当前位置: 仪器信息网 > 行业主题 > >

激发极化法仪

仪器信息网激发极化法仪专题为您提供2024年最新激发极化法仪价格报价、厂家品牌的相关信息, 包括激发极化法仪参数、型号等,不管是国产,还是进口品牌的激发极化法仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激发极化法仪相关的耗材配件、试剂标物,还有激发极化法仪相关的最新资讯、资料,以及激发极化法仪相关的解决方案。

激发极化法仪相关的资讯

  • 我国科学家创制极化激元晶体管
    纳米尺度的光电融合是未来高性能信息器件的重要发展路线。如何在微纳甚至原子尺度对光进行精准操控是其中的关键的科学问题。中国科学院国家纳米科学中心研究员戴庆研究团队率先提出利用极化激元作为光电互联媒介的新思路,充分发挥它对光的高压缩和易调控优势,不仅有望实现高效光电互联,而且可以提供额外的信息处理能力,从而进一步提升光电融合系统的性能。   该团队通过十多年的努力,实现了极化激元的高效激发和长程传输。在此基础上,研究设计并构筑了微纳尺度的石墨烯/氧化钼范德华异质结,实现了用一种极化激元调控另一种极化激元开关的“光晶体管”功能。研究表明该晶体管可实现光正负折射的动态调控,类似电子晶体管能切换(1,0)两个高低电位,为构筑与非门等光逻辑单元奠定了重要基础。该研究充分发挥了不同材料的纳米光子学特性,从而突破了传统结构光学方案如使用人工结构(超材料和光子晶体等)在波段、损耗、压缩和调控等方面的性能瓶颈。   与电子相比,光子具有速度快、能耗低、容量高等优势,被寄予未来大幅提升信息处理能力的厚望。因此,光电融合系统被认为是构建下一代高效率、高集成度、低能耗信息器件的重要方向。光电互联(电-光-电转换)是光电融合主的基础,相当于光电两条高速公路交汇的收费站。而现有硅基光电集成方案存在效率低(依赖多次光电效应)、体积大(光模块无法突破衍射极限)等问题,制约光电器件之间的信息流转。然而,光子不携带电荷且光的传输受限于光学衍射极限,相比于能轻易通过电学调控的电子,对光子的纳米尺度局域和操控并不容易。   极化激元是一种由入射光与材料表界面相互作用形成的特殊电磁模式(表面波)。它具有优异的光场压缩能力,可轻易突破光学衍射极限从而实现纳米尺度上光信息的传输和处理。   戴庆团队以攻克高速光电互联这一世界技术难题为目标,提出以纳米材料的表面波(极化激元)为媒介,实现高效光电互联的新思路。构筑光-极化激元-电转换路径相当于将高速公路的收费站改造成立交桥,具有显著优势:一是效率高,光/电激发材料表面波的效率相比光电效应提升潜力巨大;二是集成度高,光波转化成材料表面波可将波长压缩百倍轻松突破衍射极限,从而显著提升光模块集成度;三是算力强,材料表面波具有光子性质可进行高效并行计算,从而将现有光电融合的“光传输、电计算”拓展成为“光传输、电计算+光计算”,实现“1+12”的效果。   戴庆提出,我们利用电学栅压对极化激元这种光波的折射行为实现了动态调控,使其从常规的正折射转变到奇异的负折射。这好比可以像操纵电子一样操纵光子,为将来高性能光电融合器件与系统的发展提供重要促进作用。这一研究在应用上面向光电融合器件大规模集成缺乏高效、紧凑光电互联方式的重大需求,在科学上为解决突破衍射极限下高效光电调制的难题提供了新思路。   2月10日,相关研究成果以Gate-tunable negative refraction of mid-infrared polaritons为题,发表在《科学》(Science)上。该论文审稿人评价道,这证实了一项非常规的物理现象,为研究纳米尺度的光操控提供了崭新的平台。图示极化激元晶体管的基本原理,通过在氧化钼上覆盖石墨烯构筑范德华异质结,天线激发极化激元传输穿过界面后形成负折射。极化激元晶体管的光学显微镜照片
  • FLIR光激发和超声波激发无损检测的测量示例
    高性能红外摄像机拍摄从测量对象外部激发(光、超声波、涡流、电流和热弹性等)测量对象内部的密度波动、内部剥离、缺陷和龟裂产生的温度变化是一种无损检测方法。 通过组合一定周期激发的锁相热成像,可以实现更高的分辨率,探测从测量对象表面到深入内部的缺陷;通过改变锁相频率,可以改变向测量对象表面传导的测量对象热传导周期,获得从测量对象表面到深度方向的相关信息。 本文介绍使用锁相热成像的光激发和超声波激发无损检测的测量示例。关键词:热成像、锁相、光激发、超声波激发1、红外热成像本研究需采用最新红外摄像机技术——二维焦平面阵列的红外检测元件。图1 红外摄像机320X256像素或者640X512像素、观测波长范围MWIR的红外检测元件(InSb)通过转向电子冷却器进行冷却,各个红外图像的测量温度分辨率(NETD)在25℃时为0.02℃。每个像素的空间分辨率通过空间分辨率视角规定,如要检测大型测量目标和精细区域,则需要更高像素的640X512像素红外摄像机。 红外应力测量需要更高的温度分辨率,如果计算约2000个图像,温度分辨率要不低于0.001℃。图2 锁相方式对于反复加权的测量对象试样的温度变化,根据所谓的锁相方式(图2)任意设置的一定间隔的帧率,连续采集和计算红外图像,从时刻变化的温度变化量计算最大温度差⊿T,并制成图像。2、光激发热成像图3 光激发锁相热成像通过图3所示的结构进行光激发锁相热成像测量。光激发方法分为脉冲热成像和锁相热成像两种。图4 脉冲热成像脉冲热成像方法显示图4所示的温度变化和时间相位滞后,通过光瞬间激发测量对象,在测量对象温度下降的过程中,将测量对象的正常位置和缺陷位置产生的温度变化和时间相位滞后通过图像显示出来。脉冲热成像针对捕捉测量对象表面附近的缺陷和热传导系数较高的材料瞬变现象的测量。图5 锁相热成像如图5所示,锁相热成像方法通过重复亮灯激发测量对象,测量对象正常位置和缺陷位置因光激发产生的温度变化而出现温度变化和时间相位滞后,该方法通过图像将温度变化量和相位滞后显示出来。锁相热成像方法将按一定频率重复出现的温度变化和相位滞后通过图像表现出。通过锁相方式反复施加相同的温度变化,减少噪音成分,可以检测出每次温度变化测量所包含的噪音成分中隐藏的小型缺陷信号。3、光激发锁相热成像测量示例图6 复合材料汽车车身的缺陷图6显示使用光激发锁相热成像进行缺陷检测的结果。光激发锁相热成像检测出复合材料内部缺陷和剥离位置。图7 频率和缺陷深度的关系图7显示缺陷位置不同的复合材料平板的测量示例。改变光激发的锁相频率,0.5Hz的高频只引起测量对象表面附近出现温度变化,从而只能检测测量对象表面附近的缺陷。而0.06Hz的低频可以使测量对象深处出现温度变化,从而还可以检测深处缺陷。因此,在光激发锁相热成像中,通过改变激发频率,可以评估到从测量对象表面到缺陷以及从缺陷位置到测量位置表面的热传导温度变化和相位滞后,从而可以推测缺陷深度状况。4、超声波激发热成像图8 超声波激发热成像图8为超声波激发热成像概要。通过超声波换能器激发测量对象,使用高性能红外摄像机检测测量对象内部的龟裂或裂纹通过内部摩擦或滞后而发热的状态。在光激发热成像中,捕捉从受热的测量对象表面向缺陷的传热以及温度变化从缺陷位置向测量对象表面传导时的温度变化。而对于超声波激发热成像,因为捕捉从缺陷位置到测量对象表面的温度变化,只需光激发热成像的一半过程即可,因此超声波激发热成像可以检测更深位置的缺陷。5、超声波激发热成像的测量示例图9-铆钉残留的超声波激发热成像图9为使用超声波激发的热成像检测铆钉残留位置。左图为铆钉熔化后成为一体的检测图像,其中检测不到超声波激发引起的发热。右图中的铆钉处存在间隙,可以测量到超声波激发产生的发热。图10 超声波热成像显示气门座圈图10 为插入发动机气门座圈时的啮合状态检测示例。超声波激发使座圈中有间隙的内部产生摩擦而引起发热。本状态使用红外摄像机测量。6、总结通过对测量对象进行光激发或者超声波激发,可以检测测量对象内部的缺陷和剥离状态。高性能红外摄像机可以捕捉非常轻微的温度变化,并且与锁相热成像组合可以改进S/N。通过图像处理将缺陷位置和正常位置进行二进制处理,还可以用作自动识别的检测装置。
  • 激发新活力,引领新发展——访中国检验检疫科学研究院院长李新实
    p  中国第三方检测实验室发展论坛(简称“论坛”)已经陪伴检验检测行业走过了十年。十年征程,以梦为马,其与检验检测行业齐发展,共命运,对检验检测行业的影响愈加深远,已成为检验检测行业不可或缺的标志性盛会。年年论坛年年办,今年有何不寻常?为此,我要测网特在第十一届第三方检测实验室发展论坛即将召开之际,邀请中国检验检疫科学研究院李新实院长为我们讲述今年论坛的“不寻常”之处以及中国检验检疫科学研究院未来的发展思路。br//ppimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/25ad2eac-7ea2-4224-83aa-2392d7354544.jpg" title="12121212.jpg" alt="12121212.jpg"//pp style="text-align: center "  中国检验检疫科学研究院院长 李新实/pp strong 1、作为论坛的主办方,本次论坛和长沙市人民政府联合主办,有什么意义?/strong/pp  长沙历史悠久,自古就是楚汉名城,名人辈出。“唯楚有才,于斯为盛”。著名的岳麓书院,是中国历史上赫赫有名的四大书院之一,也是世界上最古老的学府之一。1925年12月,伟人毛泽东在美丽的橘子洲头、湘江之滨写下了气势磅礴的《沁园春· 长沙》,“问苍茫大地,谁主沉浮?”体现了改造旧中国的豪情壮志 长沙市作为湖南省的政治、经济、文化、科教和商贸中心,近年来发展迅速,面貌焕然一新,令人震撼。作为中部重镇,2017年GDP突破万亿元,成为中国第13个万亿都会 检验检测认证作为高技术服务业之一,是国家质量基础设施(NQI)的重要组成部分,是推进供给侧结构性改革和我国经济高质量发展的重要技术支撑。近年来,随着中部地区检验检测行业迅速发展,产业规模不断扩大,检验检测行业已成为推动长沙高质量发展的重要内容。长沙市委、市政府战略谋划,瞄准检验检测高新技术产业,立足打造中国检验检测“第四城”,将检验检测认证作为主导产业大力培育,努力建设国家检验检测认证公共服务平台示范区和国家检验检测高技术服务业集聚区,彰显了“中国中部检测之都”的魅力。2016年长沙市政府投资十几亿元建设岳麓检验检测产业园,园区起点高、品位高、环境美、政策实,具有很强的吸引力和发展前景,获批湖南省检验检测特色产业园。/pp  今年恰逢伟大祖国70华诞,我们将第十一届第三方检测实验室发展论坛安排在长沙,既向伟大祖国献礼,也向以长沙检验检测为代表的中国第三方检测的辉煌过往致敬。本次论坛由我院和长沙市政府联合主办,必将进一步推动中国检科院与长沙市政府开展更深层次、全方位的合作,大家也可以学习借鉴长沙经验,集思广益、建言献策,为激发我国第三方检测产业新活力、引领经济社会新发展贡献自身力量!/pp  strong2、本届论坛的主题是“激发新活力,引领新发展”,请您介绍一下确定这一主题的思路。/strong/pp  检验检测被誉为“工业之眼”,处于产业最前沿,肩负着引领产业高质量发展的时代重任。早在2011年,“检验检测服务”就首次以一个产业的形态,列入国家重点发展的8个高科技服务业之一,体现了鲜明的产业特征。第三方检测产业自身的发展水平直接决定着“工业之眼”的明亮程度。为此,本届论坛确立了“激发新活力 引领新发展”的主题,目的就是希望从内、外两个维度,引发大家对第三方检测产业自身发展的深层次思考,更好地发挥其对经济高质量发展的引领作用,实现两者的互促共进,同步提升。/pp  激发新活力,就是要激发第三方检测的内在活力,促进行业自身持续健康发展。俗话说,打铁还要自身硬。作为“传递信任的行业”,检验检测自身必须首先为社会所信赖。这就要充分激发第三方检测的内在活力,做大做强第三方检测产业自身。/pp  引领新发展,就是优化检验检测服务供给,引领经济高质量发展。为国民经济运行提供技术支撑,引领经济高质量发展是检验检测的出发点和落脚点。要实现这一目标,必须着眼于优化检验检测服务供给,以自身技术能力和服务能力的提升,为经济高质量发展和人民高品质生活需求保驾护航。/pp strong 3、今年是论坛举办的第十一年,为什么今年论坛举办时间有所推后?您对论坛近年发展有何看法?对论坛未来有何期待?/strong/pp  今年是第三方检测实验室发展论坛举办的第十一个年头,往年第三方检测实验室发展论坛基本都在九月初举办,今年到长沙举办,一方面是长沙“三伏”过后,炎热天气还会有一段时间的反复 另一方面是由于九月初学生开学,大家都比较忙,综合考虑,为了方便大家,时间向后延了一段。/pp  第三方检测实验室发展论坛作为国内第三方检测行业的首个高峰论坛,自2009年创办以来,始终秉承“搭建交流平台,凝聚各方智慧,探讨前沿趋势,引领行业发展”的初心,淡化官方色彩,不以营利为目的,搭建平台,凝聚共识,在传达国家政策、分析检测行业现状、反应市场需求等方面发挥着重要作用。可以说,这个平台是第三方检测领域的有识之士共同培育、共同打造的一个公共交流平台。近年来,平台的展示能力和推广能力不断提升,举办地点由东部地区走向西部、中部地区,辐射范围越来越广,影响日益深远,目前已发展成为检测领域最具影响力的年度重要活动和重要品牌。但我也注意到,近年来一些机构、组织借助第三方检测实验室发展论坛的影响力,改头换面,“山寨”出了不少类似的活动,有的甚至与我们的论坛名称都差不多。更有甚者,有的机构打着中国检科院的旗号进行招展,给中国检科院以及第三方检测实验室发展论坛造成了负面影响。反过来说,这也从另一方面反映了论坛的影响力。在此,我代表中国检科院及第三方检测实验室发展论坛呼吁,希望大家珍惜第三方检测实验室发展论坛这个我们共同的“精神家园”,共同维护第三方检测产业的持续健康发展。/pp strong 4、检科院整体划入市场监督管理总局后,未来的发展将如何调整?/strong/pp  大市场机制的建立,是当今我国经济转向高质量发展阶段的必然产物。市场监管总局职能涉及企业注册、质量安全监管、计量标准、检验检测、认证认可等各个领域,业务范围十分广泛。中国检科院划入市场监管总局,研究领域进一步扩展,业务范围进一步扩大,既面临着新的发展机遇,也面临着许多新的挑战。我们将牢记使命,抢抓机遇,努力做好各项工作。/pp  一是加强科研创新,不断提升自身实力。科研是中国检科院的立院之本,必须一以贯之的坚持。中国检科院未来发展将聚焦国家重大战略、聚焦国计民生,集聚全院优势力量,联合系统内外专家,对国家重大科技专项、重点研发计划、支撑计划、自然科学基金等各类科研项目进行凝练攻关,不断解决检验检测工作中带有全局性、综合性、关键性、突发性、基础性的科学技术问题。同时,密切关注国际国内行业的技术发展和前沿动态,围绕大市场监管、食品农产品安全、消费品安全、大宗战略资源性商品检验监管等涉及国计民生和行业发展的难点和热点问题开展基础性和前瞻性研究,不断提升科研为社会服务的能力。/pp  二是强化技术支持,持续拓展服务领域。中国检科院将充分发挥技术优势,积极对接市场监管总局相关司局,在为市场监管总局服好务的前提下,继续为海关总署、农业农村部、司法部等部委做好技术支持工作,为地方政府及相关企业解决实际问题提供必要的智力支持。/pp  2019年中国检科院开始承担总局食品安全抽检监测秘书处工作,负责食品安全风险预警交流体系设计、国家食品安全监督抽检、风险监测和评价性抽检数据统计分析、食品补充检验方法和食品快速检验方法的立项审核、跟踪评价等技术支持。目前已与全国32个省(区、市)市场监督管理局、总局本级承检机构、牵头机构建立了工作联系。其他各项工作也在抽检司的支持和兄弟单位的配合下稳步推进。/pp  为配合2019年全国食品安全周宣传活动,加强餐饮业智慧管理,中国检科院受市场监管总局经营司委托,负责组织了“互联网+餐饮智慧管理系统”方案征集活动,遴选出一批优秀方案,对提升餐饮业的整体管理水平起到很大的促进作用。/pp  2019年5月《中共中央 国务院关于深化改革加强食品安全工作的意见》中明确要求推动建立食品安全司法鉴定制度,中国检科院配合法规司和执法稽查局,在食品安全司法鉴定制度建设中,参与起草了《食品安全司法鉴定制度主要内容》、《食品安全司法鉴定办法》,组织召开多次研讨会,对食品安全司法鉴定的体系架构、食品安全司法鉴定的专业领域及系列配套工作等提出意见或建议,为国家食品安全司法鉴定制度建设技术支撑单位提供了技术支撑。/pp  三是促进成果转化,不断提高市场竞争力。近年来,党中央、国务院深入推进科技体制改革,在促进科技成果转化方面,出台了一系列政策和办法。8月21日,科技部、教育部、财政部等六部门联合发文,为高校、科研院所松绑,扩大高校和科研院所科研的自主权,这对全面增强创新活力、提升创新绩效、增加科技成果供给、支撑经济社会高质量发展具有重要意义。下一步,中国检科院将深入推行“大市场”战略,不断创新科技成果转化管理模式、转化方式,持续鼓励科技成果转化和产业化实施,积极推动院属企业参与国家检验检测高技术服务业集聚区和示范区建设,为我国经济转向高质量发展作出应有贡献。/pp  论坛最新日程及参会报名请点击链接:a href="https://www.instrument.com.cn/news/20190829/492241.shtml" target="_blank"大咖云集|第十一届中国第三方检测实验室发展论坛暨展览会震撼来袭!/a/ppbr//p
  • 北大高鹏课题组与合作者报道电镜测量“黄方程”元激发新进展
    北京大学电子显微镜实验室、量子材料科学中心、轻元素先进材料研究中心高鹏课题组与国家纳米科学中心戴庆研究员和杨晓霞研究员、西班牙巴塞罗那科学技术研究所F. Javier García de Abajo教授等合作,测量发现纳米尺寸氮化硼管中双曲型声子极化激元的回音壁模式具有超小的模式体积和超高的Purcell因子,表明氮化硼纳米管在增强纳米尺度光与物质相互作用方面大有可为。2023年2月24日,相关研究成果以“氮化硼纳米管中的双曲型回音壁声子极化激元”(Hyperbolic whispering-gallery phonon polaritons in boron nitride nanotubes)为题发表于《自然纳米技术》(Nature Nanotechnology)。此外,课题组受邀总结了近几年国内外相关研究团队利用电镜测量声子极化激元的进展、机遇和挑战,发表在中文期刊《科学通报》。黄昆先生的代表作之一“黄方程”处理了离子晶体材料中光学声子与电磁波的耦合问题,阐明了这种耦合会产生一种新的元激发,即声子极化激元,解释了离子晶体材料的红外色散特征。近年来声子极化激元受到了广泛的关注,因为它有望应用在低损耗纳米光学元器件中,诸如亚衍射成像、增强探测和光芯片等。自上世纪50年代黄昆先生的理论提出以来,相关概念在60年代开始逐渐被光学实验如拉曼散射所证实。过去十多年,由于基于针尖散射式的扫描近场光学方法(s-SNOM)的发展和二维材料的兴起,声子极化激元研究进入高速发展时期。然而不管是基于拉曼光谱还是红外光谱的光学探测方法,在研究声子极化激元上都有一些局限性。声子极化激元的激发需要满足动量匹配和能量匹配。从动量匹配角度,由于光子没有静止质量,而声子的动量可以很大,因此光学方法只能激发小动量的声子极化激元。事实上,高动量的声子极化激元具有更高的波长压缩和光场局域能力。从能量匹配角度,远红外波段,之前没有成熟商业化的扫描近场光学显微镜产品,直到近两年才开始发展起来,因此这个频段现有研究较少。实际上,很多常见的半导体材料如ZnO、AlN、GaN等的声子极化激元都处在这个频段。针对这些挑战,高鹏课题组近年来致力于发展利用电镜的电子能量损失谱来测量声子极化激元,与合作者一起取得了一系列进展,比如激发并探测了单层氮化硼中的高动量声子极化激元,获得了最高纪录的压缩比,解决了单原子层二维材料中声子极化激元存在与否的长期争议(Nat. Mater. 2021, 20: 43–48),弥补了纳米光学动量失配的短板。利用电子能量损失谱连续激发与探测的特点,从而覆盖远红外频段的测量,与纳米光学形成互补。据此研究了代表性的材料ZnO(Nano Lett. 2019, 19: 5070–5076)和α-MoO3(Adv. Mater. 2020, 32: 2002014)等,发现了一些新模式,并揭示了尺寸效应、几何形状效应、取向依赖的选择性激发与探测等。此外,该方法的高空间分辨率能力、高探测效率使得该方法在研究不规则小纳米结构(Sci. Bull. 2020, 65, 820)、异质结界面(Chin. Phys. Lett. 2019, 36, 026801)的声子极化激元方面也具有独一无二的优势。另一方面,声子极化激元的离域性使得其探测可以在aloof模式(电子束聚焦在样品附近的真空中)下进行,因此一些常规电镜表征容易损伤的材料可以用这种方式来探测并且避免损伤。该领域的研究进展以及相关展望发表于《科学通报》(2023年第68卷第一期18-31页),第一作者为物理学院2019级本科生何沛一。目前,高鹏课题组开发的声子极化激元探测和分析方法已经在北京大学电子显微镜实验室平台上开放使用。图1. (a)电子显微镜里的高能电子束激发声子极化激元;(b)电子能量损失谱与近场光学方法在能量、动量等方面对声子极化激元表征能力的对比:纳米光学能探测的动量范围很小,而电镜能损谱能探测的动量范围很大;覆盖远红外频段的近场扫描光学显微镜技术刚刚起步,之前缺乏商业化的产品,而电镜能损谱可以全覆盖;纳米光学所测量的声子极化激元色散通常是离散的几个点,而电子显微镜是连续激发与探测;此外,电镜探测在微弱信号、光学非活性模式、小纳米结构等方面也具有优势。近日,合作团队又取得了新的进展。高鹏课题组与国家纳米科学中心和西班牙巴塞罗那科学技术研究所等合作,详细研究了单个氮化硼纳米管的声子极化激元,发现其中存在双曲型声子极化激元的回音壁模式(hyperbolic whispering-gallery phonon polariton,HWG-PhP),具有超小的模式体积,并随着氮化硼纳米管径向尺寸的减小而减小。该工作直接从实验上观察到低至10-10量级的模式体积(相对自由光波长归一后),同时双曲型声子极化激元本征的低损耗使得该回音壁模式的品质因子可达约220,最终在亚10纳米的氮化硼管中得到了1012量级的超高Purcell因子。这表明小尺寸氮化硼纳米管在增强纳米尺度光与物质相互作用方面大有可为。电子能量损失谱方法在该项工作中发挥了重要作用,除了前面提到的动量匹配方面的优势,电子显微镜超高的空间分辨率为在测量小尺寸氮化硼纳米管(径向尺寸通常在几个至几十个纳米)中的声子极化激元模式分布、研究色散关系提供了基础。另一方面,由于电子与材料相互作用的散射截面通常要比光学作用高出4-6个数量级,因此电子激发具有更高的效率,有利于探测原子数目少、信号微弱的这类小纳米结构,如少层二维材料、小尺寸一维和零维材料。图2. 电子束沿氮化硼纳米管轴向(a)和径向(b)扫描时获得的电子能量损失谱;(c)不同侧壁厚度氮化硼纳米管中HWG-PhP模式的色散关系;(d)实验得到的模式体积与Purcell 因子2023年2月24日,相关研究成果以“氮化硼纳米管中的双曲型回音壁声子极化激元”(Hyperbolic whispering-gallery phonon polaritons in boron nitride nanotubes)为题,在线发表于《自然纳米技术》(Nature Nanotechnology)杂志。国家纳米科学中心特别研究助理郭相东博士和北京大学前沿交叉学科研究院2017级博士研究生李宁(导师是北京大学物理学院量子材料科学中心王恩哥院士)为文章共同第一作者,杨晓霞、F. Javier García de Abajo、高鹏、戴庆为文章通讯作者。其他合作者包括北京大学本科毕业生亓瑞时、研究生时若晨、李跃辉,国家纳米科学中心研究生吴晨晨,河北工业大学河北省微纳氮化硼材料重点实验室黄阳教授及北京大学王恩哥院士。上述研究工作得到了国家重点研发计划、国家自然科学基金、量子物质科学协同创新中心、轻元素量子材料交叉平台等支持。
  • 大连化物所等利用大连光源发现水分子光解是星际振动激发态氢气的重要来源
    近日,中国科学院大连化学物理研究所大连光源科学研究室研究员袁开军、中科院院士杨学明团队,与南京大学教授谢代前合作,首次测量了水分子光解中的氢气产物通道,发现这些氢气产物全部处于振动激发态。该光化学反应为星际空间存在的振动激发态氢气的来源提供了重要途径。  氢气是宇宙中丰度最大的分子,对宇宙的演化起到重要作用。星际观测发现星云中分布大量的处于振动激发态的氢气,尤其是在星际光辐射区域天文观测到超过500条来自于振动激发态氢气的光谱线。振动激发态的氢气因具有较长的寿命和较高的反应活性,对行星大气的组成和演化具有关键作用。当前,星际理论表明,振动激发态的氢气主要有两个来源:恒星爆炸或形成过程产生的激波将氢气加热到振动态、氢气被紫外光激发随后衰变到电子基态的振动态。理论预测振动激发态氢气的直接形成也可能是这些高能量氢气的重要来源,而具体的形成过程尚不明确。  利用大连光源,袁开军团队探究了水分子的光化学过程。科研人员将解离波长调谐至100纳米到112纳米范围,利用离子成像首次观测到O(1S)+H2产物通道。实验表明氢气产物主要分布在第三或者第四振动激发态,理论计算构建了水分子的过渡态结构并解释了振动激发态氢气的形成机理。基于水在宇宙星云和彗星大气中广泛存在,水分子光解为星际光辐射区域存在的振动激发态氢气的来源提供了新途径,对建立星云和行星大气演化模型具有重要意义。  该研究是袁开军团队利用大连光源系统地研究水分子极紫外光化学过程的新进展。前期研究进展包括:发现水分子光解产生超热的羟基自由基(Nat. Comm.)、观测到电子激发态的羟基超级转子的形成(JPCL)、水分子同位素诱导的偶然共振效应(JPCL),水分子光解形成高振动激发的OH是火星大气辉光的来源(JPCL)、水分子三体解离产氧是行星早期大气中氧气的重要来源(Nat. Comm.),以及水分子光化学中的同位素效应是太阳星云中D/H同位素分布不均的重要原因(Sci. Adv.)。  相关研究成果以Vibrationally Excited Molecular Hydrogen Production from the Water Photochemistry为题,发表在《自然-通讯》(Nature Communications)上。研究工作得到国家自然科学基金动态化学前沿研究中心项目、中科院战略性先导科技专项(B类)“能源化学转化的本质与调控”﹑国家自然科学基金优秀青年科学基金项目、辽宁省“兴辽英才计划”等的资助。
  • 大连化物所发现六光子激发自陷态激子发光的无铅钙钛矿晶体
    近日,大连化物所分子反应动力学国家重点实验室、大连光源科学研究室(二十五室)袁开军研究员团队发现了一种具有多光子激发自陷态激子发光的全无机Cs2TeCl6无铅钙钛矿晶体。多光子吸收是一种非线性效应,是指材料可以同时吸收多个单色红外光子,并将电子从基态激发到激发态,然后上转换为高能光子。无铅钙钛矿作为一种“明星”材料,具有较高的稳定性和低毒性,已经成为铅基钙钛矿的替代品。但与铅基钙钛矿相比,对于无铅钙钛矿高阶多光子吸收效应的研究还比较匮乏。本工作发现了一种在800至2000nm波长范围内,具有3至6光子吸收的全无机Cs2TeCl6无铅钙钛矿晶体。稳态和瞬态光学实验结果表明,Cs2TeCl6晶体中单光子和多光子激发的宽带橙色发射归因于自陷态激子的复合。此外,研究人员通过飞秒激光激发的多光子荧光吸收饱和法,量化了Cs2TeCl6晶体的多光子吸收截面,其中六光子吸收截面为1.87×10-174cm12s5photon-5(1980 nm)。该工作为无铅钙钛矿家族在非线性光电领域的应用和发展提供了一个有潜力的候选材料。相关研究成果以“Six-Photon Excited Self-Trapped Excitons Photoluminescence in Lead-Free Halide Perovskite”为题,于近日发表在《先进光学材料》(Advanced Optical Materials)上。该工作的第一作者是大连化物所2507组博士研究生蒋举涛。该工作得到国家自然科学基金、辽宁省兴辽英才计划等项目的资助。
  • 大连化物所发现六光子激发自陷态激子发光的无铅钙钛矿晶体
    近日,大连化物所分子反应动力学国家重点实验室、大连光源科学研究室(二十五室)袁开军研究员团队发现了一种具有多光子激发自陷态激子发光的全无机Cs2TeCl6无铅钙钛矿晶体。多光子吸收是一种非线性效应,是指材料可以同时吸收多个单色红外光子,并将电子从基态激发到激发态,然后上转换为高能光子。无铅钙钛矿作为一种“明星”材料,具有较高的稳定性和低毒性,已经成为铅基钙钛矿的替代品。但与铅基钙钛矿相比,对于无铅钙钛矿高阶多光子吸收效应的研究还比较匮乏。本工作发现了一种在800至2000nm波长范围内,具有3至6光子吸收的全无机Cs2TeCl6无铅钙钛矿晶体。稳态和瞬态光学实验结果表明,Cs2TeCl6晶体中单光子和多光子激发的宽带橙色发射归因于自陷态激子的复合。此外,研究人员通过飞秒激光激发的多光子荧光吸收饱和法,量化了Cs2TeCl6晶体的多光子吸收截面,其中六光子吸收截面为1.87×10-174cm12s5photon-5(1980 nm)。该工作为无铅钙钛矿家族在非线性光电领域的应用和发展提供了一个有潜力的候选材料。相关研究成果以“Six-Photon Excited Self-Trapped Excitons Photoluminescence in Lead-Free Halide Perovskite”为题,于近日发表在《先进光学材料》(Advanced Optical Materials)上。该工作的第一作者是大连化物所2507组博士研究生蒋举涛。该工作得到国家自然科学基金、辽宁省兴辽英才计划等项目的资助。
  • 物理所在光激发二维材料中的非平衡态电声耦合研究方面取得进展
    随着超快技术的发展,超快激光脉冲激发条件下的凝聚态物质的响应,即非平衡态涌现出来的新物理现象,引起了人们的广泛注意。超快物质调控逐渐成为量子调控的新兴研究方向。通过非平衡态的电声耦合激发相干声子调控材料中的铁电、磁性、超导等性质以及探索新型超快信息处理方式等研究方向体现出巨大的潜力。然而,目前非平衡态下的电子-声子耦合的微观物理图像依然不清楚。   过去人们对于光激发条件下材料中电子和声子的演化的理解一般是基于双温模型或者相应的推广模型。双温模型假设非平衡态下电子和声子体系内部形成热平衡,这样就可以用一个有效温度来描述两者的演化以及它们互相之间的耦合。推广的多温模型和更一般的玻尔兹曼方程可以从第一性原理出发计算光激发下电子和声子的演化,为理解光激发下非平衡态物理现象奠定了基础。然而,这些模型都是基于微扰论得到的基态情况下电声耦合矩阵元,没有考虑电声耦合矩阵元在光激条件下的变化。如果想充分理解非平衡态下电声耦合的具体物理图像和它在非平衡态物理现象中所扮演的重要作用,必须定量探究光激发条件下体系中电声耦合矩阵元的变化以及相应的电子态和声子态的演化。   近日,中国科学院物理研究所/北京凝聚态物理国家研究中心表面物理国家重点实验室研究人员,利用基于含时密度泛函理论的分子动力学方法,结合冻结声子法定量地探究了光激发条件下典型二维材料二硫化钼中相干声子的产生和电声耦合强度的变化(图1)。研究发现,光激发二硫化钼中的声子以声子为主,并且光激发下模式的电声耦合矩阵元会增大(图2)。同时,声子模式在光激发下出现了类似于电子掺杂时出现的声子软化现象,这说明光激发会影响体系中的介电屏蔽(图3)。通过进一步分析,他们发现电声耦合的增强是由于光激发诱导电子-空穴对导致体系中的电子对声子微扰的屏蔽减弱。除此之外,该研究定量化描述了光激发下体系中光激发载流子到晶格的能量弛豫速率随时间的演化,建立了光激发条件下固体中非平衡态电声耦合的清晰物理图像(图4)。   相关成果以Calibrating Out-of-Equilibrium Electron–Phonon Couplings in Photoexcited MoS2为题发表在Nano Letters上。相关研究工作得到科学技术部重点研发计划、国家自然科学基金委、中科院战略性先导科技专项等的资助。图1 光激发产生的电子-空穴对减弱了电子对声子微扰运动的屏蔽,从而导致电声耦合增强。图2 可见光照射下单层二硫化钼中电子和声子的激发及其随时间的演化。图3 光激发下声子模式电声耦合矩阵元的变化。图4 光激发下非平衡态电声耦合主导的能量弛豫过程。
  • 物理所在光激发二维材料中的非平衡态电声耦合研究方面取得进展
    随着超快技术的发展,超快激光脉冲激发条件下的凝聚态物质的响应,即非平衡态涌现出来的新物理现象,引起了人们的广泛注意。超快物质调控逐渐成为量子调控的新兴研究方向。通过非平衡态的电声耦合激发相干声子调控材料中的铁电、磁性、超导等性质以及探索新型超快信息处理方式等研究方向体现出巨大的潜力。然而,目前非平衡态下的电子-声子耦合的微观物理图像依然不清楚。过去人们对于光激发条件下材料中电子和声子的演化的理解一般是基于双温模型或者相应的推广模型。双温模型假设非平衡态下电子和声子体系内部形成热平衡,这样就可以用一个有效温度来描述两者的演化以及它们互相之间的耦合。推广的多温模型和更一般的玻尔兹曼方程可以从第一性原理出发计算光激发下电子和声子的演化,为理解光激发下非平衡态物理现象奠定了基础。然而,这些模型都是基于微扰论得到的基态情况下电声耦合矩阵元,没有考虑电声耦合矩阵元在光激条件下的变化。如果想充分理解非平衡态下电声耦合的具体物理图像和它在非平衡态物理现象中所扮演的重要作用,必须定量探究光激发条件下体系中电声耦合矩阵元的变化以及相应的电子态和声子态的演化。近日,中国科学院物理研究所/北京凝聚态物理国家研究中心表面物理国家重点实验室研究人员,利用基于含时密度泛函理论的分子动力学方法,结合冻结声子法定量地探究了光激发条件下典型二维材料二硫化钼中相干声子的产生和电声耦合强度的变化(图1)。研究发现,光激发二硫化钼中的声子以声子为主,并且光激发下模式的电声耦合矩阵元会增大(图2)。同时,声子模式在光激发下出现了类似于电子掺杂时出现的声子软化现象,这说明光激发会影响体系中的介电屏蔽(图3)。通过进一步分析,他们发现电声耦合的增强是由于光激发诱导电子-空穴对导致体系中的电子对声子微扰的屏蔽减弱。除此之外,该研究定量化描述了光激发下体系中光激发载流子到晶格的能量弛豫速率随时间的演化,建立了光激发条件下固体中非平衡态电声耦合的清晰物理图像(图4)。相关成果以Calibrating Out-of-Equilibrium Electron–Phonon Couplings in Photoexcited MoS2为题发表在Nano Letters上。相关研究工作得到科学技术部重点研发计划、国家自然科学基金委、中科院战略性先导科技专项等的资助。论文链接 图1 光激发产生的电子-空穴对减弱了电子对声子微扰运动的屏蔽,从而导致电声耦合增强。图2 可见光照射下单层二硫化钼中电子和声子的激发及其随时间的演化。图3 光激发下声子模式电声耦合矩阵元的变化。图4 光激发下非平衡态电声耦合主导的能量弛豫过程。
  • 物理所在光激发VO2超快电子相变和结构相变的动力学解耦研究中取
    二氧化钒(VO2)是一种典型的强关联材料。在温度约为340K时,VO2会经历从绝缘性单斜相(M1-VO2)到金属性金红石相(R-VO2)的一级相变过程。强关联材料中电荷、晶格、轨道和自旋等自由度强烈地耦合在一起,这使得VO2绝缘体-金属相变存在多种相变机制。超快激光脉冲通过激发固体材料的价电子可以快速改变原子的势能面,因此激光辐射已经成为一种诱导强关联材料相变的有效途径,比如激光辐射可以使M1-VO2在500fs内发生非热的结构相变。但是实验上通常很难直接同时观测结构相变和绝缘体-金属相变中的超快原子和电子动力学,因此对于VO2的超快结构相变和绝缘体-金属相变的相变机制,以及两种相变能否脱耦仍然存在巨大争议。近日,中国科学院物理研究所/北京凝聚态物理国家研究中心表面物理国家重点实验室研究人员利用自主开发的激发态动力学模拟软件TDAP,研究了激光诱导M1-VO2到R-VO2的超快结构相变和绝缘体-金属相变,揭示了超快尺度上的非平衡相变机制。激发态动力学模拟可以追踪光诱导VO2结构相变和绝缘体-金属相变的超快过程,直接证明飞秒尺度上两种相变的解耦合行为。在这种动力学过程中,激光将M1-VO2 d||带上的价电子激发到导带上,d||带上产生的空穴可以引起V-V对的扩张和V-V-V扭转角的增加,从而驱动M1-VO2到R-VO2的结构相变(图1、图2)。计算模拟得到的结构相变速率与激发强度的依赖关系,与超快实验数据符合得很好。基于杂化密度泛函的激发态动力学模拟证明了在M1-VO2构型下可以出现等同结构的绝缘体-金属相变(图3)。M1-VO2中的空穴会引起间隙能级在带隙中的填充,从而引起带隙的消失。更高强度的光激发可以引起d||带的明显上移。模拟得到的结构相变和绝缘体-金属相变的激发阈值基本上是相同的,而结构相变和电子相变存在着数百飞秒的时间延迟,这导致了金属型M1-VO2瞬态和等同结构电子相变的出现(图4)。该工作揭示了VO2超快结构相变和绝缘体-金属相变过程中不同的超快机制,澄清了以往对于VO2是否存在等同原子结构的电子相变的争议,并提供了研究强关联材料非平衡动力学的新方法。相关成果近期发表在Science Advances上。研究工作受到国家重点研发计划、国家自然科学基金委和中科院的资助。图1 VO2原子结构图和光激发电子跃迁过程。(A)低温绝缘型M1-VO2和(B)高温金属型R-VO2的原子结构图。钒原子和氧原子分别以绿色和橙色显示。(C)脉冲电场强度E0为0.20 V/的800nm激光脉冲,以及其激发M1-VO2中的光生空穴密度随时间的演变。(D)光激发有效空穴密度与激光脉冲电场强度E0的关系。图2 光激发M1-VO2到R-VO2相变原子动力学。(A)不同激发强度下V-V长键和V-V短键平均长度的时间演变。(B)不同激发强度下平均V-V-V扭曲角的时间演化。(C)0.64 e/f.u激发强度下的差分电荷密度图。黄色区域对应于电子增加,青色区域对应于电子减少。(D)光激发结构相变时间常数与实验数据的比较。图3 光激发M1-VO2的电子动力学。(A)不同激发强度下M1-VO2的电子态密度。(B)杂化泛函非绝热模拟中电子激发量的演化。在E0=0.14 V/ 下t= 20 fs(C)和t = 40 fs(D)时的电子占据和态密度。图4 光诱导M1-VO2超快相变示意图。初始的绝缘相M1-VO2(t = -100 fs)在t = 0 fs时被激光脉冲激发。光激发诱导M1-VO2发生等同原子结构的绝缘体-金属相变(10 fs内),而结构相变在100至300 fs的时间尺度内发生。
  • 世界首台!我国成功研制双光子-受激发射损耗(STED)复合显微镜
    p  在常规光学显微系统当中,由于光学元件的衍射效应,平行入射的照明光经过显微物镜聚焦之后在样品上所成的光斑并不是一个理想的点,而是一个具有一定尺寸的衍射斑。在衍射斑范围内的样品均会发出荧光,导致这些样品的细节信息没有办法被分辨,从而限制了显微系统的分辨能力。随着扫描电镜、扫描隧道显微镜及原子力显微镜等技术的出现,实现纳米量级分辨率的观测已经成为可能,但是以上这些技术仍然存在对样品破坏性较大,只能观测样品表面等缺点,并不适合对于生物样品,特别是活体样品的观测。因此,研究人员们急需找到一种光学的超衍射极限显微方法。二十世纪九十年代以来,研究人员们陆续提出了多种超分辨显微技术来实现超越衍射极限的高分辨率。在这些方法之中,以德国科学家S.W.Hell在1994年提出的受激发射损耗显微术(Stimulated Emission Depletion Microscopy,STED)的发展最为成熟,应用也最为广泛。/pp  受激发射损耗显微术(STED)是通过受激发射效应实现减小有效荧光发光的面积。一般STED显微系统中包含两束照明光,一束为激发光,一束为损耗光。当激发光的照射使得衍射斑范围内的荧光分子被激发,其中的电子跃迁到激发态后,损耗光使部分处于激发光斑外围的电子以受激发射的方式回到基态,而位于激发光斑中心的被激发电子则不受影响,继续以自发荧光的方式回到基态。由于在受激发射过程中所发出的荧光和自发荧光的波长及传播方向均不同,因此探测器观测到的光子均是由激发光斑中心的部分荧光样品通过自发荧光方式产生的。通过这种方式可以减小有效荧光的发光面积,提高系统的分辨率。/pp  目前,受激发射损耗显微术的关键主要集中在损耗光斑的调制,激发光与损耗光激光类型和波长的选择等方面。/pp  根据国家科技部消息,近日,在国家重点研发计划“数字诊疗装备研发”专项的支持下,由苏州国科医疗科技发展有限公司、吉林亚泰生物药业股份有限公司、中国科学院物理研究所等多家单位共同承担的数字诊疗重点研发专项项目--双光子-受激发射损耗(STED)复合显微镜获得重要进展:成功研制出国内外首台双光子-STED复合显微镜样机。项目组完成了显微镜系统中核心部件的自主研制,成功研制出了具有自主知识产权的大面阵CMOS相机和长工作距离大数值孔径物镜等核心部件,打破了国外相关产品对我国的垄断。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/003b5e67-5cf9-4afd-8932-d8a32c788f59.jpg" title="首台复合显微镜.png" alt="首台复合显微镜.png"//pp style="text-align: center "strong国内外首台双光子-STED复合显微镜样机/strong/pp  在当今生物学及基础医学的研究中,超分辨显微光学成像是取得原创性研究成果的重要手段。国外双光子-STED成像技术研究开展的相对较早,德国、加拿大、法国、意大利等多个国家的科研机构都已经成功搭建了双光子-STED成像实验系统 而我国相关研究起步较晚,目前双光子STED成像技术仍停留在实验室研究阶段,国际上尚未出现相应的产品。因此,双光子-受激发射损耗(STED)复合显微镜的成功研制对于满足我国生物医学等前沿基础研究的定制化需求、提升创新能力以及推动我国显微镜行业升级等具有重要意义。/p
  • 拉曼入门手册:激发波长的选择-奥谱天成
    拉曼光谱仪的激发波长种类繁多,例如奥谱天成常规提供的波长有266nm,532nm,633nm,785nm,830nm,1064nm。面对如此繁多的激发波长应该如何选择呢?表 1 激发波长选择那么红外激发波长的优劣势?近红外的激发波长一般在700nm以上,常见的有785nm,830nm和1064nm。采用近红外的激发波长通常是为了抑制荧光干扰。荧光需要先吸收外来的光,然后才能发射出荧光。而拉曼是单纯的光散射过程,无需吸收。大多数样品的荧光吸收带都处于可见光的部分,只有少数材料的吸收带位于近红外区域,因此测试大部分的样品,近红外激光不会引起荧光。而拉曼却可以正常出现。当样品在可见激发下有很强的荧光干扰时,使用近红外拉曼是一个很好的解决方案,可以获得优质的拉曼光谱。但是近红外的激光激发的效率不高(拉曼信号强度与激发波长的四次方成反比)会导致灵敏度降低。所以,785?nm激光激发的拉曼强度几乎只有532?nm激光激发的拉曼强度的五分之一;1064nm激光激发的拉曼信号强度只有532nm激光激发的十五分之一。此外,CCD探测器的灵敏度在近红外部分的响应度也比较低,因此,与使用可见激光测量相比,要获得同样的光谱质量,近红外拉曼的测量时间相对长很多。那么紫外激发波长的优劣势?紫外激发波长一般在350nm以下,常用的有266nm。采用紫外的激发波长同样可以抑制荧光影响,和近红外相似,荧光的吸收带主要在可见波长段,荧光信号和拉曼不在同一区域(近可见波长段可能也会出现荧光),虽然荧光信号远远高于拉曼信号,但是不会受到荧光的干扰。许多生物样品(例如蛋白质,DNA,RNA等等)会与紫外激发波长产生共振,使拉曼信号增强数倍,对于测试这类样品的结构提供的便捷。此外,紫外激光在半导体材料中的穿透深度一般在几个纳米的量级,对于测试样品表面的薄膜可以进行选择性的分析。紫外波长的激发效率较高,因此使用较低的功率就可以激发出较强的拉曼信号。但是由于紫外激发波长的热效应较高,在紫外激光照射下会使得样品烧坏或者降解。同时,紫外光束无法用肉眼看见,紫外的激光器体积更大,操作复杂,价格也更为昂贵,使得紫外拉曼依然需要专业技术人员操作。在如此多样的激发波长的拉曼光谱仪(激光器和光谱仪一般都是配对的,无法通过购买多种激发波长的激光器适用同一个光谱仪),根据自身所需检测样品的特性,来挑选合适的激发波长。荧光干扰、共振增强都是需要考虑的。表2是奥谱天成的科研级便携式拉曼和亲民型的手持式拉曼,满足您对测试各种样品的需求。表 2 产品列表
  • 首次实现单个量子光源的超分辨选择性激发和成像
    p  光的衍射极限限制了常规光学成像的分辨率和介质光子器件的尺寸,将对光的操控和利用制约在波长水平,而金属纳米结构的表面等离激元可以将光场束缚在纳米结构表面,使突破衍射极限的纳米尺度光操控成为可能。金属纳米线不仅具有显著的局域电磁场增强效应,可以在纳米尺度上增强光与原子、分子、量子点、色心等纳米量子光源的相互作用,而且支持传输的表面等离激元模式,可作为等离激元纳米波导实现亚波长束缚的光信号传输,是构建片上纳米光子回路的基本元件。金属纳米线与单个纳米量子光源的耦合可以实现单个量子化的表面等离激元的产生和传输,对该体系的研究对于深入认识单光子水平上光与物质相互作用的基本物理和设计纳米量子光子器件都具有重要意义。集成在金属纳米线上的多个纳米量子光源可以通过表面等离激元发生相互作用,产生新的光学现象,如协同辐射和量子纠缠。当纳米光源之间的距离达到亚波长尺度时,光学显微镜的分辨率限制了对金属纳米线上的多个纳米光源进行超分辨成像和超分辨可控激发,阻碍了相关实验的进展。/pp  针对上述问题,中国科学院物理研究所/北京凝聚态物理国家研究中心纳米物理与器件实验室魏红副研究员和合作者设计了一种利用金属纳米线上的表面等离激元干涉场作为激发源的超分辨激发和成像方法。由于表面等离激元干涉条纹的周期远小于激发光波长,这种方法具有突破衍射极限的光学分辨率。银纳米线上的传输表面等离激元与局域表面等离激元的干涉形成之字形分布的电场,反向传输的两束表面等离激元干涉形成周期性对称分布的电场。通过调控两束激发光之间的相位差,上述两种等离激元干涉场的分布都沿着纳米线移动,使纳米线上的量子点处的电场强度发生变化,从而可以调控量子点的激发。利用该方法可以实现对相距几十纳米的两个量子点的选择性激发,实验中通过对相距100 nm的两个量子点的选择性激发演示了该技术的可行性。通过将结构照明显微成像技术与金属纳米线上的表面等离激元干涉场相结合,利用模拟计算实现了对多个量子点的超分辨光学成像,分辨率约为96 nm。该工作为研究和表征等离激元纳米波导与多个纳米量子光源耦合体系的光学特性提供了一种实验方法,对于深入认识纳米尺度上表面等离激元增强的光与物质相互作用的机理和规律、设计基于表面等离激元的纳米/量子光子器件和回路等具有重要意义。相关研究结果发表在Nano Letters 18, 2009-2015 (2018)。/pp  魏红副研究员对金属纳米线表面等离激元的物理特性及其调控进行了长期的系统的研究,取得了一系列原创性的成果。最近她和合作者受邀在国际著名综述期刊Chemical Reviews(影响因子47.9)上发表邀请综述Plasmon Waveguiding in Nanowires [Chemical Reviews 118, 2882-2926 (2018)]。该论文得到了审稿人一致的高度评价,被认为是一篇非常及时、全面和权威的综述(“a very timely and comprehensive review”, “a comprehensive and authoritative review”),是纳米等离激元光子学领域最好的综述论文之一(“one of the best reviews in nanoplasmonics field”)。/pp  上述工作得到了中国科学院、国家自然科学基金委和科技部的资助。/pp  img src="http://img1.17img.cn/17img/images/201805/insimg/4a2fb2c3-f2db-44d4-9c56-367bfaca07e6.jpg" title="1.png"//pp  图1. 利用银纳米线表面等离激元实现对量子点的可控激发(Nano Lett. 18, 2009-2015 (2018))。/pp  img src="http://img1.17img.cn/17img/images/201805/insimg/0f754c10-d33c-4c70-a4cc-9aabce79ba2c.jpg" title="2.png"//pp  图2. 利用银纳米线表面等离激元选择性激发两个相距100 nm的量子点中的任意一个(Nano Lett. 18, 2009-2015 (2018))。/pp  img src="http://img1.17img.cn/17img/images/201805/insimg/1074f43b-c0b0-4cd4-99b6-6f18fcfa4c79.jpg" title="3.png"//pp  图3. 将表面等离激元干涉场用于结构照明显微成像技术实现对多个量子点的超分辨光学成像(Nano Lett. 18, 2009-2015 (2018))。/pp  img src="http://img1.17img.cn/17img/images/201805/insimg/04354f19-0558-4348-9b78-f63646341f13.jpg" title="4.jpg"//pp  图4. 金属纳米线中表面等离激元传输的示意图、表面等离激元模式色散关系的示意图以及三个研究方向(Chem. Rev. 118, 2882-2926 (2018))。/ppbr//p
  • 鑫图参与国家重点项目—“双光子-受激发射损耗(STED)复合显微镜”的研发
    2017年10月20日,科技部重点研发计划-数字诊疗专项"双光子-受激发射损耗(STED)复合显微镜"项目(2017YFC0110200)实施交流研讨会在南京举行,鑫图总经理陈兵在会上作了关于"下一代sCMOS相机"的技术汇报。 该项目以研发及产业化双光子-受激发射损耗(STED)复合显微镜为主要目标,力图在"适用于双光子成像的自适应光学技术"、"基于中空贝塞尔淬灭光场调控的STED 成像技术" 等关键技术上有所突破。在长工作距离显微物镜、飞秒激光器和CMOS 相机等核心部件能自主研发,实现高端光学显微镜的技术创新与装备国产化。项目研发团队是由多名在光学显微成像领域有着丰富研究与产业化经验的资深人员组成,在双光子显微成像、STED超分辨成像及仪器化开发方面都有着深厚的基础。在双光子显微成像方面,项目负责人郑炜博士从2006 年起就开始双光子显微成像的相关研究,自主研发了世界首台双光子\谐波\光声三模态显微镜。在STED成像方面,项目核心成员席鹏教授是国内公认的STED技术领航人,是他首次在国内实现了STED超分辨显微成像,并将STED分辨极限推进到19nm的理论极限,刷新了STED在生物成像上的记录。在产业化方面,申报企业南京东利来公司是中国光学与光子学标准技术委员会的委员单位,是中国显微物镜、目镜标准的第一起草单位。福州鑫图光电有限公司依托其在科学相机产业化方面的优势有幸参与其中,承担该项目核心部件sCMOS相机的研制,助力核心部件国产化目标。
  • 《2019全国标准化工作要点》:激发市场自主制定标准的活力
    p  日前,国家标准化管理委员会印发《2019年全国标准化工作要点》的通知。通知中明确提出,要充分激发市场自主制定标准的活力。/pp  具体来说:/pp  要加强团体标准、企业标准监督管理的顶层设计和具体实施,各地区、各部门根据地方、行业实际情况,制定有针对性的措施,积极采用“双随机、一公开”方式,开展团体标准、企业标准的事中事后监管,加大对违法违规团体标准、企业标准的查处力度。/pp  持续拖动实施团体标准、企业标准自我声明公开和监督制度,激励市场主体提升标准质量和水平,引领产品和服务质量提升。/pp  实施团体标准培优计划,推进团体标准良好行为评价,深入推进团体标准试点,加强对试点的指导和协调,加快形成可推广、可复制的经验模式,培育优秀团体标准制定者。/pp  确定并公布2019年度企业标准“领跑者”重点领域,鼓励更多的权威技术机构进行企业标准水平评估,发布企业标准排行榜,推出2019年度企业标准“领跑者”。推进企业标准化良好行为评价和第三方评估。/ppbr//p
  • SCIEX发布SCIEX声波激发耦合质谱系统(Echo MS 系统)新品
    声波激发耦合质谱系统(Echo MS 系统)以其超高通量筛选能力重新定义化合物高通量定量研究迅捷 每秒可以分析三个样品声波激发与质谱耦合系统 (Acoustic Ejection Mass Spectrometry , AEMS) 是一款超高通量的样品分析系统,具有超快速,规模化和高稳定性特点同时提供理想的数据质量。 声波激发耦合质谱系统(Echo MS 系统) 采用SCIEX先进的定量质谱技术提供了高灵敏度的解决方案,将重新定义您当前和未来的高通量工作流程。比传统LC-MS/MS分析速度快50倍的超快速分析速度: 每秒可以分析三个样品,比传统LC-MS/MS进行定量分析速度快50倍。规模化: 项目时间表从几周减少到几天完成,同时获得准确且信息丰富的结果,使您更快地做出决策。重现性: 先进的定量标准,对复杂基质样品进行定量研究,仍然具有稳定且精确的重现性。开启非接触进样的新时代声波激发耦合质谱系统(Echo MS 系统) 能够显著缩短分析时间,同时降低对样品制备的要求,无需液相色谱分离声波激发直接进样。2020年6月2日 弗雷明翰市,美国马萨诸塞州 — 作为生命科学分析技术领域的创新者,SCIEX在2020年美国质谱年会上“云”直播(ASMS Reboot 2020)发布了声波激发耦合质谱系统(Echo MS 系统)。更多详情,敬请期待关于SCIEXSCIEX 致力于用创新和精准的科学理念,整合可靠解决方案,促进人类科学认知,改善和提高人们的健康、安全。我们在质谱技术领域拥有50年的创新经验。从1981年成功推出第一台商业化的三重四极质谱系统开始,我们一直致力于开发突破性的技术和解决方案,从而影响和推进可以改善人们生活的科学研究和成果。今天,SCIEX作为全球生命科学和技术创新者的丹纳赫集团(Danaher)一员,我们将继续在质谱和毛细管电泳技术领域开发稳健的解决方案。 我们可以帮助客户监测环境危害因子并做出迅速响应;更好的理解疾病和疾病标志物,改善疾病的临床治疗,助力相关药物研发上市;保证食物更健康和更安全。这就是世界各地的科学家们愿意选择SCIEX 产品的原因,我们帮助您获得可靠的结果,以便您做出更好的关键决策,从而改善人们的生活。创新点:声波激发耦合质谱系统(Echo MS 系统)以其超高通量筛选能力重新定义化合物高通量定量研究。1)开启非接触进样的新时代:Echo MS系统能够显著缩短分析时间,同时降低对样品制备的要求,无需液相色谱分离声波激发直接进样。2)速度: 每秒可以分析三个样品,比传统LC-MS/MS进行定量分析速度快50倍。3)规模化: 项目时间表从几周减少到几天完成,同时获得准确且信息丰富的结果,使您更快地做出决策。4)重现性: 先进的定量标准,对复杂基质样品进行定量研究,仍然具有稳定且精确的重现性。SCIEX声波激发耦合质谱系统(Echo MS 系统)
  • 首届“菠萝科学奖”激发中国人科学好奇
    4月7日,严肃、正经,同时充满趣味……首届“菠萝科学奖”7日晚在杭州举办颁奖典礼,这个由浙江省科技馆与泛科技兴趣社区果壳网合力打造的奖项,将借奖励具有想象力且有趣的科学研究成果,激发中国人对科学的好奇之心。  “菠萝科学奖是一场向好奇心致敬的盛宴,是好奇心指引人类走向一个又一个科学研究,也是好奇心让人类在这个充满威胁的世界活到了现在。”菠萝科学奖总监王丫米说。  经历了15位科学家评审团对科学性和趣味性的综合评审,和26位著名导演、演员、作家等组成的星光评审团对趣味性的再次评定,7日晚的颁奖现场,菠萝科学奖的五个常规奖项物理奖、化学奖、医学生物奖、数学奖、心理学奖分别颁给了“猴脑控制机械手”“瓦罐鸡汤主要滋味物质研究”“Y染色体鉴别曹操身世之谜”“龙年春晚机器人舞蹈表演”“数钱可以减轻疼痛”。其中,医学生物奖由2005年诺贝尔奖得主巴里马歇尔亲自授予。  除了专业科学研究之外,菠萝科学奖还特别设置了“发明奖”“幻想奖”两大专项奖,分别被古观察者、叶永烈小说《小灵通漫游未来世界》分别摘得。  颁奖现场,一贯严谨的科学家们则纷纷使出“浑身解数”让科学变得有趣。  “钱通常是科学家非常不愿意谈的东西。”以“数钱可以减轻疼痛”项目获得菠萝科学奖心理学奖的中山大学心理学教授周欣悦说,几年来,她带领的团队通过500人次的实验,发现数钱或者用包括金钱的单词造句,可以减轻被试者的疼痛程度。这一实验被许多世界级媒体报道,并被BBC复制,拍摄成科学纪录片。  物理奖获得者、“猴脑控制机械手”研究者、浙江大学求是高等研究院教授赵挺则说:“让机械手炒鱼香肉丝、挤青春痘这样的目标还有点遥远,但是我们会继续努力,希望更多人能在这里感受科学的魅力,体会科学的乐趣。”  “一方面,菠萝科学奖的获奖者都是真正的科学家,入选作品必须在正规杂志或者学术交流会议上发表过,专家评审团也由中国顶级的科学家组成 另一方面,星光评审团则为严肃的科学注入了新鲜空气,由他们进行次轮筛选评奖,以确保菠萝科学奖的原发性幽默基因。”果壳网创始人姬十三说。  谈及设立菠萝科学奖的初衷,姬十三坦言受到了美国“搞笑诺贝尔奖”的启发。1991年,“搞笑诺贝尔奖”由美国一本幽默科学期刊《不可思议研究年鉴》创立,该奖以科学的名义幽默,以幽默的形式演绎科学。  但相较于“搞笑诺贝尔”对科学界的讽刺和自嘲,姬十三说,菠萝科学奖的口号是“有趣而严肃”,“讽刺、自嘲色彩过浓,可能会在科学界遭到反对,因此我们希望在奖项设立初期,更多通过正面奖励有想象力、有趣的科学研究成果,让更多公众了解科学,也让科学走入公众”。  “几乎所有科学研究都是从有趣开始的,它可以帮助科研者在科研最低谷的时候,支撑他们继续研究下去。”周欣悦说,菠萝科学奖的一些研究课题看似搞怪,但其实具有很深的内涵,可以给我们一些另类的启示。  如何定义“有趣”,本届菠萝科学奖评委、中国科学院物理研究所研究员、理论物理前沿重点实验室副主任李淼说,“有趣”的定义一定会随着环境的变化而变化,如何定义“有趣”将随时代而变化。比如“人是从猴子变来的”这样的研究,实际上就很“有趣”。  而浙江省科技馆馆长李瑞宏已在计划筹备下一年的菠萝科学奖:“每年中国科研人员发表的论文数以百万计,肯定有大量更有趣的研究。菠萝科学奖存在巨大的潜力,一定会越来越有趣”。  心理学奖  颁给了中山大学美女教授,她研究三年的论文题:“数钱能减轻疼痛”,有数据有理论。以后有个头痛脑热,少吃药,直接数钱就好。  化学奖  瓦罐鸡汤为什么那么鲜?华中农业大学食品科学技术学院团队对这锅汤进行了主要滋味物质研究,告诉大家,瓦罐能保证内部环境相对平稳,并使鸡汤中的鲜美物质不被分解。  数学奖  哈工大机器人创新基地研发的机器人舞蹈首次登上了春晚舞台,科学家们通过神秘和精巧的算法,赋予了这一群机器人整齐划一的集体主义精神。  菠萝U奖  针对食堂出现的“饭菜分量结构性短缺”现象,中国科学院长春应用化学研究所结合数学、物理、化学等跨专业知识和技能召开了一场别开生面的新闻发布会,促进了后勤单位的整改实施。  主办方给的颁奖理由是:该事件有力地证明了“学好数理化,走遍食堂都不怕”的颠扑不破的真理。  医学生物奖  Y染色体鉴别曹操身世之谜!是复旦大学和中科院上海生命科学研究院计算生物学研究所的成果,下一步,他们将研究曹操、曹雪芹、曹云金之间是否有亲缘关系。  菠萝Me奖  浙大玉泉校区老生仪楼CCNT实验室里,一台饮水机每天通过微博发布水开和没热水时的状态,她就是@浙大CCNT实验室饮水机,大家再去调戏一番吧!  物理学奖  意识的本质是什么?如何利用意念发出的信号?浙江求是高等研究院“脑——机接口”研究团队运用信息技术提取猴脑运动皮层的神经元信号,指示机械手进行抓、勾、握、捏的动作,从而实现了猴脑控制机械手的任务。  幻想奖  《小灵通漫游未来世界》的作者叶永烈先生如果自称神人第二,全中国估计没人敢称霸了。1961年写的书里就提及了气垫船、环幕立体电影、隐形眼镜、无线电话、电视手表、人造器官……如今几乎都变成了现实!这部小说充分证明:幻想是现实的强大引擎。
  • 飞秒激发拉曼光谱帮助理解光伏电池发电机理
    Solarbe(索比)光伏太阳能网讯:不管你是否相信,我们并不完全了解太阳能电池的工作原理,特别是有机薄膜太阳能电池。但最近加拿大、伦敦和塞浦路斯的科学家使用激光器,将一些光线引入来帮助制造更高效的太阳能电池板。  本周早些时候,来自蒙特利尔科学与技术设施委员会、英国伦敦帝国学院和塞浦路斯大学大学的科学家在《自然传播》上发表的一份新报告中解释他们的发现:&ldquo 我们的发现对机制理解所有的太阳能转换系统方面的分子细节的发电机制非常重要。&rdquo 第一作者,蒙特利尔大学Francoise Provencher称:&ldquo 我们几十年来致力理解有机光伏分子的工作原理图这一' 圣杯' ,终于取得重大进展。&rdquo   &ldquo 我们用飞秒激发拉曼光谱,&rdquo 来自科学和技术中央激光设施理事会的Tony Park说,&ldquo 飞秒激发拉曼光谱技术是一种先进的超快激光技术,它提供了在极快的化学反应里,化学键是如何变化的细节。分子与激光脉冲相互作用时,激光提供了分子的振动信息。&rdquo   Experimental setup used to map defect densities in organic thin films. A pulsed laser beam is used to raster-scan the material of interest, which is assembled in a field-effect geometry, allowing changes in current flow to be detected. The yellow zones indicate sites at which the defect density is particularly high. (Credit: Christian Westermeier)  表征薄膜电池表面活性层结构  由此获得的信息显示了太阳能电池中的分子演化过程。他们发现了两项重点:快速分子重排和极少量分子松弛和重组。重排或响应速度非常快 - 仅300飞秒(femtosecond)。研究人员表示,一飞秒相对于一秒的概念,就象是一秒相对于370万年。  &ldquo 在这些设备中,光吸收加速了电子和带正电荷物质的形成。最终要提供电力,这两个相互吸引的粒子就必须分开,电子必须离开。如果电子不能足够快地移开,则正电荷和负电荷就会简单地再结合,结果是什么变化也没有。太阳能设备的整体效率就在于正负电荷重新组合和分离的比例。&rdquo 斯塞浦路斯大学的Sophia Hayes解释说。  &ldquo 我们的研究结果为未来理解生产高效太阳能电池的系统的差别,或者理解那些系统应该有高发电效率却并没有表现出来的原因,提供了可能的路径。更多更深入的了解什么可行,什么不可行,对将来设计更好的太阳能电池将明显有益,&ldquo 蒙特利尔大学卡洛斯· 席尔瓦,也是这项研究的资深作者进一步表示。  慕尼黑Ludwig Maximilian大学Bert Nicket领导的科学家团队首次成功地用激光激发材料对有机薄膜太阳能电池的活性层进行了功能表征,&ldquo 我们已开发出一种方法用激光对材料进行光栅扫描,聚焦的光束通过旋转衰减器调制成不同的方式。这样我们就能够直接映射分布在有机薄膜上的缺陷空间分布,这是以前从未实现过的,&ldquo Christian Westermeier解释说。  太阳能电池通过光子激发分子产生自由电子和正电空穴,来将光能转换成电能。电荷载流子被电极捕获的时间和电池的活性层详细结构有关。原子规则排列中的缺陷会捕获载流子,也减少可用电流。新的映射方法使研究人员能够检测到与激光激发缺陷局部相关的电流变化。  该研究显示,在并五苯有机半导体中,这些缺陷往往集中在一定位置上。选择并五苯来实验,因为它是目前可用于有机半导体生产的导电最好的材料,理解这些表层热电的特别之处非常有意义。是什么在这些地方产生了缺陷?可能是由于化学污染,或是分子的排列不规则?  飞秒激发拉曼光谱这种新技术,为理解有机薄膜发电的深层机理提供了新的途径。
  • 532、785还是1064nm?手持拉曼激发光选择有讲究!
    p  拉曼光谱可以高灵敏度分析化学物质的结构和组成,具有非接触、非侵入性和无损性,无需样品制备(或者只需简单样品制备)等特点。随着仪器开发和分析方法等方面的突破,如荧光校正技术等,拉曼光谱得到越来越广泛的应用,包括医疗诊断、药物分析、假冒药品鉴定、爆炸物探测、文物检测等多个领域。/pp  近年来,发展高效和易于使用的小型便携式或手持式拉曼系统是拉曼光谱一个很重要的发展方向。大多数这样的手持系统能够直接分析容器和包装袋中的样品,不需要任何样品制备,同时也避免了对化学物质的接触。/pp  目前,市场上已经有来自于10多个生产厂家的20多款商品化的手持式拉曼分析仪。/ppstrong  研究目的/strong/pp  那么,选择一款适合的手持拉曼光谱仪需要考虑哪些关键因素?本文的一个重要目的就是给出半理论、半经验的注意事项,帮助用户选择一款最适合其应用的手持式拉曼光谱仪,表1和图1对性能比较进行了汇总:/pp style="text-align: center "img title="01.jpg" src="http://img1.17img.cn/17img/images/201608/insimg/58d2f13c-6ae5-4360-aa2c-ebdd18a9d344.jpg"//pp style="text-align: center "img title="02.jpg" src="http://img1.17img.cn/17img/images/201608/insimg/8a04e27c-774c-4267-9ec9-40513f8fc7e7.jpg"//pp style="text-align: center "图1: 532nm、785 nm、1064 nm手持式拉曼仪性能对比(单位激光功率):(a)光学透过率(b)纯分析物 (c)分析物在水中 (d)分析物在乙醇中。/pp  手持拉曼的激发波长很大程度上决定了拉曼信号的强度(分析速度和精度)。此外,还会影响到光学元件的效率和相关检测器的量子效率 (CCD、InGaAs)以及光谱分辨率等。目前,大多数商品化的手持拉曼光谱仪采用785nm或1064 nm的激发。只有少数最近生产的手持式拉曼系统使用其他激发波长,包括532nm。/pp  此外,本文还通过实验特别介绍了使用532 nm激光的手持式拉曼分析仪在假药检测以及爆炸物检测方面的性能表现(与785、1064 nm进行对比)。/ppstrong  532nm,785nm,1064nm,哪个更适合手持拉曼?/strong/pp  虽然多个商业化激光在技术上可以满足给定的应用,但对于一个特定的应用来说,通常只有一个可以提供最好的解决方案。所以选择最佳激发波长时要考虑多方面的因素:每个激发波长对应的分析速度和准确度、样品的荧光背景、样本基质的透明度(容器壁、溶剂、被测物)等等。/pp  在分析速度和准确度方面,532nm激光得到的拉曼信号强度(单位激光强度)是785nm或者1064nm的5-16倍,这是因为拉曼强度与激发波长的四次方成反比:IRaman≈(1/λEx)sup4/sup。此外,在532nm处,先进的光探测器和光学器件具有更高的量子效率(与785和1064 nm相比),可以进一步提高拉曼信噪比。/pp  相比之下,在降低荧光背景方面,1064nm是首选。然而,1064nm在分析速度方面比532nm、785 nm系统(单位激光功率)分别慢16倍和3倍。因此,1064nm激光适合具有非常强烈荧光的样品,其他情况下,785nm,特别是532 nm的激光可以提供更快的分析。/pp  为了考察样品基质对拉曼信号的影响。图1a给出了几个典型样本的透射情况:透明玻璃 (实验室小瓶或一般瓶子)、琥珀玻璃(小瓶或一般瓶子)、透明塑料(培养皿、塑料瓶、证据袋或罩板包装)、仿琥珀塑料 (医疗处方瓶)、水和乙醇等。/pp  根据图1a的数据,图1b-d给出了几种典型分析得到的相对拉曼强度 (归一化到532nm):纯被分析物,以及处于一系列不同容器中的被分析物(图1b) 分析物在水溶液中,以及处于不同容器中的情况(图1c) 分析物在乙醇溶液中,以及处于不同容器中的情况(图1d)。图1表明532nm的拉曼信号强度比其他情况要高出25-1600%。/pp  表1对图1中的数据进行了进一步的总结,通过比较发现,在9类不同条件的样品中,有7类使用532nm激发时的效果明显优于785和1064 nm,这其中包括不发荧光和弱荧光样品、一部分中等荧光样品 通过最常见的玻璃和塑料容器(包括琥珀)进行测量的样品 以及水溶液和大多数有机溶剂中分析物的检测和定量分析。/ppstrong  实验/strong/pp  所有样品分析均使用RamTest手持式拉曼 (BioTools,Inc .) 激光:532 nm 光谱范围120-4000cm-1 光谱分辨率~4 cm-1。/pp  所有测试都是在自动模式下运行,所有测量参数自动调整以优化信噪比,减少荧光,剩余的荧光背景(如果存在)自动扣除。/pp strong (1)手持式拉曼用于假冒生物制剂检测(532nm激光)/strong/pp  532 nm手持式拉曼最有前途的一个新应用就是对假冒生物制剂的检测。532 nm手持系统的优越性能包括:更强的拉曼信号,水对532nm激光更低的吸收 (图1)。这两个因素的结合使532nm手持式拉曼光谱在水溶液中各种肽或蛋白质的定量分析方面具有无与伦比的能力。/pp style="text-align: center "img title="03.jpg" src="http://img1.17img.cn/17img/images/201608/insimg/58ccff40-3691-4d59-beed-4c7f9d828c15.jpg"//pp style="text-align: center "图2:手持式拉曼(532 nm)对两种畅销生物制剂的检测:(a)生物制剂1 (b)生物制剂2。绿色:原药 红色:假药 黑色:缓冲或安慰剂。/pp  所有案例都使用自动取样的方法,不需要很多的拉曼知识。结果显示,532nm手持式拉曼可以快速、简单、明确的鉴别原药和假冒药。同时结果也证明,532nm手持式拉曼可以为制药公司、药房等提供强大的、低成本的解决方案。/pp  strong(2)手持拉曼用于爆炸物的检测(/strongstrong532nm激光)/strong/pp  全球恐怖主义数据库的数据表明, 过去十年使用爆炸装置进行恐怖袭击的数量大大增加,包括便携式拉曼等很多分析方法都被开发用来进行爆炸物以及前体和分解产物的检测。/pp style="text-align: left "  图3显示:532nm手持式拉曼可以对炸药进行快速、可靠和安全的检测、鉴定和定量分析。值得注意的是,实验中的一些炸药或前体曾被认为具有“强烈荧光”(如二硝基萘)或使用手持式拉曼“很难检测” (如环三亚甲基三硝胺(RDX)、氨和硝酸铵)。/pp style="text-align: center "img title="04.jpg" src="http://img1.17img.cn/17img/images/201608/insimg/798cad8d-8547-4406-8e46-2548317506a1.jpg"//pp style="text-align: center "图3: 利用532nm手持式拉曼得到的爆炸物的光谱:(a)粉末状爆炸物 (b)液体爆炸物前体 (c)过氧化氢水溶液 (d)过氧化氢自动定量分析(3200-3400 cmsup-1/sup OH-s water) (c)中放大的插图为~874 cmsup –1/sup OO-s Hsub2/subOsub2/sub。/pp  应该注意的是,532nm激发可以在1-5s内可靠的识别和检测上述所有物质,而且与785和1064nm相比,532nm得到的拉曼信号更强。/pp  相比785nm和1064nm ,532 nm的激光具有更强的散射,同时手持式拉曼系统具有更宽的光谱范围的100-4000cm-1, 更好的光谱分辨率:4-6cm-1。如此宽的光谱范围也为手持式拉曼拓展了一些新的应用,包括水溶液中分析物的自动定量。图3d直接显示了水溶液中过氧化氢的自动定量,低至 0.1%。/ppstrong  结论/strong/pp  分析结果表明,作为手持拉曼的一个极具吸引力的选择,532 nm激发应该被重新审视,其优势包括:仪器成本降低两倍,很多实际应用分析速度提高5-16倍, 激光功率降低 (实现炸药的安全检测,减少激光安全问题和激光诱导的样本退化,延长电池连续操作时间),进行水和大多数有机溶剂中被分析物检测时性能优越,能够通过各种各样的玻璃和塑料容器(包括琥珀)进行分析, 光谱范围和光谱分辨率得到改善,同时也改善了光谱检测限,提高了分析精度。/pp  因此,532 nm手持式拉曼光谱可以显著改善很大一部分实际应用,并扩展新的应用领域。适合的应用包括但不限于假冒生物制剂、炸药的快速检测、复杂混合物单个成分的识别、水溶液中分析物的自动定量、在水或有机溶剂中稀释的被分析物检测,以及之前一些使用手持式拉曼认为“很难检测”的多个化合物等。/pp style="text-align: right "  (作者:Aleksandr V. Mikhonin, Susan Hodi, Laurence A. Nafie, Rina K. Dukor)br//p
  • 纳米材料,激发你的好奇心
    激发好奇心纳米材料纳米材料是近几十年来最伟大的技术成就所用的基石。它们为医药、可再生能源、化妆品、建筑材料、电子设备等领域的突破性改进奠定了基础。纳米材料具有形成新材料的潜力,因此其性质和相互作用成为研究的热点。安东帕是全球研究人员的可靠合作伙伴:世界排名前100位的大学中有96所,每天至少使用我们的一种仪器。安东帕独特而灵活的纳米材料研究仪器组合为客户实验室提供了前瞻性的解决方案,今天购买的仪器,也为未来提供了无数的可能性。纳米颗粒01纳米颗粒是一种用于许多不同领域的超细单元,从生物医学、制药到储能技术。由于它们的尺寸,很难进行跟踪和测量,但了解它们的特性是非常必要的,这样就可以设计它们来实现它们的目的。不同的测量技术可用于制备和表征纳米粒子,如微波合成、原子力显微镜、动态光散射、SAXS、激光衍射等。左右滑动查看更多022D材质单层材料是非常广泛应用的研究重点,包括纳米尺寸的应变计,用于人体植入的纳米晶TiO2涂层,以及原子台阶对生长现象的影响,或例如,研究阳极或阴极组件的2D材料结晶度,以便在电池中更快更有效地进行能量转移。安东帕公司的各种测量解决方案和不同技术在二维材料的表征中发挥着重要作用,如可进行温度控制的掠入射小角X射线散射(GISAXS)、原子力显微镜(AFM)、表面zeta电位或真密度仪。左右滑动查看更多复合材料03复合材料将两种或两种以上材料的不同特性结合在一起,形成一种新材料,其特性与单个部件不同。复合材料与固溶体和混合物的区别在于,它们各自的组分保持分离和区别。因此,研究和了解复合材料的性能对其应用至关重要。涉及到流变学研究或孔径表征金属有机框架(MOF)气体吸附分析仪。左右滑动查看更多04半导体在信息处理、全彩显示和新型传感器技术等领域,对纳米结构的理解和表征在前所未有的技术发展中起着至关重要的作用。安东帕的解决方案有助于我们时代的技术进步。它们包括颗粒尺寸的表征和表面zeta电位的研究,以改进化学机械抛光工艺,以及用掠入射小角X射线散射(GISAXS)分析纳米图形表面。
  • 发布SURRC 脉冲光激发光辐照食品筛查系统新品
    北京冠远科技有限公司产品【SURRC 脉冲光激发光辐照食品筛查系统】与其它辐照食品检测方法相比,该方法有许多突出优点:  1、样品无需前处理——绝大多数样品(粉状和颗粒)取样后放入培养皿中即可测量。  2、操作简单——仅需15-60秒就可得到结果。  3、准确率高——以辐照过的草药和香料为例,一次检测正确率在95%以上。  4、适用面广——绝大多数的食品均可检测,是所有辐照食品检测方法中适用最广的一种。  5、清洁环保——无需任何化学试剂。  6、节省开支——由于无需样品前处理及试剂,日常检测费用很低。  7、携带方便——便于现场测量或不同实验室之间共用。 [主要技术参数](注:此为单机操作模式的预设参数,对于电脑操作模式可以自定义参数) 系统背景(20°C),典型值:50 cps 最大值:150 cps 脉冲开关周期:15 us 预载入计数:256 counts 中间值阈值:768 counts 阳性阈值:4096 counts 预设测试周期:15 s该仪器有两种操作模式可以选择: 筛查模式——根据设定好的阈值及时间参数,将样品放入样品室后只需轻轻按一下测试按钮,15秒即可给出结果。筛查模式无需连接电脑。非常适合对常规样品的例行快速检测。 与电脑连接使用——当与电脑连接使用时,可以通过软件自定义测量参数(例如测量时间、阈值标准和数据记录条件等等),可以获得样品具体的光子计数,可以测定暗计数(无光刺激时样品室的光子计数率)、空室计数(吴样品时的计数率,以了解样品室是否污染),以及光电倍增管灵敏度测试等等。并可以对筛查结果不确定的样品进行校正PSL测定等等。   北京冠远科技有限公司产品线有效覆盖石化、橡胶、炭黑、生命科学、化工工业、医药、政府、教育、环境、医药、食品、农业、钢铁、能源、电力等众多领域。 公司全面致力于为用户提供以技术应用为中心的解决方案,除为用户提供产品外,我们同时提供完善的售后服务和技术支持。创新点:该仪器有两种操作模式可以选择:筛查模式——根据设定好的阈值及时间参数,将样品放入样品室后只需轻轻按一下测试按钮,15秒即可给出结果。筛查模式无需连接电脑。非常适合对常规样品的例行快速检测。与电脑连接使用——当与电脑连接使用时,可以通过软件自定义测量参数(例如测量时间、阈值标准和数据记录条件等等),可以获得样品具体的光子计数,可以测定暗计数(无光刺激时样品室的光子计数率)、空室计数(吴样品时的计数率,以了解样品室是否污染),以及光电倍增管灵敏度测试等等。并可以对筛查结果不确定的样品进行校正PSL测定等等。 SURRC 脉冲光激发光辐照食品筛查系统
  • Eppendorf CEO访华:持续看好中国市场,本土化创新激发新动能
    为了进一步深入了解中国市场,把脉中国的业务发展和市场动向,以此更好地贴合本土客户的需求,7月11日,Eppendorf集团联合首席执行官 Eva van Pelt和Peter Fruhstorfer 博士访华,并在国家会展中心上海洲际酒店接受了多家知名媒体的联合采访,就公司业务的发展战略、可持续发展措施、面临的市场机遇和挑战、以及未来在中国市场的发展规划等发表了各自深刻的见解。嘉宾从左到右:马青女士(大中华区市场总监)、Eva van Pelt 女士(Co-CEO & Chief Commercial Officer)、 Peter Fruhstorfer博士( Co-CEO & Chief Business Officer)、王淳先生(集团高级副总裁兼大中华区总经理)以革新的技术和前沿的理念 激发创新活力Eppendorf集团成立于1945年,70多年来,作为全球领先的生命科学企业之一,Eppendorf将创新视为企业实现长远发展的第一内生动力,始终坚持以革新的技术、前沿的理念,为科研机构、医学检验机构和生物制药企业提供高效、专业、可靠的实验室通用产品,推动全球生命科学领域的不断向前发展。为了保持企业的领先性和对市场的灵敏性,Eppendorf集团一直与用户保持着紧密联系,基于客户的反馈来研发创新,以此更好地为用户的科研工作提供高质量的产品和服务。这种与用户的深度联系不仅可以解决用户的当下之需,也有利于为用户的未来布局和业务发展等多场景做前瞻性的设计和准备,为他们提供专业完善的解决方案。以数字化实验室为例,近年来,伴随着信息化、智能化、自动化掀起的科研领域创新变革的浪潮,聚焦数字科技与技术创新融合的实验室建设也迈入了新时代,而从产品研发开始,Eppendorf 集团就已经有意识地为用户打造高附加值的“未来智能实验室”的数字化理念,以此为用户降本增效,激发创新活力。“让充满激情和创意的科研工作者不断创新,让世界变得更宜居”是Eppendorf集团全球战略布局的重要指导思想。构建绿色行业生态 积极践行可持续发展理念加快低碳转型,促进行业的可持续发展,是当前全球都在关心的问题。Eppendorf集团也一直将践行绿色环保,减少碳排放,保护好资源环境的可持续发展战略作为公司发展不可或缺的一部分,并视其是增强自身核心竞争力的重要元素。Eva van Pelt女士表示:“正是意识到作为全球企业中的一员,我们对社会和环境都负有责任,可持续发展不仅与我们的客户息息相关,也与Eppendorf集团的发展密切相关,因此,Eppendorf集团提出了一项雄心勃勃的可持续发展战略措施,预测显示,到2028年,这些措施将使Eppendorf集团的二氧化碳排放量减少到尽可能低的水平,推进碳中和企业目标的实现。”与此同时,Eppendorf集团也将可持续发展的理念贯穿于产品设计、生产、运营的整个过程,以支持全球的用户更好地开展研究工作。今年,Eppendorf集团在全球推出了由生物基原料制成的Biobased 离心管和第一台采用绿色制冷剂的5427R冷冻离心机,两款产品均获得了由权威非营利性组织My Green Lab颁发的ACT认证。自2017年开始,Eppendorf集团一直与My Green Lab保持着紧密合作,是获得ACT的首批合作伙伴之一。密切洞察市场变局 抢得发展先机近年来,全球能源价格出现大幅上涨,Eppendorf集团也在紧跟市场发展趋势,关注行业发展动态,不断调整和优化策略,以期在竞争激烈的市场上占得先机。凭借着雄厚的研发创新实力和深厚的技术积累,Eppendorf集团不仅是科研、制药、生物技术、医疗检测等众多新兴行业的重要合作伙伴,也是食品、农业等传统行业领域的知名服务提供商,Eppendorf集团提供的可持续发展理念产品实现了为传统行业赋能,让他们重新焕发出发展的勃勃生机。对于新兴行业,比如近年来迈入黄金赛道的生物医药行业,Eppendorf集团也将进一步聚焦,特别是加大对细胞与基因治疗前沿领域的投资和关注,不断突破,以期为客户提供更优质的服务。持续深耕中国市场 立足本土化发展近几年,生命科学产业在中国经历了爆发式增长,中国政府也释放了对生命科学和生物医药产业领域大力支持的明显信号,陆续发布了相关政策及指导纲要,以及十四五规划等国家战略,受多重因素的利好推动,中国市场的未来发展可谓潜力巨大。“对Eppendorf集团而言,中国市场对实现未来的战略增长和成功不可或缺,中国市场的重要性不言而喻。” Eva van Pelt女士说道,“Eppendorf集团在中国也实现了强劲、可持续和健康的发展,2022年,Eppendorf集团在中国的销售份额约占据全球总业务量的15.9%,且该比例还在持续增加,这也很好地证明了我们一直坚守的‘以客户为中心’的服务理念是正确的,并为此赢得了更多中国客户的信任。”多年来,Eppendorf集团深刻洞察中国本土客户的需求,以客户需求为导向,布局相应的发展战略。2020年, Eppendorf集团在中国推出了全新的子品牌Lavibe乐斐,该品牌延续了Eppendorf集团的品质要求,可为中国的科研人员提供方便实用且具高性价比的产品,未来也将继续为客户带来更加灵活和丰富的产品组合。与此同时,Eppendorf集团还在中国建立了技术中心和生产基地。2023年,Eppendorf宣布在浙江省平湖市经济技术开发区建立离心机新生产基地,并预计于2024年上半年正式投产。“作为 Eppendorf 中国战略发展的重要里程碑,平湖新生产基地的成立,将有利于为中国客户提供更高效的本土化产品和服务。我们观察到,中国离心机市场多年来持续在增长,而本土化的产品也更容易受到青睐”。Peter Fruhstorfer博士表示:“早在几年前,Eppendorf就制定了一系列有计划的举措,包括2022年在上海成立中国研发中心和团队、升级仓储以及物流系统等,就是为本土化离心机生产做前瞻准备。从长远来看,不断投资和加码本土化发展非常有必要,这是一项有望带来更多市场份额和客户的战略投资,同时也可以有效降低碳排放和供应链过长的风险。”未来,Eppendorf集团还将推出更多本土化产品,以此更好地快速响应和提供相应的产品和解决方案,为本土客户服务。在华廿载 进享未来2003年,Eppendorf中国在上海正式成立,经过二十年的发展,现今Eppendorf的分公司、销售及服务网络已覆盖全中国。在华20年,Eppendorf集团见证了中国不断深化改革开放和现代化建设的二十年,亲历了“中国速度”如何大力推动了经济飞速发展和科技创新。Eva van Pelt女士表示:“我们很自豪能在中国取得成功和实现长足的发展,未来,Eppendorf集团一方面将持续创新,不断赋能本土客户需求,与他们携手共同成长。另一方面,还将继续深耕中国市场,不断加强自身在华的供应链优化,提升创新研发能力,并积极与本土的行业专家紧密合作,洞悉本土客户所需,研发适合他们的产品,以切实推动中国科学研发技术的发展。”关于 Eppendorf Eppendorf 是一家先进的生命科学公司,在全世界开发、生产和供应用于实验室的设备和解决方案。业务范围分为液体处理、耗材、分离与仪器、生物工艺解决方案,产品线包括移液器、吸头、离心机、混匀仪和超低温冰箱等等。此外,Eppendorf 还提供使用广泛的高品质耗材。 Eppendorf 的产品广泛应用于科研和商业性研发实验室,例如制药和生物技术、化学以及食品等行业。此外,我们的产品也被临床和环境分析实验室、法医和工业类用户在工艺分析、生产和质量检测等环节广泛使用。Eppendorf 成立于 1945 年,总部位于德国汉堡,并在世界各地拥有约 5,000 名员工。集团在 33 个国家设有子公司,并在所有大洲和重要市场设有分销商。
  • 两会观点:激发科研机构积极性 提升科技创新能力
    “政府工作报告提到,要深入实施创新驱动发展战略,推动实体经济优化结构,不断提高质量、效益和竞争力。”3月6日,谈及今年的政府工作报告,全国政协委员、家蚕基因组生物学国家重点实验室主任夏庆友颇有感触。他认为,提升科技创新能力,可以从进一步调动科研院所、科技人员的积极性着手。  “报告中提到,完善对基础研究和原创性研究的长期稳定支持机制。我认为非常有必要。”夏庆友说,科学研究大致可分为基础研究和应用研究两大类。基础研究一般没有专门的目的或特定目标,主要注重基本原理和理论性研究,是科研的基础,对一个国家而言非常重要。而应用研究则是主要针对某一特定目的或目标开展的研究,实用性很强,更多体现了科研院所的自主性。  夏庆友说,十八大以来,国家先后出台多项政策,不断加强市场对科研资源配置的调控作用,让科研资源向重点领域、重点行业倾斜,起到了良好效果,也激发了科研院所和科研人员的积极性。报告中提出的“落实股权期权和分红等激励政策,落实科研经费和项目管理制度改革”等内容,更让人信心倍增。他认为,要进一步调动科研院所和科研人员的积极性,就应该让科研院所得名,让科研人员得利。  “科研人员研究出成果、创造出价值,获得收益是应该的,而科研院所的存在和发展,也是建立在院所的声望和研究成果上的。”夏庆友说,科技创新为产业转型升级、经济社会发展提供动力,科研院所和科研人员功不可没,报告中提到这一点,表明了国家对提升科技创新能力的重视,让他十分期盼。
  • 南京大学/厦门大学/中科大团队Nat. Catal.:可见光直接激发驱动的新光酶催化
    融合化学创新的生物制造,是可持续生物经济发展的原动力,也是当前中美科技博弈的焦点之一。生物制造的关键“芯片”是酶,然而现有酶的催化功能有限等问题极大地限制了生物制造的范畴。南京大学黄小强课题组自2021年建组以来,致力于融合生物与化学,实现新酶元件的创制和新分子生化体系的开发。近期,黄小强课题组与合作者以烯烃还原酶(ene-reductases, ER)为切入点,开发了可见光直接激发的新策略,实现了一例烯烃的不对称自由基氢芳基化转化。相关工作发表于Nature Catalysis。将酶催化和光催化结合的光酶催化,融合了可见光化学多样的反应性和酶的高选择性,成为当下开发新酶功能最有效的策略之一。ER是一类以黄素腺嘌呤单核苷酸(FMN)为辅因子的氧化还原酶,在自然界中催化C=C双键的双电子还原反应。前期Hyster、Huimin Zhao、吴起和徐鉴等课题组,通过可见光激发电子供体-受体(EDA)络合物的策略,开发了一系列净还原的自由基反应(图1b)。然而,直接可见光激发黄素蛋白催化非天然的双分子反应仍未有报道。图1. 受自然启发的光酶的氢芳基化。图片来源:Nat. Catal.除了光引发的自由基反应固有的选择性控制难题外,激发态的黄素蛋白面临很多竞争途径。首先,可见光激发的醌态黄素容易被反应缓冲液或氨基酸残基还原(图2,路径b)。其次,自由基碳碳成键步骤必须足够高效,以实现与无效的电子回转的竞争(图2,路径c)。第三,溶液中游离的未结合黄素可能引起消旋背景反应。受自然界中黄素依赖的脂肪酸光脱羧酶的启发,作者提出了一种直接光激发烯烃还原酶的新催化循环(图2)。首先,ER结合的辅因子FMNox被蓝色LED激发,由基态到达激发态FMNox*(Int. B)。激发态FMNox*单电子氧化富电子芳烃产生芳基自由基阳离子中间体以及半醌状态黄素辅因子FMNsq(Int. C)。随后的自由基C-C键形成,生成前手性自由基中间体(Int. D)。最后,酶活性位点内的电子和质子(或氢原子)转移,生成对映体富集的产物,并再生FMNox(Int. E)。图2. 设计的催化循环。图片来源:Nat. Catal.为了验证所设计的生物催化循环方案,作者选择了3-甲氧基噻吩1a和α-甲基苯乙烯2a作为模板底物,450-460 nm蓝色LED光照,发现几类烯还原酶可以以较低的反应性实现催化加氢芳基化(表1)。进一步研究发现,通过额外加入催化量的FMN作为添加剂,能够显著提高反应收率而不影响对映异构体选择性。通过条件优化,作者筛选到的葡萄糖酸杆菌来源的烯还原酶(GluER)可以实现对模板反应的高产率、高选择性催化,产物具有 (R) 选择性(97.5:2.5 er,entry 5);而来自酿酒酵母的老黄酶(OYE1)的产率为60%,具有 (S) 选择性(90:10 er,entry 6)。对以老黄酶为母本的突变体进行筛选,发现老黄酶的突变体(OYE1-F296A)的产率为65%,具有更好的 (S) 选择性(95:5 er,entry 7)。控制实验表明,惰性气氛、光照、酶都是反应正常进行所必需的。同时,降低酶催化剂的负载量到0.2 mol%,也能有52%的中等收率和优异的 (R) 选择性(95:5 er,entry 11)。表1. 条件优化。图片来源:Nat. Catal.接下来,作者使用GluER(ER1)、GluER_T36A-Y177F(ER2)、OYE1_F296A(ER3)、OYE1_F296G(ER4)对底物的适用性进行了考察(图3)。总体来看,该催化体系具有良好的底物适用范围和官能团耐受性,活化烯烃、内烯烃、非活化烯烃、以及各类芳基底物,都能顺利发生反应(27例,最高达99%收率)。通过使用不同的酶,该体系能够分别获得产物的两个对映异构体,即实现立体发散式生物合成。同时,反应可以以相同的效率和对映选择性放大到1 mmol级,如 (R)-3a的合成所示。此外,单晶X射线衍射研究确认ER3-4催化的产物的绝对构型为 (S)。图3. 代表性底物。图片来源:Nat. Catal.随后,作者进行了一系列的机理研究来验证所提出的催化反应机理。1)紫外-可见吸收光谱鉴定可见光直接激发FMN的关键过程(图4a);2)低温电子顺磁共振(EPR)实验和自由基捕获实验证实了该反应涉及的相关自由基中间体;3)自由基开环实验验证生成的自由基中间体,证实了Int. D的存在(图4d);4)氘代实验探索了自由基终止步骤的氢来源(图4e)。图4. 机理实验。图片来源:Nat. Catal.为了更好地理解关键的光氧化机制,作者进行了含时密度泛函理论(TDDFT)计算。计算结果显示,从1a到激发态FMNox*的单电子转移放热2.3 kcal/mol(图5a),支持可见光引发的单电子氧化在热力学上是有利的。作者为了研究OYE1_F296G中自由基反应过程的对映体选择性(Int. C → Int. E),进行了经典的MD模拟、QM/MM MD模拟和QM/MM计算,模拟结果支持自由基阳离子加成→质子转移→氢原子转移这个反应途径(图5c)。有趣的是,Int. C中的底物2a可以采用两种不同的构象,CH3基团可以朝里的,也可以是朝外的(图5b)。2a通过甲基(CH3-in → CH3-out)的翻转而发生的构象变化在动力学上非常容易,具有2.1 kcal/mol的较小能垒。从Int. C开始,QM/MM计算表明,对于CH3-in构象,1a+和2a之间的C-C耦合的能垒为15.6 kcal/mol,而CH3-out构象的能垒为12.7 kcal/mol,表明CH3-out构象更适合C-C偶联。这主要是因为2a的双键在CH3-out构象(3.75 Å)中与1a+-C2保持的距离比在CH3-in构象(4.17 Å)中更近。从IM1开始,计算表明阴离子FMNsq的N5可以作为从噻吩基C2位点提取质子的碱,CH3-in构象质子转移的能垒为12.9 kcal/mol,在CH3-out构象中,这一步反应能垒为13.5 kcal/mol。最后,前手性碳自由基可以从中性FMNsq物种中发生氢原子提取(HAT),分别从Int. D(CH3-in)得到 (R)-3a,从Int. D(CH3-out)得到 (S)-3a。图5c表明,对映选择性主要由1a+和2a之间的C-C偶联步骤决定。由于OYE1_F296G活性位点对底物的定位,(S)-3a的形成在动力学上优于(R)-3a,这与OYE1突变体形成的产物绝对构型一致。而对GluER催化反应的进一步计算表明,立体选择性也主要由C-C偶联步骤决定。图5. OYE1_F296G催化加氢芳基化的计算研究。图片来源:Nat. Catal.总之,南大/厦大/中科大团队合作报道了一例可见光直接激发黄素蛋白实现烯烃的不对称自由基加氢芳化反应,以优异的产率(最高达99%)和对映选择性(最高达99:1 er)制备了一系列对映体富集的氢芳基化产物。与先前报道的基于烯烃还原酶的光酶催化净还原体系不同,本文发展了一种机理上独特的氧化还原中性的催化循环,关键步骤是可见光直接激发黄素蛋白,并引发后续的单电子氧化和自由基加成途径。本文的理论计算部分由厦门大学王斌举课题组完成,电子顺磁共振实验部分由中国科学技术大学生命科学学院/中国科学院强磁场科学中心田长麟课题组完成,其余部分由南京大学黄小强课题组完成。南京大学博士研究生赵贝贝、厦门大学博士研究生冯键强和中国科学院强磁场科学中心于璐副研究员为论文的共同第一作者。黄小强特聘研究员、王斌举教授和田长麟教授为论文的共同通讯作者。论文得到了南京大学启动经费、科技部重点研发计划(2022YFA0913000, 2019YFA0405600, 2019YFA0706900)、国家自然科学基金(22277053, 22121001, 21927814, 21825703)、江苏省自然科学基金(BK20220760)、中国科学院青促会(2022455)等项目,以及稳态强磁场实验装置(SHMFF)的支持。原文(扫描或长按二维码,识别后直达原文页面):Direct visible-light-excited flavoproteins for redox-neutral asymmetric radical hydroarylationBeibei Zhao, Jianqiang Feng, Lu Yu, Zhongqiu Xing, Bin Chen, Aokun Liu, Fulu Liu, Fengming Shi, Yue Zhao, Changlin Tian, Binju Wang & Xiaoqiang HuangNat Catal., 2023, DOI: 10.1038/s41929-023-01024-0通讯作者简介黄小强博士,南京大学化学化工学院特聘研究员、国家青年人才(海外)、重点研发计划青年首席;已在Nature, Nat. Catal.(3), Nat. Commun., JACS (3), ACIE (2), Acc. Chem. Res.(2)等杂志发表一作/通讯论文多篇。实验室正在招聘生物合成和化学合成方向的博士后、博士研究生,详见课题组主页:https://www.x-mol.com/groups/huang_xiaoqiang
  • 450万!上海交通大学全光谱激发共聚焦显微镜系统采购项目
    项目编号:0705-2240JDSMTXDK/02/招设2022A00210项目名称:上海交通大学全光谱激发共聚焦显微镜系统预算金额:450.0000000 万元(人民币)最高限价(如有):450.0000000 万元(人民币)采购需求:序号货物名称简要技术规格数量交货期1全光谱激发共聚焦显微镜系统1)脉冲激光器:脉冲白激光器:在485nm-685nm范围内,步进精度≤1nm,自由选择激发谱线进行成像,同时输出脉冲激光谱线≥8条;2)光谱检测装置:高效率棱镜分光系统, 要求配备发射光调节步进1nm或更优, 连续检测荧光波长范围不少于410~850nm或高效率反射光栅分光系统,光子回收系统及不少于34 条通道的内置光谱检测装置;3)其他技术要求详见第八章第二部分《技术规格》。1套签订合同后10个月内合同履行期限:签订合同后10个月内交货本项目( 不接受 )联合体投标。
  • 814台套大型仪器“公用” 激发中小企业创新活力
    大型科研仪器是科学研究和技术创新的技术基础和重要手段。今年以来,烟台市科技部门大力推动全市范围内的大型科研设施与仪器开放共享,以“山东省大型科学仪器设备协作共用网”平台为载体,以“创新券”作抓手,通过对科研检测费用财政补贴的方式,实现设备入网管理、需求线上对接,不仅让大部分大型科学仪器设备走出“深闺”,物尽其用,也为资金较为薄弱的科技型中小企业减去了研发费用负担。据统计,今年以来,烟台市高校、科研院所以及科技资源比较集中的企业共计发布大型科学仪器814台套入网,仪器原值达4.9亿元。同时,我市39家中小企业获得省创新券补助123万余元,撬动更多的企业加快科技创新步伐。
  • 449万!徕卡仪器有限公司中标上海交通大学全光谱激发共聚焦显微镜系统采购项目
    一、项目编号:0705-2240JDSMTXDK/02/招设2022A00210(招标文件编号:0705-2240JDSMTXDK/02)二、项目名称:上海交通大学全光谱激发共聚焦显微镜系统三、中标(成交)信息供应商名称:煜辉兴业控股有限公司供应商地址:香港九龙旺角弥敦道610号荷里活商业中心9楼912室中标(成交)金额:449.6350000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 煜辉兴业控股有限公司 全光谱激发共聚焦显微镜系统 徕卡仪器有限公司 STELLARIS 5 1 CNY 4496350
  • 天美公司携旗下品牌爱丁堡仪器首次亮相第十八届固体激发态动力学国际会议
    由中国科学院/国家自然科学基金委员会/中国化学会共同主办的第十八届固体激发态动力学国际会议(18th International Conference on Dynamical Processes in Excited States of Solids)于2013年8月5日-8月9日在中国历史文化名城福建省福州市召开;天美公司作为重要赞助商之一,公司市场总监张海蓉、华南区总经理吴灵威、福州办经理高文生及EI产品市场专家覃冰全程参与了该会议,并重点展示了公司新产品&mdash Edinburgh Instrument FLS980荧光光谱仪。 固体激发态动力学(简称DPC)国际会议是凝聚态物理、化学和材料领域顶级系列峰会,每三年轮换着在北美、欧洲和亚洲举办一次,第一届会议于1978年在美国佐治亚州举办,近年来主要聚焦在物理、化学、生物和材料等交叉学科领域中凝聚态物质或分子材料的激发态动力学过程的理论和实验最新进展。最近两届DPC会议分别在西班牙Segovia(2007)和美国Argonne国家实验室(2010) 举办。此次会议为第十八届会议,由中国科学院福建物质结构研究所承办,会议国际学术委员会主席为美国佐治亚大学的Richard Meltzer教授,组委会主席为曹荣研究员,共同主席为黄艺东和陈学元研究员,包括该领域著名国内外专家在内的约300-400名科研人员参会。 天美公司在会议期间举办了爱丁堡仪器展示会,吸引了众多国内外用户与有兴趣的专家现场咨询与交流,为参会人员进一步了解爱丁堡仪器提供了良好的平台与机会。公司介绍:  天美(中国)科学仪器有限公司(&ldquo 天美(中国)&rdquo )是天美(控股)有限公司(&ldquo 天美(控股)&rdquo )的全资子公司,从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。天美(中国)在北京、上海、等全国15个城市均设立办事处,为各地的客户提供便捷优质的服务。  天美(控股)是一家从事设计、研发、生产和分销的科学仪器综合解决方案的供应商。 继2004年于新加坡SGX主板上市后,2011年12月21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司和英国Edinburgh等多家海外知名生产企业,加强了公司产品的多样化。  更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn
  • 高大上的实验室能激发你的科研创造力吗?
    p style="text-indent: 2em text-align: justify "从英国的弗朗西斯· 克里克研究所到日本的冲绳科学技术大学院大学,很多机构对于建筑设计如何影响科学家的工作做了很多探索尝试。比如说,阳光长椅如何有利于研究人员的心理健康;让人放松的休息场所如何能促进自发性合作;步道和瑜伽如何调整工作狂倾向。没错,学术界和产业界的许多人士都同意配套的便利设施能提升工作效率。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201902/uepic/db3cd83e-6abc-436d-b97c-cecc78e56f9c.jpg" title="201902211158523661.jpg" alt="201902211158523661.jpg" width="641" height="477" style="width: 641px height: 477px "//pp style="text-indent: 2em text-align: left "美国加州的索尔克生物研究所设计前卫,意在吸引明星科学家。来源: Wikimedia Commons/pp style="text-indent: 2em text-align: justify "近20年来,我一直在为《自然》以及其他媒体记录科学家的生活,我听到过无数次空间力量如何能够提高或削弱博士后和首席科学家的毅力这类说法。不过,作为一名前细胞生物学家,我还要看到具体数据。因此,我带着一些期许翻开了这本《实验室生活方式》。/pp style="text-indent: 2em text-align: justify "纵览全书,虽然数据上并不充分,但还是呈现了一部可读性很强且不时令人感到惊奇的实验室建筑史。作者讲述了这些建筑的设计如何以科学家的生活方式为中心,围绕他们的交流、癖好和互动进行,而不仅仅是以实验设备为中心。/pp style="text-indent: 2em text-align: justify "澳大利亚建筑学者Sandra Kaji-O’Grady、Chris Smith和Russell Hughes的讲述开始于上世纪50和60年代的加州——一直以来的科学人才高地。开头一章列举了美国兰德公司在圣塔莫妮卡的“松饼”楼和休斯研究实验室山海相连的无敌景致,介绍了冲浪和户外生活等南加州生活方式如何融入了这些建筑的设计中。早在生物技术公司基因泰克和它所倡导的“愉快科研”落地南加州前,当地勤于思考的人就把“努力工作,尽情娱乐”当作人生信条了。/pp style="text-indent: 2em text-align: justify "敞开式创新空间/pp style="text-indent: 2em text-align: justify "书中恰到好处地提到了Louis Kahn在1963年设计的索尔克生物研究所:壮观的混凝土外立面,随处可见的柚木元素,附带白色的石灰华大理石花园。大胆超前的外观设计最初是为了吸引明星科学家、慈善家和合作伙伴,赢得公众关注——这些它都做到了。/pp style="text-indent: 2em text-align: justify "当年我在索尔克做研究生时,从高空鸟瞰的太平洋以及拂面的和煦海风都在我备受实验失败打击时给了我力量。但我当时并未意识到索尔克真正的突破之处:敞开式实验台设计——为了鼓励交流和方便根据科研进展需求进行重排。这一创新做法很快就在全世界普及开来。(书中并未提及索尔克一些颇有争议的做法:比如隔离资深员工和初级员工就被批评为精英主义做派。)/pp style="text-indent: 2em text-align: justify "Kathleen Brandt和Brian Lonsway带我们回到了上世纪70年代初期,施乐公司的帕罗奥多研究中心(PARC)会议室采用当时还很新潮的懒人沙发和白板墙取代了会议桌。PARC坐落于当时正值发展初期的硅谷,它的成功被归功于其倡导的文化和由此吸引而来的人才。从那之后,从谷歌到生物技术新秀Moderna Therapeutics,都下重金照搬PARC的“创意蜂巢”办公环境。/pp style="text-indent: 2em text-align: justify "那么,懒人沙发真能激发创造力吗?作者的回答是:“无法证明因果关系。”鉴于科学家一向把寻找因果关系视为命脉,缺乏证据、难以证明这种时髦美学能够招募、留驻或激励创新人才值得警惕。/pp style="text-indent: 2em text-align: justify "本世纪初,Herzog和 de Meuron为瑞士制药公司爱可泰隆设计了实验大楼,Gehry等人为诺华设计了实验大楼。此外,已故建筑师Zaha Hadid设计了新加坡的纬壹(one-north)科技城。这些充满时尚气息、光芒四射的大楼设计起初是为了吸引风投,鼓励突破。/pp style="text-indent: 2em text-align: justify "社会试验/pp style="text-indent: 2em text-align: justify "作者认为,这股“实验室奢华风”其实是一次大型社会试验,而科学家是小白鼠。他们对研究人员以及他们与这些大楼和休息空间的关系开展人类学研究,偷听他们的午间对话。书中多处引用了社会学家Bruno Latour和Steve Woolgar在1979年所著的《实验室生活》(Laboratory Life)一书,作者在书中把索尔克的工作人员隐射为人类学家,并认为科学家的社会互动会决定他们最终探索的方向。/pp style="text-indent: 2em text-align: justify "不管怎么说,科学家也是普通人。他们是否需要高大上的环境或与众不同的摆设才能激发智慧的对话?/pp style="text-indent: 2em text-align: justify "伦敦玛丽女王大学的Blizard Building拥有下沉式实验室和悬空式会议间。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201902/uepic/c8866387-df46-467f-8a13-da4b9a6ec4a3.jpg" title="2.jpg" alt="2.jpg" width="650" height="419" style="width: 650px height: 419px "//pp style="text-indent: 2em text-align: left "来源: Steve Cadman/Flickr/CC BY-NC-SA 2.0/pp style="text-indent: 2em text-align: justify "对于这个问题,伦敦玛丽女王大学生物医学中心Blizard Building的设计师肯定会回答Yes。这一独特建筑充满了各式各样的奇特元素:“蘑菇”、“云朵”和“尖刺”状会议室和休息间“高悬在下沉式实验室的上方”。实验室工作台还算中规中矩,但整体下沉。我能想象研究人员不停抱怨为何去旁边的工作台还要爬楼梯,以及想不通为何一排窗户和几张桌子就能搞定的会议室偏要标新立异。/pp style="text-indent: 2em text-align: justify "证据在哪里?/pp style="text-indent: 2em text-align: justify "能在无边的玻璃窗上涂涂写写,让加拿大滑铁卢圆周理论物理研究所的物理学家感到很满意,但是用于开展实验的房间必须要实用。任何时候都能思考——无论是洗澡时,通勤中,还是在户外远足(依山傍泉而建的美国圣菲研究所对此深有体会)。迄今为止,尚无人研究过那些踩着Razor滑板车去往乐高车站的谷歌工程师是否比那些坐在较为保守的办公室里的工程师更具自由创造力。/pp style="text-indent: 2em text-align: justify "总体上讲,建筑师与在他们作品里工作的人似乎欠缺交流。一个例外是英国曼彻斯特大学2015年建成的国家石墨烯研究所(NGI)。设计师与研究人员协作打造了一个兼具实用性和观赏性的多功能大楼,内部实用整洁的房间以及用玻璃隔离出来的实验空间让工作环境光线充足、透明度高。Albena Yaneva和Stelios Zavos认为,NGI的实验室主动塑造并改变了研究文化,倡导“创新生态学”,打造了“科学、社会和产业的新联盟”。/pp style="text-indent: 2em text-align: justify "不过,从作者提供的照片来看,开放空间和大量长沙发无人问津(也许大楼内部另有供加班博士后小憩之处)。但在没有证据的情况下,要说大楼设计达到了这些宏伟目标有些牵强。/pp style="text-indent: 2em text-align: justify "我非常希望能有一项对照研究来分析建筑环境与研究效率之间的关系。对比时髦的NGI和老旧的曼彻斯特实验室的研究产出有多难?看一下阳光灿烂的索尔克是否比梅奥医学中心在罗契斯特的地下实验室更能出现突破性成果有多难?/pp style="text-indent: 2em text-align: justify "更奇怪的是《实验室生活方式》一书的结尾,它写道:大数据“拍字节(petabyte)时代”的到来会让科学家和他们的假说,甚至可能是实验室都一并成为过去式。究竟这本书是对实验室发展历史的一次深入挖掘,还是对其未来命运的一次预言?无论如何,书中对这些名声在外的建筑师是否理解实验人员内心真正的激情所在提出了质疑。/ppbr style="text-indent: 2em text-align: left "//p
  • 覆盖碳达峰碳中和、生物医药|揭榜挂帅+科技专员,激发青岛西海岸新区创新活力
    【科技政策扎实落地看招】  “出题”约一个月,青岛昊成实业有限公司董事长高泗明接到中国海洋大学化学化工学院副教授张大海的电话后,心里的一块大石头总算落了地。  “张教授表示可以帮助企业解决技术难题,困扰我们已久的技术难题通过‘揭榜挂帅’找到了解决方案。”8月27日,高泗明在接受科技日报记者采访时表示。  这个难题的解决得益于青岛西海岸新区实施的“揭榜挂帅+科技专员”科技攻关机制。“新区瞄准产业发展需求,将科技创新中的‘卡脖子’难题及相关技术需求进行‘发榜’,鼓励高校、科研机构、企业等‘揭榜’,用市场竞争机制激发创新活力。”青岛西海岸新区工业和信息化局(科技局、大数据局)局长隋俊昌告诉记者。  目前,青岛西海岸新区发布的62项技术需求已有49项成功揭榜,并进行科技计划项目申报,实现了企业技术需求与高校科研院所创新成果精准对接。  “揭榜”,让技术难题有了解决方案  青岛昊成实业有限公司是一家深耕PVB树脂和PVB胶片行业的高新技术企业,生产各种用途的PVB膜片。  “PVB膜片技术的突破需要反复大量的实验,一般企业不具备高标准的科研设备,难以承受资金和时间成本,也很难对接上行业内顶端人才。”高泗明表示,借助西海岸新区“揭榜挂帅”机制,企业将“改善PVB汽车膜抗穿透性和抗低温冲击性”的技术需求进行了提报。  “项目周期为两年,预计研发总投入为400万元。现在张大海教授领衔的科研团队已经完成产品分析,正在加紧开展实验,我相信有了高校科研团队的助力,难题一定会迎刃而解。”高泗明对这次合作信心满满。  “揭榜挂帅”攻关机制,发榜方是依靠自身力量难以解决重大需求或产业关键技术难题的企业或单位,揭榜方是具有科技研发实力的各类创新主体。双方揭榜成功后,组成创新联合体,共同开展技术攻关。去年8月,青岛西海岸新区发布2021年度“揭榜挂帅”技术攻关项目榜单,包括海洋经济、碳达峰碳中和、生物医药等七个领域的62项技术需求,涉及榜单金额5.64亿元。  广发英雄帖,加速科技成果转化  青岛申飞安达环保材料有限公司与青岛特殊钢铁有限公司毗邻而居,主攻业务是将青岛特钢产生的废钢渣,与废矿渣混合在一起磨成粉末,制作成环保新材料。但是,如何提高这种复合粉体的活性从而拓展其应用途径,成了企业投产前必须解决的难题。  “就在我们一筹莫展时,通过‘揭榜挂帅’机制发出了技术攻关榜单,事情很快有了转机。”青岛申飞安达环保材料有限公司总经理王伟告诉记者,前来“揭榜”的是山东科技大学化学与生物工程学院院长吕宪俊团队。该团队在冶金固废资源高质化利用领域颇有研究,与申飞安达的技术需求适配度很高,经过洽谈双方签订了合作协议。  团队与企业对接后,开展了多次技术研讨,深入生产一线了解设备性能与特点,提出了钢渣、矿渣复合超细粉体的创新方案。  “技术难题解决后,我们建成了2条年产120万吨超级微粉的生产线。自今年1月投产试运行以来,企业每月营收额达4000万元左右。7月底,企业的第3条生产线已投产,第4条生产线正在加紧建设,预计将于9月投产。”王伟兴奋地说。  “‘揭榜挂帅’攻关机制打破了‘线性’科技项目管理程序,用‘市场化思维’实现了企业技术需求与高校院所科研创新成果的精准对接,最高400万元的重大项目攻关支持力度更是激发了合作双方的积极性。”青岛西海岸新区工信局(科技局、大数据局)党组书记刘然吉表示,2022年度“揭榜挂帅”活动正在紧锣密鼓地进行中,项目榜单即将发布。  科技专员上岗,释放创新活力  近日,李钰金与青岛明月海藻有限公司成功“牵手”,双方将在海洋生物资源高效利用、海洋仿生食品加工等多领域开展深入合作。  李钰金是中国海洋大学食品科学与工程学院教授,得知青岛西海岸新区遴选科技专员的消息后,第一时间就报了名,并主动与意向企业青岛明月海藻有限公司对接交流。  “我的研究方向与企业发展高度吻合,合作比预想的还要顺利,经过两次深入沟通就签订了合作协议。”谈起这次合作,李钰金颇有“相见恨晚”之感。  今年3月,青岛西海岸新区发布开展科技专员遴选工作的通知,从高校和科研院所选派人员到企业担任科技专员,进一步探索“科技专员+揭榜挂帅”科技创新体制机制。科技专员在企业项目初始阶段就参与进来,深入挖掘企业关键核心技术需求,帮助企业确定适合发榜的技术需求。  截至目前,青岛西海岸新区共有93名科技专员与当地科技型企业签订合作协议并成功备案。经过深入调研走访,科技专员目前已挖掘企业关键核心技术需求60余项。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制