和热激励等条件下的详细热响应信息,为性能优异的新型高层分子材料研发与设计、热解机理及燃烧蔓延动力学等领域提供支撑和指导.  AbstractThermogravimetric analysis technology (TGA) is an efficient research tool that characterizes the weight of materials with temperature or time under a program controlled temperature and a certain atmosphere. One of its advantages is that the TGA results can be well repeated with high sensitivity. In addition, its heating process is accurately and flexibly controlled according to real thermal environment of samples. In recent years, TGA is popularly used in the field of polymer materials, which promotes the detailed analyses on their thermal stability, composition analysis and thermal decomposition mechanismet al. This review will cover many aspects of TGA, including basic principles, calibration, scheme design, curve analysis, as well as those common errors during sample preparation and experiments, abnormal data figuring and the solution for them. Additionally, the typical application cases of TGA in polymer science, as well as their opportunity and challenges in future, are also presented. In the applications of TGA technology, more information about the thermal-response behavior of polymers under different atmosphere and heating conditions could be revealed by TGA coupled with FTIR, DSC, GC/MS technology. In this case, not only the weight information of sample during a specific heating condition, but also the endothermic and exothermic behaviors, released gas components at the same time can be analyzed together. They are helpful for new polymer design, thermal decomposition mechanism and flame spread models development.    关键词  热重分析技术  曲线解析  热稳定性  热解机理  案例分析  Keywords  Thermogravimetric analysis technology  Curve analysis  Thermal stability  Thermal decomposition mechanism  Case analysis   1热重分析技术简介  1.1热分析技术  作为现代仪器分析方法的一个重要分支,热分析技术在许多领域中得到了广泛应用[1~3]. 经历一百余年发展,热分析法与色谱法、光谱法、质谱法、波谱法等一起,构成了物质理化性能分析的最常用手段[4].  热分析技术是研究物质随温度变化而发生物理过程与化学反应的一种实验技术[4]. 该技术的主要理论基础包括:物质的平衡状态热力学、非平衡状态热力学、不可逆过程热力学和动力学等,针对微量样品,通过精确测定其宏观参数,如质量、热量、体积等随温度的变化关系,研究物质随温度变化而发生的物理和化学变化[4].  我国于2008年5月发布国家标准《GB/T 6425-2008热分析术语》[5],其中,对热分析技术的定义为:“在程序控制温度(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术.”  国际热分析与量热协会(International Confederation for ThermalAnalysis and Calorimetry,ICTAC)根据所测定的物理性质不同,将现有的热分析技术划分为9类17种[6].  1.2热重分析技术的定义  热重分析技术(thermogravimetry,TG)是指在程序控制温度和一定气氛下连续测量待测样品的质量与温度或时间变化关系的一种热分析技术,主要用于研究物质的分解、化合、脱水、吸附、脱附、升华、蒸发等伴有质量增减的热变化过程[4,5]. 基于TG法,可对物质进行定性分析、组分分析、热参数测定和动力学参数测定等,常用于新材料研发和质量控制领域. 在实际的材料分析中,TG法也常与其他分析方法联用,进行综合热分析,从而全面、准确地分析材料的各项热性质.  1.3热重分析的数学表达式  根据定义,样品在热重分析过程的质量随温度或时间的变化,可用下式表示:(1)  或(2)  其中,式(1)多用于等温(或包含等温)条件下测得TG实验曲线,而式(2)则多用于非等温条件下的TG实验曲线.  在实际表示中,为突出“测量”过程,常用重量(weight)来代替质量(mass).  1.4微商热重法简介  微商热重曲线(derivative thermogravimetric curve,DTG曲线)是TG曲线进行一次微商的结果. 因此,DTG曲线表征样品质量随温度或时间的变化速率,其峰值即为样品质量减小的最大速率. 对于线性升温加热条件下的DTG曲线,其纵坐标单位一般是%/℃,表示温度升高1 ℃时,样品的相对质量变化. 而对于等温实验,DTG曲线纵坐标单位一般是%/s.  微商热重法的数学表达式为:(3)  线性程序控制温度时,也可用下式表式(4)  式中,β为实验中所采用的加热或降温速率,单位℃/min.  如前所述,DTG曲线表征样品质量的变化速率,因此,为进一步分析样品质量变化的加速或减速特性,类似地,可对DTG曲线进行再次微商处理,得到二阶微商热重曲线,即DDTG曲线.目前大多数商品化仪器,DTG曲线可通过仪器自带的微商处理功能直接转换得到. 与TG曲线相比,DTG曲线给出的样品质量随温度的变化速度信息,常常更直接反映了样品失重特性. 图1给出了XLPE在10 ℃/min的加热速率下得到的TG曲线和DTG曲线,由图可见,随着温度的升高,XLPE在410~470 ℃温度区间急剧失重,交联聚乙烯在此温度区间迅速裂解,样品质量减少约95%,DTG曲线失重峰,对应于TG曲线的失重台阶,而由TG曲线,也可见样品受热失重后最终的残余质量.Fig. 1TG and DTG curves of XLPE with the heating rate of 10 ℃/min in air atmosphere.     1.5热重分析的优缺点  1.5.1优点  热重法针对微量样品进行实验,具有操作简便、可重复性强、精度高、响应灵敏快速等优点. 热重法可准确测量物质在不同受热和气氛条件下的质量变化特征. 例如:对于升华、汽化、吸附、解吸、吸收和气固反应等质量可能发生变化的物理和化学过程,都可使用热重法进行检测与分析. 此外,对于熔融、结晶和玻璃化转变等往往不形成质量变化的热过程,也可通过热重分析与其他热分析方法联用,给出所关注热行为所在温度区间的样品质量不变信息,从而支撑所针对热过程的热流分析.  由于热重法所测结果可重复性强且精度高,基于热失重数据的动力学参数计算与分析,也更具可靠性. 此外,热重法仅需微量样品. 因此,针对不同的样品牌号、老化样品的不同区域,都可取样进行细致分析,可深入研究各产品间的细微差异,例如:产品在使用一段时间后的材料分相行为等.  1.5.2缺点  在实际应用中,热重法也存在着一定的局限性,主要包括两个方面:样品质量变化信息表征其复杂热行为的单一局限性、微量样品检测结果与工程尺度样品实际热响应性能的一致性.  首先,对于复杂的材料受热响应性能,热重法主要针对样品在整个受热过程中所形成气相产物溢出而导致的质量减少特征,在不同温度区间或不同受热时刻的细致质量减少信息,是热重分析输出的关键数据. 由于大多物理和化学过程往往都伴随着质量的变化,因此,样品的质量变化信息能够很大程度上表征各温度/时间区间的反应强度,然而,若需进一步确定其中详细的反应机理等信息,单凭热重数据往往并不完备. 因此,可通过将热重技术与其他分析技术联用,综合分析材料的详细热响应行为.  其次,如前所述,针对微量样品,热重分析可实现其测量结果及其后续计算分析的精确性与可靠性等优点. 然而,也正因为所检测样品的微量特性,使其测量结果不一定与工程尺度样品实际热响应性能完全一致,甚至由于实际工程中的复杂传热传质耦合过程,使热重分析不宜简单、直接地进行应用. 因此,一方面,进行热重分析时,应首先清晰掌握材料的实际工程应用背景,科学系统地制定热重实验方案,并进行多工况数据的综合分析,从而确保热重分析数据与实际工程应用场景的吻合与一致 另一方面,在条件具备时,基于热重分析结果,应进行一定的放大尺度条件下的实验研究,综合不同尺度条件下的测量结果,给出材料真实热响应性能.  2热重分析仪及其工作原理  2.1工作原理  热重分析仪(thermogravimetric analyzer)是在程序控制温度和一定气氛下,测量试样的质量随温度或时间连续变化关系的仪器. 测量时,通常将装有试样的坩埚置于与质量测量装置相连的试样支持器中,在预先设定的程序控制温度和一定气氛下,进行实验测量与数据实时采集.  热重分析仪的质量测量方式主要有2种:变位法和零位法[4]. 变位法是根据天平横梁倾斜的程度与质量变化成比例的关系,用差动变压器等检测该倾斜度,并自动记录所得到的质量变化信息. 零位法是采用差动变压器法、光学法等技术测定天平梁的倾斜度,通过调整安装在天平系统和磁场中线圈的电流,使线圈转动抑制天平横梁的倾斜. 由于线圈转动所施加的力与质量变化成比例,该力与线圈中的电流成比例,通过测量电流的变化,即可得到质量变化曲线.  2.2仪器组成与结构形式  热重分析仪主要由仪器主机(程序温度控制系统、炉体、支持器组件、气氛控制系统、样品温度测量系统、质量测量系统等)、仪器辅助设备(自动进样器、压力控制装置、光照、冷却装置等)、仪器控制和数据采集及处理模块组成.图2给出了热重分析仪的结构组成示意图.Fig. 2Schematic of typical TG equipment with the sample in a heating furnace, whose temperature is controlled with a program.     根据试样与天平刀线之间相对位置的不同,可将热重分析仪分为3类:下皿式、上皿式和水平式,其结构框图分别如图3~图5所示.Fig. 3Schematic of TG equipment with the crucibleat lower position of the vertical heating furnace.   Fig. 4Schematic of TG equipment with the crucible at higher position of the vertical heating furnace.   Fig. 5Schematic of TG equipment with the horizontal.     由图3~图5可见,仪器质量检测单元的天平与常规分析天平不同. 该类天平横梁的一端或两端置于气氛控制的加热炉中,可以连续记录试样质量随温度或时间的变化. 温度变化通过加热炉进行程序控制,试样周围温度通常用热电偶实时测量. 热天平和热电偶所测数据,由仪器内置软件进行记录与处理线.  2.3基于热重分析的联用技术简介  如前所述,热重分析仪自身存在一定局限性,通常可将其与其他分析技术联用,从而对样品热响应行为进行全面分析. 常用联用技术如下所述[4].  (1)同时联用技术. 是指在程序控温和一定气氛下,对一个试样同时采用2种或多种热分析技术. 主要包括:热重-示差扫描量热联用(TG-DSC)和热重-差热联用(TG-DTA),它们通常统称为同步热分析技术,简称STA.  (2)串接联用技术. 是指在程序控温和一定气氛下,对一个试样采用2种或多种热分析技术,后一种分析仪器与前一种分析仪器进行串接. 常用可串接联用技术包括:红外光谱技术(IR)、质谱技术(MS)、气相色谱技术(GC)等. 此外,对于串接联用技术,可采用2种联用模式,连续串接和间歇串接模式. 前者模式下,各联用技术均连续采样分析 而后种模式下,最后一级串接仪器进行间歇式采样与分析.  2.4仪器校准与状态评价  2.4.1仪器的校准  为了确保仪器工作正常和数据准确,在热重分析仪正式投入使用之前和使用期间,需分别对仪器的温度和质量测量器件进行校正. 由于不同热重分析仪结构类型的差异,其校准方法存在着一定差别.  2.4.2温度校正  温度校正(temperature correction)是用已知转变温度的标准物质确定仪器的测量值(Tm)和真实值(Ttr)之间关系的操作过程. 通过温度校正,可得到以下关系式:(5)  其中,ΔTcorr为温度校正值.  通过温度校正,可以消除仪器的温度测量值与真实值之间的差别. 例如:当使用熔融温度为156.6 ℃的金属In进行温度校正时,若所测熔融温度为154.1 ℃,则(6)  因此,在温度校正时,测量值应增加2.5 ℃.  进行仪器温度校正后,通常,还应在相同的实验条件下,使用标准物质进行重复实验,验证测量值与真实值之间的偏离程度.  在实际应用中,当温度范围较宽时,通常需要使用具有不同特征温度的系列标准物质,进行多点温度校正. 在实际校正时,可在仪器的校正软件中分别输入相应测量值,由仪器软件生成相应的校正曲线.  对于大多商品化热重分析仪,常用的温度校正方法主要包括以下几种:(15)  取2个实验点T1和T2,则有:(16)  (c) Achar-Brindley-Sharp公式[36],如式(17)所示(17)  采用不同f(α)函数,由以上线性方程的斜率获得E,由截距求得A.
  • 2019年全国表面分析方法及新能源与新材料表征研讨会圆满召开
    5月29日-6月1日, 由云南大学和赛默飞世尔科技(中国)有限公司共同主办的“2019年全国表面分析方法及新能源与新材料表征研讨会“在云南昆明圆满召开。来自国内外的120多名专家学者齐聚昆明,对XPS、Raman、电镜等在表面分析技术等交叉领域的最新研究进展及应用进行了交流和讨论。随着我国材料科学、化学化工、半导体及薄膜、能源、微电子、信息产业、生物医药及环境领域等高新技术的迅猛发展,表面分析技术在过去的几十年中有了长足进步,在科学研究领域的作用日益增长。“2019年全国表面分析方法及新能源与新材料表征研讨会”正是在这一背景下召开的一个多学科交叉的学术交流会议。大会伊始,来自云南大学的吕正红院士为研讨会做了开幕致辞。吕院士首先向参加本次研讨会的与会者表示欢迎和感谢,然后介绍了云南三所高校的历史发展,之后就XPS和UPS在OLED科研领域的应用作了详细的介绍。云南大学吕正红院士会议现场气氛热烈,互动频繁。台上,各位专家分享自己的工作内容及成果。台下,每一位与会者都听得津津有味,并做了认真记录。提问环节,台上台下就表面分析的研究进行了交流和探讨。据赛默飞表面分析及常量元素分析中国区商务经理范春明先生介绍,赛默飞从2014年起坚持每年举行全国表面分析技术研讨会,为仪器分析方法研究人员与科研人员搭建良好的交流平台。仪器分析方法研究人员在此开拓了眼界,为未来的科研工作埋下伏笔。科研人员借此可以了解更多关于表征方法的新进展,为未来在科研工作中获得更好的研究成果打下基础。本次会议聚焦的是新能源与新材料表征,明年将会聚焦其他热门领域。此次会议的举办也是赛默飞作为一家大型企业承担社会责任、促进相关技术交流的体现。会议合影
  • 材料中缺陷/氧空位的常用表征方法
    一、X射线光电子能谱(XPS)缺陷会导致材料结构中配位数低的原子,为氧物种化学吸附提供配位的不饱和位点。X射线光电子能谱(XPS)是最广泛使用的表面分析方法之一,可以提供材料表面的化学状态和有价值的定量信息。应用于大多数的固体材料。它可以从表面获得约10 nm深度的信息。材料中的缺陷会改变键合能量,这可以从移位的峰或新出现的峰中观察到。因此,XPS可以作为一种有效的方法来检测材料中的氧空位与缺陷位点。经查阅文献可知,通过低频超声波制备含有氧空位的BiOI,并发现富含缺陷的BiOI(R-BiOI)纳米片表现出优异的光催化性能。富有缺陷的BiOI的O 1s XPS光谱证实了氧空位的存在,如图5所示。529.5 eV的峰可以说是晶格氧,而531.5 eV的峰则是由氧空位的化学吸附产生的。这也表明,氧空位被吸附的氧物种所稳定,这是富缺陷氧化物的一个典型特征。这种现象也可以在其他缺陷金属氧化物(O 1s XPS)中看到,如W18O49、CeO2-X、TiO2-X和缺陷的ZnO。图1. 高分辨率的O 1s XPS光谱二、拉曼光谱分析拉曼光谱是研究分子结构的一种分析工具,可以得到分子振动和旋转的信息。不同的化学键有不同的振动模式,决定了它们之间能量水平的变化。分子振动水平的变化引起了拉曼位移。因此,拉曼位移与晶格振动模式有一定的相关性,它可以被用来研究材料的结构特征。材料中的缺陷,特别是金属氧化物会影响振动模式,导致拉曼位移或出现新的峰值。研究表明,拉曼光谱揭示了在掺杂了Eu的 CeO2纳米片的结构中存在氧空位。与CeO2纳米片相比,掺杂了Eu的CeO2纳米片在600 cm -1处出现了一个峰值,这表明由于Ce 3p和Eu 3p的存在,产生了氧空位。此外,也有研究表明通过掺入IO3,设计了有缺陷的氧碘化铋。通过拉曼光谱显示在98cm -1处出现了一个新的峰值,它与Bi振动模式有关,这表明由于氧空位的存在,Bi的价态发生了变化。图2. CeO2和有缺陷的CeO2纳米片的拉曼光谱。三、扫描透射电子显微镜(STEM)STEM已被用于表征纳米材料的结构,它直接对原子结构进行成像。通过STEM可以观察到晶体结构中的原子序数和每个原子的排列方式,使其在科学研究领域的广泛应用上发挥了重要作用,如表面科学、材料科学、生命科学。然而,这种技术只能观察材料表面的局部区域。对于研究材料的整体缺陷来说,它是非常有限的,并且本身对样品要求较高。2000年,研究人员通过扫描隧道显微镜发现,表面氧空位可以作为反应位点,在这里可以吸收一氧化碳并转化为二氧化碳。后来,Samuel S. Mao等人用STEM研究了RuO2的原子尺度结构,发现了材料表面的缺陷(图7)。图3. 被CO覆盖的RuO2(110)表面的STM图像四、密度函数理论(DFT)计算密度函数理论(DFT)是研究材料电子结构的计算方法。它是通过量子力学模型来研究原子、分子和电子密度。因此,DFT是用于物理学、计算化学和材料的通用方法。Zhao等人利用DFT计算揭示了Vo-MnO2的结构模型,与非缺陷MnO2相比,Vo-MnO2的总态密度和部分态密度都接近费米水平,表明材料中存在氧空位。计算结果与实验结果一致,说明DFT可以用来辅助识别氧空位的存在。尽管DFT计算可以提出材料的电子结构,但它只能作为一种辅助手段。并且,结合实验和计算结果可以提供更有效的数据和证据。但是,使用DFT来描述以下情况仍有困难:分子间的相互作用、过渡状态、激发态等。过渡状态,电荷转移的激发,以及具有铁磁性的材料。五、其他方法由于OV的特殊性质,许多其他方法也可以用来进一步确定OV的存在,如热重分析(TG)。这种方法提供了关于物理现象的信息,包括吸收和分解。氧空位可以被氧气重新填充,特别是在高温下,这表明样品的质量会发生变化。这种细微的质量变化可以在TG曲线中显示出来。例如,大块的Bi2MoO6样品表现出急剧的重量损失,而超薄的Bi2MoO6纳米片在氧气环境下随着温度的升高而缓慢地失去重量。这是由于超薄Bi2MoO6纳米片中的氧空位与氧气反应,缓解了其下降的程度。此外,温度程序还原(TPR)也被用来描述固体材料的表面特性。与无缺陷的材料相比,有缺陷的材料明显增强了对表面晶格氧物种的吸附。参考文献:[1] Ye K , Li K , Lu Y , et al. An overview of advanced methods for the characterization of oxygen vacancies in materials[J]. TrAC Trends in Analytical Chemistry, 2019, 116.
  • 生态中心发展一种纳米材料尺寸表征新方法
    中国科学院生态环境研究中心环境化学与生态毒理学国家重点实验室中科院院士江桂斌研究组近日发展了一种复杂介质中纳米材料尺寸鉴定与表征的新方法,通过将毛细管电泳与电感耦合等离子体质谱在线联用(CE-ICP-MS),可在单次检测中完成复杂介质中纳米材料的种类鉴定、尺寸分布表征和相关离子检测,结果比常规方法更为简便和准确。相关论文日前发表在化学期刊《德国应用化学》(Angew. Chem. Int. Ed., doi: 10.1002/anie.201408927)上,并被选为VIP paper(Very Important Paper)。   论文发表后,ChemistryViews 杂志以Getting the Measure of Nanoparticles 为题配发评论文章,认为这一工作为鉴定和表征混合纳米粒子提供了一种准确的新方法,可广泛用于纳米科学研究的相关领域。   目前通用的纳米材料的尺寸鉴定与表征方法主要依赖于透射电镜和光散射两种方法。毛细管电泳与等离子体质谱联用方法无须样品制备,可非常方便地用于纳米材料商品和医用品的质量控制,实现环境水样中纳米材料的快速筛查和尺寸表征。    CE-ICP-MS 表征纳米颗粒示意图
  • 邀请函 | 颗粒表征方法研讨会(西安站)第一轮通知
    尊敬的老师:Microtrac MRB将联合旗下麦奇克激光粒度粒形分析仪,拜尔比表面及孔隙度分析仪和化学吸附仪,麦奇克莱驰多功能粒度粒形分析仪,首次在中国西安举办“颗粒表征方法的技术研讨会”。大昌华嘉公司与弗尔德仪器联合举办“颗粒表征方法研讨会”将于 2021 年5月 19 日 在西安举行,届时将由应用专家与大家共同探讨颗粒表征分析技术及应用。 Microtrac MRB:作为一个颗粒表征解决方案的供应商,提供三条产品线,在三大洲拥有研发和技术中心。散射光分折: Microtrac MRB作为粒度测量的通用方法—静态激光衍射法的领导者,还提供的动态光散射纳米粒度仪,用于纳米颗粒的表征。该产品线的开发和生产地点位于美国的宾夕法尼亚州。图像分析: Microtrac MRB基于动态图像分析技术,为颗粒大小和形态的测定提供了高质量的CAMSIZER系列和PartAn系列测量系统。这些图像分析仪的开发和生产地点位于德国的哈恩。比表面和孔径测量: Microtrac MRB的另外一条产品线采用气体吸附法为粉体样品的比表面值,BET值和孔径测量提供了吸附系列的分析仪器。开发和生产以及装配地点位于日本大阪的表面分析能力中心。日程:5月19日09:00-09:15 欢迎词09:15-10:20 颗粒的大小和形态表征方法介绍以及应用案例分享 10:20-10:40 茶歇10:40-11:45 从微米级增材粉体到毫米级大颗粒-高速多功能动态图像法粒度仪介绍及应用分析11:45-12:00 轮抽奖活动12:00-13:00 午餐13:00-14:30 吸附技术介绍以及应用案例分享14:30-15:10 仪器演示15:10-15:30 第二轮抽奖活动15:30-16:30 问题讨论 备注:请您收到通知后在2021年5月10日之前将报名表回执回传 ,以便安排会场、用餐等事宜。
  • 【热点应用】高级多检测器SEC表征腺相关病毒载体的方法
    #本文由马尔文帕纳科应用专家冯慧庆供稿# 基因治疗是生物制药行业中一个快速增长的领域,通过基因治疗可实现疾病的治疗或预防。其中,重组腺相关病毒(rAAV)是目前基因治疗领域研究较多的一类病毒载体。腺相关病毒(adeno-associated virus, AAV)是微小病毒科(Parvoviridae)家族的成员之一,一般,研究中采用的重组腺相关病毒载体(Recombination adeno-associated virus, rAAV)是在非致病的野生型AAV基础上改造而成的基因载体,由于其种类多样、免疫原性极低、安全性高、宿主细胞范围广、扩散能力强、体内表达基因时间长等,rAAV被视为最有前途的基因研究和基因治疗载体之一。目前,rAAV的准确定量分析和表征的难度是阻碍基因治疗快速发展的关键因素。我们常常需要对rAAV进行综合全面表征,比如衣壳数量、实心率、颗粒尺寸、聚集体比例等。传统情况,rAAV滴度和病毒载量采用ELISA、ddPCR、AUC和EM等技术进行测量。但这些方法通常费时费力,而且精确度不高。本文通过GPC/SEC和多角度动态光散射(MADLS)两种分析技术分析rAAV5样品,展示了快速、准确和可靠地定量测量AAV的病毒滴度(AAV Titer)和实心率(% full AAV)的方法。 01仪器参数OMNISEC GPC/SEC多检测器系统非常适合于生物医药行业,可用于全面表征rAAV样品。OMNISEC包含一个示差折光检测器(RI),紫外线全波长阵列检测器(UV-Vis 190-900 nm)和光散射检测器,仅需一次进样,可精确测量绝对分子量、聚集体比例、病毒滴度和实心率。与传统HPLC不同,测量过程不依赖柱保留体积,也不需要一系列标样进行色谱柱校正。图1显示了使用OMNISEC测量的CQA关键质量参数。02检测方法我们采用Empty和Full rAAV5两个样品作为分析案例。Full rAAV5 载有已知分子量为785 kg/mol的PFB-GFP ssDNA。经qPCR和ELISA测量方式可知,该样本的病毒滴度为2.5x1013。采用色谱柱P4000和P3000串联,对rAAV样品的进行色谱分离。由OMNISEC软件采集分析测试结果,其中硬件系统包含OMNISEC RESOLVE(包含泵、自动进样器和柱温箱)和OMNISEC REVEAL(包含示差、UV/PDA和直角90°/小角7°光散射检测器)。样品经过分离洗脱后,使用共聚物分析方法确定样品两种不同组分的浓度和分子量。计算方法如下:其中,ConcCapsid是衣壳浓度(mg/mL),NA是阿伏伽德罗数,Mwcapsid是衣壳的分子量(g/mol),ConcDNA是DNA浓度(mg/mL),MwSeqDNA是来自序列的ssDNA的分子量。因此,通过计算出的颗粒浓度,可以很容易地得出样品实心率的百分比。 03检测结果案例一:图2显示了Empty rAAV5的三检测色谱图。RI信号由红色曲线表示,260 nm紫外信号由紫色曲线表示,直角光散射(RALS)信号由绿色曲线表示。样品包含四个部分:单体峰保留体积(RV)在12.5ml,碎片在16ml ,二聚体在10.5ml ,聚集体在8.5ml 。使用共聚物分析方法,可以得到表1结果。单体的分子量为3.84×106g/mol。衣壳的理论分子量为3.8×106g/mol,证实分析结果与预期相符。MW/Mn为分子量分布,描述了样品的分散性,单体和二聚体的值接近1,而聚集体和片段均显着高于1,表明在同一峰内有多个不同分子量的组分。Fraction of Sample表示样品组分百分含量,单体所占百分比为84.7%。Fraction of Protein显示了样品中衣壳的百分比,单体包含99.8%的衣壳。这证实了样本确实是Empty rAAV5。最后Empty rAAV5样品总滴度为5.91x1013Vp/ml。 案例二:第二个样品Full rAAV5的三检测器色谱图如图3所示。图中显示了与Empty rAAV5截然不同的色谱峰。分析色谱图可以看出,只包含两个不同的组分,其中单体峰,大概12.5ml RV处,包含Full 和Empty rAAV5的混合物,而聚集体出现在8ml RV处。测试结果见表2。对于主体的单体峰,计算出其混合物分子量为4.49×106g/mol,其中86%为衣壳。rAAV5的蛋白质组分的分子量为3.89×106g/mol,这与表1中Empty rAAV5 的数据一致。单体是总体的93.2%,样本的总滴度为7.48x1013VP/ml。其中单体包含78% Full rAAV5,22% Empty rAAV5。需要注意的是,这种分析方法假设样品要么是Full ,要么是Empty ,忽略部分装载或过度装载情况。Zetasizer Ultra纳米粒度及电位仪可以使用MADLS方式快速确定病毒滴度。从OMNISEC获得的数据与Zetasizer Ultra的粒子滴度进行了比较,两种技术之间有很好的相关性,见图4。另外,本文将Full rAAV5和Empty rAAV5以确定比例混合,来对Full rAAV5样品进行分析。表3显示了每个样品的预期值和实际值Full rAAV百分比。图5显示了期望值和实际值之间有很强的相关性,证实了OMNISEC确定样品实心率结果的可靠性。为了进一步评估OMNISEC对rAAV样品准确表征能力,我们进行了rAAV5样品的热应力稳定性研究,同时,基于ZS Ultra对聚集体的极高灵敏度,我们利用了ZS Ultra表征rAAV5聚集体的微小变化。测试条件是将rAAV5样品置于25oC到80oC之间进行测试。在不断加热过程中,在每个温度下测量rAAV5样品的粒径。在25oC和35oC之间,没有观察到粒径的变化。从35oC开始,可以观察到粒径开始增大,这表明样品开始发生变化(图6A)。30oC和45oC下的数据比较清楚地显示了这些样品之间的大小差异(图6B)。我们选择45oC条件,对OMNISEC进行进一步稳定性研究。将rAAV5样品在稳定在45oC,分别在2min 、5min、10min和15min后,取样品到OMNISEC上测试。图7色谱叠加图显示样品发生了明显的变化,聚集体百分含量增加,单体浓度含量降低。表4显示MW在此潜伏期内保持稳定,单体峰中的AAV百分比也保持稳定。结论:在这项研究中,我们展示了OMNISEC和Zetasizer Ultra在综合分析表征rAAV5样品的能力,以及将两者联合使用的应用价值。 OMNISEC多检测SEC系统将示差折光检测器、紫外全波长检测器、光散射检测器集成一体化设计,具有更高的灵敏度和准确度,通过一次进样分析,可提供各种血清型AAV样品的绝对分子量、衣壳大小、滴度、实心率、聚集体、片段和样品稳定性等关键质量属性。虽然这些参数中很多都可以使用传统的生物化学方法来确定,但OMNISEC提供了更为简单、可靠的方法,正逐渐成为一种表征分析AAV通用的技术工具。
  • 中国计量科学研究院李红梅团队:肝素类药物结构表征新方法建立
    p style=" text-indent: 2em " 中国计量科学研究院李红梅团队近期在Carbohydrate Polymers发表系列文章,阐述了团队近3年来针对肝素类药物结构表征新方法开发取得的研究进展(Wang, Zhang et al. 2018, Zhang, Liu et al. 2019, Zhang, Xie et al. 2020)。 /p p style=" text-indent: 2em margin-bottom: 10px " 肝素类药物是一种目前临床上应用最广泛的多糖类抗凝血药物,其构成组分极为复杂,分子量分布范围广,其中各组分的精细结构及含量决定了其药物活性。亚硝酸降解是针对肝素类药物进行结构分析的重要手段。降解得到的寡糖片段保留了肝素类药物的差向异构化构象,而差向异构化构象与药物活性密切相关。然而由于亚硝酸降解产物结构的复杂性,针对该类寡糖结构一直缺乏完善的表征方法。李红梅团队成功利用超高效亲水/弱阴离子交换色谱(UPLC-HILIC/WAX-MS)与高分辨串联质谱联用的分析方法,形成了一套完整的、针对亚硝酸降解产物的分析体系(图1)。另一方面,团队还建立了基于离线强阴离子交换-质谱(offline-SAX-MS)序列分析的寡糖链结构表征方法。以上方法适用于所有肝素类似物的结构表征,可以用来分析人工合成的、结构多样的硫酸乙酰肝素(HS),探究结构-功能的对应关系;完善肝素类药物结构表征方法,优化产品工艺,提升药物的安全性和有效性。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 620px height: 419px " src=" https://img1.17img.cn/17img/images/202010/uepic/a67b8516-6919-461b-b256-81d7f99d1a02.jpg" title=" 2.png" alt=" 2.png" width=" 620" height=" 419" / /p p style=" text-align: center " span style=" font-size: 14px color: rgb(89, 89, 89) " strong 图1:亚硝酸降解四糖的UHPLC-MS表征 /strong /span /p p style=" text-indent: 0em margin-top: 10px " Wang, Z., T. Zhang, S. Xie, X. Liu, H. Li, R. J. Linhardt and L. Chi (2018). & quot Sequencing the oligosaccharide pool in the low molecular weight heparin dalteparin with offline HPLC and ESI–MS/MS.& quot Carbohydrate Polymers 183(Supplement C): 81-90. /p p style=" text-indent: 0em " Zhang, T., X. Liu, H. Li, Z. Wang, L. Chi, J. P. Li and T. Tan (2019). & quot Characterization of epimerization and composition of heparin and dalteparin using a UHPLC-ESI-MS/MS method.& quot Carbohydr Polym 203: 87-94. /p p style=" text-indent: 0em " Zhang, T., S. Xie, Z. Wang, R. Zhang, Q. Sun, X. Liu, L. Chi, J. P. Li, H. Li and T. Tan (2020). & quot Oligosaccharides mapping of nitrous acid degraded heparin through UHPLC-HILIC/WAX-MS.& quot Carbohydr Polym 231: 115695. /p p style=" text-indent: 2em margin-top: 10px " strong span style=" color: rgb(38, 38, 38) " 学者简介: /span /strong span style=" color: rgb(38, 38, 38) " 李红梅:研究员,中国计量科学研究院化学所所长。享受国务院政府特殊津贴,全国“三· 八”红旗手荣誉称号获得者。 /span /p
  • 新标准图文解析-增材制造金属粉末性能表征方法
    本文由马尔文帕纳科应用专家张瑞玲女士供稿 自2021年6月1号起,GB/T 39251-2020《增材制造 金属粉末性能表征方法》等14项推荐国家标准开始实施!该标准主要规范了金属粉末性能的表征方法,检测项目主要包括:外观质量、化学成分、粒度及粒度分布、颗粒粒形、流动性、密度、夹杂物及空心粉。 马尔文帕纳科作为材料表征领域的专家,其先进的分析检测技术为增材制造行业提供粒度、粒度分布、颗粒形貌等贯标解决方案。涉及技术及仪器包含:ü 激光衍射法:Mastersizer3000超高速智能激光粒度仪ü 动态图像法:Hydro Insight 智能颗粒图像分析仪ü 静态图像法(显微镜法):Morphologi-4 全自动粒度粒形分析仪 一、粒度及粒度分布检测的必要性 为什么增材材料要对粒度及粒形分布进行检测呢?这是因为其工艺性质决定的。增材制造是在金属粉末层熔融过程中,先使金属粉末层分布于制造平台上,然后使用激光或电子束选择性地熔化或熔融粉末。熔化后,平台将被降低,并且过程将持续重复,直到制造过程完成。未熔融粉末将被去除,并根据其状态重复使用或回收。 粉末层增材制造工艺的效率和成品组件的质量在很大程度上取决于粉末的流动性和堆积密度。粒度会直接影响这些特性,是该工艺的关键技术指标,例如,对于选择性激光熔融工艺(SLM),最佳粉末粒度在 15-45 μm;而对于电子束熔融工艺(EBM),最佳粉末颗粒则应在 45-106 μm(对于 EBM)范围内。图1 层叠增材制造工艺的粉末床工艺图图1展示了SLM工艺中金属粉末床如何形成和扫描激光金属形成2D形貌。持续不断的新的粉末床为最终的3D金属部件提供原材料。金属部件的结构一致性和完成件的表面平整度与粉末的化学特性和堆积密度息息相关。 粉末的堆积密度是由颗粒大小和形状控制的。如图2,粉末中大颗粒过多降低填料的密度,而小颗粒过多则降低填料的流动性。只有当大颗粒和小颗粒比例最优时,填充密度最大,大颗粒中的小空隙被小颗粒填满,流动性和堆积密度达到最佳值。 图2 堆积密度和颗粒大小的关系 为了保证厚度的均一,通常会选择较窄的粒径分布。颗粒的填充和流通性对于金属粉末3D打印技术非常重要,这也是我们为什么要优化粒度及其分布,以实现所需的大颗粒和小颗粒的比例,这点非常重要。 堆积密度会影响熔融池的连续性,较低的堆积密度会导致熔融不连续,完成件表面粗糙,导致结果的一致性降低。图3 堆积密度影响的熔融池分析 如图3所示,粉末床在于激光接触时的熔融池模拟图像,熔融池的温度与粉末的组分和由堆积密度控制的熔融池的连续性直接相关,如果堆积密度高,就会形成一个连续的熔融池,生产出表面光滑、结构稳定的完成件。 二、新国标中的粒度及粒度分布的相关指标 2021年6月1日开始实施的系列标准中对于各种金属粉末的粒度及粒度分布,做了具体的推荐要求,涉及金属粉末粒度分析的标准如下所示:ü GB/T 38970-2020《增材制造用钼及钼合金》ü GB/T 38971-2020《增材制造用球形钴铬合金粉》ü GB/T 38972-2020《增材制造用硼化钛颗粒增强铝合金粉》ü GB/T 38974-2020《增材制造用铌及铌合金粉》ü GB/T 38975-2020《增材制造用钽及钽合金粉》 三、金属粉末粒度分布测试技术:激光衍射法 关于粒度及粒度分布,在6月1日施行的GB/T39251-2020 等6项国家标准中,推荐是使用激光衍射法,具体标准参考 GB/T 19077。这是因为激光衍射法且具备样品用量少、制备简单、测量速度快、重现性好等优点,除此之外,激光衍射发广泛适用于所有增材制造用金属粉末的粒度分布检测,该技术测试覆盖范围宽(马尔文帕纳科激光粒度仪测量范围达到0.01 μm ~3500 μm,完全覆盖增材制造行业金属粉末的粒径范围)。图4 激光衍射测量原理图 激光衍射测量是一种非常常用的测试粒径大小及分布的方法----特别是面对较小的粒度范围时。 在激光衍射测量中,激光束穿过分散的颗粒样品,测试散射光强度的角度变化。因为较大的颗粒有较小的角度和较大的散射光强,而较小的颗粒则有较大的角度和较小的散射光强。激光衍射分析仪运用米氏理论,根据所测量的散射光的角度依赖性来计算样品颗粒的粒度分布。 马尔文帕纳科粒度及粒度分布解决方案马尔文帕纳科 Mastersizer 3000 超高速智能激光粒度仪高度自动化,可实现按钮操作,并且只需很少的手动输入即可提供高产量分析,并且有非常广泛的动态范围0.01 至~3500 µm ,可以精确测量金属粉末的粒径分布。并且还可以很容易的在干法和湿法之间切换,测试金属粉末湿分散和干分散的粒径大小。图5 Mastersizer 3000 超高速智能激光粒度仪图6 钛合金粉末湿法和干法测量叠加图 图 6显示了在 Mastersizer 3000 上使用湿法和干法分散制备的金属粉末的测量结果,可以看到湿法和干法结果一致。其实,如果优化了分散程序且采样具有可比性,干湿法应具有等效结果。从趋势表也可以看出,干法和湿法结果一致性非常好。从GB/T 39251-2020 《增材制造 金属粉末性能表征方法》中,关于金属粉末粒度要求来看,这应该属于I 类金属粉末材料,适用于粉末床熔融(选区激光熔融)增材制造 。四、金属粉末颗粒形貌测试技术:动态图像法/ 静态图像法 目前测试颗粒大小和形貌的技术主要有三种:ü SEM技术:分辨率高,但统计颗粒数目不多,可作为定性技术;ü 动态图像技术:可以提供很多的颗粒数量,但图像质量较差,对于小颗粒的形貌还有区分颗粒的表面结构,较为困难;ü 静态图像技术:可以兼顾分辨率和颗粒数量,可以定性,也可以定量。 国标中对于各种金属粉末的颗粒形状,也就是粉末的微观形貌、球形度的表征方法推荐使用动态颗粒图像分析法和显微镜法(静态图像法)。粉末球形度以一定数量粉末颗粒投影界面的圆形度检测值的平均值进行近似表征。 马尔文帕纳科动态颗粒图像分析解决方案最新推出的 Hydro Insight 动态颗粒图像分析仪采用高速高分辨率摄像机实时采集动态颗粒图像,搭配 Mastersizer 3000 超高速智能激光粒度仪可以提供颗粒的分散和单个颗粒实时的图像,并且可以定量测试样品的分布数据,还有32个尺寸和形状的相关指标,如圆度、椭圆图、不透明度、平均直径、长宽比,可以帮助了解颗粒的大小和形状是如何影响了材料的性能。方便您更好地了解您的材料,简化故障排除,并助力快速开发新方法。图7 Hydro Insight 动态图像分析仪(左)金属粉末样品中少量的大颗粒或者小颗粒用激光衍射的方法很难捕捉到信号,Hydro Insight 动态颗粒形貌分析仪可以对单个颗粒进行成像,并提供数量分布,并且可以看到颗粒的形貌。帮助我们看到这些大颗粒是否真实存在,以及它的外观,是高度球形的颗粒,卫星颗粒还是高度不规则的颗粒。图8 Hydro Insight 呈现的大颗粒形貌图9 动态图像法颗粒分布累积曲线马尔文帕纳科静态图像分析解决方案马尔文帕纳科还提供静态图像法高效颗粒形貌测量工具——Morphologi 4 全自动粒度粒形分析仪,用于测量从0.5 微米到数毫米的颗粒粒度和形状。使用伸长率、圆度、凸度等参数报告形状信息,以量化颗粒不规则性和表面粗糙度。与手动显微镜和电子显微镜相比,自动成像更高效,可提供数万颗粒的统计数据。图10 Morphologi 4-ID 全自动粒度粒形分析仪 Morphologi 4 全自动粒度粒形分析仪粒度测量范围从0.5μm到1300μm,采用整体式干粉分散装置,优化的显微镜光学器件和高信噪比CMOS相机,从样品分散到结果分析,均实现自动化SOP控制。图11 钛合金粉末球形度分析示意图 由于80-95%的金属粉末在增材制造的整个周期中都没有使用,昂贵的金属粉末回收利用也是增材制造行业中的关注重点。 为减少制造过程中降解的粉末导致零件质量的下降,避免导致灾难性的零件故障,关注原始材料和回收材料形貌的微妙偏差就显得尤为重要。 Morphologi 4 粒度粒形分析仪对原始粉末和使用多次后的粉末进行检测,为您揭示回收粉末材料与原始粉末的细微差异,进一步解析造成粉体流动性和堆积密度不同的原因。图12 钛合金球形度分析统计结果,红色为原始粉末,绿色为使用8次的粉末,蓝色为使用16次的粉末图13 样品的圆当量粒度分布图,红色是原始粉末,蓝色为使用8次的粉末,黑色为16次的粉末关于马尔文帕纳科马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。 通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。 这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。 联系我们:马尔文帕纳科销售热线: +86 400 630 6902售后热线: +86 400 820 6902联系邮箱:info@malvern.com.cn官方网址:www.malvernpanalytical.com.cn
  • 高分子表征技术专题——X射线晶体结构解析技术在高分子表征研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!X射线晶体结构解析技术在高分子表征研究中的应用X-ray Diffraction Methodology for Crystal Structure Analysis in Characterization of Polymer作者:扈健,王梦梵,吴婧华作者机构:青岛科技大学 教育部/山东橡塑重点实验室,青岛,266042 北京化工大学 碳纤维及复合材料教育部重点实验室,北京,100029作者简介:扈健,男,1986年生. 2013~2016年在日本丰田工业大学获得工学博士学位;2016~2019年于青岛科技大学从事博士后研究;2019年任青岛科技大学高分子科学与工程学院特聘副教授. 主要利用广角和小角X射线散射,振动光谱等技术,从事结晶高分子各级结构表征、相变行为以及结构-性能关系的研究. 扈健,男,1986年生. 2013~2016年在日本丰田工业大学获得工学博士学位;2016~2019年于青岛科技大学从事博士后研究;2019年任青岛科技大学高分子科学与工程学院特聘副教授. 主要利用广角和小角X射线散射,振动光谱等技术,从事结晶高分子各级结构表征、相变行为以及结构-性能关系的研究.摘要高分子材料结构具有多尺度的复杂性,解析高分子材料各级微观结构并建立结构与性能之间的关系是高分子研究领域的重要目标和挑战. 对结晶性高分子而言,第一步工作就是对其晶体结构进行表征和解析,X射线衍射法是高分子晶体结构解析中最经典也是最常用的方法. 本文主要介绍X射线衍射等技术在高分子晶体解析中的基本原理和测试表征方法,总结概述近些年来晶体结构解析在高分子领域内的主要进展以及应用. 通过晶体结构解析的方法建立可靠的高分子晶体结构,不仅可以应用于新合成结晶高分子结构的解析,也可以进一步研究高分子各级结构在外场作用下的演变,探明微观结构与宏观性能之间的关系.AbstractBecause of complicated multi-scale structure for the polymer material, studying microscopic structure of polymer and clarifying the relationship between structure and physical property are the major goal and challengein the polymer science. For the crystalline polymer, crystal structure should be analyzed and established at first. X-ray diffraction is the most classical and conventional method for the crystal structure analysis in polymers, which gives the detailed information of molecular chain conformation, chain aggregation in the crystal lattice. This article reviews the main principles and experimental techniques of X-ray diffraction methodology, and also summarizes the progress and application in the polymer field over the past decade. By utilizing X-ray diffraction method, the crystal structure of newly synthesized crystalline polymers can be analyzed, which may help us recognize crystal phase transition and hierarchical structure evolution by the external force, and also study towards the microscopic clarification of structure-property relationship. By combining other techniques such as neutron scattering, electron diffraction, nuclear magnetic resonance, vibrational spectroscopy and computer simulation, the crystal structure of polymers with higher reliability can be established, leading us to the highly quantitative discussion from the molecular level. For this purpose, the study of polymer crystal structure is still on the way, and the contents may be helpful for the beginners and researchers.关键词结晶性高分子  晶体结构  X射线衍射  结构与性能KeywordsCrystalline polymer  Crystal structure  X-ray diffraction method  Structure and property 目前已知的高分子中,大约70%的都是结晶性高分子,它们在日常生活和高端领域有着大量的应用. 结晶性高分子受分子链结构不规整、链缠结和链间相互作用等效应的影响,很难像小分子一样完全结晶,通常也被称作半结晶性高分子[1-3]. 高分子结构具有多尺度复杂性,其各级结构通常包括聚合物链结构、晶体(胞)结构、晶胞堆砌结构、晶区与非晶区堆砌结构以及球晶中片晶结构等,各级结构都有可能影响着高分子相态及形貌,进而影响高分子材料的性能. 而其中,晶体结构的确定是研究结晶性高分子的基础,所以建立高质量的结晶性高分子的晶体结构是非常必要的[4,5].近几十年来,随着各类表征技术和计算机模拟等领域的快速发展,大量的高分子晶体结构被建立或者修正. 确定结晶性高分子在单元晶胞基础上的晶体结构信息,最传统和经典的方法是广角X射线衍射法,并且结合红外光谱、拉曼光谱、核磁共振谱、中子散射以及高分辨电子衍射等技术能够得到更为准确的晶体结构. 这些技术的进步和运用不仅有助于分析聚合物的晶体结构,而且也提供了新方法去研究更为复杂的高分子材料. 基于晶体结构的建立,我们可以研究高分子的各级结构以及在外场作用下各种相态之间的演变规律,对阐明聚合物材料微观结构与物理性能之间的关系都具有重要意义[6,7].1高分子X射线晶体结构解析法X射线是一种波长为埃(1 Å = 10-10 m)级的电磁波,由于其波长的数量级与晶体点阵中原子间距一致,晶体点阵可以成为X射线发生衍射效应的光栅,而衍射图会随晶体点阵的变化而变化,因此X射线适用于晶体结构解析. 从20世纪30年代开始,X射线衍射法对聚合物科学领域的发展就起到了重要的作用,例如通过X射线衍射方法确定了各类合成或天然高分子的纤维周期均为几个Å到几十个Å,这也证明了一根聚合物分子链可以贯穿多个晶胞. 随着近几十年同步辐射技术的应用,拓宽了X射线的波长范围,更短的波长可以使我们获得更多倒易空间的坐标信息,灵敏度更高的探测器可以帮助我们更细致观测相变的动力学以及其他行为. 另外,通过分子模拟软件进行数据分析,建立模型以及能量最小化等已经普遍用于X射线衍射法解析或精修晶体结构. 1.1X射线衍射法基本原理解析晶体结构的衍射原理和方法学主要是20世纪初期建立的,包括布拉格定律、晶体学对称、群论以及从实空间到倒易空间的傅里叶变换等等. 很多书籍对这些方法都有着详尽的描述,这里对几个重要的概念和原理进行简要的概述[8~11].1.1.1Bragg和Polanyi公式Bragg公式:如图1所示,当一束单色X射线非垂直入射晶体后,从晶体中的原子散射出的X射线在一定条件下彼此会发生干涉, 满足下列方程:其中λ为入射光波长,d为晶面间距,θ为入射光与晶面的夹角.Fig. 1Bragg' s condition.Polanyi公式: 如图2(a)所示,当一束波长为λ的X射线垂直入射在一维线性点阵时(例如单轴取向的纤维样品),其等同周期为I, 当满足Polanyi方程公式时,散射出的X射线间会产生强烈的衍射:其中Φm为第m层衍射的仰角. 结晶高分子中分子链排列时以相同结构单元重复出现的周期长度被称为等同周期(identity period)或者纤维周期(fiber period),图2(b)为全同聚丁烯-1的(3/1)螺旋构象,可以利用Polanyi公式从二维X射线纤维图中计算等同周期.Fig. 2(a) Polanyi' s condition (b) Identity period ofit-PB-1.1.1.2倒易空间倒易点阵是根据晶体结构的周期性抽象出来的三维空间坐标,是一种简单实用的数学工具来描述晶体衍射,X射线衍射的图样实际上是晶体倒易点阵的对应而不是正点阵的直接映像. 正点阵与倒易点阵是互易的,倒易晶格中越大的晶面指数(hkl),在实晶格中就对应越小的晶面间距. 如图3(a)所示,假设晶体点阵中的单位矢量为a1,a2和a3,和它对应的倒易点阵的单位矢量为a1*,a2*和a3*,其关系如下式:其中晶胞体积V=a1 × ( a2 × a3),a1*垂直于a2和a3,a2*垂直于a1和a3,a3*垂直于a1和a2,其长度是相应晶面间距的倒数的向量.Fig. 3(a) Relationship between real space and reciprocal space (b) Reciprocal lattice and vector.倒易晶格中的任一点称作倒易点,倒易点阵的阵点与晶体学平面的矢量相关,每一组晶面(hkl)都对应一个倒易点. 从倒易空间原点指向倒易点的矢量被称为倒易矢量Hhkl,如图3(b)所示,其关系如下:其中指标(h,k,l)就是实空间中的晶面指数,h,k,l均为整数. 倒易矢量Hhkl垂直于正点阵中的(hkl)晶面,并且矢量的长度等于其对应晶面间距的倒数|Hhkl|=1/dhkl.1.1.3Ewald球Bragg方程指出,当散射矢量等于某倒易点阵矢量时就具备发生衍射的基础,如果把Bragg方程进行变形可得到公式(5):以1/λ为半径画一个球面,C点为圆心,CP为散射X射线,球面与O点相切,只要倒易点阵与球面相交就可以满足Bragg方程而发生衍射现象,这个反射球就被称为Ewald球,如图4所示.Fig. 4Relationship between Ewald sphere of radius 1/λ and reciprocal lattice. 根据图中的几何关系OP = 1/d,假设O点为倒易空间原点,OP即为倒易散射矢量,P点与倒易空间点阵的交点即为(hkl)晶面指数. 转动晶体的同时倒易点阵亦发生转动,从而会使不同的倒易点与Ewald球的表面相交. Ewald球直径的大小与X射线波长成反比,衍射点数量取决于Ewald球与倒易空间的交点的数目,实验可探测衍射的最小d值取决于Ewald球的直径2/λ,在实际测试中,可以减小入射光波长以增加可观测的衍射点数量.如图5所示,对于单轴取向的样品,拉伸方向平行于c轴方向,而a轴和b轴仍然是随机取向,所以倒易空间的(hkl)点呈同心圆分布,这一系列同心圆与Ewald反射球的交点就构成了一系列的hk0,hk1,hk2… hkl的倒易格子的平面. 通常定义(hk0)层为赤道线方向,沿拉伸方向的(00l)为子午线方向.Fig. 5The relationship among Ewald sphere, circular distribution of reciprocal lattice points and a diffraction pattern on a flat photographic film.1.1.4X射线衍射强度X射线的衍射强度Intensity公式如下:其中K是比例因子,m是多重性因子,p为极化因子,L是Lorentz因子,A是吸光因子,F为结构因子. 其中需要强调的是结构因子F,它是由晶体结构决定的,和晶胞中原子的种类和位置相关.如图6所示,一束平行X射线经过电子A和B分别发生散射,假设A到B的距离为r,S0和S分别为入射和散射单位矢量,其光程差为:其中b即为散射矢量,与图4中OP矢量一致.Fig. 6Sketch of classic scattering experiment.一个原子中的核外电子云呈球形分布,对环绕中心的所有可能实空间矢量的干涉进行积分可以得到一个原子周围的电子产生的相干散射:这个公式就是ρ(r)的傅里叶变换,其中ρ(r)是原子的散射因子.晶体中原子的周期排列决定了晶体中的一切都是周期的,相当于一种周期函数,这种周期函数的实质就是晶胞中的电子密度分布函数,倒易晶格就是实晶格的傅里叶变换. 晶格对X射线的散射为晶格中每个原子散射的加和,每个原子的散射强度是其位置的函数,加和前必须考虑每个原子相对于原点的位相差.r为实空间中的原子位置矢量,设r = xna1 + yna2 + zna3,b为倒易空间的倒易矢量,b = Hhkl = ha1* + ka2* + la3*,根据倒易空间的性质可以得出公式:通过此公式可以看出结构因子和原子坐标位置相关,这也就决定了系统消光现象,也就是说在不同晶系中不是所有衍射点都会出现,可以通过计算结构因子来判断.另外由于衍射强度正比于|Funit cell|2,在晶体计算过程中,衍射峰的绝对强度意义不大,但是衍射峰的相对强度对最后晶体结构的确定影响很大.1.1.5分子链排列方式和空间群一根分子链一般包含内旋转相互作用、非键接原子间相互作用、静电作用、键长伸缩和键角变形作用以及氢键作用等. 在晶格中分子链排列大多遵循2个原则:最稳定的空间螺旋构象以及最密堆砌.晶体学中的空间群是三维周期性的晶体变换成它自身的对称操作(平移,点操作以及这两者的组合)的集合,一共有230种空间群. 空间群是点阵、平移群(滑移面和螺旋轴)和点群的组合. 230个空间群是由14个Bravais点阵与32个晶体点群系统组合而成[12].我们挑选比较简单的空间群操作进行比较直观的说明,如图7所示,若一个右旋向上的分子链(图7(a)中Ru),通过以箭头方向为旋转轴做180°转动,可以得到右旋向下的分子链(图7(a)中Rd),如果空间中只有这一种对称操作,那么这种空间为P2;又若Ru分子链通过镜面对称操作可以得到左旋向上的分子链(图7(b)中Lu),如果空间中只有这一种对称操作,那么这种空间为Pm;若空间群中同时包含以上2种对称操作,且镜面法线方向与对称轴垂直,也就是说在此晶胞内就同时存在右旋向上Ru,右旋向下Rd,左旋向上Lu,左旋向下Ld 4种分子链构象,那么这种空间群为 P2/m,如图7(c)所示.Fig. 7Introduction of different operation in the space group.1.2其他方法简介1.2.1振动光谱法振动光谱法通常包括红外及拉曼光谱,其可以提供分子链构象,晶体对称性等信息[8]. 虽然通过X射线衍射法进行晶体结构解析时可以得到晶区高分子链的构象信息,但无法获知分子间作用力的信息,而有时分子间作用力在晶体结构的形成起到很重要的作用.1.2.2中子衍射法X射线衍射是X射线与电子相互作用,它在不同原子上的散射强度与原子序数成正比,对高分子而言通常都给出主链的信息,而中子衍射法是中子与原子核相互作用,其衍射强度随原子序数的增加不会有序的增大,主要与原子的种类有关,因此中子衍射法可以确定晶体结构中轻元素的位置. 很多力学性能的各向异性通常受侧链的氢原子影响很大,结合X射线衍射和中子衍射法能得到更为准确的晶体结构[13,14].1.2.3电子衍射法电子衍射法可以给出聚合物单晶的形貌信息并且可以得到相应电子衍射图进行结构分析[15]. 但是通常电子衍射法得到衍射点数量较少,而且容易产生次级衍射,样品容易被电子束破坏.1.2.4固体核磁共振谱法固体NMR适用于解析固态高聚物的本体结构、链构象、结晶、相容性以及分子动力学等[16,17]. 谱峰的化学位移(chemical shift)是固体核磁波谱的主要信息,它依赖于分子的局部电子云环境. 电子云结构对分子构象的变化非常灵敏,是研究多晶型的重要依据. 但固体核磁法很难给出晶体的直接结构,常作为X射线衍射法的补充.2X射线衍射测试方法及技巧对于聚合物而言很难培养出0.1 mm以上的单晶,所以测试大多数采用的都是多晶样品. 相较于小分子和低分子量的化合物而言,高分子结晶区的尺寸通常只有几百个Å,晶格内分子链排列不完善,衍射点的数量较少并且衍射点尺寸较宽,大角度范围衍射点强度衰减非常严重,要得到高质量的数据和非常可信的结构解析结果是比较困难的,从样品制备到测试以及后续分析的每一个环节都需要仔细的处理.图8为X射线衍射法解析高分子晶体结构的具体步骤.
  • 大连化物所实现表面金属—氢物种精确表征及活性探索
    近日,大连化物所固体核磁共振及前沿应用研究组(510组)侯广进研究员团队利用固体核磁共振技术在金属氧化物催化剂表面上金属—氢(M-H)活性物种的研究方面取得新进展。   M-H是一类特殊的物种,已有近百年的研究历史。其通常具有很高的反应活性和独特的化学性质,在许多化学反应中作为中间体普遍存在。然而,在多相催化体系中,鉴于实际固体催化剂表面生成的金属氢物种固有的高反应活性,以及固体催化剂表面结构的复杂性,针对它们的全面表征和化学性质探索一直具有挑战。迄今为止,在常用的表征方法中,表面镓—氢(Ga-H)物种的特征信号仅在有限的文献中通过红外光谱检测到。 本工作中,研究人员利用固体核磁共振技术研究纳米Ga2O3催化剂上直接H2活化和丙烷脱氢反应中产生的表面物种,提出了表面Ga-H物种的明确的固体核磁共振谱学证据。Ga-H物种由于强的1H-69Ga/71Ga核自旋耦合作用(J耦合和偶极/四极耦合)产生了复杂的1H核磁共振特征信号,研究人员利用先进多维核磁技术对复杂谱线进行解析,并结合数值模拟与DFT理论计算,揭示了这种特殊中间体物种的结构构型、形成机制。进一步利用CO2吸附模型实验,研究人员揭示了Ga-H物种是CO2加氢转化过程中的关键中间体。   相关成果以“Direct Detection of Reactive Gallium-Hydride Species on Ga2O3 Surface via Solid-state NMR Spectroscopy”为题,于近日发表在《美国化学会志》(The Journal of the American Chemical Society)上。该工作的共同第一作者是我所510组博士研究生陈虹余和高攀副研究员。该研究得到了国家重点研发计划、国家自然科学基金、辽宁省兴辽英才计划、国家博士后创新人才支持计划、中国博士后科学基金等项目的资助。
  • “材料表征与检测技术”主题约稿函
    材料是社会进步的重要物质条件,材料的创新不仅是发展各种颠覆性技术的核心,更是国家科技发展水平的重要体现。而在材料的研究过程中,设计和制备的每一个阶段都需要应用不同的表征与检测方法去了解其多样化结构、评价其特殊性能及物理化学性质,从而为生产工艺的改进提供科学依据,满足使用的要求。可以说,材料的研究进展极大地依赖材料表征与检测技术的发展水平。当前,材料的表征与检测技术多元,涉及的仪器和设备多样,常见的如成分分析(质谱、色谱);结构与形貌(扫描电镜、透射电镜);粒度/表界面(粒度仪、比表面分析仪);表面分析(X射线光电子能谱、俄歇电子能谱);物相分析(X射线衍射、红外);热性能(热重、差热);机械性能(拉力试验机、疲劳试验机)、无损检测(X射线成像、超声成像);几何测量(三维扫描、影像测量)等等。此外,随着新型材料的研究深入,材料表征与检测技术的应用范围愈广,新的表征与检测手段也层出不穷。为帮助广大材料领域科研工作者了解前沿表征与检测技术,解决材料表征与检测技术难题,开展相关表征与检测工作,仪器信息网广泛向业内技术专家、仪器厂商约稿。相关稿件将收录至【材料表征与检测技术盘点】专题,并在仪器信息网平台全渠道推送,后续还将把干货整理成册,以供更多人士阅读。欢迎各位行业协会/学会、高校/科研院所的专家老师,以及领域内仪器厂商们投稿。一、主办单位:仪器信息网二、专家约稿主题聚焦材料表征与检测仪器或技术,可选择以下主题(但不限于)其中之一:1、仪器专家(1)某类仪器或技术的研究进展(包括国内外研究现状、存在的问题、发展趋势等);(2)某类在研仪器的最新研究成果(包括项目概述、结构和功能、取得成果等);(3)某类仪器或技术的相关标准/法规概况及解读;(4)某类仪器的操作技术要点、数据分析技巧;(5)某类仪器国产与进口的差别、亟待解决的问题、未来发展的建议;2、应用专家(1)基于某类仪器取得的最新研究成果(研究背景、研究过程、取得成果等) (2)其它相关经验之谈。参考样文及链接:【研究成果】借助电镜/光谱之单原子催化最新成果【技术要点】金属材料的微观结构分析——用合适的样品制备获得最佳结果【技术经验】安徽大学林中清谈扫描电镜系列约稿【技术经验】张承青老师谈电镜实验室环境系列约稿【综述】超微量紫外可见分光光度计仪器及应用现状分析三、厂商约稿提纲1、请问贵司在材料表征与检测领域主要推出的仪器产品是什么?具有什么技术优势?2、请问该类仪器产品国内外发展现状如何?3、当前,国内用户是否对此类仪器提出了更高的技术要求(可举例说明)?贵司对此是否有相关应对之策?4、贵司现下比较关注的细分材料领域有哪些,是否会推出相关的仪器产品或解决方案?可以为用户解决什么科研难题?5、请展望材料领域市场前景,预测材料表征与检测技术发展方向。此外,厂商还可聚焦【面向某类仪器,用户在日常操作中需要注意的技术要点,以及相关数据分析技巧】主题,撰写成文。参考样文及链接:力试总经理王斌谈国产力学性能试验设备的挑战与机遇日立工程师谈手机镜头等光学元件如何测?紫外分光光度法应用详解安捷伦原子光谱应用专家解析锂电材料元素分析难点真理光学董事长张福根谈谈国内外激光粒度仪技术现状及行业亟需解决的问题QD中国销售总监苗雁鸣博士谈热电材料的测试需求四、稿件要求1、文章为原创作品,尚未公开发表;2、观点明确,数据可靠,文字准确简练,中心思想积极向上;3、正文不少于1500字符,图片或照片务必清晰;4、请在稿件末尾注明供稿者姓名、单位、个人简介。五、回稿邮箱:gaolj@instrument.com.cn六、活动时间:2022年6月-8月仪器信息网2022年6月8日
  • 高分子表征技术专题——小角中子散射技术及其在大分子结构表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!小角中子散射技术及其在大分子结构表征中的应用The Basic Principle of Small Angle Neutron Scattering and Its Application in Macromolecules作者:左太森,马长利,韩泽华,李雨晴,李明涛,程贺作者机构:中国科学院高能物理研究所 中国散裂中子源 2.散裂中子源科学中心,东莞,523803 中国科学院大学,北京,100049作者简介:程贺,男,1978年生. 中国科学院高能物理研究所东莞研究部研究员. 1996年考取中国科学技术大学,2006年在吴奇教授课题组获得博士学位. 随后赴中国科学院化学研究所韩志超研究员课题组工作,建设我国第一台SANS(2012年国家验收). 2014年加入中国散裂中子源,中国科学院高能物理研究所东莞研究部,现正在主持建设世界上第二台基于散裂中子源的VSANS. 致力于使用和发展散射方法,研究软物质多相多尺度结构和动态学行为.摘要小角中子散射(SANS)是一种表征从纳米到微米尺寸物质特征结构的有力工具,配合中子的强穿透性和同位素辨识等特性,在软物质大分子结构表征方面发挥着独特的作用. 随着中国散裂中子源(CSNS)在2018年正式对外接受机时申请,国内SANS用户群逐年扩大. 本文首先简要介绍小角中子散射技术的基本原理、谱仪结构和实验技巧,然后紧扣小角谱仪的特点和方法学方面的最新进展,介绍小角中子散射在高分子溶液、高分子共混物和复合材料、高分子结晶、凝胶、多孔材料、生物大分子等研究领域的结构表征方面的典型应用. 小角中子散射和其他表征手段,如小角X射线散射(SAXS)相互紧密配合和补充,成为连接大分子内部多相多尺度的微观结构和宏观性的桥梁.AbstractSmall angle neutron scattering (SANS) is a powerful tool to characterize multi-scale structures in macromolecules. Deep penetration and H/D isotope labeling make it a unique scattering method. To make it more familiar to the users, basic principle of SANS, instrumentation and experimental skills were firstly demonstrated. Then typical applications in the fields of polymer solution, polymer blends, nanocomposites, crystallization, gels, porous materials and biomacromolecules were introduced. As for the data analysis of complex systems, such as biomacromolecules, in addition to the traditional data analysis methods, advanced methods such as the ab initial analysis and Reverse Monte-Carlo (RMC) simulations provide more detailed information. Combine with small angle X-ray scattering (SAXS), static light scattering (SLS), electron microscope (EM)et al., SANS enables us to solve the structure and interaction of more complicated systems such as interaction of biomacromolecues and solvation of polymers in mixed solutions. As the China Spallation Neutron Source (CSNS) was officially opened to the users around the world in 2018 and SANS instruments equipped with various sample environments are being built, more opportunities are opened to the SANS communities domestically and abroad.关键词小角中子散射  大分子  多相多尺度  结构表征  中国散裂中子源KeywordsSmall angle neutron scattering  Macromolecules  Multi-scale and multi-phase  Structure characterization  China spallation neutron source 小角散射,通常包括小角光散射(SLS)、小角X射线散射(SAXS)和小角中子散射(SANS),都是表征物质纳米到微米的多尺度特征结构的有力手段[1,2]. 它们的基本原理[3]和数据处理分析方法[4]十分类似,三者可以互补和互相验证. 3种散射方法有两点主要不同之处:一是光源与样品的作用机理不同,所以使用不同散射方法时样品的衬度不同;二是波长不同,所以研究的特征尺度范围不同. 首先,衬度直接决定了散射实验的可行性. 光散射衬度来自样品的微分折光指数;X射线与核外电子相互作用,衬度来自于电子云密度,所以原子序数高的元素衬度高;对于中子,由于中子直接作用于原子核,与核的性质有关而与原子序数无关,反而同一元素的各种同位素的中子衬度有很大不同. 小角中子散射的衬度等于样品与分散剂的相干散射长度密度之差,这里的相干散射长度密度(ρcoh,单位:Å-2)是散射体中所有的元素或同位素的相干散射长度(bcoh, 单位:Fermi,1 Fermi = 10-15 m)的加权平均与散射体的摩尔体积之比;同位素的散射截面相当于原子核与中子相互作用被散射的概率( σσ,单位barn, 1 barn = 10-24 cm 2),正比于散射长度的平方. 中子与原子核相互作用,除了被散射外,还会有一定的概率被吸收. 常见天然元素和同位素对于1.8 Å中子的相干散射长度、相干和非相干散射截面以及吸收截面的数据如表1所示[5]. 设计SANS实验的第一步需要估算样品的中子衬度和透光率,前者决定了SANS实验的可行性,后者决定了数据分析的可行性. 根据表1,已知大分子体系的元素、同位素组成和密度,可以计算中子衬度,溶液体系衬度为溶质和溶剂的中子相干散射长度密度差,二元共混体系衬度为二元组分大分子的中子相干散射长度密度差. 衬度低的样品无法进行SANS实验(比如一般的非晶碳氢化合物样品,化学组成一般为CH2,根据表1,bc+2bH≈0bc+2bH≈0,在不进行氘代的情况下无法进行SANS实验);而样品对中子的透过率可以通过式(1)所示的朗伯-比尔定律计算.其中:d为样品厚度.nini为样品中第ii种元素的原子比例,pij、σij(λ)σij(λ)和ρijρij分别为第i种元素的第j种同位素的丰度、全截面和数密度. 其中全截面包含相干、非相干和吸收截面,同位素截面相关数据可以参考ENDF数据库[6]. 传统的散射基本理论是建立在单次散射的基础上的,如果样品太厚,透光率较低,可能在实验中引入多次散射,造成数据无法用常规分析方法解析,所以一般的SANS实验要求 Ttrans85%,如果是溶液样品,尽量采用氘代溶剂.Table 1Coherent scattering length and coherent, incoherent and adsorption scattering cross section of common elements in macromolecules and commonly used isotopes in SANS experiments[5].一些吸收截面非常大的天然元素或者同位素通常用于中子吸收材料,如表1中的B-10,在实验样品中要尽量避免这类对热中子具有强吸收的同位素,除B-10外,还有Cd-113、Gd-155、Gd-157、Sm-149、Eu-151等同位素.对于结构表征的各类技术,能够覆盖的尺寸范围很大程度上决定了这一技术的应用范围. 用于光散射的激光波长在可见光范围,所以小角激光光散射观察尺度在微米的数量级,而静态激光散射的观察尺度在20~300 nm;由于X射线和中子的波长在埃的数量级,所以常规的SAXS和SANS可以测量1~300 nm的特征尺度.表2总结了3种小角散射方法的一些基本特征,可以看到每种方法都有其特点和不足. 小角光散射波长较长,需要样品透明并且容易受到灰尘的影响;小角X射线散射的优势是亮度非常高,特别是同步辐射X射线小角,缺点是穿透能力一般,容易被吸收(当然共振散射赋予了它另外的特点);小角中子散射的特点是穿透能力强,可以加载各类样品环境,同时还能够识别同位素,可以得到样品的绝对散射强度,缺点是中子源亮度太低. 所以实际使用中,用户需要依据自身样品的特点和需要观察的特征尺度范围,选择合适的散射手段,互相验证和补充.Table 2Comparison between SLS, SAXS and SANS.随着小角中子散射方法的应用越来越广泛,谱仪和方法学上出现了2种趋势,一方面通过中子束的聚焦或准直向更小散射矢量方向扩展1~2个量级,研究特征尺度更大的体系,典型的就是发展微小角(VSANS)[7]甚至超小角(USANS)中子散射谱仪[8];另一方面利用波长更短的中子的散射将散射矢量扩展到50 Å-1以上,研究无序体系在原子尺度上的结构,即所谓的无序大分子中子全散射方法[9]. 谱仪技术发展的驱动力在于实现通过一次散射实验来表征样品从原子到分子,再到组装体,甚至相区的多相多尺度结构的梦想. 虽然这些谱仪的设计思路和物理结构千差万别,但是它们的基本散射原理完全相同. 下文将着重介绍SANS谱仪.1小角中子散射谱仪、基本原理、实验技术和方法小角中子散射谱仪通常分为两类,一类是基于反应堆的固定波长小角谱仪[10],国内有绵阳研究堆的狻猊谱仪和中国先进研究堆的小角中子散射谱仪;另一类是基于强流脉冲中子源的飞行时间小角谱仪[11],国内有CSNS的小角中子散射谱仪. 固定波长小角谱仪,利用速度选择器将中子单色化后进行散射实验;而飞行时间小角谱仪则采用白光中子进行散射实验,利用脉冲中子从中子源运动到探测器的飞行时间标定中子波长. 两类SANS的基本原理完全一样,准直系统通常为如图1所示的小孔几何,源光阑和样品光阑用于中子准直,1个或者多个探测器接收散射中子[7].Fig. 1(a) Schematic diagram of the SANS instrument (b) The relationship between the characteristic length scaled and the scattering vector q⇀q⃑ (Bragg's Law). 运动的中子从量子力学的观点可以看成一种物质波,其波长λ = h/(mnv)(其中h为普朗克常数,mn为中子质量,v为中子速度),入射中子的波矢量记作k⇀i,其绝对值为2π/λ,中子被样品散射后,散射波矢量记作k⇀s,如果是弹性散射,中子波长不变,其绝对值仍为2π/λ.散射前后,入射波矢量和散射波矢量的差值k⇀s−k⇀i定义为散射矢量q⇀.图1是CSNS的VSANS谱仪在小角模式下的示意简图. 根据如图 1所示的几何关系和矢量加减规则得到布拉格公式:其中θ为散射角. 如果样品的特征长度为d,根据如图1几何关系和布拉格方程,两束被样品散射的中子的波程差为2dsin(θ/2),当波程差等于波长λ的整数倍时,散射中子相干增强,即:当n取1时,由公式(4)可知,正空间的样品特征长度与散射矢量q是倒易关系,即1/q是正空间的尺子,在计划实验时,需要对样品的特征尺寸范围有一个预判. 根据香农采样定理[12]:如果谱仪q范围为0.001~0.3 Å-1,其可表征的样品特征尺寸范围为300~1 nm. 如果能将中子聚焦,或者放弃一个方向的分辨率,将最小q向低q方向推进1~2个量级,从而能够表征的样品的特征尺度将增加1~2个量级. 我们将这类谱仪称为微小角中子散射谱仪(qmin=10-4 Å -1)[7]和超小角中子散射谱仪(qmin=10-5 Å -1)[13].考察一个由N个大分子链组成的链间有相互作用的体系,假设每根链聚合度为n,并粗粒化单体作为基本的散射单元. 为了方便表示,如图2所示,考察体系中的链α和链β. 链α和链β的质心距离坐标原点分别为Rα和Rβ,链α和第i个单体距离链α的质心为Sαi,链β的第j个单体距离链β的质心为Sβj,链α和链β之间的距离为Rαβ,i,j距离原点分别为rαi和rβj. 根据散射基本原理,中子入射到单个单体后形成球面波,其散射振幅:Fig. 2Schematic draw of the polymer chain and the vectors between atoms and polymers.一条链的散射振幅:考虑大分子与周围介质的散射长度密度差为Δρ,大分子单体的体积为υ,体系总体积为V.α和β遍历体系中的每一根链,i,j遍历链的每一个单体,得到体系的宏观散射截面可表示为公式(8).公式(8)右边第2项可以近似为倒易2根链的质心相互作用的相干散射得到公式(9).根据如图2所示的几何关系,代入(9)得到:其中F(q)为形状因子的散射振幅,定义单粒子的形状因子P(q),注意,这里的i,j位于同一个散射体或者同一条链上.散射体可近似视为连续介质,P(q)可改写为:其中,Vpart为散射体的体积,ρpart(r)为散射体内部的密度空间分布.定义散射体之间的结构因子SI(q),式(11)适用于所有散射体系对于密度分布均匀的散射体,∣∣F(q)2∣∣=|F(q)|2,而这里的dΣ(q)dΩ是散射矢量为q时的绝对散射强度(单位为cm-1). 小角中子散射实验中,经过样品散射进入立体角为ΔΩ的探测器的中子计数Is(q)(单位为count/s)与q的关系为:其中T(λ)为样品透过率,d为样品厚度,定义入射中子强度I0(λ):Φ(λ)为入射中子波长分布,ε(λ)为探测器效率,A为样品光阑面积,t为数据采集时间.所以对于典型的小角散射实验,如果实验的q值范围已经覆盖了样品的多相多尺度结构,通过一次SANS实验,可以得到Δρ(衬度),n(分子量),P(q) (基本形状)和SI(q) (相互作用),但需要注意的是SANS用了一个粗粒化的模型,所能观察的最小尺度是π/qmax,一般不小于1 nm.2小角中子散射实验一个完整的小角中子散射实验过程包括(1)计划实验:根据科学目标准备合适大小和数量的样品;(2)确定实验方案,并采集小角中子散射数据;(3)对散射数据进行处理和分析.2.1样品准备和要求在样品准备阶段需要注意几个问题,第一,衬度:样品中散射体与周围介质的散射长度密度的差异是否足够. 一般而言,如果衬度Δρ≥1×10-6 Å -2就完全没有问题,否则就需要与谱仪科学家进行沟通,依据谱仪本身的信噪比进行调整. 如果衬度不够就可能需要对溶剂或者散射体进行氘代. 第二,样品的特征尺寸是否在谱仪的测量范围内,通常谱仪的测量范围在π/qmax到π/qmin内;第三,做一些前置实验,如小角X射线散射、电镜等确定合成的样品状态是否由于聚集、结晶等过程的发生而改变. 此外,还需要注意样品的使用量和样品厚度. 根据样品内散射体的尺寸和与周围介质之间的衬度,样品量从300~1500 mg不等,样品厚度根据散射强度选择,通常为1和2 mm. 对于强散射样品,如果样品太厚会产生多重散射;对于溶液样品需要注意样品的结构与浓度有关,稀、亚浓和浓溶液结构会随着样品间相互作用而改变,为区分‍P(q)和‍SI(q)对‍I(q)的影响,除硬球体系之外,一般需要在稀溶液中先确定样品P(q),这时也许需要在0.1 wt%~5 wt%之间做多个样品,从而外推到无限稀溶液的情况.2.2实验数据处理实验数据处理是通过对原始实验数据进行一系列的物理校准和校正,最终得到与实验仪器和样品厚度等无关的,体现样品本质特征的绝对散射强度(dΣ(q)dΩ,cm-1)随着散射矢量(q,Å-1)变化的信息. 一个完整的实验通常包括5组数据的采集:空样品池透过率数据Tc(λ)、空样品池散射数据Iexpcb(q)、样品加样品池透过率数据Tsc(λ)、样品加样品池散射数据Iexpscb(q)、空背底测量Ibackground(下标s表示样品,下标c表示样品池,下标b表示背底). 小角中子散射实验中,散射信号Iexpscb(q)有以下来源:样品、样品池和各种背底(如天然背底、空气散射和电子学噪声等).各种散射信号之间的关系可以用式(1)和式(2)表示,其中I0(λ)代表零散射角度的散射强度. 扣除样品池的散射和其他各种背底,最终计算得到dΣ(q)dΩ. 式(1)和式(2)只是简化和近似,真实SANS数据处理还需要考虑探测器效率、死时间和入射中子波长分布等因素[14].2.3实验数据分析SANS数据分析方法多种多样. 一般来说,可分为不依赖于模型的分析方法和依赖于模型的分析方法. 不依赖于模型的分析方法植根于数学,是数据分析的起点. 具体来说,包括吉尼尔(Guiner)、Porod、Kratky等分析方法. Guiner分析方法是样品的散射强度的自然对数对散射矢量的平方作图,即1n(I(q))对q2作图,在qRgPorod分析方法是主要用于分析散射体尺寸的局部结构信息,要求qRg1. Porod作图即是将散射强度对散射矢量作图,即1g(I(q))对lgq作图,其斜率即为散射体的Porod因子n. 高q的散射数据通常可表示为或者对于长棒形散射体,n=1;对于二维光滑散射体,n=2;如果三维散射体拥有光滑表面,n=4; 否则,n为3~4之间. 对于大分子链,Porod因子与排斥体积参数ν有关,即n=1/v,对于稀溶液中的有排斥体积高斯链n=5/3(或者1/0.588),对于稀溶液中没有排斥体积的高斯链n=2,对于完全蹋缩的大分子链n=3.n为2~3之间可能是枝状大分子或者是形成网络结构.图3为半径为R=50 nm的硬球的散射模型,可以用贝塞尔方程拟合. 对曲线低q区域(qRg≤1)进行Guinier拟合,如图3中的小插图所示,得到均方旋转半径为38.94 nm,与理论值500 × (3/5)0.5 = 38.73 nm相符. 需要注意的是在得到 Rg之后需要进行一次验证,验证拟合区间确实满足qRg≤1.Fig. 3Guinier and Porod fit of the form factor of the hard sphere with a radius of 50 nm.对高q区域(qRg1)进行Porod拟合,得到斜率为-4.0,符合光滑球体表面分形维数. 更详细的关于Guiner、Porod和Kratky作图的图文解释和示例,读者可以参考Hammouda的SANS TOOLBox的第15章[15].常用的依赖于模型的分析方法是借助已知的样品信息,以有限多个初始参数建立正空间中散射体的几何模型,并根据公式(13)计算与之对应的倒空间的数学曲线,采用最小二乘法,不断迭代输入参数,直到模型的计算散射曲线与实验曲线的偏差在可接受范围内. 常用的分析软件有Igor[16]和SASView[17]等. Svergun和McGreevy等发展了新从头算起(ab initio)和逆蒙特卡罗模拟的分析方法[18~21],可以将正空间三维结构的傅里叶变换与散射曲线进行比较.对依赖模型的分析方法,初始模型的设计至关重要. 所以在SANS实验之前,需要进行一系列的前置散射、光谱或者成像实验,估计样品的初始结构. 根据不依赖于模型的Guinier和Porod等方法对一维散射曲线的分析结果,验证初始模型的选择是否正确. 需要注意的是,拟合参数或者基本假设越少,分析结果的准确性越高. 拟合参数多的方程可以拟合大多数SANS曲线,但必须通过结合其他研究手段固定大部分的参数.3大分子相关领域典型应用小角中子散射在物理学、化学、材料、生命科学和工业界等均有大量应用. 本文主要聚焦于大分子领域,即合成高分子、生物大分子和大分子材料领域的典型应用. 为方便讨论,依据样品的特点进行分类,分为高分子溶液、高分子共混物和复合材料、高分子结晶、凝胶、多孔材料、生物大分子. 以下就这些方面的一些经典案例和最新发现进行讨论. 由于小角中子散射应用领域众多,并且各个领域之间还会出现交叉和重叠,所以以下分类讨论并不一定严格和全面,本文只是抛砖引玉,旨在说明小角中子散射的特点和在各领域的典型应用.3.1高分子溶液体系大多数用户使用SANS研究溶液体系是为了得到溶质的多尺度形貌,所以高分子溶液体系的样品处理,实验方法,数据处理与分析具有普适性[22,23]. 大分子在溶液中的基本构象(confor-mation)的确定需要使用SANS进行证明,一般在稀溶液测定. 1974年,Cotton等使用SANS研究了线形聚苯乙烯(PS)在二硫化碳(良溶剂)和环乙烷(θ溶剂)中的构象,验证了高分子在良溶剂中是有排斥体系的高斯链,分形维数5/3,在θ溶剂中是无扰高斯链,分形维数是2[24]. 随着高分子化学的进步,科学家们合成了不同几何形状的单分散大分子. 2014年,Goossen等使用SANS研究了环形PS在氘代甲苯(良溶剂),氘代环乙烷(θ溶剂)和氘代线形PS(类θ本体)中的构象,如图4所示[25]. 环形PS在良溶剂中,Porod区间的表观分形维数1.56,小于线形PS在良溶剂中的5/3,作者解释是由于第2维利系数(A2)的影响,通过扣除A2,得到没有端基的环形PS在良溶剂中的分形维数;环形PS在θ溶剂和相同分子量的PS本体中,分形维数为2. 我们需要着重指出两点:一是对θ溶剂体系,或者高分子本体体系,图4的拟合区间在0.006~0.2 Å-1,对于低q区间,0.002 Å-1qP(q)的基本定义(公式(13))进行计算[15].Fig. 4Scattering functions and representative slopes for the overall and internal structure of ring polystyrene in good andθ solvents at different length scales. The linear polymeric matrix in the ring/linear blend is congruent with the θ‍-solvent. (Reprinted with permission from Ref.‍[25] Copyright (2015) American Chemical Society).相分离过程的研究是高分子溶液研究领域的重点之一. 大多数情形下,基于平均场理论的Ornstein-Zernike方程可以描述溶液中相分离过程的浓度涨落的变化[26,27]. Jia等使用SANS,研究了聚(N,N′-二乙基丙烯酰胺)(PDEA)在氧化三甲胺(TMAO)水溶液中的相分离发生前浓度涨落(concentration fluctuation)的变化,如图5所示[28]. 浓度涨落的强度和幅度都随温度升高而增大,随TMAO含量的增高而增大;通过外推零散射角度散射强度的倒数随着温度的倒数曲线,得到浓度涨落趋近无穷时的温度,就可以得到该共混体系的旋节线相图. 同样,这里需要注意两点:一是SANS是唯一的直接测量旋节线相图的研究手段,其他研究手段,例如浊度法,测量的都是双节线相图;二是越靠近相边界,浓度涨落的尺度越大(图5),这与温敏性高分子靠近最低共溶温度(LCST)时体积收缩[29]并不矛盾:由于图5的SANS实验的衬度来源于浓度涨落的微区,而不是单链高分子. 如果需要看到PDEA单分子链的LCST塌缩(就像使用动静态激光光散射观察PDEA极稀水溶液一样),需要使用衬度匹配技术. 典型的例子可以参考Hammouda等的实验,使用氘代和氢化聚(N-异丙基丙烯酰胺)(PNIPAM)在衬度匹配的重水/水混合溶剂中,用SANS观察PNIPAM单链的塌缩过程[30].Fig. 5SANS profiles of 4% mass fraction PDEA in TMAO-d9/D2O mixtures. (a) Temperature dependence of PDEA atcTMAO = 0.28 mol/L the arrow is used to guide the eye, indicating the increase of concentration fluctuations with temperature. (b) TMAO concentration dependence at 15 °C when TMAO concentrations are 0, 0.1, 0.28, 0.44, 0.58, 0.76, 0.90, 1.13 and 1.25 mol/L, respectively. (Reprinted with permission from Ref.[ 28] Copyright (2017) American Chemical Society).随着大分子在溶液中的浓度增加,分子之间相互作用(SI(q))逐渐变强,这时相互作用在散射曲线上将会表现为最小散射矢量附近的散射强度相对无相互作用时变小,中间q区间的散射强度相对无相互作用时变强. 如果体系中存在复杂的相互作用,如氢键相互作用、静电相互作用、憎水相互作用、π-π堆叠作用[31]等,在溶液中将形成亚稳的并且能够响应外界刺激的微相自组装结构,在污水净化、废油回收、药物输送等方面有着广泛的应用[32]. 小角中子散射是研究这类体系的非常有效的方法,既可以研究大分子或组装体在溶液中的结构(P(q))的变化[33],又可以研究组装体的结构在溶液中的相互作用(SI(q)).大分子组装结构是小角中子散射研究的一个热点. Sternhagen等合成了一系列的两亲性离子类肽嵌段共聚物,这些共聚物唯一不同的是肽链序列的离子单体的位置不同. SANS研究表明,这些肽嵌段共聚物组装成星形胶束结构,并且离子单体的位置越靠近星形胶束中心,胶束的均方旋转半径越小,并且二者呈现一定的指数关系[34]. 此项研究为利用肽键氨基酸序列调控组装胶束结构开辟了新的道路.3.2高分子共混物和复合材料通过将高分子共混、复合,石油化工工业只需要生产常见的几十种高分子材料,如聚乙烯、聚丙烯、聚酰胺等,就可以大致满足人们日常生活对高分子材料的硬度、弹性、机械强度、疲劳强度、导电性、透光性、耐热性、阻燃性、吸水性、耐酶性等多方面的需求. 这表明高分子共混物和复合材料的多相多尺度微观结构及其演化过程与宏观性能密切相关. 小角中子散射适用于实时追踪这类体系的微观结构的变化.通常非晶高分子本体或者共混物中,由于要观察的目标大分子与其周围环境的化学结构大致相同,对大部分研究手段而言衬度几乎都为0,无法看到单一高分子链或者选择性观察某一相高分子. 少部分的观察手段,包括单分子荧光或者核磁虽然有选择性地观察能力,但是前者引入了大尺寸的荧光基团,有可能影响体系的动力学和动态学行为;后者直接观察的是能量空间. 只有SANS可以通过衬度匹配具有选择性地观察单链结构的能力[35].高分子共混物在双节线相区,初级成核过程究竟是如何发生的?到现在仍然是一个非常具有挑战性的课题. Balsara课题组曾进行了深入的研究[36]. 他们使用时间分辨SANS,研究了氘代聚乙基丁烯(dPE)、聚甲基丁烯(PM)和聚(甲基乙烯-b-乙基丁烯)的三元共混物相分离初期的成核过程,如图6所示. SANS的中子束流强度低,需要较长时间(通常大于3 min,依赖于不同中子源或者SANS谱仪)才能得到满足统计误差的散射谱图. 嵌段共聚物hPM-hPE的加入是为了增强dPE/hPM的相容性,降低相分离温度并延长相分离时间,从而满足SANS采样所需时间.图6(a)表明,相分离未发生时,体系为均相,相对散射强度不随散射矢量q变化;随着相分离发生,低q散射曲线随相分离时间增长,不断向上倾斜,这说明有相分离成核的尺寸逐渐增大,零散射矢量处散射强度随之增长. 使用不依赖具体模型的Guinier方程对SANS数据进行拟合(图6(b)),可以得到零散射矢量处散射强度(In)随其均方旋转半径(Rg)变化的标度关系,分形维数1/0.54,说明初级成核也许并不是Gibbs成核过程(分形维数3),而是浓度涨落诱导过程(分形维数2).Fig. 6(a) Dependence of SANS profiles on time during the early stage of the sample with 50 vol% block copolymer. The solid lines in represent fits to the Guinier model. (b) A lg-lg plot ofRg at a given time versus In(In = I(Q=0,t)/I(Q=0,t=0)) at that time. The solid line represents the best power law fit. (Reprinted with permission from Ref.‍[36] Copyright (1996) The American Physical Society).复合大分子材料在工业界有着十分广泛的应用. Liu等利用小角中子散射和电子显微镜研究纳米二氧化硅球(20 nm左右)和橡胶复合体系,发现SiO2会形成24~97个硅球的聚集体,聚集体尺寸随着SiO2球体积分数增加线性变小,最佳的二氧化硅的体积分数在40%~50%之间[37,38].具有刺激响应的智能大分子材料,如自愈(self-healing)复合材料是目前研究的热点. Staropoli 等利用小角中子散射和流变实验研究靠氢键结合而成的瞬态枝化梳状大分子在熔融状态下的氢键形成机理[39]. 结果表明,瞬态链合结构对此类材料至关重要.3.3高分子结晶高分子结晶过程极为复杂,尽管科学家们进行了多年不间断地研究,一些基础性的问题仍有疑问. 1977年,Sadler等使用SANS研究了氘代聚乙烯经过溶液和熔融结晶生成的晶体内部的单链构象[40],在一系列假设下(氘代和氢化聚乙烯无相分离、同时结晶),证明了高分子单链在溶液中优先按照近邻折叠模型结晶;在熔融过程中,优先按照插线板模型结晶. 这个结果争议不大,已经写入了高分子物理的教科书. 而串晶(shish-kebab)中shish的生成机理则至今仍争议不休:究竟是高分子链的拉伸、缠结网络变形或者是壁滑导致了shish的产生?Kimata等的SANS研究使shish成核理论的研究向前迈出了关键的一步[41]. 实验观察结晶过程中分子链结构变化的关键难点还在于衬度:如何能够在shish的狭小范围内看到高分子链的结构. 如之前表2所示,X射线的衬度来源于电子云密度的差别,因此SAXS可以看到二维的大分子片晶结晶区与非晶区片层之间的电子云密度差别,从而得到片晶厚度,但是SAXS看不到一根结晶大分子链与其周围链段之间的任何差别;而常规的SANS均聚物氘代和氢化二元共混同样存在问题,它虽然提供了氘代分子与周围分子之间的衬度差别,但是也引入了结晶的氘代大分子与非晶的氘代大分子之间的衬度差别. 所以Kimata之前,科学家们没有设计出合适的可以在shish中提取分子链结构的实验方法. Kimata等使用了氘代短链(S),中等链(M)和长链(L)等规丙烯(iPP)与多分散非氘带iPP进行共混,在不同温度下进行剪切实验,用SANS观察散射图样的变化,如图7所示.图7(a)中S链的各向异性散射更加显著,温度升高到168 ℃时shish开始熔化,各向异性开始逐渐消失. Kimata等用166 ℃ 时shish刚刚开始取向的散射图样减去168 ℃或者180 ℃完全熔融的背景散射,如图7(b)所示,成功得到了d-iPP链在shish中的取向信息.图7证明了长链在shish中只起引发作用,但扩散较慢,不是shish的主体.Fig. 7(a) Temperature dependence of SANS profiles of deuterium labeled iPP during heating from 25 °C to 180 °C. The labeled fraction is denoted by S, M, and L for short D, medium D, and long D, respectively. (b) The change in SANS scattering intensity between 166 and 180 °‍C (left) and between 168 and 180 °‍C (right) for each of the three deuterium-labeled blends. (Reprinted with permission from Ref.[41] Copyright (2007) American Association for the Advancement of Science).3.4凝胶溶胶或者溶液中的胶体粒子或者大分子在合适条件下相互连接,形成空间网络结构,最后失去流动性,整个体系变成一种外观均匀,并保持一定形态的弹性半固体,这种弹性半固体称为凝胶. 凝胶在有机体的组成中占重要地位,人体内的肌肉、皮肤、细胞膜、血管壁,以及毛发、指甲、软骨等都可看作是凝胶. 相对于稀溶液,凝胶体系中的结构和相互作用更加复杂,小角中子散射方法,可用于研究此类体系的微观结构[42,43]、凝胶相的形成过程[44]和形成机理等[45].Endo等利用SANS研究不同浓度的间规聚丙烯(sPP)在氘代十氢萘溶剂中形成的物理凝胶的结构[46],散射曲线如图8(a)所示. 散射曲线在某一q范围的斜率表示在相应正空间尺度上散射体的分形维数. 浓度最低的sPP十氢萘溶液(2 wt%)的散射曲线低q区间分形维数1,说明在交联点之间有棒状结构,中等q值范围内分形维数4,类似光滑球形外表面. 所以假设sPP纳米晶为球形结构(用贝塞尔方程拟合),纳米晶之间存在的非晶sPP链形成的网络结构(用Ornstein-Zernike方程拟合),纳米晶球之间进行Percus-Yevick近似,就可以得到交联点形状、尺寸随sPP浓度和温度变化的定量关系(图8(b)).Fig. 8(a) SANS profiles of the nitrogen quenched gel with differentsPP concentrations (symbols) and corresponding fitting results (solid lines). The profiles are vertically shifted to avoid the overlap. (b) Schematic illustration of hierarchical structures in gel LN suggested by the SANS profiles. (Reprinted with permission from Ref.‍[46] Copyright (2019) The Royal Society of Chemistry)3.5多孔材料中子直接作用于原子核,具有很强的穿透性,可以轻松穿透较厚的多孔材料,从而在1~100 nm范围内研究其内部孔隙的孔隙率、尺寸分布、各向异性、孔的连接性和比表面积,并且可以追踪这些参数对其容纳和吸附性能的影响.Yang等利用小角中子散射研究我国四川盆地龙马溪页岩的多孔结构[47,48]. 用多分散球形孔模型和Porod方法分析中子散射数据得到的比表面积和孔隙率,都大于压汞法得到的结果,说明样品中存在盲孔. 随着样品埋藏深度的增加,盲孔数量也随之增加,并且与有机碳含量存在相关性. 这个例子需要注意样品多重散射对散射曲线的影响,通常页岩样品厚度在200 μm的情况下可以保证单次散射;具体实验中需要测量不同厚度样品散射曲线来避免多重散射.碳纤维是重要的工业材料,小角中子散射可以对碳纤维内的孔隙缺陷进行精确的表征. Jafta等利用小角中子和小角X射线对多孔碳纤维内的孔隙率和比表面积进行了精确的分析[49]. 同时还用弦长分布函数分析了体系中孔隙的空间分布,发现孔的分布相对无序. 如果多孔材料的孔隙分布比较窄,就可以用于研究液体在空间受限行为、各种气体在孔隙内的吸附和脱吸附. Melgar等利用多金属氧酸盐为水分子提供含有不同配体的孔隙,研究水分子在孔隙内的分布情况[50],研究表明,当孔隙小于1.1 nm,水分子将不能进入孔隙从而去润湿. Bahadur等利用小角中子散射研究二氧化碳在多孔碳材料内的高压吸附行为[51]. 观察到二氧化碳在微孔内随着压强的非线性吸附,微孔尺寸从约5 Å增加到7 Å. 但氩气在同样压强作用下的吸附并没有引起孔隙尺寸的变化. 说明吸附二氧化碳后,孔隙内的压强大于外界压强,推测孔内存在很强的吸附引起的溶解压.3.6生物大分子生物大分子种类丰富,多尺度结构复杂,其内部结构和作用原理的解析对解开生命的奥秘、开发新型药物等意义重大. Shi和Li对小角X射线在该领域的研究进展和一般分析方法进行了详细的阐释[52],介绍的分析方法和研究方向与本小节介绍的内容有一些类似和重叠,有兴趣的读者可以自行查阅. 中子凭借其特性和与X射线的互补在生物大分子方面的应用前景也十分广阔[53].生物大分子的小角中子散射表征难度相对较高,第一,氘代样品的制备难度大,需要利用氘水和氘带碳源培养特定的细菌,粉碎后再纯化需要的氘带样品;第二,小角中子散射是一种低空间分辨率的表征手段,对于复杂体系的散射,人们通常将小角中子散射与其他实验手段和分析方法如透射电镜、X射线晶体衍射、核磁共振以及模拟方法等结合起来对散射数据进行分析,如图9所示. David等综述了利用小角散射研究生物大分子[54]. 在生物大分子方面小角中子散射的研究内容包括但不限于:(1)肽链、核酸、蛋白质[55]、双层磷脂膜、淀粉、纤维素等生物大分子在不同环境下的结构;(2)肽链、核酸、蛋白质和双层磷脂膜等的相互作用和组合结构;(3)病毒、细胞器等.Fig. 9A scheme of an SAS experiment, structural tasks addressed and the joint use with other methods. The nominal resolution of the scattering data is indicated asd = 2 p/s. (Reprinted with permission from Ref.[56] Copyright (2007) Elsevier Ltd.).对于生物大分子这类复杂体系,在能够达成科学目标的前提下,模型设计需要尽可能地简单,将变量维持在可接受范围内. 如果散射体非常复杂,由多个具有不同结构、功能的部分组成,需要使用氘代对各个部分进行衬度匹配. 数据分析方面,第一步,对散射数据做定性或半定量的分析,例如稀溶液,可以通过Guinier作图分析散射体均方旋转半径,Porod作图分析体系拓扑结构或者分形维度;第二步,依据已知数据建立模型,分析数据. 数据分析模型通常有以下2种:第一种是依赖于散射数据的可迭代优化模型,依据模型的计算曲线和实验曲线的均方差对模型的一些变量进行迭代优化,如规则几何模型拟合、逆蒙特-卡洛(RMC)方法[21,57]、从头计算(ab initio)方法[20]等;第二种是不依赖于散射数据的独立模型(强烈依赖于所用力场),例如独立的分子动力学或者蒙特-卡洛模型,独立模型的计算SANS曲线可以与实验曲线对比,或者依据实验曲线与模型得到的可能结构进行筛选[58].限于篇幅,以下举几个有代表性的实例. 如图10为天冬氨酰-tRNA合成酶(Aspartyl-tRNA synthetase complexed)与tRNA复合物结构的小角X射线和小角中子散射联合研究图示[59]. Petoukhov和Svergun分别利用ab initial的串球模型分析复合体系的低分辨结构,如图10(A)和10(B)所示,然后利用复合物各个部分的X射线晶体学结构和刚体建模方法拟合X射线和中子散射数据,得到体系在溶液中的高分辨结构模型.Fig. 10(A) Aspartyl-tRNA synthetase complexed with tRNA. (a, b) Comparisons of the crystal structure with the ab initio bead models generated by the program MONSA. In the high resolution model, the protein and tRNA are shown as blue and magenta backbones, in the bead model corresponding phases are presented in gray and yellow, respectively. (c) Best rigid body model generated by SASREF. (d) A SASREF model with different orientations of tRNA. Right view is rotated by 90° about horizontal axis. (B) Scattering profiles from the Aspartyl-tRNA synthetase complex with tRNA. The simulated data are shown by dots, the fits obtained by the program MONSA and the program SASREF are displayed as red solid and blue dashed lines, respectively. 1 and 2 are X-ray scattering curves of the dimeric protein and the entire complex, respectively. 3-7 are neutron scattering patterns at 0, 40%, 55%, 70% and 100% D2O, respectively. The patterns are displaced in logarithmic scale for better visualization. (Reprinted with permission from Ref.[59] Copyright (2006) Springer European Biophysics Journal).同步辐射和X射线晶体学是研究生物大分子结构的利器,在得到蛋白质的晶体结构后,利用刚体建模方法,或者分子动力学模拟,结合小角X射线和小角中子散射,可以研究各类蛋白在溶液中的结构和相互作用. Shrestha等利用小角中子散射、小角X射线散和分子动力学模拟研究天然无规蛋白(intrinsically disordered protein)结构[60],发现Flory指数为0.54,介于理想链的0.5和自避行走链的0.588之间.4总结小角中子散射技术在基础、应用、产业化的各个领域中都有广泛的应用. 由于篇幅所限,本文只是首先从原理和实践两个方面对这一技术进行了简要的介绍,然后列举了小角中子散射在高分子溶液、高分子共混物和复合材料、高分子结晶、凝胶、多孔材料和生物大分子等体系结构表征方面的一些典型应用,希望能够进一步扩展我国的SANS用户群体. 如果需要更深一步了解SANS或者中子散射技术在高分子科学中的应用,可以参考一些专业书籍[12,61,62].参考文献1Borsali R,Pecora R.Soft-Mattter Characterization.Springer,2008.377-9522Cebe P,Hsiao B S,Lohse D J.Scattering from Polymers Characterization by X-rays, Neutrons, and Light.Washington DC:American Chemistry Society,2000.1-1163Roe R J.Methods of X-ray and Neutron Scattering in Polymer Science.Oxford:Oxford University Press,2000.1-804Feigin L A,Svergun D I.Structure Analysis by Small-Angle X-Ray and Neutron Scattering.New York and London:Plenum Press,1987.275-320.doi:10.1007/978-1-4757-6624-0_95Dianoux A J,Lander G.Neutron Data Booklet Second Edition (July 2003).2020-10-25.https://www.ill.eu/fileadmin/user_upload/ILL/1_About_ILL/Documentation/NeutronDataBooklet.pdf6National Nuclear Data Center.Evaluated Nuclear Data File (ENDF).2020-10-25.https://www.nndc.bnl.gov/exfor/endf00.jsp.doi:10.2172/9818137Zuo T S,Cheng H,Chen Y B,Wang F W.Chinese Phys C,2016,40(7):76204.doi:10.1088/1674-1137/40/7/0762048Carpenter J M, Agamalian M.J Phys:Conference Series,2010,251:012056.doi:10.1088/1742-6596/251/1/0120569Han Z,Zuo T,Ma C,Cheng H.Instrum Sci Technol,2019,47:448-465.doi:10.1080/10739149.2019.159773310Zhang H,Cheng H,Yuan G,Han C C,Zhang L,Li T,Wang H,Liu Y T,Chen D.Nucl Instrum Meth A2014,735:490-495.doi:10.1016/j.nima.2013.09.06511Anderson K.Reactor & Spallation Neutron Sources.Oxford:Oxford School of Neutron Scattering,2013.55-7612Higgins J S,Benoît H C.Polymers and Neutron Scattering.Oxford:Clarendon Press,1994.86-9513Rehm C,Barker J,Bouwman W G,Pynn R.J Appl Crystallogr,2013,46(2):354-364.doi:10.1107/s002188981205002914Du R,Tian H L,Zuo T S,Tang M,Yan L,Zhang J R.Instrum Sci Technol,2017,45(5):541-557.doi:10.1080/10739149.2016.127822915Hammouda B.Probing Nanoscale Structures-The SANS Toolbox.Gaithersburg:National Institute of Standards and Technology Center for Neutron Research,2010.31-19116Kline S.J Appl Crystallogr,2006,39(6):895-900.doi:10.1107/s002188980603505917Butler P,Doucet M,Jackson A,King S.SasView for Small Angle Scattering Analysis (July 2020).2020-10-25.https://www.sasview.org/18Konarev P V,Svergun D I.IUCrJ,2018,5(Pt 4):402-409.doi:10.1107/s205225251800590019Petoukhov M V,Svergun D I.Acta Crystallogr D Biol Crystallogr,2015,71(Pt 5):1051-1058.doi:10.1107/s139900471500257620Volkov V,Svergun D.J Appl Crystallogr,2003,36:860-864.doi:10.1107/s002188980300026821Gereben O,Pusztai L,McGreevy R L.J Phys Condens Matter,2010,22(40):404216.doi:10.1088/0953-8984/22/40/40421622Li Z,Cheng H,Li J,Hao J,Zhang L,Hammouda B,Han C C.J Phys Chem B,2011,115(24):7887-7895.doi:10.1021/jp203777g23Hu W T,Yang H,He C,Hu H Q.Chinese J Polym Sci,2017,35(9):1156-1164.doi:10.1007/s10118-017-1969-724Cotton J P,Decker D,Benoit H,Farnoux B,Higgins J,Jannink G,Ober R,Picot C,des Cloizeaux J.Macromolecules,1974,7(6):863-872.doi:10.1021/ma60042a03325Goossen S,Bras A R,Pyckhout-Hintzen W,Wischnewski A,Richter D,Rubinstein M,Roovers J,Lutz P J,Jeong Y,Chang T,Vlassopoulos D.Macromolecules,2015,48(5):1598-1605.doi:10.1021/ma502518p26Hao J,Cheng H,Butler P,Zhang L,Han C C.J Chem Phys,2010,132(15):154902.doi:10.1063/1.338117727Hore M J A,Hammouda B,Li Y,Cheng H.Macromolecules,2013,46(19):7894-7901.doi:10.1021/ma401665h28Jia D,Muthukumar M,Cheng H,Han C C,Hammouda B.Macromolecules,2017,50(18):7291-7298.doi:10.1021/acs.macromol.7b0150229Cheng H,Wu C,Winnik M A.Macromolecules,2004,37(13):5127-5129.doi:10.1021/ma049620130Hammouda B,Jia D,Cheng H. OAJoST,2015,3:101152.doi:10.11131/2015/10115231Datta S,Kato Y,Higashiharaguchi S,Aratsu K,Isobe A,Saito T,Prabhu D D,Kitamoto Y,Hollamby M J,Smith A J,Dagleish R,Mahmoudi N,Pesce L,Perego C,Pavan G M,Yagai S.Nature,2020,583(7816):400-405.doi:10.1038/s41586-020-2445-z32Zhang H V,Polzer F,Haider M J,Tian Y,Villegas J A,Kiick K L,Pochan D J,Saven J G.Sci Adv,2016,2(9):e1600307.doi:10.1126/sciadv.160030733Wang Z,Faraone A,Yin P,Porcar L,Liu Y,Do C,Hong K,Chen W R.ACS Macro Lett,2019,8(11):1467-1473.doi:10.1021/acsmacrolett.9b0061734Sternhagen G L,Gupta S,Zhang Y,John V,Schneider G J,Zhang D.J Am Chem Soc,2018,140(11):4100-4109.doi:10.1021/jacs.8b0046135Zuo T,Ma C,Jiao G,Han Z,Xiao S,Liang H,Hong L,Bowron D,Soper A,Han C C,Cheng H.Macromolecules,2019,52(2):457-464.doi:10.1021/acs.macromol.8b0219636Balsara N P,Lin C,Hammouda B.Phys Rev Lett,1996,77(18):3847-3850.doi:10.1103/physrevlett.77.384737Liu D,Song L,Song H,Chen J,Tian Q,Chen L,Sun L,Lu A,Huang C,Sun G.Compos Sci Technol,2018,165:373-379.doi:10.1016/j.compscitech.2018.07.02438Liu D,Chen J,Song L,Lu A,Wang Y,Sun G.Polymer,2017,120:155-163.doi:10.1016/j.polymer.2017.05.06439Staropoli M,Raba A,Hövelmann C H,Krutyeva M,Allgaier J,Appavou M S,Keiderling U,Stadler F J,Pyckhout-Hintzen W,Wischnewski A,Richter D.Macromolecules,2016,49(15):5692-5703.doi:10.1021/acs.macromol.6b0097840Sadler D M,Keller A.Macromolecules,1977,10(5):1128-1140.doi:10.1021/ma60059a04541Kimata S,Sakurai T,Nozue Y,Kasahara T,Yamaguchi N,Karino T,Shibayama M,Kornfield J A.Science,2007,316(5827):1014.doi:10.1126/science.114013242Shibayama M,Li X,Sakai T.Colloid Polym Sci,2018,297:1-12.doi:10.1007/s00396-018-4423-743Gao J,Tang C,Elsawy M A,Smith A M,Miller A F,Saiani A.Biomacromolecules,2017,18(3):826-834.doi:10.1021/acs.biomac.6b0169344Srivastava S,Andreev M,Levi A E,Goldfeld D J,Mao J,Heller W T,Prabhu V M,de Pablo J J,Tirrell M V.Nat Commun,2017,8:14131.doi:10.1038/ncomms1413145Nishi K,Fujii K,Katsumoto Y,Sakai T,Shibayama M.Macromolecules,2014,47(10):3274-3281.doi:10.1021/ma500662j46Endo F,Kurokawa N,Tanimoto K,Iwase H,Maeda T,Hotta A.Soft Matter,2019,15(27):5521-5528.doi:10.1039/c9sm00582j47Yang R,He S,Hu Q,Sun M,Hu D,Yi J.Fuel,2017,197:91-99.doi:10.1016/j.fuel.2017.02.00548Sun M,Yu B,Hu Q,Zhang Y,Li B,Yang R,Melnichenko Y B,Cheng G.Int J Coal Geology,2017,171:61-68.doi:10.1016/j.coal.2016.12.00449Jafta C J,Petzold A,Risse S,Clemens D,Wallacher D,Goerigk G,Ballauff M.Carbon,2017,123:440-447.doi:10.1016/j.carbon.2017.07.04650Melgar D,Zhou Q,Chakraborty S,Porcar L,Weinstock I A,Ávalos J B,Wu B,Bo C,Yin P.J Phys Chem C,2020,124(18):10201-10208.doi:10.1021/acs.jpcc.0c0101951Bahadur J,Melnichenko Y B,He L,Contescu C I,Gallego N C,Carmichael J R.Carbon,2015,95:535-544.doi:10.1016/j.carbon.2015.08.01052Shi Ce(史册),Li Yunqi(李云琦).Acta Polymerica Sinica(高分子学报),2015, (8):871-883.doi:10.11777/j.issn1000-3304.2015.1504853Fitter J,Gutberlet T,Katsaras J.Neutron Scattering in Biology: Techniques and Applications.Berlin Heidelberg and New York:Springer,2006.doi:10.1007/3-540-29111-354Jacques D A,Trewhella J.Protein Sci,2010,19(4):642-657.doi:10.1002/pro.35155Koruza K,Lafumat B,ÁVégvári,Knecht W,Fisher S Z.Arch Biochem Biophys,2018,645:26-33.doi:10.1016/j.abb.2018.03.00856Petoukhov M V,Svergun D I.Curr Opin Struct Biol,2007,17(5):562-571.doi:10.1016/j.sbi.2007.06.00957Ma Chang-li(马长利),Cheng He(程贺),Zuo Taisen(左太森),Jiao Guisheng(焦贵省),Han Zehua(韩泽华),Qin Hong(秦虹).Chinese Journal of Chemical Physics(化学物理学报),2020,33(6s):727-732.doi:10.1063/1674-0068/cjcp200507758Jiao G,Zuo T,Ma C,Han Z,Zhang J,Chen Y,Zhao J,Cheng H,Han C C.Macromolecules,2020,53(13):5140-5146.doi:10.1021/acs.macromol.0c0078859Petoukhov M V,Svergun D I.Eur Biophys J,2006,35(7):567-576.doi:10.1007/s00249-006-0063-960Shrestha U R,Juneja P,Zhang Q,Gurumoorthy V,Borreguero J M,Urban V,Cheng X,Pingali S V,Smith J C,O’Neill H M,Petridis L.Proc Natl Acad Sci,2019,116(41):20446-20452.doi:10.1073/pnas.190725111661Han C C,Akcasu A Z.Scattering and Dynamics of Polymers: Seeking Order in Disordered Systems.Singapore:John Wiley & Sons (Asia) Pte Ltd,2011.1-98.doi:10.1002/978047082484962Zemb T,NeutronLindner P.X-rays and Light.Scattering Methods Applied to Soft Condensed Matter.Amsterdam:Elsevier,2002.1-552.doi:10.1107/s0021889803001808原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2020.20242&lang=zhDOI:10.11777/j.issn1000-3304.2020.20242《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304
  • 大昌华嘉成功举办“吸附表征技术的新进展”研讨会
    大昌华嘉公司于2013年4月24日在浙江大学(玉泉校区)成功举办的&ldquo 吸附表征技术的新进展&rdquo 研讨会。 会议邀请BEL公司海外销售经理Joji Sonoda博士介绍最新的吸附表征技术进展,大昌华嘉吸附产品经理樊润将同步翻译。Joji Sonoda博士详细讲解多组分气体竞争吸附,低温化学吸附,纳克级吸附测量系统最新的相关应用,以及吸附过程分析仪如何测试等压吸附线和等温吸附线,并将介绍全球第一台IRMS-TPD 红外质谱连用TPD测定Brosnted酸和Lewi酸的应用。 美国麦奇克旗下的拜尔有限公司(BEL)是一家研究生产容量法气体吸附分析仪的专业制造厂商。第一台多功能催化剂表征分析仪,首创全自动蒸汽吸附系统,开发了容量法高压吸附仪,(容量法)多组分气体和/或蒸汽混合气体吸附仪,吸附过程分析仪,痕量气体吸附仪等,极大地丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。 大昌华嘉商业(中国)有限公司科学仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器,在中国的石油,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。
  • 避免国产外表进口"心",科技部重点专项要求核心部件国产化“ALL IN”
    仪器信息网讯 近年来,我国的仪器技术研究与产品开发工作虽已取得较大进展,但是在高端科研仪器领域,除核磁共振波谱仪外,常用的高分辨质谱仪等大型分析仪器、大部分的生命科学仪器如磁共振成像仪、超分辨荧光成像仪、冷冻透射电镜等还大量依靠进口。5月17日,科技部发布“基础科研条件与重大科学仪器设备研发”重点专项2021年度项目申报指南及“揭榜挂帅”榜单 。该重点专项申报指南围绕科学仪器、科研试剂、实验动物和科学数据等四个方向进行布局,拟支持39个项目,拟安排国拨经费概算5.39亿元。此外,拟支持16个青年科学家项目,拟安排国拨经费概算4800万元,每个项目300万元。本期,仪器信息网特别整理汇总目前部分代表性的生命科学仪器/零部件的国产化成果/进展供大家了解。(欢迎提供最新成果进展予以补充,liuld@instrument.com.cn)1.高性能流式细胞分选仪流式细胞术发展几十年,在仪器技术方面创新不断。流式的应用范围也越来越广泛,除了临床应用的日渐成熟,一些新应用也在积极开发,同时流式也应用到了环境和食品安全检查方法,在生物制药研发和生产中,流式也越来越重要。与此同时2020年全球单细胞分析市场规模估计为26.8亿美元,预计在2019至2026年以16.9%的年复合增长率增长,国内市场规模预计35亿人民币。强大的市场需求以及市场占有率狭小的局面,对国产单细胞分析仪器的研制和产业化提出了巨大的挑战,同时也带来了前所未有的机遇。1-1 高通量流式拉曼分选仪——中科院青岛生物能源与过程研究所单细胞中心中科院青岛生物能源与过程研究所单细胞中心研制开发出首款高通量流式拉曼分选仪产品样机FlowRACS。该仪器设备很好地解决了拉曼谱图采集时间长、分选通量低等难题,为酶资源的检测和发掘开拓了崭新的技术方案。上述工作由单细胞中心马波研究员和徐健研究员主持完成,并得到了国家合成生物学重点研发计划、国家重大科学仪器研制项目、山东能源研究院、青岛星赛生物科技有限公司等的支持。高通量流式拉曼分选仪FlowRACS据了解,青岛能源所单细胞研究中心的研究工作组创造发明了pDEP-RADS技术(见上图),并在此核心技术的基础上研制开发出FlowRACS。研究技术人员采用低拉曼背景石英玻璃为微流控芯片基材,以提升表型检测的普适性 以氧化铟锡(而非金属)加工电极阵列,以防止光热损坏 采用先拉曼检测后液滴包裹、液滴产生和分选同步进行的对策,防止液滴对拉曼信号采集的不良影响,进而提升检测准确度并优化系统操作 利用独立自主开发设计的QSpec软件,完成平台的自动化运转。依托于pDEP-RADS技术的FlowRACS有着完全独立自主的国家知识产权,已于2020年6月份完成现场技术验收,全谱分选通量到达600个细胞/分钟。FlowRACS的问世和应用领域扩展,将为单细胞科学与产业带来崭新的研究工具,并促进我国细胞科学高端品牌仪器产业的自主开发创新。2.第三代基因测序仪基因测序仪是基因检测行业的上游核心壁垒,是生命科学领域和精准医疗行业的“基建”。具有国际先进水平的国产第三代基因测序仪的研制,将使中国在该领域建立先发优势,在未来的国际竞争中占据有利位置。这不仅将填补中国在基因测序基础装备领域的空白、提升装备自主化水平,同时也将使国内生命科学研究机构能获得低成本、高效率的测序工具,更有效地开发和利用中国丰富的基因资源,加速中国基因战略的发展。也对人类提高防备疾病,延长人类寿命将有积极的意义。2-1 单分子基因测序平台——真迈生物真迈生物以基因测序仪为核心的分子诊断上游技术平台的自主研发制造,历经数年刻苦攻关,在中国本土掌握了基因测序平台各项“卡脖子”关键技术和工艺,实现了酶、核酸、染料、芯片等核心原料在国内自主研发生产,拥有基因测序上游核心技术。目前,真迈生物已推出了自研的单分子测序平台和高通量测序平台。单分子基因测序平台GenoCare 1600单分子测序平台GenoCare 1600是全球首个通过医疗器械临床试验的单分子基因测序仪,也是首个获得欧盟CE标志的国产单分子基因测序仪。其独特的单分子测序技术、全内反射荧光显微技术(TIRF),无需扩增、自动化操作、一键出报告等特点,能极大地简化基因检测过程,提高使用便利性,并显著降低测序成本和检测周期。在无创产前基因检测(NIPT)、染色体异常基因检测(CNV-seq)、胚胎植入前筛查(PGT-A)等方向具有明显优势,可为临床诊断提供更便捷高效的解决方案。新冠疫情期间,单分子测序平台GenoCare 1600在助力深圳疾控破解新冠病毒序列的突变位点以及假阳性样本的复核鉴定上也表现优异。3.核磁共振波谱仪在化学分析仪器中,核磁共振谱仪是一种非常重要的研究和测试工具,它的许多功能是其它手段无法代替的。核磁共振谱仪可以给出小到原子核在分子中的精确位置及其周边环境的微小变化,大到整个人体的断层成像等具有丰富内涵的信息。被广泛用于工业、农业、化学、生物、医药、地球科学和环境科学等领域。3-1 核磁共振波谱仪——武汉中科牛津武汉中科牛津波谱技术有限公司在武汉物理与数学研究所核心专利技术的基础上,引进世界领先的英国牛津仪器超导磁体技术,生产出我国完整的具有自主知识产权的核磁共振波谱仪。中科牛津建立于2013年,于2016年与英国牛津仪器公司签订磁体技术转移协议,并在瑞士成立了探头生产子公司-Q.OneTec AG。中科牛津是国内第一家从事超导NMR波谱仪研发、生产和服务的高新技术企业。中科牛津 WNMR-I 400-600MHz 核磁共振波谱仪 4.超高分辨活细胞成像显微镜超高分辨率活细胞成像显微镜系统是用于活细胞长时间、高清晰度、高灵敏度成像的设备。当用活细胞染料标记细胞内特定生物大分子,或者使用荧光蛋白标记体内特定蛋白时,使用该荧光染料或者荧光分子特定的激发光线激发,通过探测其特用的发射光线即可探测到该生物大分子。活细胞成像系统一方面控制细胞生存的外部环境,提供合适的温度、适度和pH,让细胞处于好的状态。另外一方面通过高灵敏度CCD捕捉细胞中的微弱荧光,长时间观察细胞中的荧光分子的运动,具体揭示细胞间或细胞内生物大分子的变化过程。4-1 超分辨显微光学核心部件及系统研制——中国科学院苏州生物医学工程技术研究所中国科学院苏州生物医学工程技术研究所在大数值孔径物镜、特种光源、超分辨显微成像系统集成与检测等关键技术上取得系列突破,研制出具有自主知识产权的共聚焦显微镜、双光子显微镜、STED超分辨显微镜等高端光学显微镜,以及大数值孔径显微物镜、特种LED光源等核心部件。2018年12月,由中国科学院苏州生物医学工程技术研究所承担的国家重大科研装备研制项目“超分辨显微光学核心部件及系统研制”在苏州高新区通过验收,标志着我国已经成功研制出高端超分辨光学显微镜。该超分辨显微成像系统已应用于国家重点研发计划“战略性先进电子材料”、“重大科学仪器设备开发”、“数字诊疗装备研发”专项相关项目。超分辨光学显微镜及相关核心关键部件的研制,对推动我国生物医学前沿基础研究、光学显微镜行业转型升级具有重要意义。4-2 共聚焦扫描成像模块——北京世纪桑尼科技有限公司北京世纪桑尼科技有限公司,是专门从事高速光学扫描振镜、激光与振镜运动控制卡及其软件、激光扫描系统及技术解决方案的研发、生产、销售和服务为一体的高新技术企业。该公司自主设计开发了 激光扫描共聚焦成像模块。CSIM 110共聚焦扫描成像模块CSIM 110共聚焦扫描成像模块,是桑尼基于多年高速光学扫描振镜和激光打标系统的开发经验,全新自主研发的产品。用户可将其搭配在原有的倒置荧光显微镜上,即可方便、快速地把倒置荧光显微镜升级为激光扫描(单点)共聚焦显微镜,获取高质量的共聚焦图像。4-3 海森结构光显微镜(Hessian SIM)——北京大学陈良怡团队&华中科技大学谭山团队据科技部消息,膜生物学国家重点实验联合华中科技大学发明的海森结构光显微镜 (Hessian SIM),实现了活细胞超快长时程超高分辨率成像,能辨清囊泡融合孔道和线粒体内嵴动态。在每秒钟得到188张超高分辨率图像时,海森结构光显微镜的空间分辨率可以达到85纳米,能够分辨单根头发的1/600到1/800大小结构,而所需要的光照度小于常用的共聚焦显微镜光照度三个数量级。同时,该显微镜也实现了细胞“能量工厂”线粒体的超快超分辨成像,首次在活细胞中解析线粒体融合、分裂时内嵴的活动,及线粒体内嵴自身的重组装过程,并能够观察内质网与线粒体发生相互作用时的动态变化。这一研究成果在《自然—生物技术》线形式全文发表5. 聚焦离子束/电子束双束显微镜聚焦离子束电子束显微镜系统在材料失效分析、纳米材料结构表征与性能分析以及纳米器件研制等方面发挥着重要作用,主要用于 S/TEM 成像和原子探针断层扫描(APT)以及最高质量的表面下和三维表征。近年来该系统在生物学和医学领域的应用日益受到人们的重视。包括透射电镜生物样品制备、细胞和组织内部结构观察与三维重构等方面的应用。(欢迎联系补充国产成果/进展:liuld@instrument.com.cn)高端科研仪器依赖进口的问题已得到有关部门的高度重视。早在1998年,国家自然科学基金委就设立了科学仪器基础研究专项。2011年,“国家重大科研仪器设备研制专项”和“国家重大科学仪器设备开发专项”设立,分别由国家自然科学基金委和科技部管理,一个负责原创性的仪器研究,一个负责工程化和产业化。据了解,2011至2018年,国家自然科学基金委资助来自中央有关部门推荐、经费体量在1000万元以上的重大科研仪器项目53项,批准资助金额38.14亿元;资助全国科研工作者自由申请、经费体量在1000万元以下的重大科研仪器项目466项,批准资助金额32.03亿元;两类项目合计资助经费超过70亿元。【后记】业内专家表示,国产化道路任重而道远,需要产业链上相关企业同心协力,经过多年奋斗方可实现,许多企业已从有能力实现国产替代的领域着手,逐步实现国产化,配套软件也在同步开发。我们也希望,产业各界能够在重大生命科学仪器设备国产化进展取得进展,早日摆脱科学仪器国产外表进口“心”的局面。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制