当前位置: 仪器信息网 > 行业主题 > >

太阳能接线盒

仪器信息网太阳能接线盒专题为您提供2024年最新太阳能接线盒价格报价、厂家品牌的相关信息, 包括太阳能接线盒参数、型号等,不管是国产,还是进口品牌的太阳能接线盒您都可以在这里找到。 除此之外,仪器信息网还免费为您整合太阳能接线盒相关的耗材配件、试剂标物,还有太阳能接线盒相关的最新资讯、资料,以及太阳能接线盒相关的解决方案。

太阳能接线盒相关的资讯

  • 等离子如何提升太阳能光伏板封装可靠性
    等离子清洗机提升太阳能光伏板封装可靠性2017年,习近平总书记在党的十九大报告中提出,必须树立和践行“绿水青山就是金山银山”的理念,站在人与自然和谐共生的高度谋发展。生态环境是人类生存发展的根基,通过清洁能源的开发使用,才能做好保护生态环境,走好绿色发展之路。一、清洁能源之太阳能光伏一般情况,太阳能光伏板的使用环境较为苛刻,而国家规定光伏电站的设计使用寿命是25年,因此太阳能光伏组件封装的可靠性就显得尤为重要。光伏产业流程中,哪些环节会影响最终的封装效果呢? 二、光伏产业流程 显而易见,中游太阳能光伏板制程中,背板可靠性、压层件工艺、整体光伏组件封装工艺等,均是影响太阳能光伏板封装可靠性的重要因素。下面我们来了解,如何使用等离子技术,提高太阳能光伏组件封装可靠性!三、等离子提升太阳能光伏板封装可靠性太阳能光伏板在生产过程中,存在大量涂覆、复合、粘接、热压等工艺,使用等离子技术活化后,可以有效提高材料表面的润湿性,从而提升整体封装效果。01 等离子提升光伏背板可靠性太阳能背板需具备优越的耐候性、高绝缘性以及低水透性能。含氟材料的耐候性、斥水赤油性能,能很好的满足这一要求,但斥水斥油性不利于与基材复合,因此在与基材(PET)涂覆/复合前,使用等离子清洗,可有效提高含氟材料与基材涂覆/复合的可靠性。02 等离子提升光伏压层件工艺可靠性 压层件工艺中,使用等离子清洗机对光伏玻璃表面和底板上的氟膜进行表面处理,能更好的与EVA结合,提高压层件各组件的结合强度。03 等离子提升“组件”工艺可靠性压层件完成后,加上边框、密封胶、接线盒,就完成了我们的主体“太阳能光伏板”的制作。在这一环节,使用等离子清洗机对边框进行处理,从理论上讲,对密封效果也会有一定程度的提升。后续加上逆变器、汇流箱、支架、蓄电池等,一个整体的光伏系统就可以完成啦。
  • UL完成实验室扩建在北美建成规模最大的太阳能测试实验室
    测试能力提升40%,UL圣荷西实验室帮助太阳能产品更快投放市场   伊利诺伊州诺斯布鲁克2009年7月16日电 /美通社亚洲/ -- 全球产品安全检测和认证领域的领导者 Underwriters Laboratories Inc. (R) (UL),近日宣布其在美国加州圣荷西的光伏测试实验室完成扩建。扩建后的实验室的测试能力提升超过40%,成为北美地区同类中规模最大、检测范围最全面的太阳能测试实验室。   为满足全球日益增长的对新能源相关产品进行测试和认证的需求,UL 在太阳能和其他可替代能源,如风能,以及新的能效和能源存储技术,如 LED 和车用大型电池等领域进行大笔投资,包括新建实验室、标准开发、认证体系和科技攻关研究。   除了扩建美国实验室外,今年年初 UL 在我国苏州的实验室正式开业,同时计划2010年在德国和日本建成新的实验室。另外,值得一提的是,最近新扩建的美国加州圣荷西实验室获得了 CBTL 的资质,可以根据全球主要光伏生产和应用国统一认可的协调技术标准之要求提供国际认证服务,帮助厂商更快更便捷地获得全球市场准入。在过去几年,UL 一直是 IECEE 的主要参与者。   “预计到2035年,全球太阳能发电量将占全球总电量的10%,我们相信,在这个进程中,安全因素比以往任何时候更需要优先考量,”UL 全球能源事业部总经理 Jeff Smidt 先生表示,“我们承诺为全球提供安全、可靠的可再生能源解决方案,促进新能源的快速发展,而我们圣荷西实验室的扩建和 CBTL 的资质仅是其中的两个实践例子。”   圣荷西的光伏卓越技术中心扩建后室面积达到32,000平方英尺(约3,000平方米)。实验室新添了5台特种测试箱,可对各种新的光伏革新技术进行评估,包括晶体硅及薄膜技术、建筑一体化光伏组件 (BIPV) 和聚光型太阳能光伏系统,也可对需认可的零部件进行测试,如光伏连接器和接线盒等。同时,UL 会招募新员工以应对新技术的测试需求。   Underwriters Laboratories 简介   Underwriters Laboratories (UL) 是一家独立的安全认证机构。一个多世纪以来,UL 为各类产品提供安全检测及制定安规标准。如今,经过 UL 审核的产品、零配件、原材料及体系已超过19,000种类别,平均每年已有200亿个 UL 标志出现在全球多达72,000家制造商生产的产品上。目前,UL 的服务机构已遍布全球,足迹踏遍98个国家,并拥有64所检测实验室。更多信息,请访问 http://www.ul.com/newsroom 。
  • “双碳”目标下再看太阳能光伏电池—硅料、硅片杂质元素分析技术
    材料是社会进步的重要物质条件,半导体产业近年来已成为材料产业中备受瞩目的焦点。从沙子到晶片直至元器件的制造和创新,都需要应用不同的表征与检测方法去了解其特殊的物理化学性能,从而为生产工艺的改进提供科学依据。仪器信息网策划了“半导体检测”专题,特别邀请到布鲁克光谱中国区总经理赵跃就此专题发表看法。布鲁克光谱中国区总经理 赵跃赵跃先生拥有超过20年科学分析仪器领域丰富的从业经历,先后服务于四家跨国企业,对于科学分析仪器以及材料研发行业具有深刻理解,促进了快速引进国外先进技术服务于中国的科研创新和产业升级。2020年9月,习近平主席在第75届联合国大会上,明确提出中国力争在2030年前实现“碳达峰”,2060年前实现“碳中和”的目标。“双碳”目标的直接指向是改变能源结构,即从主要依靠化石能源的能源体系,向零碳的风力、光伏和水电转换。加快能源结构调整,大力发展光伏等新能源是实现“碳达峰、碳中和”目标的必然选择。目前,光伏产业已成为我国少有的形成国际竞争优势、并有望率先成为高质量发展典范的战略性新兴产业,也是推动我国能源变革的重要引擎。太阳能光伏是通过光生伏特效应直接利用太阳能的绿色能源技术。2021年,全球晶硅光伏电池产能达到423.5GW,同比增长69.8%;总产量达到223.9GW,同比增长37%。中国大陆电池产能继续领跑全球,达到360.6GW,占全球产能的85.1%;总产量达到197.9GW,占全球总产量的88.4%。截止到2021年底,我国光伏装机量为3.1亿千瓦时。据全球能源互联网发展合作组织预测,到2030、2050、2060年我国光伏装机量将分别达到10、32.7、35.51亿千瓦时,到2060年光伏的装机量将是今天的10倍以上。从发电量来看,虽然其发电容量仍只占人类用电总量的很小一部分,不过,从2004年开始,接入电网的光伏发电量以年均60%的速度增长,是当前发展速度最快的能源。2021年我国光伏发电量3259亿千瓦时,同比增长25.1%,全年光伏发电量占总发电量比重达4%。预计到2030年,我国火力发电将从目前的49%下降至28%,光伏发电将上升至27%。预计2030年之后,光伏将超越火电成为所有能源发电中最重要的能源,光伏新能源作为一种可持续能源替代方式,经过几十年发展已经形成相对成熟且有竞争力的产业链。在整个光伏产业链中,上游以晶体硅原料的采集和硅棒、硅锭、硅片的加工制作为主;产业链中游是光伏电池和光伏组件的制作,包括电池片、封装EVA胶膜、玻璃、背板、接线盒、逆变器、太阳能边框及其组合而成的太阳能电池组件、安装系统支架;产业链下游则是光伏电站系统的集成和运营。硅料是光伏行业中最上游的产业,是光伏电池组件所使用硅片的原材料,其市场占有率在90%以上,而且在今后相当长一段时期也依然是光伏电池的主流材料。在2011年以前,多晶硅料制备技术一直掌握在美、德、日、韩等国外厂商手中,国内企业主要依赖进口。近几年随着国内多晶硅料厂商在技术及工艺上取得突破,国外厂商对多晶硅料的垄断局面被打破。我国多晶硅料生产能力不断提高,综合能耗不断下降,生产管理和成本控制已达全球领先水平。2021年,全球多晶硅总产量64.2万吨,其中中国多晶硅产量50.5万吨,约占全球总产品的79%。全球前十硅料生产企业中中国有7家,世界多晶硅料生产中心已移至中国,我国多晶硅料自给率大幅提升。与此同时,在多晶硅直接下游硅片生产中,因单晶硅片纯度更高,转化效率更高, 消费占比也不断走高,至 2020 年,单晶硅片占比已达 90%的水平。用于光伏生产的太阳能级多晶硅料一般纯度在6N~9N之间。无论对于上游的硅料生产,还是单晶硅片、多晶硅片生产,硅中氧含量、碳含量、III族、V族施主、受主元素含量、氮含量测量是硅材料界非常重要的课题,直接影响硅片电学性能。故准确测试上游硅料、单晶硅片中相应杂质元素含量显得尤为必要、重要。在过去的十几年中,ASTM International(前身为美国材料与试验协会)已经对上述杂质元素的定量分析方法提出了国际普遍通行的标准,其中,分子振动光谱学方法因其相对低廉的设备成本、快速、无损、高灵敏度的测试过程,以及较低的检测下限,倍受业内从事品质控制的机构和组织的青睐。值得一提的是,我国也在近几年陆续制定和出台了多个以分子振动光谱学为品控方法的相关行业标准 (见附录)。这标志着我国硅料生产与品控规范进入了更成熟、更完善、更科学、更自主的新阶段。德国布鲁克集团,作为分子振动光谱仪器领域的领军企业,几十年来坚持为工业生产和科学研究提供先进方法学的助力。由布鲁克光谱(Bruker Optics)研发制造的CryoSAS全自动、高灵敏度低温硅分析系统,基于傅立叶变换红外光谱技术,专为工业环境使用而设计。顺应ASTM及我国相关标准中的测试要求,此系统可以室温和低温下(<15K)工作,通过测试中/远红外波段(1250-250cm-1)硅单晶红外吸收光谱(此波段红外吸光光谱涵盖了硅晶体中间隙氧,代位碳,III-V族施主、受主元素以及氮氧复合体吸收谱带。),可以直接或间接计算出相应杂质元素含量值。检测下限可低至ppta(施主,受主杂质)和ppba量级(代位碳,间隙氧),很好地满足了上游硅料品控的要求,为中游光伏电池和光伏组件的制作打下了扎实的原料品质基础。随着硅晶原料产能的逐年提高,布鲁克公司的 CryoSAS仪器作为光伏产业链上游的重要品控工具之一,已在全球硅料制造业中达到了极高的保有量。随着需求的提升,电子级硅的生产需求也在持续增加。布鲁克公司红外光谱技术也有成熟的方案和设备,目前国内已有多个用户采用并取得了良好的效果。低温下(~12 K),硅中碳测试结果(上图),硅中硼、磷测试结果(下图)附录:产品国家标准:《GB/T 25074 太阳能级多晶硅》《GB/T 25076 太阳能电池用硅单晶》测试方法国家标准:《GB/T 1557 硅晶体中间隙氧含量的红外吸收测量方法》《GB/T 1558 硅中代位碳原子含量红外吸收测量方法》《GB/T 35306 硅单晶中碳、氧含量的测定 低温傅立叶变换红外光谱法》《GB/T 24581 硅单晶中III、V族杂质含量的测定 低温傅立叶变换红外光谱法》(布鲁克光谱 供稿)
  • 美国TA仪器参加亚洲材料大会推广太阳能解决方案
    2010年9月下旬, 第十一届亚洲材料大会在青岛隆重召开。美国TA仪器应邀在此次会议的太阳能专题讨论中进行演讲。 美国TA仪器的技术经理许炎山先生向太阳能行业的观众们介绍了DSC作为一个新的测量技术如何替代传统的测试EVA交联度的二甲苯化学法 美国TA仪器的TGA产品如何解决背板变形、DSC和TGA如何帮助太阳能用户对背板的25年寿命进行预测等等太阳能企业最为关心和期待的话题。 此次演讲获得了与会者的热烈反响,大家在演讲结束后意犹未尽,纷纷要求美国TA仪器有机会应向更多的太阳能企业推广这些具有突破性的新技术,使得广大太阳能企业更快的提高产品的效率和可靠性。
  • 深度︱光伏电站热成像检测解决方案
    从2004年的0.063GW到2014年的26.84GW,10年400多倍的增长速率让全球见证了光伏发电的中国速度。截至2015年底,我国光伏发电累计装机容量4318万千瓦,成为全球光伏发电装机容量最大的国家。然而,“前景向好、难题不断”。看似有强势吸引力的光伏电站建设企业,一面怀揣着坐拥高收益甚至完成平价上网终极使命的美好愿景,一面在动辄上百亿的投资资金面前备受折磨。这些问题的症结都指向同一个核心词汇——质量。案例一:2015年5月26日,位于美国亚利桑那州的苹果公司Mesa数据中心发生火灾,这让科技巨人最看中的“绿色面子工程”却被烧得满目疮痍。初步调查发现,起火点可能是苹果工厂屋顶大楼上的光伏组件。这些安装在苹果公司Mesa工厂屋顶上的光伏组件可向当地1.4万户家庭供应电力。不幸的是,这场大火让美国最为知名的光伏巨头FirstSolar公司“躺枪”,引起火灾的太阳能电池板,正是占据全球薄膜太阳能产销第一的FirstSolar公司。案例二:2015年6月26日,中山长虹项目一名施工人员在连接组件阵列时被直流电电死,据了解,是组串的端子没接汇流箱就放屋顶上了,广东这几天暴雨,端子进水,施工人员碰到后发生了该事故。这是一些令人触目惊心的事故,以上列举的只是光伏事故的冰山一角,近年来,仅国内电站产生问题的例子就达116个,而且,这个数字依然高企不下。哪些因素导致安全问题?光伏电站质量和安全问题依然层出不穷。那么,到底有哪些因素导致了“问题”的出现?我们的研究团队走访了大量的光伏电站,发现光伏电站主要面临的安全问题分为组件和逆变器两大部分。第一,组件的安全问题主要来自接线盒和热斑效应。不起眼的接线盒是引起很多组件自燃的“元凶”,接线盒市场较为混乱和无序。劣质连接器由于内部粗糙不平,接触点较少,使电阻过高引燃接线盒,进而烧毁组件背板引起组件碎裂。在一定条件下,一串联支路中被遮蔽的太阳电池组件,将被当作负载消耗其他有光照的太阳电池组件所产生的能量,被遮蔽的太阳电池组件此时会发热,这就是热斑效应。这种效应能严重的破坏太阳电池。第二,逆变器和运维漏洞百出。传统集中式方案,每个逆变器100多组串正负极并联在一起,当任意的组串正极和负极漏电,1000V的直流高压,触电将无可避免。传统电站采用熔丝设计增加了直流节点,电站即使使用熔丝,也不能有效地保护组件;而且在过载电流情况下,熔丝还会因熔断慢,发热高,引发着火风险。逆变器厂家很多、质量参差不齐,导致逆变器监测数据不准确,逆变器或者直流汇流箱数据采样精度不够,造成故障信息判断不准确、不及时,故障恢复时间长、损失大。国家发改委能源研究所研究员王斯成说:“电站在运行一段时间后存在着大量问题,而电站质量直接影响到电站的收益,这也是为什么目前银行对投资电站有顾虑的重要原因。然而目前电站开发商对这一问题却没有足够重视,这对行业来说是伤害。”FLIR的解决方案——红外热像仪质量保证流程对于太阳能电池板极具重要。电池板的正常运行是高效发电、长期使用寿命和高投资回报率的必要条件。为了确保正常运行,在生产过程中和电池板安装后,都需要一种快速、简易又可靠的太阳能电池板性能检查方法。FLIR 工程师说,使用热像仪进行太阳能电池板检查有着若干优势。异常现象能够清楚地显示在清晰的热图像上,并且与其他大部分方法不同的是,热像仪能够用于对已经安装好的太阳能电池板在运行期间进行检查,最后,热像仪还可在短时间内检查大片区域。在研发领域,热像仪已经是用于太阳能电池和电池板检查的成熟工具。对于这些复杂的测量,配备制冷式探测器的高性能热像仪通常用于受控实验室条件下。但热像仪的太阳能电池板检查用途并不仅限于研究领域。非制冷式热像仪目前正越来越多地应用于太阳能电池板安装前的质量管理,以及安装后的常规预测性维护检查。使用热像仪可以探测到潜在问题区域,并在问题或故障真正出现前予以修复。但并非每一种热像仪都适合太阳能电池检查,需要遵循一些规则和指导方针,以便实施有效检查,确保得出正确的结论。热像仪检查太阳能电池板规程在研制和生产阶段,太阳能电池是靠通电或使用闪光灯来激活。这确保了充分的热对比度,用于精确热成像测量。但这种方法不能用于实地检查太阳能电池板,因此操作员必须确保有足够的太阳能。为了在实地检查太阳能电池时获得充分的热对比度,需要500 W/m2以上的太阳辐照度。要获得最大值结果,建议准备好700 W/m2太阳辐照度。太阳辐照度以kW/m2为单位,描述了一个表面的瞬间入射能量,该能量可用日射强度计(用于测量全球太阳辐照度)或太阳热量计(用于测量直接太阳辐照度)进行测量。太阳辐照度主要取决于位置和局部天气。较低的室外温度也可提高热对比度。您需要哪一种类型的热像仪?用于预测性维护检查的便携式热像仪通常搭载有灵敏度为8–14μm波段的非制冷微量热型探测器。但在这个波段内是无法穿透玻璃的。从电池板正面检查太阳能电池时,热像仪探测到的是玻璃表面的热量分布,但只能间接探测玻璃下方电池的热量分布。因此太阳能电池板玻璃表面的可测量和可视温差比较微弱。为了使这些温差可见,用于检查的热像仪需要具备≤0.08K的热灵敏度。为了清晰显现热图像中的微弱温差,热像仪还应能够手动调节电平和跨度。自动模式(左图)和手动模式(右图)下带电平和跨度值的热图像。光伏组件一般安装在具有高度反射性的铝制框架上,这种框架在热图像上会显示为冷区,因为它能反射天空中散发的热辐射。在实践中,这意味着热像仪记录到的框架温度远低于0°C。由于热像仪的直方图均衡自动适配最大和最小测温值,许多细微的热异常不会立即显现。为了获得高对比度热图像,需要不断对电平和跨度进行手动调节。未经DDE处理的热图像(左图)和经过DDE处理的热图像(右图)。所谓的DDE(数字细节增强)功能提供了解决方式。DDE能够自动优化高动态范围场景下的图像对比度,热图像不再需要进行手动调节。因此具备DDE功能的热像仪非常适用于快速精确的太阳能电池板检查。实用功能热像仪的另一个实用功能是为热图像添加GPS数据标记。这可以帮助在大片区域,如太阳能电厂中轻松定位有问题的模块,并将热图像与设备进行关联,例如在报告中。 热像仪应该配备内置数码相机镜头,以便将相关可见光图像(数码照片)与相应的热图像一起保存。所谓的叠加模式可将热图像与可见光图像相互叠加,也颇为实用。声音和文本注释可连同热图像一起保存在热像仪中,有利于报告编写。热像仪放置:考虑热反射和辐射系数虽然玻璃在8–14μm波段的辐射系数为0.85–0.90,但玻璃表面的测温并不容易。玻璃热反射如同镜面反射,这意味着不同温度的周边物体在热图像上能够清晰呈现。在最糟糕的情形中,这会导致成像失实(假“热点”)和测量误差。热像检查中的建议视场角(绿色)和应避免的视场角(红色)。为了避免热像仪和操作员的玻璃热反射,热像仪不应垂直对准被检查的模块。但辐射系数在热像仪垂直时达到最大,热像检查中的建议视场角(绿色)和应避免的视场角(红色)。并随着热像仪角度的增加而减小。5–60°的视场角是一个较好的平衡点(0°为垂直)。为避免得出错误结论,检查太阳能电池板时,您需要以正确角度握持热像仪。使用KLIR P660红外热像仪从空中拍摄太阳能电厂获得的热图像。远距离检查测量期间并非总能轻易获得合适的视场角。在多数情况下,使用三脚架能够解决问题。在较为不利的条件下,可能需要使用移动作业平台或者甚至乘坐直升机飞到太阳能电池上方。在这种情况下,距离目标较远可能是一个优势,因为可以一次性检查一大片区域。为了保证热图像的质量,用于远距离检查的热像仪至少应具备320×240像素、最好是640×480像素的图像分辨率。热像仪还应配备有互换镜头,以便操作员能够更换长焦镜头,进行远距离检查,比如从直升机上。但是建议长焦镜头仅用于图像分辨率高的热像仪。使用长焦镜头进行远距离测量的低分辨率热像仪无法探测到指示太阳能电池板故障的细微热量细节。从不同视角进行检查使用FLIR P660红外热像仪拍摄的太阳能电池板背面热图像,它的对应可见图像如右图所示。在多数情况下,已安装的光伏组件也可用热像仪从组件后方进行检查。这种方式可以将太阳和云朵的干扰性热反射减至最小。此外,从组件后部获得的温度可能比较高,因为是直接测量电池,而不是透过玻璃表面进行测量。周围环境和测量条件应选择晴朗天气进行热像检查,因为云朵会降低太阳辐照度,并产生热反射干扰。但只要所用的热像仪足够灵敏,即便是在阴天也可以获得有用的图像。安静的环境也比较有利,因为太阳能电池板表面的任何气流都会造成传递性冷却,从而降低热梯度。空气温度越低,潜在热对比度就越高。建议在清晨进行热像检查。这幅热图像展示了大片高温区域。由于缺乏更多信息,无法看清这是热异常还是遮蔽/热反射。另一种提高热对比度的方法是断开电池负载,以断开电流,使热量仅仅依靠太阳辐照度产生。然后接上负载,在电池的发热阶段进行检查。 但在正常情况下,系统检查应在标准运行条件下,即负载状态下进行。取决于电池和问题或故障的类型,在无负载或短路条件下的测量结果可提供额外的信息。测量误差产生测量误差的主要原因是热像仪放置不当和周围环境与测量条件欠佳。典型的测量误差原因有:视场角过窄太阳辐照度随着时间推移而改变(例如由于云层变化所致)热反射(如太阳、云朵、周围更高的建筑、测量装备等)局部遮蔽(如周围建筑或其他构筑物的遮蔽)热图像提供的信息热图像提供的信息如果太阳能电池板的某些部位温度高于其他部位,温暖区域会清晰显现在热图像上。取决于形状和位置,这些热点和热区域能够指示出不同的故障。如果整个组件的温度都高于往常,这可能表明存在互连问题。如果单个电池或电池组显示为一个热点或温度较高的“拼接图案”,通常是旁路二极管故障、内部短路或电池错配所致。这些红点显示温度一直高于其他组件的组件,表明存在连接故障。在一个太阳能电池内的这个热点表明该电池内部存在物理损伤。遮蔽和电池裂缝在热图像上显示为热点或多边形斑块。电池或电池局部温度升高表明电池发生故障或存在遮蔽。应比较负载、无负载和短路条件下获得的热图像。将从模块正面和背面拍摄的热图像进行比较,也可以得到有价值的信息。常见模块故障列表当然,为了准确识别故障,出现异常的模块还应进行电学测试和目视检查。结论光伏系统热像检查可迅速定位电池和模块的潜在缺陷,并迅速探测出电气互连问题。检查是在正常运行条件下进行,不需要关闭系统。为了获得信息量较大的准确热图像,必须遵循某些条件和测量程序:应使用合适的热像仪和配件;需要充足的太阳辐照度(至少500W/m2,最好是700W/m2以上);视场角应在安全范围(5°至60°之间)避免遮蔽和热反射热像仪主要用于查找故障。对检测到的异常现象进行分类和评估需要对太阳能技术、被检查系统和附加的电气测量值有透彻的了解。适当的文件材料当然也必不可少,并应包含所有检查条件、附加测量值和其他相关信息。使用热像仪进行检测(先是用于安装期间的质量控制,紧接着是常规检查)可促进全面、简单地监控系统状态。这将有助于保持太阳能电池板的功能及延长其使用寿命。因此,使用热像仪检测太阳能电池板将显著提升运营公司的投资回报率。近日,菲力尔与北极星太阳能光伏网联合推出有关光伏电站热成像检测解决方案的专题,您可以点击“阅读原文”提前知晓更多信息,另外下期文章小编会为你带来国外光伏电站是如何应用红外热像仪的案例,敬请关注。
  • 聚势向新!正泰鑫辉与无锡市检验检测认证研究院达成战略合作
    8月3日,正泰电器(601877)控股子公司——浙江正泰鑫辉光伏有限公司(以下简称“正泰鑫辉”)与无锡市检验检测认证研究院(以下简称“无锡检研院”)在乐清举行战略合作签约仪式。双方将在产品标准研发与制订、测试仪器设备研发、正泰鑫辉产品高端品质认证及零碳工厂、绿色工厂评价、博士后工作站共建等NQI国家质量基础设施和科研领域进行全方位互利合作。  乐清市科学技术局科技局党组书记、局长苏海坚,市场监督管理局副局长刘东,无锡检研院副院长、国家太阳能光伏产品质量检验检测中心副主任张栋兵,国信认证无锡有限公司副总经理钦卫国,国家太阳能光伏产品质量检验检测中心光伏产品检测部部长马超,国家高端储能产品质量检验检测中心储能市场发展部部长王勋,正泰电器总裁、正泰鑫辉董事长张智寰,正泰低压研究院总经理何胜,正泰鑫辉副董事长吴春光,董事、总经理何爱会,董事李云桂,常务副总经理彭祁军等出席签约仪式。  在全球化不断加速的今天,推进产学研协同创新是必由之路,此次合作不仅彰显了专业技术服务机构对正泰鑫辉质量技术水平和品牌价值的高度认可,更是正泰鑫辉依托专业技术平台的综合服务能力,助力其在光伏行业开启绿电连接产业链绿色低碳高质量创新发展的新局面。  苏海坚代表乐清市政府对顺利签约表示热烈祝贺,他表示,在全球文化进程不断加速的今天,深化企业科技、对外开放合作,推进产学研协同创新,是推动企业快速发展的重要因素,他希望以此次签约仪式为契机,成功打造乐清市院企合作示范样板。  张栋兵为仪式致辞,他表示光伏中心是我国首个建成运行的国家级光伏产品质检机构,院所属多个国家质检中心技术服务平台,同时也是国家市场监管总局、工信部等国家部委的示范基地、评价实验室、科技创新平台和装备评定中心,在各自服务行业领域具备一定的权威性与影响力。双方于前期已开展良好合作,未来将继续深入、再延续,合作共赢再升级,助力正泰鑫辉提炼优势技术指标,打造差异化产品和绿色低碳高质量发展。  随后,张智寰表示,正泰鑫辉在敏捷开发、产品研发方面思路清晰明确,未来还将积极推动产品标准研发,拓展双方合作,使正泰鑫辉真正成为优秀的绿电连接系统解决方案提供商。  此次签约仪式为正泰鑫辉与无锡检研院所属的光伏中心(CPVT)、国家储能质检中心(CEST)、国信认证无锡有限公司(CBC)达成战略合作。会上,正泰鑫辉获颁国内首张接线盒连接器产品CBC碳足迹证书。  此外,双方就绿色工厂和零碳工厂、光伏储能产品认证、光伏产品海上典型气候户外实证检测、CBC“国品优选”高端品质认证等领域举行了系列合作签约。正泰鑫辉始终坚守双碳之路,助力绿电发展,为实现国家碳达峰碳中和战略目标贡献自身力量。  心向往之,行必能至。正泰鑫辉将依托自身技术、产业化创新方面的强大动能,与无锡检研深度合作,共同打造更高效、更可靠、更绿色、更可持续的产品,致力于成为光伏电力绿电连接系统解决方案的优秀提供商。  正泰鑫辉  正泰鑫辉为浙江正泰电器股份有限公司控股子公司,于2023年3月成立,是专业从事太阳能光伏组件接线盒、储能连接器等绿电连接系统研发、设计、生产、销售、服务及技术咨询于一体的高新技术企业,以不懈的努力为国内外顾客研制更好的光伏连接器,提供令顾客满意的产品和服务。
  • 美国TA仪器参加第十一届中国太阳能光伏会议暨展览会
    2010年11月18日至11月20日第十一届中国太阳能光伏会议暨展览会在南京隆重召开。此次展会由中国可再生能源学会光伏专委会主办,江苏省光伏产业协会 协办,是我国最具权威的太阳能光伏会议和展览会之一。展会以交流新技术、展示新成果为主旨,目的在于推动太阳能行业达到更高更新的技术水平 来自国内的近100家参展厂商纷纷展出其在太阳能行业的新产品和新技术。同时也是国内太阳能行业的知名企业的一次交流盛会。美国TA仪器携其全面的太阳能解决方案在展会受到众多来宾的关注。 美国TA仪器的太阳能解决方案最有效和可靠地解决了太阳能组件厂商在生产和测试中碰到的问题:它可以: 1.DSC技术替代传统二甲苯方法测试EVA交联度,时间短, 成本低 2.有效地 解决背板变形问题 3 提供25年材料稳定的预测判定 4 准确的评估银浆、铝浆的印刷性能 5 优化EVA封装工艺 6 测试硅碇的纯度和结晶 美国TA仪器的太阳能解决方案在在众多方面突破了太阳能行业的传统方法,可以说在太阳能行业掀起了一场技术革命。所以几乎所有的组件厂商都表示出了极大的兴趣,他们纷纷表示出想要和美国TA仪器合作的意愿。美国TA仪器也希望通过和太阳能企业的合作, 帮助他们更快的提高产品的效率及可靠性。
  • 尚德实验室获北京鉴衡认证中心太阳能光伏产品金太阳认证认可
    2010年6月7日电 尚德电力控股有限公司今天宣布, 尚德光伏产品检验实验室近日参加并通过北京鉴衡认证中心授权的总共27个测试项目,涵盖 IEC61215:2005全部18个测试项目、IEC 61730-2:2004 9个测试项目(除燃烧实验外的全部组件测试项目),由此而获得北京鉴衡认证中心太阳能光伏产品金太阳认证认可。北京鉴衡认证中心万琳副主任说:“尚德公司是国际领先的光伏龙头企业,产品在国内外有着广泛的应用和良好的声誉。鉴衡认证中心是中国光伏产品认证的权威机构和倡导者,通过认可企业的实验室,可以极大地帮助企业缩短认证周期,节省认证费用 同时也将促进双方在产品质量保证、检测技术交流、实验室管理等领域的广泛合作,达到共同促进光伏产业健康可持续发展的目的。”   尚德公司副总裁张光春先生表示:“我们非常高兴能成为鉴衡认证中心认可工厂实验室,鉴衡认证中心是国内光伏产品认证和检测的领跑者,此次合作,有助于促进我们实验室的不断进步,同时也缩短了产品的认证周期。一直以来,尚德始终把产品质量放在首位,对实验室的建设非常重视,投入也很大,并在今年2月获得了中国合格评定国家认可委员会(CNAS)的国家实验室认可,成为国内得到认可项目最多、最全的企业光伏实验室,这标志着尚德光伏产品检验实验室具备了世界一流的管理水平和检测技术能力,确保了实验数据的准确性、可靠性和公正性。我们将不断加强和扩大与鉴衡认证及其他一些著名的国际认证机构合作,确保把具备世界一流品质的产品交给我们每一个客户。”   尚德光伏产品检验实验室致力于开展与国内外知名测试认证机构的合作,在2009年06月,获得了 UL 授予的中国光伏行业第一个 WTDP(Witness test Data Program)证书 在2009年12月,获得 VDE 授予的 TDAP(Test Data Acceptance Program)证书,成为亚洲首个获得 VDE 认可的目击光伏测试实验室,并在2010年2月荣获中国合格评定国家认可委员会(CNAS)国家实验室认可证书。此次获得北京鉴衡认证中心太阳能光伏产品金太阳认证认可工厂实验室,意味着尚德生产的新型号组件产品在国内外市场的认证周期将会大幅度的缩减,这有助于尚德的组件更快的投放市场,并在竞争中获得先机。   关于鉴衡认证中心   鉴衡认证中心(China General Certification Center)是由中国家认证认可监督管理委员会(CNCA)2003年批准成立,由中国计量科学研究院组建,致力于可再生能源产品认证、检测等技术服务的专业机构,是我国第一家开展太阳能光伏、光热产品认证的机构,是目前我国光伏行业制订认证技术规范最多、技术能力最强、认证范围覆盖领域最广的专业可再生能源认证机构,也是唯一合法拥有“金太阳”认证标志知识产权的认证机构。   关于尚德电力控股有限公司   尚德电力控股有限公司是全球领先的太阳能光伏企业,公司专业从事晶体硅太阳能电池、组件,硅薄膜太阳能电池、光伏发电系统和光伏建筑一体化(BIPV)产品的研发、制造与销售。2009年,尚德电力实现晶体硅太阳能电池、组件产能达1100兆瓦,全年组件出货量达704兆瓦,是全球最大的晶体硅太阳能电池、组件生产商。其自主设计、研发、生产和销售高质、高产、价优、环保的太阳能产品,被广泛应用于住宅、商用建筑、工业和公共设施等领域。尚德电力在全球设有三大区域总部,分别位于中国、瑞士和旧金山,在中国拥有无锡、上海、洛阳、青海四大生产基地。尚德电力积极致力于改善人类的生活环境,并通过研发先进的太阳能解决方案实现可持续性发展。   尚德光伏产品检验实验室是尚德公司下设的专业从事太阳能光伏组件检测的独立测试机构,严格按照 ISO/IEC17025:2005《检测和校准实验室能力的通用要求》(CNAS-CL01《检测和校准实验室能力认可准则》)的要求,逐步建立了完善的质量管理体系,规范管理和运作。经过不断努力,已经成长为世界一流,国内最大,技术顶尖的光伏组件检测实验室。实验室分室内和室外两部分,室内面积1800平方米,室外面积7000平方米,下设性能检测室、安全检测室和环境检测室三个专业检测室,引进国内外先进仪器设备30余台,拥有包括脉冲及稳态太阳模拟器、多台步入式环境实验箱、机械载荷、冰雹测试机,EL(电致发光)及高精度红外相机等尖端检测设备,能够检测和评估光伏组件质量和性能方面的所有指标。同时拥有一批高素质的、富有经验和专业知识背景的技朮团队。
  • 大规模设备更新:中等职业学校太阳能与沼气技术利用专业仪器设备装备规范
    2024年,科学仪器行业迎来大规模设备更新的“泼天富贵”。  3月13日,国务院印发《推动大规模设备更新和消费品以旧换新行动方案》,明确到2027年,工业、农业、教育、医疗等领域设备投资规模较2023年增长25%以上。  5月25日,国家发改委、教育部联合印发《教育领域重大设备更新实施方案》。支持职业院校(含技工院校)更新符合专业教学要求及行业标准,或职业院校专业实训教学条件建设标准(职业学校专业仪器设备装备规范)的专业实训教学设备。  以下为仪器信息网整理中等职业学校太阳能与沼气技术利用专业(太阳能技术利用专业方向)仪器设备装备规范:表 2 基础实验仪器设备装备要求实 训 教 学 场 所实训教学 目标仪 器 设 备序 号名 称规格、主要参数或主要要求单 位配备数量执行标 准代号备注合 格示 范电 工 电 子 实 验 室1.掌握电 工、电子电 路的基本 原理;2.掌握万 用表等常 用仪器、仪 表的使用 方法及基 本电量参 数的测量 方法;3. 学 会 常 用电子元 器件的识 别和测量。1通用电 工、电 子综合 实验装 置1.具有电工、电子学基本定理的验证功能;2.具有常用电工、电子仪表的使用及基本电参数的测 量功能;3.具备完成 R、L、C 等电路元件的特性分析及电路 实验的功能;4.具备完成与教学要求相关的单相、三相交流电路 应用实验的功能;5.具有基本放大器电路、稳压电源电路实验功能; 6.具有基本逻辑门电路的逻辑功能;7.具有常用电子元器件识别及测量的实验功能; 8.具有漏电保护功能。台1020GB 21746、GB 217482万用 表1.直流电压:(0~25)V;20000Ω/V;(0~500)V; 5000Ω/V; ±2.5%;2.交流电压:(0~500)V;5000Ω/V; ±5.0%;3.电阻:量程:0~4kΩ~40kΩ~400k Ω~4M Ω~ 40MΩ 25Ω中心; ±2.5%。只10203双踪示波器1.频宽: 20MHz;2.偏转因数:5 mV/div~20 V/div; 3.上升时间: ≤17 ns;4.垂直工作方式:CH1、CH2、ALT、CHOP、ADD; 5.扫描时间因数:0.5s/div~0.2 μs/div ;6.触发方式: 自动、常态、TV-H、TV-V。台5104数字 式交 流毫 伏表1.测量范围:0.2mV~600V; 2.频率范围:10Hz~600kHz; 3.电压测试不确定度:±1%; 4.输入阻抗:1MΩ 5.显示位数:3-1/2 以上。只5105信号发 生器1.频率范围:0.1Hz~1MHz;2.输出波形:正弦波、方波、三角波、脉冲波; 3.输出信号类型:单频、调频、调幅、扫频;4.外测频灵敏度:100mV;5.外测频范围:1Hz~10MHz; 6.输出阻抗:600Ω 7.输出电压:≥20Vp-p(1MΩ),≥10Vp-p(50Ω); 8.数字显示、TL/CMOS 输出;9.输出端口具有短路保护。台520表 3 专业实验仪器设备装备要求实 训 教 学 场 所实训教学 目标仪 器 设 备配备要求序 号名 称规格、主要参数或主要要求单 位配备数量执行标 准代号备注合格示 范光 伏 原 理 及 应 用 实 验 室1.能通过 实验装置 了解光伏 技术的基 本原理;和 光伏发电 系统各个 组成单元 的作用;2.学会测 量发电输 出电压、发 电 输 出 电 流及湿度、 照度、温度 等物理量 的方法,并 理解相关 物理量的 含义;3.能对离 网光伏发 电系统装 置进行装 配和线路 连接;。4.能了解 各组成单 元的作用。1离网光 伏发电 教学装 置应包括实训工作台、监测仪表单元、交直流稳压 单元、充放电控制单元、可调负载单元、模拟光 源单元、光伏组件单元、离网逆变单元、电池组 单元等部件构成。各单元应达到如下主要要求: 1.光伏组件单元:开路电压 15V;输出功率:≥ 20W;2.交直流稳压单元:输入电压 220V;输出交直流 电压 0~18V 可调、,输出电流:≥1A;3.监测仪表单元:直流数字电压表:0~20V,精 度 0.5 级: ±(0.5%+3);直流数字电流表:0~ 10A,精度: ±(0.5%+3);精度 0.5 级;交流数 字电压表:0~500V,精度 0.5 级;交流数字电 流表:0~5A,精度 0.5 级;监测仪表应具备温 度、湿度、照度等参量的计量测量功能;4.可实现恒流、恒压和涓流模式下的充电,充放 电时间及充放电过程可控,具有防过充、防过放、 过载保护、短路保护、防反接等功能;5.模拟光源单元:能模拟 AM1.5 光谱;光源亮度 具备无级调节功能;具备光源到光伏组件距离可 调和可计测量功能;6.离网逆变单元:额定输出功率≥20W;逆变输 出电压 220V;输出波形:正弦波,失真度≤3%; 具有输出短路、过温、过载、欠压保护功能;7.电池组单元:采用太阳能专用胶体电池,电池 额定电压 12V,电池总容量≥18Ah;8.配备功率大于50W 的 1 Ω~2K2k Ω 连续可调的 阻性负载;9.配备容性负载、感性负载;10.实训工作台采用整体框架式结构。台10202附件配套电缆、配套连接线等套1020表 3 专业实验仪器设备装备要求(续)实 训 教 学 场 所实训教学 目标仪 器 设 备序 号名 称规格、主要参数或主要要求单 位配备数量执行标 准代号备 注合 格示 范光 伏 材 料 检 测 实 验 室1.能理解IS© VOC 、FF、IMAX 、 VMAX、PMAX、电阻率等 物理量的含 义;2.学会电池 片和硅片常 用参数的测 量;3.能通过测 量,简单分析 和辨别材料 的性能优劣。1游标卡尺3-1/2 位数显把2040GB/T 213892数字多用表3-1/2 位台2040GB/T 11存储柜用于存储配套工具及硅片等材料套20
  • 美国Q-Lab公司全力支持2017PPIC:新应用、新思路
    美国Q-Lab公司日前成为2017PPIC光伏聚合物国际峰会的合作伙伴,全力支持大会召开。 由中国可再生能源学会光伏专委会、上海市太阳能学会、中国电器科学研究院和中国光伏领跑者创新论坛主办的2017光伏聚合物国际峰会即将于4月15-17日在上海召开。作为一家材料耐久性测试解决方案的全球产品供应商,Q-Lab公司对于光伏应用的背板、EVA、密封胶、接线盒等聚合物材料的老化性能测试方法及标准有深入的理解,参与制订了多项IEC标准的起草和制定。此次峰会,Q-Lab公司将为全球光伏聚合物材料的制造和应用客户诠释最新的IEC光伏标准中关于聚合物测试的要求、方法和技术规范。Q-Lab中国区首席代表Henry Zhang告诉记者,Q-Lab公司从1956年起专业设计和生产标准测试底板、老化、光稳定性加速测试设备以及腐蚀盐雾箱。此外,Q-Lab佛罗里达,亚利桑那及Q-Lab德国都可提供老化腐蚀加速测试。Q-Lab佛罗里达及亚利桑那还可以进行老化、日晒色牢度及腐蚀的户外曝晒测试。“我们非常高兴能全面参与光伏聚合物国际峰会的组织工作,” Henry表示,“从2014年起,我们已经连续三年与光伏领跑者创新论坛深入合作,2017年领跑者创新论坛将光伏材料专题开展国际化的交流与研讨,对于拥有全球专业及市场经验的Q-Lab公司将更有吸引力,我们将全力支持和参与此项活动。”
  • 北京卓立汉光推出太阳能薄膜电池专用测试系统
    随着地球能源的不断枯竭,太阳能越来越受到人类的重视,太阳能光伏电池的研究也得到了空前的发展,目前的太阳能光伏电池主要以晶体硅电池为主,但随着科学的进步,研究的不断深入,越来越多的高效节能电池被开发使用,其中以薄膜电池为翘楚。薄膜电池以其高效、低耗、大面积电池等特点广泛受到人们的关注。薄膜太阳能电池的形态各异,结构也是多种多样,这对研究薄膜电池带来了不小的麻烦。在制造过程中我们不仅要了解电池的转化效率等直观因素,为了更好的提高工艺制造出更高效的太阳能光伏电池,我们更要深入了解电池的内部光电转化过程及其影响因素。在众多因素当中IV特性曲线和量子效率曲线图无疑是重中之重。 图一:IV曲线图 图二:量子效率 量子效率:是指太阳能电池的电荷载流子数目与照射在太阳能电池表面一定能量的光子数目的比率。研究量子效率对了解电池内部光电转化有着重要意义。 早在2009年期间我公司在中科院张建民老师的带领下就研发试制了国内首台一体化自动测试量子效率系统,:SCS100测试系统。产品一经推出就受到了国内外太阳能研究人士的青睐。随着在太阳能电池测试领域经验不断地积累,公司今年上半年又推出了全新一代产品,SCS10-FILM薄膜电池专用测试系统。 系统针对薄膜电池的特点,加入了单光源双路可调偏置光,最大输出能够达到一个太阳强度。为了适应薄膜电池的宽光谱,光谱测试范围覆盖了0.3~1.70μm光谱带,并编写了功能强大的测试软件,不仅实现了自动计算量子效率曲线,而且能够计算出电池的短路电流密度,更加方便了评估电池的整体效率。同时系统还实现了漫反射测试和量子效率测试同步测试的功能,更加准确的计算电池的内量子效率。 图三:系统整体图 先进的光源配置: 系统的测试光源由卤素灯和氙灯光源两种灯源构成,这样,补偿卤素灯在紫外区能量不足的问题,又能解决氙灯光源在近红外有很多尖锐波峰的问题,实现了整个测试范围内的光源光谱平滑,有效增加了洗系统的稳定性。 图四:普通卤素灯的光谱图 图五:普通氙灯的光谱图 独特的测试光路设计: 大部分的量子效率测试系统都受困于量子效率测试点和反射率测试点不能够实现位置的重复定位,导致两参数测试在不同位置,这对于均与性不是很高的样品或高精度测试的试验中影响很大,本系统通过独特的光纤输出反射聚焦结构实现了反射率和量子效率同时同地测量的方式,有效地解决了上述问题带来的烦恼。通过聚焦反射光路,系统更能够大大降低色差对测试过程中带来的影响。由于太阳能电池的光谱测试范围宽,如果采用传统的投射聚焦方式进行测试,当测试到红外区时,因不同波长折射率不同的缘故聚焦光斑开始扩散,而红外区有是不可见的,因为会对测试带来极大的不确定因素。 强大的偏置光配置: 为了提高太阳能电池的转化效率,我们可以扩展电池的光谱响应范围以接受更多的太阳能,从而提高转化率,因此多节电池孕育而生。然而测试多结电池要比普通电池复杂得多,我们不仅要考虑多结电池的最小限流问题,还要考虑电池的偏压测试问题,因此测试多结电池我们要配有功能强大的偏置光附件,既能够满足光谱范围的需求,又能够对光强的要求。我们设计的单光源双路可调偏置光正可满足多结电池的测试需求,偏置光不仅实现了两路光能够各自调节光强,同时根据测试电池的不同,可选配不同的滤光片。 功能全面高效的软件: 软件集量子效率测试、反射率测试、内量子效率测试三测试功能于一体,自动计算画图,强大的图表处理能力,方便用户修改、标记测试曲线。多种格式输出保证了用户处理数据的方便使用。一键式参数文件保存功能不仅方便存贮测试数据还能保留测试参数,方便分析实验。 图六:功能强大的图标管理功能 特点总结: 1、实现内外量子效率同步测试 2、双光源测试,契合IEC标准,提高测试准确性 3、双路可调偏置光,轻松实现三节电池测试 4、功能强大的测试软件
  • 物理所铜锌锡硫硒薄膜太阳能电池研究取得进展
    铜锌锡硫硒太阳能电池(CZTSSe)是一种新型薄膜太阳能电池,因吸光系数高、弱光响应好、稳定性高、组成元素储量丰富、环境友好且价格低廉而颇具发展潜力,从而备受关注。中国科学院物理研究所/北京凝聚态物理国家研究中心孟庆波团队多年来在该类薄膜太阳能电池方面开展了系统研究,在高质量铜锌锡硫硒薄膜制备、界面调控、器件载流子动力学分析和电池效率提升等方面取得了系列研究成果。例如,基于二甲亚砜(DMSO)体系,发展了一种可以同时调控背界面和吸收层体相缺陷的Ge掺杂策略,所制备的CZTSSe电池认证效率为12.8%;在界面研究方面,引入有机电子传输层(PCBM)增强电荷抽取与传输,实现了12.9%的电池效率;在溶剂工程方面,发展了一种环境友好的水溶液体系,探索了小分子配体与金属离子相互作用对前驱膜、硒化膜晶体生长、薄膜微结构及器件性能的影响,获得了12.8%的电池认证效率。该团队已在CZTSSe电池材料及器件方面申请国家发明及实用新型专利13项。  近日,该团队与南京邮电大学教授辛颢合作,从硒化动力学角度出发,通过调节腔室压强来改变半封闭石墨盒中的硒化反应速率,进而调节铜锌锡硫硒薄膜的相演变过程。增加腔室压强后,研究通过原位实时硒分压监测发现,在硒化早期,硒分压被抑制,从而降低了硒化升温阶段(200-400 ℃)中前驱膜与气态硒蒸汽的碰撞几率;同时,正压条件下硒化能够抑制元素的非均匀扩散。在以上两点共同影响下,相演变过程在相对更高的温度下开始(>400 ℃),前驱膜表面经常出现的CuxSe、Cu2SnSe3等中间相被抑制,因此,实际相演变过程一步完成。由此获得的银替位CZTSSe(ACZTSSe)吸收层晶体质量高、内部孔洞少、表面缺陷浓度显著降低。所制备电池体相缺陷浓度降低了约一个数量级,电学性能也得到明显改善,并实现了全面积14.1%效率(认证全面积13.8%)的太阳能电池,是目前报道的最高效率。这一工作为进一步理解和调控铜锌锡硫硒相演变过程提供了动力学调控思路,并为其他类型多晶薄膜生长制备提供借鉴意义。  相关研究成果以Control of the Phase Evolution of Kesterite by Tuning of the Selenium Partial Pressure for Solar Cells with 13.8% Certified Efficiency为题,发表在《自然-能源》(Nature Energy,DOI:10.1038/s41560-023-01251-6)上。研究工作得到国家自然科学基金的支持。图1.(a)铜锌锡硫硒的相演变路径示意图;(b)原位监测获得的不同腔压下反应过程中的硒分压曲线;(c)铜锌锡硫硒太阳能电池认证报告(国家光伏产业计量测试中心)。图2.(a)对比组吸收层的SEM正面和截面图像;(b)实验组吸收层的SEM正面和截面图像;(c)对比组吸收层的能带结构;(d)实验组吸收层的能带结构。
  • 天普太阳能组建太阳能技术检测中心
    3月9号,罗振涛、霍志臣、何涛、张晓黎等太阳能行业领导和专家到天普公司考察调研。罗主任、霍秘书长与程翠英总经理和太阳能资深专家罗赞继研究员、于学德高工亲切交谈,探讨天普研究院的发展大计。      行业专家们指出,天普是太阳能行业的骨干企业。起步早,创新成果丰富。研究院要本着有所为有所不为的态度,找准定位,明确目标,建立广泛利用社会资源,走集约科研的路子。程总介绍说,在太阳能行业天普首倡太阳能系统安全性,只有从消费者利益出发,建立起完整的质保体系,才能建立起太阳能在消费者心中的信任度,从而提升和带动整个行业的高标准。      技术检测中心主要任务是:为太阳能系统安全性保驾护航。积极开展太阳能等可再生能源技术研究和产品开发,开展太阳能热利用及高效节能产品的相关技术测试和产品检测服务,面向北京地区和国内外开展可再生能源领域的学术交流与合作,为太阳能热利用企业提供技术交流平台。   测试中心的成立,还为天普的太阳能产业技术和管理人才提供了一个交流平台,将成为中国太阳能产业的人才培养基地 同时该中心作为太阳能产业的公共研发平台,也将成为技术创新和技术推广的平台,有利于推动中国太阳能行业的快速壮大。
  • 钙钛矿太阳能电池研究的前8种需要仪器:在科学期刊上发表文章的全面指南(上)
    对于希望在重要科学期刊上发表的钙钛矿太阳能电池研究者来说,某些仪器对于生成高质量、可发表的数据至关重要。以下是列出这些关键仪器的表格:1. 钙钛矿太阳能电池研究的太阳光模拟器1.1 什么是太阳光模拟器?定义:太阳能模拟器是一种人工光源,模拟自然阳光的光谱功率分布、强度和其他特性。它主要用于需要受控且一致的阳光条件的研究和测试环境。类型:有各种类型的太阳能模拟器,如稳态和脉冲型,主要差异在于它们提供光的方式(持续或短暂爆发)。1.2 钙钛矿太阳能电池研究中的重要性测试和特性分析:太阳光模拟器在评估钙钛矿太阳能电池性能中至关重要。他们提供了一个受控环境来测量效率、稳定性和对不同光强的反应等参数。测试的标准化:使用太阳光模拟器确保了太阳能电池在标准化条件下进行测试,使不同研究和实验室之间的结果比较更容易。1.3 钙钛矿电池太阳光模拟器的关键特性光谱匹配:模拟器的光应尽可能接近太阳光谱,因为电池的性能可能会随着不同波长的变化而变化。辐照度水平:精确控制光强是必要的,因为它会影响电池的功率转换效率和其他指标。均匀性:光的均匀分布对于确保一致和可靠的测试结果至关重要。1.4 挑战复制真实的阳光:可复制阳光的所有方面,包括其可变性,是一项挑战。长期稳定性测试:模拟阳光长期暴露的效果需要模拟器的长时间和一致的运行。1.5 在钙钛矿太阳能电池开发中的应用材料优化:研究人员使用太阳能模拟器测试不同钙钛矿组成对阳光的反应。设备工程:这对于测试钙钛矿太阳能电池的整体设计和架构至关重要。寿命和退化研究:理解这些电池在模拟阳光条件下随时间的退化情况。1.6 未来方向增强的模拟技术:正在进行的进步集中在更好的光谱匹配和包括温度和湿度等环境因素。高通量筛选:在自动化测试设置中使用,以快速评估多种钙钛矿配方。总的来说,太阳能模拟器在钙钛矿太阳能电池研究领域是重要的工具,使科学家能够在模拟真实世界阳光暴露的受控条件下,精确评估和优化这些有前途的材料。2. 钙钛矿太阳能电池研究的I-V曲线跟踪仪在钙钛矿太阳能电池研究中应用I-V曲线跟踪仪是评估和理解这些光伏设备性能特性的基本方面。以下是概述:2.1. 何为I-V曲线跟踪仪?定义:I-V (电流-电压) 曲线跟踪仪是一个用来测量光伏电池电气特性的电子仪器。它绘制出在不同条件下电池上的电流 (I) 与电压 (V) 的关系。功能:它提供了一个图形表示,显示太阳能电池的电流输出如何随电压变化。2.2. 在钙钛矿太阳能电池研究中的重要性性能分析:I-V曲线跟踪仪在钙钛矿太阳能电池研究中的主要用途是分析电池的性能。这包括确定参数,如开路电压(Voc)、短路电流(Isc)、最大功率点和填充因子。效率计算:这些测量对于计算太阳能电池的总体效率至关重要。2.3. 与钙钛矿电池相关的关键特性灵敏度和准确性:由于钙钛矿材料的性质,需要高灵敏度和准确性。动态测试能力:鉴于钙钛矿太阳能电池可能的不稳定性和滞后效应,进行动态I-V测量的能力是需要的。2.4. 挑战和注意事项滞后现象:钙钛矿太阳能电池经常在其I-V曲线中表现出滞后,这可能使得测量和解释其性能变得复杂。环境因素:温度、湿度、光强对钙钛矿太阳能电池I-V特性的影响是一个活跃的研究领域。2.5. 在钙钛矿太阳能电池开发中的应用材料和工艺优化:研究人员使用I-V曲线跟踪仪来测试不同的制造方法、材料和电池结构如何影响电性能。退化研究:通过监测I-V特性随时间的变化,可以研究长期稳定性和在运行条件下的退化。2.6. 进步和未来方向自动化和高通量测试:I-V曲线跟踪技术的进步正在朝向自动化系统发展,允许对多个电池进行高通量测试,加快研发过程。与其他测量技术的整合:将I-V曲线跟踪与其他分析技术,如光致发光或阻抗谱,结合起来,以更全面地理解钙钛矿太阳能电池。在变化环境条件下的实时监控:增强I-V曲线跟踪仪以在变化的光强、温度和湿度等环境条件下监控实时性能,这对于理解钙钛矿太阳能电池在实际条件下的实用性能至关重要。总之,I-V曲线跟踪仪是钙钛矿太阳能电池研究中需要的工具。它为这些电池的电性能和效率提供了关键的见解,帮助研究人员优化材料和工艺,并理解钙钛矿太阳能电池在不同条件下的行为和稳定性。随着钙钛矿太阳能电池背后的技术的发展,I-V曲线跟踪仪在这个激动人心的研究领域中的能力和应用也将随之发展。3. 钙钛矿太阳能电池研究的量子效率测量系统当量子效率(QE)测量系统应用于钙钛矿太阳能电池研究时,是理解和优化这些新型光伏设备的光响应和总体效率的必要工具。以下是其角色和重要性的概述:3.1. 什么是量子效率测量系统?定义:量子效率测量系统是一种用来评估太阳能电池量子效率的仪器。量子效率指的是太阳能电池将光子转化为电子的能力,这对于确定其功率转换效率至关重要。类型:主要有两种 - 内部量子效率 (IQE) 和外部量子效率 (EQE) 测量系统。IQE考虑到电池吸收的光,而EQE测量转化为电子的入射光子的比例。3.2. 在钙钛矿太阳能电池研究中的重要性光响应分析:QE测量提供了关于钙钛矿太阳能电池在不同波长下如何有效地将光转化为电的见解。这对于理解电池在太阳光谱中的性能至关重要。材料和设计优化:通过分析QE数据,研究人员可以优化钙钛矿太阳能电池的材料成分、结构和设计,以提高其效率。3.3. 关键特性和考虑因素光谱范围:广泛的光谱范围对于评估电池在整个太阳光谱中的性能至关重要。准确性和灵敏度:由于钙钛矿电池可能由于其特殊的材料性质而表现出复杂的行为,因此高准确性和灵敏度至关重要。3.4. 钙钛矿电池的QE测量挑战不稳定性和滞后:钙钛矿材料可能表现出不稳定性和滞后效应,这可能影响QE测量的准确性和重复性。环境敏感性:钙钛矿太阳能电池对环境因素如湿度和温度敏感,这可能会影响QE测量。3.5. 在钙钛矿太阳能电池开发中的应用效率基准测试:QE测量是用于将钙钛矿太阳能电池的效率与其他光伏技术进行基准测试的标准方法。损失分析:它有助于识别和量化太阳能电池内部的损失机制,比如非辐射复合损失。层优化:研究人员使用QE数据来优化太阳能电池结构中的各个层,如吸收层、传输层和接触层,以实现更好的光吸收和电子传输。3.6. 进步和未来趋势整合新的测量技术:QE测量系统的进步包括整合其他技术,如时间分辨光致发光,以深入了解载流子的动态。高通量和原位测量:开发更快、更自动化的QE系统,用于高通量筛选材料,以及在制备过程中进行原位实时分析。环境条件模拟:增强QE测量系统的能力,以模拟各种环境条件,使得钙钛矿太阳能电池在实际运行环境中的性能评估更为真实。总之,量子效率测量系统是钙钛矿太阳能电池研究的基础工具。它提供了关于这些电池将光转化为电能的效率的关键见解,指导材料选择、电池设计和工艺优化。随着钙钛矿太阳能电池领域的不断发展,QE测量的作用在推动太阳能电池效率和性能的边界方面仍然至关重要。待续:钙钛矿太阳能电池前8需要仪器:科学期刊发表文章全面指南(中)
  • 空间太阳能助力全球实现“碳中和”
    据世界经济论坛网近日报道,英国政府正考虑投资160亿英镑,建设空间太阳能电站。空间太阳能电站是英国政府“净零创新组合”项目将投资的技术之一,被视为可助英国到2050年实现净零排放的潜在措施之一。美国加州理工学院科学家也正在开展一项具有先锋性的“空间太阳能发电项目”,而且美国海军研究实验室2020年在太空测试了太阳能模块和能量转化系统。此外,中国也在建造自己的空间太阳能发电站。那么,太空中的太阳能发电站将如何运作,能带来哪些好处,又面临哪些挑战呢?优点多多据世界经济论坛网报道,到2050年,全球能源需求预计将增长近50%。位于轨道上的空间太阳能电站一天24小时都可以接收太阳光,因此可以持续发电,这比地球上的太阳能发电系统更具优势——后者只能在白天发电,并且受天气影响。因此,空间太阳能发电可能是帮助满足全球能源部门日益增长的需求和应对全球气温上升的关键。空间太阳能发电需要在太空收集太阳能并将其传送到地球上。为此,空间太阳能发电系统需要一颗太阳能卫星,即一台装有太阳能电池板的巨型航天器。这些电池板可以发电,然后通过高频无线电波将能量无线传输到地球,而一种名为硅整流二极管天线的地面天线将把无线电波转换成电力,再将其传送至电网。前景可期利用漂浮在太空中的巨型太阳能发电站向地球发射大量能量,这听起来像科幻小说——20世纪20年代,俄罗斯科学家康斯坦丁齐奥尔科夫斯基首次提出了这个设想。在很长一段时间里,它成为作家们的灵感来源。1941年著名科幻作家艾萨克阿西莫夫发表的短篇小说《推理》,就描述了这样一个能收集太阳能、并通过微波向行星传递能量的空间站。此后,基于太空的太阳能利用就成为一个长盛不衰的想法,而最近的技术进步使科学家们对其前景更为乐观。这些技术包括轻型太阳能电池、无限能量传输和太空机器人技术等。建造空间太阳能发电站首先需要解决的是太阳能电池板的重量问题,不过,这已经通过开发超轻太阳能电池得到了解决。2017年,美国加州理工学院的研究人员提出了一个模块化发电站的设计,该发电站由数千块超轻型太阳能电池瓦组成。它是迄今为止最轻的集成多功能原型机,能够收集阳光,将其转换成射频电能,然后以受控光束无线传输这种能量。另外,空间太阳能电站基于模块化设计,大量太阳能组件可由机器人在轨道上组装而成。此外,把所有这些组件运入太空难度大、成本高,但像美国太空探索技术公司(SpaceX)这样的公司正在努力改变这种状况,其研制出的“猎鹰”火箭可重复使用,功能更强大的“星舰”火箭也即将进入关键的试飞阶段,有望大大降低空间发电成本。仍有挑战弗雷泽-纳什咨询公司最近的一份报告认为,英国投资100多亿英镑建设空间太阳能电站是可行的。该项目预计将从规模试验开始,2040年建成并投入使用。届时这颗太阳能卫星的直径将达到1.7公里,重约2000吨。地面天线的面积约为87平方公里。据美国消费者新闻与商业频道网站报道,中国正在考虑建设太阳能发电站的计划,包括在2021年至2025年建设中小规模平流层太阳能电站并发电;2025年后开始大规模空间太阳能电站系统相关工作。根据有关专家组论证建议,中国应力争在未来十余年完成空间超高压发电输电及无线能量传输试验验证,实现“2030年开始建设兆瓦级空间太阳能试验电站,2050年前具备建设吉瓦级商业空间太阳能电站的能力”的中、远期目标。但世界经济论坛网的报道指出,即使我们成功建造了一个空间太阳能电站,其运行也面临若干实际挑战,例如太空碎片可能会破坏太阳能电池板。太空碎片是废弃的运载火箭或航天器部件,它们在地球上空数百公里处漂浮,由于太空碎片以25266公里/小时的极快速度在近地轨道上飞行,因此一旦发生碰撞,可能会对卫星或航天器造成严重破坏。另一个问题是,从太阳能卫星向地面传输能量难度很大,科学家们需要提高无线能量传输的效率,按照现有技术,收集到的太阳能只有一小部分可到达地球。
  • 东大在常州设立太阳能研发中心
    常州国家高新区12日发布消息,东南大学与该区罗溪镇太阳能热利用企业合作,设立太阳能采暖系统技术研究中心。   位于常州高新区的贝德莱特太阳能科技有限公司,是全国4000多家太阳能热利用企业的出口领先者。东南大学与其联手设立“太阳能中高温集热器研发基地”、“太阳能采暖系统技术研究中心”,重点研究太阳能建筑一体化、新型高效太阳能热水器及其热利用等技术。
  • 弗尔德仪器参加第二届全国太阳能材料与太阳能电池学术研讨会
    太阳能电池材料简述目前,人类的主要能源(石油、煤炭、天然气)的储存量是有限的,为了应对能源危机和环境污染,新能源已是全球关注的焦点,太阳能因其清洁环保尤其备受关注。近几年太阳能电池产业以平均年增长率为30%的速度飞速发展。太阳能电池的种类十分多,按材料分类可分为四类:硅太阳能电池;多元化合物薄膜太阳能电池;有机物太阳能电池;纳米晶太阳能电池,综合考虑材料的价格、对环境的影响及转换效率等因素,以硅为原材料的电池是太阳能电池中最重要的成员。研究和应用最广泛的太阳能电池主要是单晶硅、多晶硅和非晶硅电池。而开发太阳能电池的两个关键问题就是:提高效率和降低成本。为了促进我国在太阳能材料与太阳能电池研究领域的交流和发展,“2018第二届全国太阳能材料与太阳能电池学术研讨会”于2018年6月22-24日在广州召开。本次会议由中国化工学会化工新材料委员会及新能源材料技术创新与协同发展中心主办,暨南大学承办。弗尔德(上海)仪器设备有限公司携旗下研磨筛分品牌德国Retsch(莱驰)、多功能粒度粒形分析仪品牌德国Retsch Technology(莱驰科技)、热处理技术品牌CarboliteGero(卡博莱特盖罗)、元素分析仪品牌德国Eltra(埃尔特),参加了第二届全国太阳能材料与太阳能电池学术研讨会,为太阳能电池材料的应用提供全方位的解决方案。大会主要从学术和产业化视角探讨我国太阳能光伏材料与器件,新型钙钛矿和化合物薄膜半导体材料与器件等方面科研成果与产业应用现状,探索太阳能开发与利用的研究新思路和新方法,推进太阳能研究领域人员之间的交流与合作,进一步提高我国太阳能领域科学研究与技术创新能力。 德国Retsch(莱驰)提供的行星式球磨仪PM系列和高能水冷球磨仪Emax能够实现纳米研磨,满足太阳能电池材料用户最为严苛的研磨粒径需求。此外,德国Retsch(莱驰)的筛分仪种类齐全、筛分方式多样、测量范围广泛、配套使用不同规格的分析筛,可以满足太阳能电池材料行业的粒径分级和测量的需求,筛分结果精确且具有重复性,符合DIN/EN/ISO/ASTM等国际国内标准,是全球唯一一家可提供全系列筛分仪的专业生产厂家。Retsch Technology(莱驰科技)专业从事粒度及粒形分析测试仪器的研发和制造,采用双镜头专利的动态图像分析技术,可精确分析可流动性的颗粒、粉体、胶体、悬浊液、磁性材料等样品的粒度及形态。Camsizer X2设计基于广受欢迎的Camsizer并进一步优化精细样品的测量条件(从0.6μm到8mm),不仅提高了光学解析度,更提供多样的的进样方式适用工业陶瓷行业的应用。德国Eltra(埃尔特)专业从事元素分析仪的制造研发和生产,可为陶瓷样品提供碳/氢/氧/氮/硫五种元素分析的整体解决方案。6月24日,第二届全国太阳能材料与太阳能电池学术研讨会圆满落幕,针对太阳能电池材料应用的具体解决方案与参会的专家学者们进行了深入交流。弗尔德仪器衷心地感谢各位客户的关注和支持!基于客户给予的信任和要求,弗尔德仪器定会不负众望、与日俱新,努力为太阳能电池材料客户提供一份满意的解决方案。除了仪器的展示,弗尔德仪器还在展会上介绍2018年抽奖活动,2018年7-12月,每月产生1个大奖10个幸运奖,大奖奖品价值3000元人民币。奖品有金条、进口空气净化器、高级电饭煲、食品料理机、进口道具组合、美颜相机。现在就关注“弗尔德仪器”官方微信,参加抽奖!
  • 皇明:正式组建太阳能“国家队”
    2011年元月份,国家科技部传来消息——国家将全国唯一的“国家太阳能热利用工程技术研究中心”落户中国太阳谷,该中心将依托皇明太阳能股份有限公司组建,皇明董事长黄鸣任主任。太阳能产业联盟国家工程技术研究中心是国家科技发展计划的重要组成部分,是研究开发条件能力建设的重要内容,旨在加强科技成果向生产力转化效率,缩短成果转化周期,主要任务为培养一流的工程技术人才,建设一流的工程化实验条件,形成我国科研开发、技术创新和产业化基础,将提高现有全行业科技成果的成熟性、配套性和工程化水平,加速企业生产技术改造,促进产品更新换代,为企业引进、消化和吸收国外先进技术提供基本技术支撑。   皇明建设“国家太阳能热利用工程技术研究中心”研究方向定位于高效太阳能集热技术、建筑供能和太阳能高温热发电,着力提升太阳能热利用行业的科研水平 突破核心关键技术 建立技术转化、标准制定、人才培养、检测服务等平台,力争三年时间把中心建设成为我国太阳能热利用工程技术的研发和孵化基地、太阳能高温热发电基地,并通过建设示范项目,推进太阳能热利用的工程化应用。该中心建成后,不仅辐射带动整个太阳能行业,还将影响到整个新能源领域的快速发展,提升中国太阳能产业的国际核心竞争力。它将进一步推动我国可再生能源替代战略的实施,促进行业技术进步和产业化进程,加快节能减排和循环经济的发展,为建设资源节约型和环境友好型社会做出积极的贡献!   国家工程技术研究中心落户中国太阳谷,不仅是对皇明太阳能科技研究实力的肯定,更是对中国太阳能热利用产业的升级,至此,中国太阳能产业真正进行“国家队”,将真正推动太阳能作为“国家重点振兴产业”的快速发展。   相关链接:   2009年11月国际太阳能技术科学院落户中国太阳谷。在揭牌仪式上,时任国际太阳能学会前主席莫妮卡 奥丽芬表示,之所以选择皇明,是因为皇明现已成为世界上最大的太阳能集热器制造基地,拥有国家专利900余项,并先后承担和参加了40余项国家级课题项目,这是不可思议的。更令她震惊的是,皇明建立的太阳能专业检测技术中心,拥有1000余个大大小小的检测项目。一个企业建成世界太阳能行业中检测项目最全面、检测标准最高、太阳能检测最专业的检测实验室,这在世界上也是非常少见的,这种近乎“苛刻”的检测也使得皇明自主研发的UTLE极地超寒管,经受住南极各种复杂的环境,突破低温极限,在南极可以冒热水,这在世界太阳能史上留下了开创性一笔。   作为非盈利性组织,国际太阳能学会是被联合国认可的太阳能专业权威学术机构,成立50多年来,在世界50多个国家和地区设有分支机构,是世界各国进行太阳能合作与交流的重要平台。   中国太阳谷,每年500多项新技术转化成生产力   “中国太阳谷”是目前全球最大的集产、学、研、游为一体的太阳能产业平台,每年有500多项新技术就地转化为生产力,已成为是全球领先的节能科技、产品高科技孵化器,其中绝大部分是全球领先或独有的新技术、新产品。如皇明运用专利干涉镀膜技术研发生产的“三高管”、“四高管”、UTLE极地超寒管、“光立方360度聚光真空管”始终引领着行业发展潮流。2010年12月皇明携“29项专利、144部检测标准、1251项检测项目”推出金品系列热水机,支持太阳能废“器”升“机”,率先解决太阳能冬天、阴雨天不好用的行业难题。热水机采用了400度高温热发电技术打造的光立方真空管,实现了360度集热,快速升温超强保温。热水机首次成熟应用了排空技术,让消费者一开机就能用上热水。   自主知识产权率达95%太阳能产业联盟   2007年9月,皇明建成世界首条真空管镀膜自动化生产线,2010年5月,皇明建成世界首条真空管太阳能热水器自动化生产线。自此,皇明自主创新建设完成一整套世界太阳能热利用产品工业化生产体系,且自主知识产权率达95%以上。该工业体系涵盖了从上游产业链控制、核心技术、自动化生产线、到检测技术等,其中包括世界首条真空管自动化流水生产线,世界首条真空太阳能热水器自动化生产线、全球规模最大、检测项目最多、标准最细的皇明低碳技术检测技术中心(拥有18大实验室,1326项检测项目,350多部企业标准,是国际标准的7倍多,出具报告获国家认证,得到美国、英国在内的等全球45个贸易国承认)等。   掌控太阳能热利用产业新未来   2010年,被誉为新能源下一个投资蓝海的光热发电蹒跚起步,在目前国内绝大多数科研院所还处于攻克太阳能热发电技术,收集试验数据阶段时,皇明光热发电已走过十年技术研发路。7月,皇明出口西班牙的光热发电核心部件镀膜钢管在使用两年后,因效果极佳,再次收到长达25公里,30兆瓦的大订单 同月,皇明在德州又投建了年产60万支的发电真空管生产线,同时能生产菲涅尔式、槽式太阳能热发电核心部件 10月,皇明与中科院等合作建设的“亚洲首座兆瓦级塔式热发电站”正式进入调试阶段 年末由皇明投建的“亚洲最大兆瓦级光热发电站”成功落户太阳谷。该装机容量为2.5MW的电站,采用全球最新潮的线性菲涅尔式中高温热发电技术,开创了亚洲首例 以单个企业的技术和资金建设太阳能热发电站的先河。2011年初,皇明捆绑大唐电力获得了“国内当前最大的“内蒙古鄂尔多斯50兆瓦太阳能热发电项目。   “太阳谷”整合了太阳能生产制造、技术研发、人才培养以及相关配套产业,涵盖了太阳能热水器、太阳能光伏发电及照明、太阳能与建筑结合、太阳能高温热发电、温屏节能玻璃等清洁能源应用的众多产业,被称为世界太阳能“硅谷”。
  • 总投资6520万元国际太阳能中心在兰竣工
    童话世界里的“太阳城堡”在现实生活中被建造了出来,只不过现实中的它将为人类研发和运用太阳能技术发挥作用。11月14日,联合国工业发展组织国际太阳能技术促进转让中心(简称:国际太阳能中心)竣工典礼暨中国政府与联合国工业发展组织项目签字仪式,在兰州市北滨河路该中心新址举行。至此,被外界称为“太阳城堡”、全球唯一的“联合国工业发展组织国际太阳能技术促进转让中心”宣告落成。   成立宗旨 促进发展中国家太阳能技术   据了解,2005年12月1日,经中国政府代表和联合国工发组织代表在维也纳正式签字,在甘肃自然能源研究所的基础上,成立了全球唯一的“联合国工业发展组织国际太阳能技术促进转让中心”,旨在提高发展中国家在太阳能技术研发,太阳能产品与设备生产和应用等方面的能力,通过对发展中国家太阳能等可再生能源技术方面的人力资源培训活动,提高中国和发展中国家有关公共机构和个人的技术水平。同时,致力于太阳能技术的应用和推广,在发展中国家建立试验示范基地,促进太阳能技术的广泛推广和应用。   “太阳城堡” 拥有7项太阳能示范新技术   国际太阳能中心,2007年11月28日开工建设,项目总投资6520万元,总占地面积23333平方米。整栋中心大楼由国际会议中心、行政办公、实验研发、培训接待四部分组成,建筑总面积13976平方米。装备了先进的太阳能光伏、光热等相关技术装备,配备了一系列太阳能研发领域的仪器设备,建有太阳能光热利用、光伏发电、建筑设计、水处理、风能应用、生物质能和太阳能产品性能质量检测等10多个专业研究实验室。大楼的建造也综合集成了7项太阳能示范新技术,无论是照明、取暖,还是热水供应等相关系统都直接利用清洁、无污染的太阳能技术,节能效率在80%以上。   成果显著 签署多项技术合作协议书   当天的仪式上,商务部中国国际经济技术交流中心主任姚申洪与联合国工发组织总干事云盖拉博士签订了中国政府与联合国工发组织继续支持共建国际太阳能中心项目协议。   之后,国际太阳能中心主任喜文华代表中心与常州天合光能有限公司、北京天普太阳能工业有限公司、内蒙古呼和浩特市和内蒙古大美国际太阳能资讯有限公司、中国科技光伏电力控股公司等单位,签订了联合国工发组织国际太阳能中心常州光伏产业与技术研发基地、联合国工发组织国际太阳能中心北京天普太阳能热产业与技术研发基地、联合国工发组织国际太阳能中心太阳能风能信息中心落户呼和浩特市、联合国工发组织国际太阳能中心太阳能光伏应用实验室等合作协议书。
  • 浙江太阳能产品质检中心成立
    2009年12月17日,浙江省太阳能产品质量检验中心成立大会在浙江省海宁市袁花镇太阳能工业园隆重举办。浙江省质监局领导,嘉兴市质监局领导,海宁市政府领导,海宁市质监局、科技局、经贸局、发改局、财政局、人事局,袁花镇党委政府领导,国家中心、太阳能行业协会领导,全省太阳能企业受邀代表,及相关部门领导和新闻媒体等120人共同参与本次活动,庆祝中心的成立。   活动上午,由几个政府及质监局领导发言,共同祝贺中心的成立,并希望质检中心为浙江太阳能行业做出更大的贡献,最后海宁市政府领导和质监局领导共同为浙江太阳能产品质量检验中心举行了揭牌仪式。   活动下午,在中心继续举办了“潮韵科技讲坛-太阳能热利用发展趋势”论坛,海宁市质监局稽查大队长江平先生在海宁市太阳能企业在太阳能产品标示、标注及质量情况方面作了主题发言,叮嘱企业严把质量观念,遵守国家标准,实现稳步快速发展。国家太阳能热水器质量监督检验中心(北京)代表张昕宇先生对今年太阳能热水器产品的质量检测情况也作了详细的阐述,随后国家太阳能热水器质量监督检验中心(昆明)高文峰先生作了主题为“南方太阳能热利用情况及发展”的讲座,帮助企业拓展云南、广东等南方市场,市场上容易遇到的问题,和当地的太阳能利用情况,受到与会代表的一致肯定和感谢。   太阳能产业是浙江海宁的新兴产业,经过十多年的发展形成了初具规模的太阳能产品及完整产业链集群。2008年统计太阳能热水器已销售500万平方米,占全国20%。但生产企业整体规模不大,产品质量参差不齐,而绝大部分又没有自检设备,产业升级遭遇瓶颈。   浙江省太阳能产品质量检验中心的成立,可以为数以千计的企业提供一个检测设备齐全、检验能力强大的公共服务平台。在光热方面,中心的检测设备和检测参数几乎覆盖了产业链的每种产品,从家用太阳能热水系统技术条件的综合测试,到全玻璃真空管的膜层太阳能吸收率与半球反射比的分光光度检测 从密封圈、金属板材元素分析和抗腐蚀性的理化试验,到玻璃毛坯管检测,检测中心二期已规划建设光电产品的检验项目。   浙江省太阳能产品质量检验中心必将为太阳能产业的健康、有序、发展起到保驾护航的重大作用,而置身于这一产业集群的中心区域更可为企业提供快捷、方便、高水平的贴心服务。   相关链接:浙江省太阳能产品质量检验中心简介和服务   浙江省太阳能产品质量检验中心,隶属于海宁市产品质量监督检验所,于2008年3月启动筹建,经过一年的紧张筹建在2009年12月正式成立。该省级太阳能产品质量检验中心总投资1365万元,其中仪器设备资产500万元 建筑面积4033平方米,其中办公面积1000平方米,实验室面积2000多平方米,装备有700平方米的的太阳能热性能检测平台、90平方米恒温恒湿实验室和6平方米步入式超低温实验室。   目前中心已通过省级计量认证和审查认可,具备家用太阳能热水系统、全玻璃真空太阳能集热管、太阳能集热器及硅胶圈、蒸散型钡吸收剂、不锈钢、支架等太阳能产品原辅材料的31各项目检验能力 检验中心的员工本科以上学历工作人员占90%,其中硕士及以上学历职工达20%。通过不断的努力,目前质检中心已成为集技术检测、科研开发和技术咨询服务为一体的专业省级质检中心。中心举杯同时开展16台套家家用太阳能热水器、2台套集热器,10批次真空管的检测能力,中心的检测能力、检测规模达到了国内先进水平。中心的建立也必将成为推动浙江省太阳能产业发展、提升太阳能产品质量和培育太阳能专业技术人才的基地,成为省太阳能行业提供技术交流、共同发展的平台。
  • 太阳能热水器配件曝铅超标
    近日,一家知名太阳能热水器厂商自曝行业潜规则:“半成品太阳能”横行,配件重金属析出。该企业负责人认为,太阳能热水器配件铅含量超标对消费者来说,就如同奶粉中添加的三聚氰胺。此说法一出,引起网友及社会各界的关注与讨论。   南方日报记者调查发现,太阳能热水器配件良莠不齐的状况确实存在,但是否构成铅超标威胁身体健康尚难定论。   据太阳能热水器业内人士与专家介绍,目前,我国太阳能热水器行业所存在的“铅超标”问题,理论上并没有该企业所曝的那么标准。太阳能热水器行业普遍采用铜质材料配件,在刚开始并不一定会出现这种铅超标的问题,只是在用了一二十年后,可能有这种隐患。但具体的影响程度还需要进一步量化研究。   此外,有专家建议,如果消费者在选择太阳能热水器配件时对再生铜的安全性不放心,可以选择PVC塑料管或者其他安全原料做的配件。   走访配件差价大非原厂产品成行规   日前,记者走访一些太阳能热水器卖场发现,不少太阳能热水器的配件都不是品牌原厂的,而是由经销商自行采购,一些销售人员告诉记者,如果不需要配件,价格还可以有优惠。   记者在网上搜索太阳能热水器的铜配件,价格从3元到几十元不等。淘宝上一位卖家告诉记者,大部分的太阳能公司都不会配原装配件,所以一些经销商为了牟取利润最大化,会使用较差的铜配件,容易产生铅等重金属超标。   广东桑×太阳能某代理商客服表示,业内行情确实是“厂家只包太阳能主机,不包管道配件”的情况。且桑×太阳能在装机时,只包楼面管道(楼顶到室内前的管道),不包室内管道。“不管是楼面管道还是室内管道,客户可以通过经销商帮忙配置,也可以根据自己的品牌喜好去市面购买。”一些厂商所采用的楼面管道一般都是家用的PC管。   佛山市南海区丽水某节能设备经营部经销包括皇明等多种品牌的太阳能热水器。其工作人员再次向记者肯定了业内“厂家做主机,辅助管道可自配”的现状。   “不过针对重金属含量超标的问题,目前还没有出现过投诉案例。”该工作人员表示。广东省内的情况,“其实跟国内的情况一样,目前舆论的焦点在于铜材质上,主要就是管道和出水龙头的材质上。”   他透露,在业内,大品牌的有些配件是自己的标配,用的材料比较好,而有些品牌则自己不出配件,消费者必须自行在市场上去选购相应的配件。现实情况是,不管是标配,还是自配,其实用的都是铜材质,只是像皇明这些大品牌的要厚一点,相应价格也会比其它贵很多。有些经销商为了赚差价,有可能给消费者搭配一些便宜的非原厂配件。   在他看来,此次曝光的焦点应该是企业标准的参差不齐,重金属含量超标的问题则有点被夸大了。   分析配件铅超标对健康影响几何?   皇明集团表示,通过实地调查监测的结果分析,使用有铅超标铜配件的太阳能热水器,长期积累,会导致消费者铅中毒,并且年龄越小对铅的通透性越高。   不过,有节能设备业内人士向记者解释,皇明所曝出的问题,实际是在铜质水龙头使用一二十年后才有可能出现的,如果真是质量不达标,国家肯定早就禁止生产了。   而有网友提出,太阳能热水器在国内已经使用近20年,并没有出现过类似这种因体外使用太阳能热水器而导致铅中毒的案例。皇明集团有关负责人也表示,这些问题属于隐患,并无实际案例。   对此,太阳能热利用专业委员会主任罗振涛在接受采访中表示,提出铜配件铅含量超标问题对行业是个警示,但如何解决这一问题需要认真研究。“推广镍安铜配件”是不是就能杜绝铅的析出,还需要研究。   在铅是否超标尚不明朗的情况下,市民在使用太阳能热水器时该注意什么问题呢?多数专家表示,太阳能热水器的水用来洗澡没有问题,但是不能直接饮用。武汉大学公共卫生学临床流行病研究中心教授廖皓磊接受媒体采访时表示,相较于接触皮肤,铅进入消化道后果要严重,因为胃肠道更易吸收重金属,而皮肤表层有数十层上皮细胞结构,有一定防御作用。市民一定要严格区分生活用水和饮用水,尽量避免饮用太阳能热水器中的水。   建议   可采用非金属管道等安全材料   针对行业内太阳能热水器金属析出超标的问题,有企业呼吁行业必须强制厂家采用原装“镍安铜配件”。然而,根据记者调查,推广镍安铜配件,也只是理论上可以减少危害而已。   有业内人士向记者介绍,目前太阳能热水器业内均使用的是铜质水龙头,镍安铜和不锈钢,其实都是不错的材质。这些材质在行内已经有几十年的使用历史,至今也没听说哪个行业的铜质、不锈钢、铁之类的不能用,包括pvc、pc这些材质管道、配件,都是达到国家环保标准的。   广东工业大学材料与能源学院教授张仁元分析,若太阳能热水器真的存在铅超标的问题,那么对人体肯定是有伤害的。尽管过去这二十多年来,他在使用这些材质的配件时并没有遇到身份不适的情况,但这个行业能从关注能源使用拓展到关注水质问题,应该是一种进步。消费者如果对再生铜不放心,可以选择PVC塑料管或者无铅黄铜为原料做的配件。   浙江大学能源系胡亚才教授也认为,皇明集团捅出太阳能热水器行业存在铜配件“铅超标”的问题,还需要有关的研究机构予以定性定量的分析。
  • 量子点太阳能电池外量子效率首超100%
    据美国物理学家组织网12月16日(北京时间)报道,美国国家可再生能源实验室(NREL)研制出一种新式的量子点太阳能电池,当其被太阳能光谱的高能区域发出的光子激活时,会产生外量子效率最高达114%的感光电流。发表于12月16日出版的《科学》杂志上的这一最新研究为科学家们研制出第三代太阳能电池奠定了基础。   当光子入射到太阳能电池表面时,部分光子会激发光敏材料产生电子空穴对,形成感光电流,此时产生的电子数与入射光子数之比称为感光电流的外量子效率。迄今为止,还没有任何一种太阳能电池在太阳能光谱内光波的照射下,显示出超过100%的外量子效率。   现在,NREL团队首次在量子点太阳能电池上实现了这一点。他们在一个叠层量子点太阳能电池上获得了114%的外量子效率。该电池由具有减反光涂层的玻璃(其包含有一薄层透明的导体)、一层纳米结构的氧化锌、一层经过处理的硒化铅量子点以及薄薄一层用作电极的金组成。   太阳能光子产生超过100%外量子效率基于载子倍增(MEG)过程,借助这一过程,单个被吸收的高能光子能激发多个电子空穴对。NREL团队首次在量子点太阳能电池的感光电流内展示了MEG,科学家们可借此改善太阳能电池的转化效率。研究结果显示,在模拟太阳光的照射下,新量子点太阳能电池的光电转化效率高于4.5%。目前,这种太阳能电池还没有达到最优化,因此,其能源转化效率相对来说偏低。   与传统的太阳能电池相比,量子点太阳能电池内的MEG能将电池的理论热力能转化效率提高35% 量子点太阳能电池也可使用廉价且产量高的卷对卷制程制造而成 其另外一个优势是每单位面积的制造成本很低,科学家们将其称为第三代(下一代)太阳能电池。(记者 刘霞)   所谓第一代太阳能电池是指目前最常见的晶体硅电池,第二代是薄膜电池 第三代,则应该是具有更高转化效率的新型电池的总称。而让单个高能光子激发多个电子空穴对正是提高转化效率的途径之一。不过现有技术并不能有效分离、收集大量的电子空穴对,这也就是新电池转化效率偏低的主要原因。虽然现在看起来,让这么多自由电子白白溜走显得过于奢侈,但如此高的外量子效率还是让我们备受鼓舞——一旦突破电子空穴对收集的技术瓶颈,太阳能电池的发展将会翻开全新一页!
  • 加研制出全光谱太阳能电池
    据美国物理学家组织网6月27日(北京时间)报道,加拿大科学家表示,他们研发出了一款新式的全光谱太阳能电池,其不但可以吸收太阳发出的可见光,也可以吸收不可见光,从理论上讲,转化效率可高达42%,超过现有普通太阳能电池31%的理论转化率。研究发表在最新一期的《自然光子学》杂志上。   此款基于胶体量子点(CQD)的高效串接太阳能电池由加拿大首席纳米技术科学家、多伦多大学电子与计算机工程系教授泰德萨金特领导的科研团队研制而成。论文主要作者王希华(音译)表示,该太阳能电池由两个吸光层组成:一层被调制用于捕捉太阳发出的可见光 而另外一层则可以捕捉太阳发出的不可见光。   萨金特介绍说,为了做到这一点,该团队用纳米材料串联成一个名为分级重组层的设备,能往返运输可见光层和不可见光层之间的电子,有效地将捕捉可见光的吸光层和捕捉不可见光的吸光层结合在一起,这样,两个吸光层都不需要妥协。   该研究团队在使用CQD制造太阳能电池方面一马当先,CQD这种纳米材料很容易被调制来对特定波长的可见光和不可见光作出反应。新式串联CQD太阳能电池捕捉光波的波长范围比普通太阳能电池更加宽泛,因此,从理论上讲,其转化率可达42% 相比之下,最好的单结太阳能电池的最大转化率仅为31%,而一般位于屋顶或日常消费产品中的太阳能电池的转化率仅为18%。   研制高效的、成本合理的太阳能电池是全球共同面临的巨大挑战。萨金特说:“全球都需要转化效率超过10%的太阳能电池,并希望能显著降低现有光伏组件的零售价。最新进展提供了一条切实可行的道路,其能最大限度地捕捉太阳发出的各种光线,有望提高转化率并降低成本。”   萨金特希望,在5年内,将这款新的分级重组层太阳能电池整合入建筑材料、手机和汽车零件中。
  • TSMC发力光伏 太阳能研发中心动土兴建
    9月16日,TSMC在台中科学工业园区举行第一座先进薄膜太阳能技术研发中心暨先期量产厂房动土典礼,吹响了TSMC全面进军薄膜太阳能市场的号角。   TSMC董事长兼总执行官张忠谋在典礼中表示,新事业团队自去年成立以来已写下许多重要里程碑。其中LED照明技术研发中心暨量产厂房已落脚于台湾新竹,第一座太阳能厂房也准备在台中动土兴建。LED照明和太阳能这两项绿能新事业不仅能更增强TSMC长期营收与获利的持续成长,并将制造对地球友善的绿色能源产品,彰显TSMC企业公民的社会责任。此外,这座太阳能厂房与七月刚动土的晶圆十五厂未来将比邻而建,代表台中科学园区将成为TSMC最先进及创新的生产基地之一。   TSMC新事业总经理蔡力行同时指出,TSMC一向在技术领域追求卓越,太阳能事业的发展也不例外。我们将在此太阳能厂房全力进行太阳能技术的研发,提供先进的薄膜解决方案与制造 此外,未来将充分结合及发挥TSMC优异的制造能力,成为薄膜太阳能的业界领导者。   这座薄膜太阳能技术研发中心暨先期量产厂房将分成两阶段兴建,第一期的投资金额为美金2亿5800万元(约新台币79亿2,000万元),预计2011年第二季即可完工装机,并于2012年达到先期年产量200百万瓦(MW) 至于第二期产量则将超过700百万瓦(MW)。此外,这座太阳能新建厂房也将持续发展今年六月由美商Stion授权并移转的薄膜铜铟镓硒(CIGS)技术,TSMC未来将以自有品牌全球销售其太阳能产品。
  • 山东将成为世界太阳能科技研发中心
    国际太阳能学会主席莫妮卡奥丽芬特不远万里来到中国太阳谷,为这家世界上太阳能领域最权威机构设立的全球首家太阳能科研机构——国际太阳能技术科学院揭牌,这意味着山东已经成为世界太阳能“科技中心”。   据了解,中国已经成为世界最大的太阳能光热利用国家。中国太阳谷以皇明、亿家能为依托,已经发展成为世界上最大的太阳能光热研发检测、制造物流及光伏终端生产基地。
  • 如何祛除太阳能电池组件上的“毒瘤”?
    随着新能源的逐渐普及,太阳能也迅速的走进千家万户,成为了成活中的一部分。太阳能在给生活带来便利和环保的同时,有一个"毒瘤"却一直在残害着太阳能电池或者组件的寿命,令广大用户对它是爱恨交加啊。那么这个"毒瘤"究竟是什么?该如何祛除呢?“毒瘤”的诞生过程这个"毒瘤"叫做太阳能热斑。太阳电池组件由于在制造和实验的过程中,出现隐裂、碎片焊接不良等;或在应用过程中,被其它物体(如鸟粪、树荫等)长时间遮挡时,被遮挡的太阳能电池组件此时将会严重发热,这就是"热斑效应",也就是太阳能上的一颗毒瘤。有光照的电池所产生的部分能量或所有的能量,都可能被"热斑"的电池所消耗。“毒瘤”的破坏力这颗毒瘤会对太阳能电池会造成很严重地破坏作用,会严重的破坏太阳电池组件或系统,所以需要对太阳电池组件进行热斑检测,使相对发热均匀的电池片进行组合或维护,以避免组件所产生的能量被热斑的组件所消耗,同时避免由于热斑可能给太阳能组件或系统的寿命带来的威胁,所以需要用到一款专业的工具来检测这颗"毒瘤",然后将其消灭。如何祛除“毒瘤”红外热像仪拥有超高的灵敏度,能够准确的感应出被测物体表面发生的微笑温度变化,检测出太能能电池片或组件的缺陷,将产品的缺陷位置直观准确的显示在红外热图中,特别是由菲力尔公司生产的FLIR Ex系列红外热像仪,可以实现即瞄即拍,能够快速准确的发现"毒瘤",让其无所遁形,简直可以称之为"毒瘤杀手"。“毒瘤杀手”是如何工作的?想要发现毒瘤,就要让太阳能组件发热,这样热像仪才能发挥效应,所以首先要太阳能电池片或组件在正常的太阳光或辅助光源下工作,或将组件在上述光源的照射下短路,这样热斑才会出现。接下来就是FLIR Ex系列红外热像仪大显身手的时刻,FLIR Ex系列包括FLIR E4、E5、E6和E8共4种热像仪,通过画中画及热叠加技术,检测人员除了可以拍摄红外图像外,还可以同时捕获一幅可见光照片,并将其融合在一起,通过拍摄的红外图像,检测人员可以直观、快捷,方便在同时间和相同的环境下得到同一块组件上不同电池块的温度,第一时间识别和定位故障,找出热斑。不仅如此,在采用FLIR Ex系列红外热像仪检测热斑时,还不需要断电,其采用的非接触测量方式更不会干扰原有的温度场,反应速度更是小于1秒,所以检测人员可以更快更准的检测出热斑,与传统的数据采集器和红外点温仪相比,各方面性能可以说是完胜。所以,在检测太阳能电池片或者组件热斑的时候使用FLIR Ex系列红外热像仪是毋庸置疑的, "毒瘤杀手"可不是白叫的。
  • ‘阳光动力2号’来了,你对太阳能材料了解多少?
    2015年3月29日,阳光动力官方微博发布消息称,&ldquo 今早5点,&lsquo 阳光动力2号&rsquo 的飞行员之一贝特朗· 皮卡尔将驾机从缅甸曼德勒前往重庆。预计到达重庆江北机场时间为明天凌晨1点。&rdquo 随后,飞机将于当天继续飞往南京,预计到达时间为3月31日夜里或4月1日凌晨。 重庆是&lsquo 阳光动力2号&rsquo 的这次环球之旅一个目的地,&lsquo 阳光动力2号&rsquo 的此次旅程温差极大,从-41摄氏度~50摄氏度,飞行高度也有9000米,超越珠穆朗玛峰。是什么保障他们安全飞行?这就要把目光投向飞机的材料,比如光伏电池、碳纤维及其他新型材料。 在此,我们主要关注太阳能电池。制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电于转换反应,根据所用材料的不同,太阳能电池材料可分为:1、硅太阳能电池材料;2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3、功能高分子材料制备的大阳能电池;4、纳米晶材料太阳能电池等。 如何针对太阳能电池及其他材料进行检测呢?2015年4月14日下午14:00,安捷伦公司分子光谱应用工程师张晓丹将通过仪器信息网网络讲堂在线为大家讲解针对太阳能材料检测领域的整体解决方案,涉及太阳能电池盖片、EVA膜透过率测试、镀膜测试、能隙测定等。 预了解更多内容,请扫描二维码报名。 本次会议报名及参会均不收取费用,欢迎想太阳能材料检测领域技术信息的网友报名。
  • How It’s Made——钙钛矿太阳能电池的崛起
    导语:与其他光伏材料相比,钙钛矿太阳能电池在性能的提升方面表现出了惊人的速度。近期,来自德国柏林科技大学的Steve Albrecht等研究者在Science正刊中报道了一个单片钙钛矿/硅串联太阳能电池,其认证的功率转换效率高达29.15%,预计还会进一步提高。现如今,钙钛矿太阳能电池生产技术逐渐趋于成熟,生产设备也逐渐小型化和便捷化。继2009年和2012年的早期关键实验之后,人们对这些生产设备的兴趣激增,目前正在进一步优化它们的性能,并寻找可行的商业应用路线。本文,我们将带您看看钙钛矿太阳能电池材料的制造过程和相关技术。什么是钙钛矿太阳能电池钙钛矿太阳能电池(PSC)顾名思义是由钙钛矿材料作为核心部件制备的太阳能电池。钙钛矿材料的种类很多,但它们都有ABX3的化学通式,其中A和B是阳离子,X是阴离子。在钙钛矿光伏材料中,B通常是金属阳离子,X是卤族元素,A可以是有机或无机阳离子。重要的是,这些成分必须以一种特定的几何结构排列,A穿插在阳离子BX6八面体的间隙。如下图所示。 钙钛矿太阳能电池材料晶格结构的3D示意图(中央亮斑为B,红色为X,蓝色为A) 钙钛矿是钙钛矿太阳能电池中吸收光的材料,它吸收光子并产生电子-空穴对。之后,这个电子-空穴对会分离(也可能不会,这是导致太阳能电池效率低下的原因),释放出电子和正电荷载流子。这些电子(负)和空穴(正)载流子分别被设备中的其他材料(传输层)收集,然后流出,在外部电路中产生电压。人们尝试用各种钙钛矿材料来制备PSCs,其中常见的是MAPbI3。这种材料由基铵正离子嵌入Pb2+离子和碘离子(I-)组成的八面体框架。钙钛矿光伏薄膜材料制备太阳能电池的制备过程主要分为薄膜的制备和后续的加工。后续的加工流程与硅基太阳能电池的后续加工有些类似,涉及到微纳加工与封装等流程,我们不做详细介绍。对于薄膜的制备技术目前主要有液体旋涂和真空镀膜两类。旋涂技术由于设备简单,易于快速搭建等特点很容易在实验室实现。但是其规模化拓展性较差,器件的重复性和稳定性以及与后续加工流程的兼容性等方面仍有不足。在真空镀膜方面目前较为流行的是采用物理气象沉积(physical vapor deposition—PVD),例如热蒸发等方式。对于热蒸发技术来说,在真空室中加热钙钛矿前驱体,使它们向上蒸发并覆盖在基片上。通过对过程的精细控制,形成所需的钙钛矿薄膜。热蒸发方法制备出的薄膜不仅性能出色,同时还能与太阳能电池制造过程中需要的其他过程具备良好的兼容性 (例如,传输层和金属接触层的沉积也经常使用PVD)。热蒸发制备方案概要以制备钙钛矿太阳能电池的常用材料MAI(methylammonium iodide)和PbI(lead iodide)为例,MAI蒸发温度约为150℃,而金属卤化物PbI需要400℃~500℃。这与常规的金属热蒸发相比温度低很多,但对热蒸发源温度控制的性要求较高。传统金属热蒸发更注重所能达到的高温(可达~1800℃),如果采用传统的蒸发源生长钙钛矿材料很容易导致温度过冲,制备的薄膜性能不稳定,甚至前驱体会瞬间挥发殆尽导致生长失败。钙钛矿光伏材料除了在较低温度下生长之外,沉积速率也是一个重要的控制变量。由于沉积速率并非温度的直接函数,钙钛矿材料在沉积时需要对每一个蒸发源的速率进行标定与检测。通常在热蒸发过程中,可以采用晶振探头来探测每一个蒸发源的蒸发速率。对于常规的金属热蒸发过程,材料从蒸发源沿着直线方向到达衬底,按照类似于标准分布函数的规律在衬底上沉积成薄膜。然而对于非常易挥发的材料,例如MAI,蒸发过程中会先在源上方形成较高的蒸气压,这会导致材料向侧方扩散,导致材料在腔体的其他部位形成非必要的沉积。因此,对于钙钛矿光伏材料的沉积过程必须控制得更加精密,否则MAI容易导致其他材料的晶振传感器被污染。专业的低温热蒸发技术与设备英国Moorfield 公司基于多年的薄膜设备生产经验发布了低温蒸发(LTE)技术和相关设备。这使得科研人员能够快速建立高性能的钙钛矿光伏薄膜沉积系统。Moorfield 公司用于钙钛矿太阳能电池制备的设备包括台式nanoPVD - T15A,以及功能增强型的落地式MiniLab系列。这样的低温热蒸发系统具有以下几方面的优点:● 低温蒸发源与控制器:超低的热容量,可选择主动水冷方案实现控制和小的温度过冲;基于传感器的PID反馈回路使得温度、功率或沉积速率可控。● 石英晶振传感器探头:水冷式,降低温度影响。专业设计和安装位置,在生长高蒸汽压钙钛矿前驱体时使信号“串扰”小化。● 真空系统:专业真空腔体设计和定制,包括可选的耐腐蚀泵组系统和预抽保护功能。● 过程控制:采用先进的自动过程控制器,允许多阶段程序设定操作,每个阶段包含单个或多个源蒸发(即共同蒸发),反馈回路控制每个源的速率。● 多功能配置:允许在一个系统上通过不同的PVD技术沉积钙钛矿和其他PSC涂层。此外,系统可以配备冷却或加热样品台,用于处理热敏感基片或在沉积期间/沉积后进行热处理。nanoPVD系统中的LTE蒸发源手套箱集成式系统虽然成品PSCs元件可以在大气条件下使用,但通常有必要在惰性气氛下进行器件封装制造。因为在后的保护涂层覆盖之前,湿气和氧气会对材料性能造成影响。因此,一些PSC制备工作通常在惰性气体(如纯氩气或氮气)的手套箱中进行。基于MiniLab 026和MiniLab 090平台的Moorfield LTE系统可以与手套箱集成,允许在惰性气氛中对衬底或样品进行加工处理。Moorfield可以提供整套的手套箱集成系统或与客户选定的手套箱进行集成。其中MiniLab 026系统可以与用户已有的手套箱进行现场的集成安装。Minilab090系统样品腔(左),与手套箱集成的系统(右)总结钙钛矿材料在太阳能电池方面表现出良好的前景,真空蒸发镀膜是一种很有前途的制备方法且容易实现工业化生产。用于钙钛矿薄膜制备的沉积系统需要进行优化设计,以提高薄膜材料的品质。Moorfield Nanotechnology公司具有雄厚的专业技术基础和先进的设备解决方案,包括全套LTE蒸发源、过程控制选件和完整的沉积系统。此外Moorfield Nanotechnology还提供其他多种材料制备的专业设备,例如磁控溅射、电子束蒸发、快速制备石墨烯的nanoCVD系统。台式高精度薄膜制备与加工系统新动态Moorfield 公司在中国科学院技术物理研究所的台设备安装成功,本次在技术物理研究所安装的是台式高性能二维材料等离子软刻蚀系统—nanoETCH。该系统对输出功率的分辨率可达毫瓦量,对二维材料可实现准确的逐层刻蚀,也可实现二维材料层内缺陷制造,此外还可对石墨基材等进行表面处理。该系统目前正处于技术培训阶段,不日将正式交付使用。中国科学院技术物理研究所安装的nanoETCH系统
  • 我国成立风能太阳能仿真检测认证技术实验室
    经国家能源局批准,以北京鉴衡认证中心为依托的“国家能源风能太阳能仿真与检测认证技术重点实验室”日前在北京宣告成立。   中国风能协会秘书长、北京鉴衡认证中心主任秦海岩称,这标志着我国风能太阳能行业拥有了集仿真技术、标准研究、检测认证技术研究和实践于一体的公共技术服务平台,对加快推动我国风能太阳能行业技术进步和国际化进程意义重大。   据了解,该实验室将紧密围绕我国风能太阳能技术领域的重大需求,着力完善风能太阳能标准和检测认证体系,加强相关标准研究、产品检测试验关键技术研究和认证技术研究,重点建设风电半物理仿真中心、风电机组和太阳能测试中心以及风电、光伏发电远程监测中心等。   目前,重点实验室的风电设备检测中心建设已经取得重大进展,位于河北省保定市的风电叶片与轴承检测中心的一期工程已经完工并投入使用。该中心全面建成后,可完成包括叶片原材料、叶片零部件、100米叶片全尺寸结构试验、无损检测、叶片跟踪测试等所有叶片相关试验测试,以及5兆瓦风电轴承和变桨系统的相关试验测试,试验条件达到国际先进水平。
  • 国电龙源开建西藏最大太阳能光伏电站
    西藏最大的太阳能光伏发电站和一座新型的地热发电项目3月19日在羊八井镇开工建设。加之已经投产几十年的羊八井地热电站,这个高原小镇无疑成为了西藏"从上到下"开发新能源的示范地区。   据两个项目的投资建设方中国国电龙源电力集团股份有限公司相关负责人张曦介绍,新建的1万千瓦太阳能光伏发电项目将在一定程度上缓解藏中电网电力供需紧张局面。新型地热发电项目将克服传统地热发电中的技术缺陷,促进地热开发的可持续发展。   据建设方介绍,羊八井1万千瓦光伏项目将采用模块化建设,就近并网升压,估算投资为2.2亿元,施工总工期10个月。项目地址与羊八井地热电站变电站仅一墙之隔,产生的电能经高压输送至羊八井地热电站变电站,利用现有的输电线路并入藏中电网进行远距离输送。   项目建成后负责经营管理的龙源西藏新能源有限公司总经理张曦说,该项目25年寿命期内共产生约43000万度的电能,与火力发电相比,相当于累计节约标准煤约150500吨,减排40万吨二氧化碳、1850吨二氧化硫、120吨粉尘和40600吨灰渣。   西藏是中国太阳能资源最丰富的地区,全区大部分地区太阳能辐射年均达6000--8000兆焦耳/平方米,超过同纬度平原地区一倍左右。日照时数也是全国的高值中心,全年平均日照时数在3000小时左右,在发展太阳能发电方面具有绝对的资源优势。   对于同日开工的地热发电项目,张曦介绍说,项目采用了先进的双螺杆膨胀动力机,它可以将地热水全部引入到动力机膨胀做功,地热水在送入全流动力机前无需进行扩容和闪蒸等处理,能量的利用率有较大提高。   专家认为,双螺杆膨胀动力机技术与常规地热汽机相比,具有可靠、快装可移动性、操作安全、自洁除垢以及黑启动能力等多项优势,在西藏的地热开发中前景广阔。   羊八井镇是西藏新能源发展的一个缩影。目前西藏正在从天上的太阳能、风能,到地下的地热、沼气和生物质能等着手,全方位开发和利用新能源。   近年来沼气和生物质能等新能源也开始走进农牧民家庭。记者在日喀则地区的综夏村农民普琼家看到,因为沼气的使用,以前烟熏火燎的厨房已经不复存在。"以前家里烧牛粪,生火的时候烟气熏得眼睛都睁不开,现在用上了沼气,厨房里总是干干净净。"她说。   专家王海江说,西藏是常规能源短缺的地区,长期以来西藏城乡居民,特别是广大农牧民依靠木柴、牛羊粪、草皮和荆棘等作为燃料,这对脆弱的高原环境造成了严重破坏。如今各种新能源逐步走进百姓生活,能减少对传统能源的依赖,保护生态环境。   在未来几年内,西藏将通过太阳能和风能发电,解决约30万无电人口的用电问题。到"十一五"末,在适宜地区的59个县建设农村沼气20万户,力争到"十二五"时期在农村基本普及沼气。   此外,西藏还将实施薪柴替代能源发展战略,因地制宜地发展太阳能、风能、地热能和生物质能等薪柴的替代能源,最大限度地开发利用西藏优势资源,减少使用传统能源对环境的压力。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制