当前位置: 仪器信息网 > 行业主题 > >

肿瘤生长调节

仪器信息网肿瘤生长调节专题为您提供2024年最新肿瘤生长调节价格报价、厂家品牌的相关信息, 包括肿瘤生长调节参数、型号等,不管是国产,还是进口品牌的肿瘤生长调节您都可以在这里找到。 除此之外,仪器信息网还免费为您整合肿瘤生长调节相关的耗材配件、试剂标物,还有肿瘤生长调节相关的最新资讯、资料,以及肿瘤生长调节相关的解决方案。

肿瘤生长调节相关的论坛

  • 植物生长调节剂

    大家有没有检测过植物生长调节剂啊,都检测哪些物质???除了常检的豆芽,还有么有其他样品啊

  • 植物生长调节剂的基本介绍

    植物生长调节剂,是用于调节植物生长发育的一类农药,是人类合成的大量用于调节栽培植物生长、清除杂草的化合物,也用在植物器官或细胞的离体培养中。这些人造化合物简称为植物生长调节剂,简称为PGR。  包括人工合成的具有天然 植物激素相似作用的化合物和从生物中提取的天然植物激素。

  • 【讨论】正确认识植物生长调节剂

    植物生长调节剂是在生物科学理论指导下,采用化学合成或微生物发酵的方法制取的,具有特定生理调节功能的简单有机化合物,可用于调节植物的生长和发育且低毒或微毒,在增强植物的抗逆性以及在促根、保果、保鲜、提质和增产等方面,都具有十分明显的效果,在国内外的农业生产领域已经得到了广泛的应用。目前,全球植物生长调节剂的销售额约15亿美元,占农药总销售额的5%左右,并以每年10%速度增长;其中,美国EPA批准登记的植物生长调节剂成分已有20多种、产品达200多个。我国生产使用植物生长调节剂也有30多年的历史,目前已登记的植物生长调节剂产品有587个,涉及有效成分近40个,正处于成长发展的阶段。 今年以来,国内连续出现有关“乙烯利催熟香蕉危害人体健康”的不实报道以及“膨大剂导致西瓜爆炸”和“激素黄瓜”的报道,使植物生长调节剂的应用备受质疑。不仅在广大消费者中造成恐慌心理,也给农产品供应、农民增收乃至植物生长调节剂产业的发展,带来了不利的影响。上述现象的产生,有着错综复杂的原因,当前主要存在以下4个方面的问题:

  • 植物生长调节剂的功能作用与农产品质量安全性

    针对市场上有些黄瓜“顶花带刺”,有些猕猴桃“又甜又大”,是否真的使用过植物激素,使用过植物激素的农产品到底安全不安全等问题,专访了浙江省农业科学院农产品质量标准研究所所长、农业部农产品质量安全专家组成员、农业部农产品质量安全风险评估实验室(杭州)主任王强研究员,就植物生长调节剂的功能作用与农产品质量安全性问题进行解答。一、植物生长调节剂是什么?它是激素吗? 【回应】植物生长调节剂是一类具有调节和控制植物生长发育作用的农业投入品,它与动物激素完全不同,对人体生长发育无作用和影响。植物生长调节剂是一类具有调节和控制植物生长发育作用的农业投入品,归类为四大类农药中的一类在进行管理,由人工合成或通过微生物发酵产生,也可从植物体中直接提取,俗称植物激素。激素是生物体在正常生长发育过程中所必不可少的,缺乏激素或激素不够,会直接影响生物体的正常生长发育。植物激素针对植物起作用,动物激素调控动物的生长发育,两者的作用靶标和机理完全不同。植物生长调节剂也叫植物外源激素,它的作用与植物体内自身产生的植物内源激素相同或类似,但它与动物激素完全不同,对人体生长发育无作用和影响。二、为什么要用植物生长调节剂?是不是每种蔬菜、水果的生产都要使用植物生长调节剂?  【回应】使用植物生长调节剂可以达到提高产量、改善品质、促进成熟等目的,但并不是所有的农产品都需要使用植物生长调节剂。植物生长调节剂可以通过促进或抑制茎、叶、根、芽、花的生长或果实成熟、保花保果或疏花疏果、提前或延长休眠、促进果实增大等作用,达到提高产量、改善品质、促进成熟等目的,因而部分农产品在生产过程中需要使用植物生长调节剂,以实现其最佳生产效果和营养品质表现。如小麦使用多效唑可防止倒伏;梨树施用赤霉素可减少因气温、营养、媒介昆虫等原因造成的落花落果,提高座果率;用氯苯胺灵处理马铃薯可抑制发芽,避免生物碱中毒。在农业生产中,大多数农作物可以依靠自身的植物内源激素活性起作用,并通过品种、栽培、施肥、防病治虫等措施达到高产优质的目标,只有在极少数植物内源激素不足以调节和控制植物预期生长发育时才会使用植物生长调节剂,因此并不是所有的农产品都需要使用植物生长调节剂。

  • 植物生长调节剂检测技术讨论

    农药残留中其中植物生长调节剂一类是相对比较难做的,多组分检测中很难包含这类农药,如2,4-D、4-氯苯氧乙酸、赤霉素、6-BA等等,最近做了一下豆芽以及葡萄等等,想把这些农药残留一起做,有经验的可以一起讨论交流。

  • 植物生长调节剂 BJS 201703

    植物生长调节剂 BJS 201703 6-苄基腺嘌呤和4-氯苯氧乙酸 大家都用的什么流动相?为什么我的4-氯苯定性跑不出来呢?

  • 植物生长调节剂的使用规范

    请问各位大侠,国家对植物生长调节剂的使用有没有相关规范。我在网上查了一下,没有看到比较具体的东西,而且经济作物种类繁多,是否有统一的标准呢?谢谢

  • 【分享】农业部办公厅关于进一步加强植物生长调节剂管理的通知

    农业部办公厅关于进一步加强植物生长调节剂管理的通知(农办农61号)【发布单位】 农业部办公厅 【发布文号】 农办农61号【发布日期】 2011-06-07【生效日期】 【效 力】 【备 注】  各省、自治区、直辖市农业(农牧、农村经济)厅(局、委):    最近一段时期以来,西瓜使用“膨大剂”问题引起社会广泛关注,反映出我国植物生长调节剂和水溶肥料在监管和使用上存在一些不容忽视的问题。为加强植物生长调节剂的管理,规范植物生产长调节剂使用,现就有关事项通知如下:   一、开展市场专项检查   我部决定6月份在全国范围内组织开展为期一个月的植物生长调节剂和水溶肥料的专项检查。对标称植物生长调节剂的,重点检查产品是否取得农药登记、标签与农药登记核准内容是否相符、产品质量是否合格。对标称水溶肥料的,重点检查标注产品是否办理肥料登记,包装袋、标签所标注的内容是否与登记证内容一致,是否有农药功效宣传内容、是否标注含有农药成分添加物。对发现违规的,按照《农药管理条例》和《肥料登记管理办法》的有关规定,对生产企业和经营者严肃查处。  各级农业部门要高度重视本项工作,结合农资打假行动,组织精干力量,深入到农药、肥料生产企业和乡村农资经销门店,对本辖区内经销的水溶肥料和植物生长调节剂开展全面清查,县级要做到普查,省级要进行重点抽查,我部将组织对重点地区进行督导检查。请各省、自治区、直辖市于7月15日前将专项检查情况报送我部种植业管理司。   二、严格水溶肥料登记管理  我部将进一步细化水溶肥料登记资料要求,明确水溶肥料生产企业在申请肥料登记时,书面承诺申请登记的水溶肥料产品没有添加植物生长调节剂等农药成分。肥料登记机关要加强对水溶肥料产品标签审核,禁止在水溶肥料标签上标注具有植物生长调节剂等农药功效、夸大宣传产品功能等内容。省级肥料登记机关在对水溶肥料登记初审时,结合肥料企业考核,重点审查原材料、生产工艺是否有添加植物生长调节剂可能,从源头上把好关。   三、加强使用技术指导   各地农业部门要组织相关专家和技术人员,针对植物生长调节剂使用的重点区域和主要作物,适时开展技术指导和培训。通过专题培训班、专家讲座、示范现场会、印发明白纸以及田间巡回指导等形式,不断提高技术到位率。要充分利用电视、广播、网络、手机短信等新闻媒介,普及植物生长调节剂的安全使用知识,引导农民合理使用植物生长调节剂。  四、加强宣传和舆论引导   各地要充分认识新闻报道的重要性,积极主动与媒体沟通,宣传植物生长调节剂相关知识,指导农民合理使用,引导公众科学认识植物生长调节剂,强化正面引导。要注意舆情跟踪,发生疑似质量安全事故时,要立即组织专家现场调查,科学处置,适时通过媒体发布真实信息,并按规定及时上报。   二○一一年六月七日

  • 液相色谱法测定花生酱中植物生长调节剂

    液相色谱法测定花生酱中植物生长调节剂

    作者: 韩朝家; 周建科; 唐翠苓;( 河北大学理化分析中心河北省分析科学技术重点实验室)摘要: 采用固相分散萃取-高效液相色谱法同时测定花生酱中的吲哚乙酸(IAA)、吲哚丁酸(IBA)和α-萘乙酸(NAA)三种植物生长调节剂。无水硫酸钠作分散剂、甲醇作萃取剂。色谱条件:Diamonsil C18柱;甲醇-水(55:45,V/V,甲酸调PH=3.0)为流动相;流速:1.0mL/min;检测波长:272nm。在0.50~100μg/mL范围内线性良好。方法检出限均为1.25μg/g,平均回收率为98.97%、86.41%和84.24%,相对标准偏差为2.23%、1.75%和1.90%。 更多还原关键词: 固相分散萃取; 高效液相色谱法; 植物生长调节剂; 谱图:http://ng1.17img.cn/bbsfiles/images/2017/01/201701191700_667391_708_3.jpg附件:液相色谱法测定花生酱中植物生长调节剂

  • 16.7 液相色谱法测定花生酱中植物生长调节剂

    16.7 液相色谱法测定花生酱中植物生长调节剂

    液相色谱法测定花生酱中植物生长调节剂 韩朝家,周建科 ,唐翠苓(河北大学理化分析中心,河北省分析科学技术重点实验室。河北保定071 002)摘要:采用固相分散萃取一高效液相色谱法同时测定花生酱中的吲哚乙酸(IAA)、吲哚丁酸(IBA)和Or.一萘乙酸(NAA)三种植物生长调节剂。无水硫酸钠作分散剂、甲醇作萃取剂。色谱条件:DiamonsilC18柱;甲醇一水(55:45,V ,甲酸调PH=3.0)为流动相;流速:1.0mL/min;检测波长:272nm。在0.50~100 g/mL范围内线性良好。方法检出限均为1.25 g/g,平均回收率为98.97%、86.41%和84.24%,相对标准偏差为2.23%、1.75%和1.90%。关键词:固相分散萃取;高效液相色谱法;植物生长调节剂http://ng1.17img.cn/bbsfiles/images/2012/07/201207241317_379367_2355529_3.jpg

  • 【分享】植物生长调节剂的种类

    按用途分有以下几种:用途 适用的植物生长调节剂名称延长贮藏器官休眠 青鲜素,萘乙酸钠盐,萘乙酸甲酯。打破休眠促进萌发 赤霉素、激动素、硫脲,氯乙醇,过氧化氢。促进茎叶生长 赤霉素、6—苄基氨基嘌呤,油菜素内酯,三十烷醇。促进生根 吲哚丁酸,萘乙酸,2,4—D,比久,多效唑,乙烯利,6—苄基氨基嘌呤。抑制茎叶芽的生长 多效唑,优康唑,矮壮素,比久,皮克斯,三碘苯甲酸,青鲜素,粉绣宁。促进花芽形成 乙烯利,比久,6—苄基氨基嘌呤,萘乙酸,2,4—D,矮壮素。抑制花芽形成 赤霉素,调节膦。疏花疏果 萘乙酸,甲萘威、乙烯利、赤霉素、吲熟酯,6—苄基氨基嘌呤。保花保果 2,4—D,萘乙酸,防落素,赤霉素,矮壮素,比久,6—苄基氨基嘌呤。延长花期 多效唑,矮壮素,乙烯利,比久。诱导产生雌花 乙烯利,萘乙酸,吲哚乙酸,矮壮素。诱导产生雄花 赤霉素切花保鲜 氨氧乙基乙烯基甘氨酸,氨氧乙酸,硝酸银,硫代硫酸银。形成无籽果实 赤霉素,2,4—D,防落素,萘乙酸,6—苄基氨基嘌呤。促进果实成熟 乙烯利,比久。延缓果实成熟 2,4—D,赤霉素,比久,激动素,萘乙酸,6—苄基氨基嘌呤。延缓衰老 6—苄基氨基嘌呤,赤霉素,2,4—D,激动素。提高氨基酸含量 多效唑,防落素,吲熟酯。提高蛋白质含量 防落素,西玛津,莠去津,萘乙酸。提高含糖量 增甘膦,调节膦,皮克斯。促进果实着色 比久,吲熟酯,多效唑。增加脂肪含量 萘乙酸,青鲜素,整形素。提高抗逆性 脱落酸,多效唑,比久,矮壮素。

  • 豆芽中植物生长调节剂残留检测

    豆芽中植物生长调节剂残留检测

    [b]前言[/b]近几年来,网络、报纸上不时有关于查处“毒豆芽”事件的报道,引起民众对此类豆芽食用安全问题的担忧。此类被媒体称作“毒豆芽”的豆芽里究竟都含了什么物质?这些物质有没有毒性?为什么要在发制豆芽时使用?含有这类物质的豆芽能不能吃,这些问题都是民众所关注的。根据近几年全国各地监测机构的检测结果,查处的“毒豆芽”中通常含有植物生长调节剂的成分,俗称“无根豆芽素”、“AB粉”的物质,主要成分为赤霉素、6-苄基腺嘌呤、4-氯苯氧乙酸、2,4-二氯苯氧乙酸等。对于植物生长调节剂,国内外大多按农药来管理,与以杀灭作物虫害为目的的农药不同,用于豆芽发制的植物生长调节剂属于生长促进剂,以促进植物生长为目的,对豆芽的作用是促进豆芽茎部生长,而使芽和根部的生长受抑制,使豆芽外观鲜嫩、粗壮而无根,产量大大增加。月旭科技一直密切关注食品安全检测问题,并采用“风险手册”方法,对毒豆芽激素进行检测,结果符合国家要求。[b]1、适用范围[/b]适用于豆芽中2,4-D-乙酯,2,4-D-丁酯,4-氯苯氧乙酸(CPA),2-4-二氯苯氧乙酸(2,4-D),β-萘乙酸,吲哚乙酸,吲哚丁酸,多效唑,激动素,6-苄基腺嘌呤(6-BA)等10种植物生长调节剂的检测。[b]2、原理[/b]豆芽中10种植物生长调节剂先用酸性乙腈提取,浓缩后用甲醇复溶,部分经QuEChERS试剂盒净化后用GC/MS分析2,4-D-乙酯,2,4-D-丁酯。另一部分经MCS固相萃取柱净化,先用5mL甲醇洗脱得组分1,再用5%氨化甲醇洗脱得组分2;组分1浓缩后用10%三氟化硼甲醇溶液甲酯化,提取后GC/MS测定4-氯苯氧乙酸、α-萘乙酸、2-4-二氯苯氧乙酸、吲哚乙酸、吲哚丁酸,组分2浓缩后用GC/MS测定多效唑、激动素、6-苄基腺嘌呤。[b]3、提取步骤[/b](1)称取捣碎的均质豆芽10.0g于50mL离心管中,加入20mL乙腈、40μL甲酸,涡旋混匀1min,超声提取30min,8000r/min离心5min。(2)上清液转移至另一支50mL离心管,加入3.0g氯化钠,涡旋混匀,8000r/min离心5min。(3)吸出乙腈层,用1g无水硫酸钠脱水后收集到圆底烧瓶,50℃水浴真空浓缩至溶液量少于0.5mL,圆底烧瓶加入2mL甲醇超声溶解。[b]4、SPE净化步骤[/b]QuEChERS净化管:货号:00537-20020,规格300mg/管SPE柱:月旭[b][color=#ff4c00]Welchrom[sup][/sup]MCS固相萃取柱[/color][/b](规格:500mg/6mL)[b]具体前处理净化步骤[/b](1)取1mL提取好的样品溶液,加入到QuEChERS试净化管中,混匀,静置5min,混匀,10000r/min离心2min,上清液直接进GC/MS测定2,4-D-乙酯和2,4-D-丁酯。(2)另取1mL提取好的样品溶液,加入9mL 40mmol/L HCI溶液,超声混匀,转移至离心管中,8000r/min离心5min,上清液待净化。(3)先用5mL甲醇、5mL水、5mL 40mmol/L HCI活化MCS柱,活化结束后上清液转移到MCS柱内,待样液过柱后,用5mL水淋洗除杂,真空抽干柱内液体;随后加入5mL甲醇洗脱,收集于10mL具塞试管内,得组分1。组分1加入1mL 10%三氟化硼甲醇衍生溶液,涡旋混匀,70℃加热衍生30min,取出冷却后再加入1.0mL 20%乙酸乙酯-正己烷混合液和2mL纯水,涡旋混匀,4000r/min离心5min,取出上层有机相进行GC/MS分析,以测定4-氯苯氧乙酸(CPA),2,4-二氯苯氧乙酸(2,4-D),β-萘乙酸,吲哚乙酸,吲哚丁酸。(4)用5mL 5%氨化甲醇继续洗脱MCS固相萃取小柱,收集洗脱液,得组分2,洗脱液分别50℃下用氮气吹干。组分2用0.5mL甲醇溶解后进行GC/MS分析,测定多效唑、激动素、6-BA。[b]5、色谱和质谱条件[/b](1) [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]DB-5MS毛细管色谱柱(30m*0.25mm*0.25μm) 进样口温度260;柱温:初温80,保持1min,10/min升至300后运行2min;载气是氦气,纯度99.999%,流速1mL/min;进样量1,电离方式:EI源,70eV 离子源温度:230;不分流;扫描范围:m/Z 35-450(2) 液相色谱色谱柱:月旭[b][color=#ff4c00]Ultimate[sup][/sup]XB C18[/color][/b],4.6*250mm,5μm 流动相:甲醇-水(55:45 V/V,甲酸调pH=3.0) 流速:1.0mL/min柱温:35℃检测波长:272nm进样量:20μL[b]6、液相色谱图或者加标回收率结果[/b][align=center][b][img=,600,330]https://ng1.17img.cn/bbsfiles/images/2019/10/201910151112466543_9549_932_3.jpg!w643x354.jpg[/img][/b][/align][color=#333333][/color][align=center]图1:三种标准品色谱图(从左到右分别为:吲哚乙酸、吲哚丁酸、β-萘乙酸,进样浓度为:1μg/mL)[/align][align=center][/align][align=center][color=#333333][b][img=,600,325]https://ng1.17img.cn/bbsfiles/images/2019/10/201910151112506573_6277_932_3.jpg!w658x357.jpg[/img][/b][/color][/align][align=center][color=#333333][color=#333333]图2:豆芽实际样品色谱图[/color][/color][/align][align=center][color=#333333][color=#333333][b][img=,600,323]https://ng1.17img.cn/bbsfiles/images/2019/10/201910151112541477_3483_932_3.jpg!w666x359.jpg[/img][/b][/color][/color][/align][align=center]图3:豆芽加标色谱图进样(浓度为:1μg/g)[color=inherit][/color][/align][align=center][b]表1:加标回收率测定结果[/b][/align][align=center][b][b][img=,600,145]https://ng1.17img.cn/bbsfiles/images/2019/10/201910151112570867_6689_932_3.jpg!w655x159.jpg[/img][/b][/b][/align]

  • 【“仪”起享奥运】首次出现:植物生长调节剂残留量测定法标准草案

    [b][size=16px][font=&]7月26日,国家药典委公示了[/font][font=&]三个重磅修订草案[/font][font=&]:[/font][b]2341农药残留量测定法、0212药材和饮片检定通则和植物生长调节剂[i][/i]残留量测定法标准草案[/b][font=&]。其中,[/font][b]植物生长调节剂残留量测定法[/b][font=&]标准草案,是首次出现。[/font]植物生长调节剂残留量测定法标准草案中的关键说明:1、植调剂品种的选择。将通过对中药材种植基地的调研和相关文献的数据挖掘,选择我国食品、中药种植中使用较多和检出率较高的植调剂品种。同时,参考国内外的食品标准法规,选择我国食品安全国家标准、国际食品法典中规定的有最大残留限量的品种,以及农业部登记的植调剂品种。[b]共完成69种植调剂品种的测定方法研究。 [/b]2、代表性样品的选择及收集。根据我国中药材种植过程中植[i][/i]调剂的使用情况,选择了使用量较大、用药时间较长的大宗药材;基地调研使用植调剂较为严重的药材品种;文献报道中植调剂滥用情况较为严重的药材品种;药食两用、服用时间较长的药材品种;以及种植过程较长,容易造成植调剂蓄积的药材品种。在代表性样品的选择上,兼顾不同药用部位 及干扰成分,以提高方法的通用性。 3、植调剂高通量筛查技术的研究。基于国内外仪器检测技术,选用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]MS检测技术对 选定的植调剂及代表性样品进行检测技术开发和系统性研究。 4、[b]水溶性植调剂检测技术的研究。[/b]针对无法采用QuEChERS技术的水溶性植调剂进行考察 分析,在提取、净化、检测方法等方面开展研究并建立相关检测方法[/size][/b]

  • 月旭“豆芽中植物生长调节剂残留检测标准操作程序”解决方案

    月旭“豆芽中植物生长调节剂残留检测标准操作程序”解决方案

    [align=center][img=,600,378]https://ng1.17img.cn/bbsfiles/images/2019/10/201910091435027655_8919_932_3.jpg!w690x435.jpg[/img][/align]豆芽,是我们日常生活餐桌上十分常见的一种蔬菜。而且豆芽的培育不受季节限制,成本不高,还可以在家自发豆芽,深受大家喜爱。豆芽中含有丰富的蛋白质维生素以及微量元素,甚至这些营养物质要比豆浆中的含量还要高,同时豆芽还有美容,抗癌的功效还是十大延寿食物之一。但是,在豆芽发制的过程中有的商贩或菜农会添加[b]生长调节剂,[/b]来提高产量并缩短发制时间。植物生长调节剂可适用于几乎包含了种植业中的所有高等和低等植物,如大田作物、蔬菜、果树、花卉、林木、海带、紫菜、食用菌等。使作物农艺性状表达按人们所需求的方向发展。但是添加剂食用进体内过量毕竟不是好的事情,所以我们今天就带大家来做一下豆芽中植物生长调节剂残留检测标准操作程序。[b]适用范围[/b]适用于豆芽中2,4-D-乙酯,2,4-D-丁酯,4-氯苯氧乙酸(CPA),2,4-二氯苯氧乙酸(2,4-D),α-萘乙酸,吲哚丁酸,多效唑,激动素,6-苄基腺嘌呤(6-BA)等10种植物生长调节剂的检测。[b][b]原理[/b][/b]豆芽中10种植物生长调节剂先用酸性乙腈提取,浓缩后用甲醇复溶,部分经QuECHERS试剂盒净化后用GC/ MS分析2,4-D-乙酯2,4-D-丁酯。另一部分经MCS固相萃取柱净化,先用5mL甲醇洗脱得组分1,再用5%氨化甲醇洗脱得组分2;组分1浓缩后用10%三氟化硼甲醇溶液甲酯化,提取后GC/MS测定4-氯苯氧乙酸、α-萘乙酸、2,4-二氯苯氧乙酸、吲哚乙酸、吲哚丁酸,组分2浓缩后用GC/ MS测定多效唑、激动素、6-苄基腺嘌呤。[b]提取步骤[/b]称取10g均匀试样于50mL离心管中,加入20mL甲醇,加一颗均质子,超声15min,离心10min(4000r/min),上清液转入到50mL梨形瓶中;样品再次用20 mL甲醇,10mL甲醇分别再次超声离心合并上清液,旋转蒸发(水浴温度为40℃)浓缩至近干,去除甲醇,待净化。SPE净化步骤QuEChERS净化管:00537-20020,规格300 mg/2ml(含MgSO4 150mg、PSA 50 mg、C18E 50 mg和石墨化碳 50 mg)SPE柱:月旭Welchrom MCS豆芽中植物生长调节剂检测专用柱(规格:500 mg/6mL)[b]具体前处理净化步骤[/b]请咨询月旭科技[b]色谱条件[/b](1) [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]DB-5MS毛细管色谱柱(30 m*0.25mm*0.25μm)进样口温度260柱温:初温80,保持1min,10/min升至300后运行2min载气是氦气,纯度99.999%,流速1mL/min进样量1,电离方式:EI源,70eV离子源温度:230不分流扫描范围:m/Z 35-450(2) 液相色谱色谱柱:月旭Ultimate XB-C18, 4.6×250mm, 5μm流动相:甲醇-水(55:45V/V,甲酸调pH=3.0)流速:1.0 mL/min柱温:35℃检测波长:272nm进样量:20μL[b]液相色谱图或加标回收率结果[/b][align=center][b][img=,600,313]https://ng1.17img.cn/bbsfiles/images/2019/10/201910091437093595_8451_932_3.jpg!w684x357.jpg[/img][/b][/align][align=center]图1:三种标准品色谱图(从左到右分别为:吲哚乙酸、吲哚丁酸、α-萘乙酸,进样浓度为:1μg/mL)[/align][align=center][/align][align=center][img=,600,318]https://ng1.17img.cn/bbsfiles/images/2019/10/201910091437127305_431_932_3.jpg!w676x359.jpg[/img][/align][align=center]图2:豆芽实际样品色谱图[/align][align=center][/align][align=center][img=,600,317]https://ng1.17img.cn/bbsfiles/images/2019/10/201910091437160262_6016_932_3.jpg!w676x358.jpg[/img][/align][align=center]图3: 豆芽加标色谱图进样(浓度为:1μg/g)[/align][align=center][/align][align=center][img=,600,128]https://ng1.17img.cn/bbsfiles/images/2019/10/201910091437216862_6086_932_3.png!w690x148.jpg[/img][/align][align=center]表1:回收率[/align][b] 相关产品信息[/b][align=center][img=,600,768]https://ng1.17img.cn/bbsfiles/images/2019/10/201910091437258555_747_932_3.jpg!w410x525.jpg[/img][/align]

  • 月旭“豆芽中植物生长调节剂残留检测标准操作程序”解决方案

    月旭“豆芽中植物生长调节剂残留检测标准操作程序”解决方案

    [align=center][img=,690,460]https://ng1.17img.cn/bbsfiles/images/2018/09/201809141452095026_4358_932_3.jpg!w690x460.jpg[/img][/align][align=center][/align][align=center][/align][align=left]豆芽,是我们日常生活餐桌上十分常见的一种蔬菜。而且豆芽的培育不受季节限制,成本不高,还可以在家自发豆芽,深受大家喜爱。豆芽中含有丰富的蛋白质维生素以及微量元素,甚至这些营养物质要比豆浆中的含量还要高,同时豆芽还有美容,抗癌的功效还是十大延寿食物之一。但是,在豆芽发制的过程中有的商贩或菜农会添加[b]生长调节剂,[/b]来提高产量并缩短发制时间。[/align][align=left]植物生长调节剂可适用于几乎包含了种植业中的所有高等和低等植物,如大田作物、蔬菜、果树、花卉、林木、海带、紫菜、食用菌等。使作物农艺性状表达按人们所需求的方向发展。[/align][align=left]但是添加剂食用进体内过量毕竟不是好的事情,所以我们今天就带大家来做一下豆芽中植物生长调节剂残留检测标准操作程序。[/align][align=left][/align][align=left][b]适用范围[/b]适用于豆芽中2,4-D-乙酯,2,4-D-丁酯,4-氯苯氧乙酸(CPA),2,4-二氯苯氧乙酸(2,4-D),α-萘乙酸,吲哚丁酸,多效唑,激动素,6-苄基腺嘌呤(6-BA)等10种植物生长调节剂的检测。[b]原理[/b]豆芽中10种植物生长调节剂先用酸性乙腈提取,浓缩后用甲醇复溶,部分经QuECHERS试剂盒净化后用GC/ MS分析2,4-D-乙酯2,4-D-丁酯。另一部分经MCS固相萃取柱净化,先用5mL甲醇洗脱得组分1,再用5%氨化甲醇洗脱得组分2;组分1浓缩后用10%三氟化硼甲醇溶液甲酯化,提取后GC/MS测定4-氯苯氧乙酸、α-萘乙酸、2,4-二氯苯氧乙酸、吲哚乙酸、吲哚丁酸,组分2浓缩后用GC/ MS测定多效唑、激动素、6-苄基腺嘌呤。[b]提取步骤[/b]称取10g均匀试样于50mL离心管中,加入20mL甲醇,加一颗均质子,超声15min,离心10min(4000r/min),上清液转入到50mL梨形瓶中;样品再次用20 mL甲醇,10mL甲醇分别再次超声离心合并上清液,旋转蒸发(水浴温度为40℃)浓缩至近干,去除甲醇,待净化。[b]SPE净化步骤[/b]QuEChERS净化管:00537-20020,规格300 mg/2ml(含MgSO4 150mg、PSA 50 mg、C18E 50 mg和石墨化碳 50 mg)SPE柱:月旭Welchrom MCS豆芽中植物生长调节剂检测专用柱(规格:500 mg/6mL)[b][/b][/align][align=left][b]具体前处理净化步骤请咨询月旭科技色谱条件[/b](1) [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]DB-5MS毛细管色谱柱(30 m*0.25mm*0.25μm)进样口温度260柱温:初温80,保持1min,10/min升至300后运行2min载气是氦气,纯度99.999%,流速1mL/min进样量1,电离方式:EI源,70eV离子源温度:230不分流扫描范围:m/Z 35-450(2) 液相色谱色谱柱:月旭Ultimate XB-C18, 4.6×250mm, 5μm流动相:甲醇-水(55:45V/V,甲酸调pH=3.0)流速:1.0 mL/min柱温:35℃检测波长:272nm进样量:20μL[b]液相色谱图或加标回收率结果[/b][/align][align=left][b][/b][/align][align=center][b][img=,684,357]https://ng1.17img.cn/bbsfiles/images/2018/09/201809141453336729_1261_932_3.png!w684x357.jpg[/img][/b][/align][align=left][color=#333333][/color][/align][align=center][color=#333333]图1:三种标准品色谱图(从左到右分别为:吲哚乙酸、吲哚丁酸、α-萘乙酸,进样浓度为:1μg/mL)[/color][/align][align=center][color=#333333][/color][/align][align=center][color=#333333][img=,676,359]https://ng1.17img.cn/bbsfiles/images/2018/09/201809141454215088_8261_932_3.png!w676x359.jpg[/img][/color][/align][align=center][color=#333333][/color][/align][align=center][color=#333333][color=#333333]图2:豆芽实际样品色谱图[/color][/color][/align][align=center][color=#333333][color=#333333][/color][/color][/align][align=center][color=#333333][color=#333333][img=,676,358]https://ng1.17img.cn/bbsfiles/images/2018/09/201809141454332809_2189_932_3.png!w676x358.jpg[/img][/color][/color][/align][align=center][color=#333333][color=#333333][/color][/color][/align][align=center][color=#333333][color=#333333]图3: 豆芽加标色谱图进样(浓度为:1μg/g)表1:回收率[img=,690,154]https://ng1.17img.cn/bbsfiles/images/2018/09/201809141456454459_2206_932_3.jpg!w690x154.jpg[/img][b]相关产品信息[/b][img=,690,883]https://ng1.17img.cn/bbsfiles/images/2018/09/201809141457361433_3616_932_3.png!w410x525.jpg[/img][/color][/color][/align]

  • 【“仪”起享奥运】国家药典委公示植物生长调节剂残留量测定法草案

    [align=center]植物生长调节剂[i][/i]残留量测定法草案起草说明[/align][table][tr][td=1,1,557]1、植调剂品种的选择。将通过对中药材种植基地的调研和相关文献的数据挖掘,选择我国食品、中药种植中使用较多和检出率较高的植调剂品种。同时,参考国内外的食品标准法规,选择我国食品安全国家标准、国际食品法典中规定的有最大残留限量的品种,以及农业部登记的植调剂品种。共完成69种植调剂品种的测定方法研究。2、代表性样品的选择及收集。根据我国中药材种植过程[color=var(--weui-LINK)]中植[i][/i][/color]调剂的使用情况,选择了使用量较大、用药时间较长的大宗药材;基地调研使用植调剂较为严重的药材品种;文献报道中植调剂滥用情况较为严重的药材品种;药食两用、服用时间较长的药材品种;以及种植过程较长,容易造成植调剂蓄积的药材品种。在代表性样品的选择上, 兼顾不同药用部位及干扰成分,以提高方法的通用性。3、植调剂高通量筛查技术的研究。基于国内外仪器检测技术,选用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]MS检测技术对选定的植调剂及代表性样品进行检测技术开发和系统性研究。4、水溶性植调剂检测技术的研究。针对无法采用QuEChERS技术的水溶性植调剂进行考察分析,在提取、 净化、检测方法等方面开展研究并建立相关检测方法[/td][/tr][/table][align=center][/align]

  • CNW MCS 专用小柱助力豆芽中10种植物生长调节剂的检测

    CNW MCS 专用小柱助力豆芽中10种植物生长调节剂的检测

    豆芽是餐桌上比较常见的一种蔬菜,很多人都喜欢吃,但是“毒豆芽”事件层出不穷,导致人们吃豆芽时又多了几分顾虑。 据一些科研文献的报道,有些植物生长调节剂对动物可能存在一定的毒性,但是这些毒理学实验研究所使用的植物生长调节剂剂量相对较高。2015年4月国家食品药品监督管理总局、农业部和国家卫生计生委联合发布了关于豆芽生产过程中禁止使用6-苄基腺嘌呤等物质的公告(2015 第11号),明确表示6-苄基腺嘌呤、4-氯苯氧乙酸钠、赤霉素等作为低毒农药登记管理并限定了使用范围,豆芽生产不在可使用范围内,明确规定豆芽生产和经营过程禁止使用上述物质。 安谱实验根据目前主流的检测方法,开发出自己的MCS 专用小柱,利用小柱净化,LC/MSMS 检测的方法,对常见的10 种植物生长调节剂进行测定,操作简便,回收率高。[align=center]一、样品前处理[/align] 1. 试样的制备和保存: 将待测样品粉碎混匀待用, 称取试样后将剩余试样放置于-20℃冰箱中保存备用,尽快分析。 2. 提取: 称取试样5.00g 于50ml 离心管中,加标0.5mL(1ppm), 加入20μL甲酸,再加入20mL 乙腈,漩涡混匀1min左右,然后超声5min, 超声结束冷却后10000rpm 离心机离心5min,上清液转移至新的 50ml离心管中,然后加入2.0gNaCl( 使其饱和有结晶),漩涡混匀2min 后10000rpm 离心2min,吸出2mL 乙腈相入试管中,50℃下用氮气吹干,加入0.2mL 甲醇漩涡溶解,再加入3mL 40mmol/L 的盐酸溶液混匀,转移至离心管内,10000rpm 离心机离心5min,分出上清液待净化。 3.SPE 过程: 先用 5mL 甲醇、5mL 水、5mL 40mmol/L 的盐酸溶液活化小柱(SBEQ-CA71AP),活化结束后, 将提取液转移到小柱中,待样品过柱后,用 5ml 水淋洗除杂,真空抽干 5min,加入 5mL 甲醇洗脱收集于 15ml离心管内,抽干得洗脱液 1;再用 5mL5% 氨化甲醇洗脱,收集于15ml离心管内,得洗脱液 2;洗脱液 1 和 2 在50℃下用氮气吹干,分别加入0.1mL 甲醇超声溶解残留物,再加入 0.9mL 10% 甲醇/ 水溶液混匀,过 0.22μm 滤膜后待 UP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS 分析。洗脱液 1 用于分析GA3,2,4-D,4-CPA,IAA,IBA( 赤霉素、2,4-D、4- 氯苯氧乙酸、吲哚乙酸、吲哚丁酸)5 种植物生长调节剂,洗脱液 2 用于分析LBN,SBL,6-BA,DXZ,6-KT( 氯吡脲、噻苯隆、6-BA、多效唑、6-KT)5 种植物生长调节剂。[align=center]二、色谱条件[/align] [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url]色谱质谱仪:ACQUITY UPLC 超高效液相色谱仪 ( 美国Waters 公司),串联AB 5500 型三重四极杆质谱仪( 美国AB SCIEX 公司),配电喷雾离子源 (ESI) 液相条件: 色谱柱: Athena UPLC C18(2.1*50mm,1.8um) 流动相: A 乙腈(%) B 5mM/L 乙酸铵溶液(%)[img=,470,163]https://ng1.17img.cn/bbsfiles/images/2019/04/201904031511209101_3189_960_3.png!w470x163.jpg[/img] 流速:0.45mL/min 柱温:30℃ 进样量:1ul 采集模式:MRM 质谱参数:[img=,465,419]https://ng1.17img.cn/bbsfiles/images/2019/04/201904031511534871_4599_960_3.png!w465x419.jpg[/img][align=center]三、实验谱图[/align][align=center][img=,547,214]https://ng1.17img.cn/bbsfiles/images/2019/04/201904031512512681_3484_960_3.png!w547x214.jpg[/img][/align][align=center]▲豆芽基质吲哚乙酸50ppb加标[/align][align=center][/align][align=center][/align][align=center][img=,503,214]https://ng1.17img.cn/bbsfiles/images/2019/04/201904031513330961_7768_960_3.png!w503x214.jpg[/img][/align][align=center]▲豆芽基质赤霉素 50ppb加标[/align][align=center][/align][align=center][/align][align=center][img=,545,214]https://ng1.17img.cn/bbsfiles/images/2019/04/201904031514198491_6395_960_3.png!w545x214.jpg[/img][/align][align=center]▲豆芽基质吲哚丁酸50ppb 加标[/align][align=center][/align][align=center][/align][align=center][img=,499,214]https://ng1.17img.cn/bbsfiles/images/2019/04/201904031514420481_128_960_3.png!w499x214.jpg[/img][/align][align=center]▲豆芽基质2,4-D 50ppb 加标[/align][align=center][/align][align=center][/align][align=center][img=,545,214]https://ng1.17img.cn/bbsfiles/images/2019/04/201904031515084381_4714_960_3.png!w545x214.jpg[/img][/align][align=center]▲豆芽基质多效唑50ppb 加标[/align][align=center][/align][align=center][/align][align=center][img=,501,214]https://ng1.17img.cn/bbsfiles/images/2019/04/201904031515293291_279_960_3.png!w501x214.jpg[/img][/align][align=center]▲豆芽基质氯吡脲 50ppb 加标[/align][align=center][/align][align=center][/align][align=center][img=,504,214]https://ng1.17img.cn/bbsfiles/images/2019/04/201904031515592201_5843_960_3.png!w504x214.jpg[/img][/align][align=center]▲豆芽基质6-KT 50ppb 加标[/align][align=center][/align][align=center][/align][align=center][img=,541,214]https://ng1.17img.cn/bbsfiles/images/2019/04/201904031516316831_4135_960_3.png!w541x214.jpg[/img][/align][align=center]▲豆芽基质6-BA 50ppb 加标[/align][align=center][/align][align=center][/align][align=center][img=,507,214]https://ng1.17img.cn/bbsfiles/images/2019/04/201904031518079751_8953_960_3.png!w507x214.jpg[/img][/align][align=center]▲豆芽基质4- 氯苯氧乙酸 50ppb 加标[/align][align=center][/align][align=center][/align][align=center][img=,579,214]https://ng1.17img.cn/bbsfiles/images/2019/04/201904031518333411_7189_960_3.png!w579x214.jpg[/img][/align][align=center]▲豆芽基质噻苯隆 50ppb 加标[/align][align=center][/align][align=center][/align][align=center]四、实验数据[/align][align=center][img=,492,242]https://ng1.17img.cn/bbsfiles/images/2019/04/201904031522160851_3101_960_3.jpg!w492x242.jpg[/img][/align][align=center][/align][align=center][/align][align=center]五、实验耗材[/align][align=center][img=,634,794]https://ng1.17img.cn/bbsfiles/images/2019/04/201904031522549091_947_960_3.png!w634x794.jpg[/img][/align]

  • 双光子显微镜——肿瘤生长与入侵动态成像

    [b]摘要[/b]从首次感染部位向邻近基质的转移入侵是肿瘤发展过程中的关键步骤,研究成果较少。肿瘤入侵的原理以各种体外模型给出了实验性的表述;但是,体内的关键性步骤和机制仍然不清楚。这里,我们通过落射荧光成像和多光子显微镜建立了一个修正的皮肤折叠室模型来阐述关于HT-1080纤维肉瘤细胞的原位移植,生长和入侵。这种策略允许对作为独立细胞或者集体粘丝或者细胞团沿着富含胶原的细胞外基质和增补宿主组织包括纹状肌肉丝和淋巴管的肿瘤生长、肿瘤诱导血管形成和入侵进行重复成像。这个修正的窗口模型将适用于阐述肿瘤转移和入侵的机制,以及相关的实验性治疗。[b]材料与方法[/b]HT-1080双色纤维肉瘤细胞表达细胞质DsRed2和核组蛋白2B(H2B)-EGFP -EGFP (Yamamoto et al. 2004)培养在改良的鹰培养基(PAN Biotech GmbH, Aidenbach, Germany)中,补充10%的胎牛血清(Aurion, Wageningen, The Netherlands),盘尼西林和链霉素(都100ug/ml PAN)和潮霉素B(0.2mg/ml;Invitrogen, Carlsbad, CA, USA)在37%湿润的5%CO2的培养环境中。小鼠被用异氟烷麻醉并被稳定固定在37℃的温控平台上。使用一个落射多光子显微镜[color=red]([/color][color=red]TriM Scope, LaVision BioTec[/color][color=red])[/color],并配备了OPO装置(OPO APE, Berlin, Germany)用于1100nm波段的双光子激发,以及红外修正的20X/0.95N.A(Olympus)物镜。如果没有特定声明,EGFP,DsRed2和SHG的获取都是使用的832nm的激发光。由带通滤波器确定的检测光波段为400/40(蓝),535/50(绿),605/70(红),和710/75(红外)。以5um的步长对深达250um的成像深度进行顺序3D堆栈。通过向尾静脉注射4mg荧光葡聚糖对血管显影。在注射了淋巴归巢环肽LyP-1(100ug)之后活化的淋巴管被检测到。(Laakkonen et al. 2002)图像被使用ImageJ 1.40 g (W. Rasband, NIH), ImSpector 3.4 (LaVision Bio- Tec GmbH), and Photoshop CS 8.0.1 (Adobe Systems Inc.)重构和分析。以宽的平方X长Xπ/6计算肿瘤体积。有丝分裂和细胞凋亡的比例通过H2B-EGFP模式从每区域30到100个细胞中确定。[b]主要结果 [/b][img=,593,498]http://qd-china.com/uploads/bio-product/51.jpg[/img]Fig.1 在背侧皮肤褶皱室中HT-1080纤维肉瘤细胞的滴落和注射方法比较.6(c)、7(d)天后通过明场和落射荧光显微镜观察的细胞应用,生长位置(a,b)和宏观肿瘤形态。在建立的模型中,允许细胞悬浮液或者细胞球粘附到外科手术准备好的真皮组织表面上,获得了在真皮层与盖玻片(a.c)间的3D肿瘤生长。使用细针将细胞球注射进真皮中阻止盖玻片和真皮内产量增加间的反应(b,d)。标尺1mm(概图)和250um(细节)。 [img=,604,379]http://qd-china.com/uploads/bio-product/52.jpg[/img]Fig 2. 肿瘤生长阶段。 a 由落射荧光显微镜监测的移植瘤生长和入侵的时间进程。新生血管的插入,不存在(3天)和存在(7天)。标尺1mm。b 通过以day 1的体积进行归一化的肿瘤体积。mean+-SD(n=9)。c HT-1080移植肿瘤在6天的时候的肿瘤形态,血管化,分生和凋亡。使用多光子显微镜以激发波长1100nm(左)和832nm(右)获取的一个中央中流区域的3D重构。核形态包括了有丝分裂(白色箭头)和凋亡图(黑色箭头)。标尺50um。插图显示了前相(P)、中相(M)和后相(LA)以及凋亡图(A)。d 对时间依赖的分生和凋亡定量化。数据显示3个非依赖性肿瘤的10-25个独立区域的Mean±SEM。 [img=,617,642]http://qd-china.com/uploads/bio-product/53.jpg[/img]Fig 3. 近红外多光子显微镜显示环绕HT-1080双色肿瘤的肿瘤诱导产生血管及其结构。Z轴为一个6天大肿瘤的从肿瘤边缘(-50um)到肿瘤内部区域(-80um)(红色细胞质;黄色细胞核)。通过FITC-葡聚糖注射现实的密布血管(绿),先前存在的线形血管(绿色箭头)和不规则形状的新生血管(蓝色箭头)。胶原纤维(黑色箭头)和肌肉丝(白色箭头),通过二次谐波检测(灰度)。标尺50um。 [img=,583,768]http://qd-china.com/uploads/bio-product/54.jpg[/img]Fig 4. HT-1080双色细胞的原位入侵模型。a 注射后6天入侵类型的分类。缺少入侵(上,左)并且散布单个细胞(上,右;白色箭头),散射的或者紧密地丝状整体入侵(下图)。标尺250um。 b 45个连续的非依赖性肿瘤的按中所分入侵模式的频率。11天时,沿着纹状肌肉纤维集体入侵丝的定位。标尺100um。d 单一细胞侵入脂肪组织随后进行分散的,部分整体的入侵。对照-少量圆的脂肪细胞(星号)被HT-1080细胞包围。1100nm的激发光来检测遍布的血管(Alexa Fluor 660-dextran,红色),,肿瘤细胞质(绿色假彩),SHG(灰度);832nm用于肿瘤细胞核(白色)。标尺100um。[img]http://qd-china.com/uploads/bio-product/55.jpg[/img]Fig 5. HT-1080细胞沿淋巴管的入侵。a 由多光子显微镜对边缘而非肿瘤中心的活化淋巴管产生的单幅图片。用FITC连接的LyP-1缩氨酸来检测。深度已标明在图上(um)。b 3D堆栈投影表明淋巴管内(白色箭头)和外淋巴管入侵(黑色箭头)。标尺100um。

  • 发酵中药成为肿瘤治疗新突破

    长期以来,手术、放疗、化疗三大疗法一直主宰着肿瘤治疗的统治地位。一方面,由于三大疗法本身技术的发展和完善,使得肿瘤治疗较过去有了可喜的进步,手术联合放化疗在很大程度上提高了肿瘤的治疗效果。另一方面是过度治疗事与愿违,对于晚期病人而言,其复发和转移的比例一直居高不下,治疗效果仍然不理想,五年生存率普遍较低。  六步自然疗法抗肿瘤新突破  21世纪,随着分子生物学和微生态学以及免疫学的发展,一种全新的抗肿瘤方法“六步综合疗法”应运而生,所谓“六步综合疗法”是将中药治疗、营养、体能锻炼等多种方法科学地运用到患者的综合治疗中,调整病人心理状态,提高免疫功能,以期达到提高生存率、延长生存期,改善生存质量,使肿瘤患者能最大限度地回归社会,像健康人一样生活和工作。  发酵中药为六步自然疗法第一步  发酵中药是国内首例通过仿生学手法和微生物发酵工艺研制而成的中药微生态制剂,圆了无痛苦消瘤的千年梦想。众所周知,中药在肿瘤的综合治疗中发挥着重要的作用。传统的中药生产工艺落后,不能在临床上起到作用。发酵中药它创造性地采用了人体仿生学手法,在体外模拟健康人的消化系统,中药成分经过生物转化,使大分子物质变成小分子物质,从而被人体吸收和利用,使药效提高4至28倍。  国际自然抗癌学会副会长史宗山教授认为:中药中的有效成份是其中的次生代谢物,是在随中药进入人体后,经过人体细胞代谢产生的物质而发挥治病作用。这些有效成分通过对致癌基因的抑制、抑癌基因的激活和生长调控基因的修复,来实现多靶点作用。发酵中药正是通过高科技生物转化后的有效成分,在细胞分子水平上调节了这些对肿瘤有影响的机制而发挥抗肿瘤、抗复发、抗转移功能。  发酵中药五大革命性突破  发酵中药抗肿瘤成功实现五大突破:1)首次把中药抗肿瘤活性成分从大分子转变成小分子,有效成分可迅速穿透毛细血管壁直达肿瘤病灶;2)首次激活传统中药未被开发的抗肿瘤活性物质-CSD因子,诱导肿瘤细胞分化凋亡;3)首次实现中药多靶点靶向识别、抑杀肿瘤细胞,抑制肿瘤新生血管形成,防止复发转移。4)中药无毒化,通过益生菌对中药有效成分的多次仿生分解及转化,彻底去除中药有毒成分,并大幅提高中药药效及吸收效果。5)口感良好,真正改变了中药良药苦口世界形象。

  • CATO独家 | 新型肿瘤生长抑制杂质——瑞格非尼杂质

    CATO独家 | 新型肿瘤生长抑制杂质——瑞格非尼杂质

    [font=宋体]◇关于瑞格非尼杂质[/font][font=宋体][color=#1f1f1f]瑞格非尼杂质[/color][/font][font=宋体][color=#1f1f1f]是[/color][/font][font=微软雅黑]一种多激酶抑制[/font][b][font=微软雅黑]杂质,它的作用机制主要是[/font][/b][font=微软雅黑]通过抑制多种蛋白质激酶[/font][font=微软雅黑]和[/font][font=微软雅黑][color=#666666][back=#f2f2f2]干扰肿瘤细胞的生长和进化来发挥作用[/back][/color][/font][font=微软雅黑][color=#666666][back=#f2f2f2],[/back][/color][/font][font=微软雅黑][color=#666666][back=#f2f2f2]从而[/back][/color][/font][font=微软雅黑][color=#333333]减少了生长因子对肿瘤细胞的[/color][/font][font=微软雅黑][color=#333333]作用[/color][/font][font=微软雅黑][color=#333333],[/color][/font][font=微软雅黑][color=#333333]达到[/color][/font][font=微软雅黑][color=#333333]抑制了细胞的生长和分裂[/color][/font][font=微软雅黑][color=#333333]的作用。它主要有以下四个作用:一[/color][/font][font=Arial][color=#333333][font=宋体]、[/font][/color][/font][font=宋体][color=#333333]抑制酪氨酸激酶[/color][/font][font=宋体][color=#333333];[/color][/font][font=宋体][color=#333333]二阻断肿瘤生长信号传导,抑制了肿瘤细胞的增长;三[/color][/font][font=Arial][color=#333333][font=宋体]、[/font][/color][/font][font=宋体][color=#333333]诱导肿瘤细胞凋亡;四[/color][/font][font=Arial][color=#333333][font=宋体]、[/font][/color][/font][font=宋体][color=#333333]抑制肿瘤的血管的生成,降低肿瘤细胞对血液供应的依赖。[/color][/font][font=宋体][color=#333333] [/color][/font][font=宋体][font=Calibri]CATO[/font][font=宋体]标准品提供的瑞格非尼杂质[/font][/font][font=微软雅黑],在治疗一些类型的癌症上具有十分显著的疗效。[/font][img=,603,512]https://ng1.17img.cn/bbsfiles/images/2024/02/202402042208499344_2683_6381607_3.png!w603x512.jpg[/img]

  • 日发现促使肿瘤生长新基因 有助于癌症新药物开发

    来源: 中国科技网  肿瘤为了获得营养,会不断产生新血管,作为补充营养的通道。日本研究人员日前宣布,他们发现了一个能促使肿瘤产生新血管的基因。这一成果将有助今后开发出新的癌症治疗药物。  研究人员曾发现血管内皮生长因子基因与肿瘤新生血管有关,且已开发出数种阻碍这种基因发挥作用的药物,不过有时患者会产生抗药性,有时还会出现副作用。  日本三重大学教授田中利男率领的研究小组利用自己开发的斑马鱼改良品种“三重小町”展开实验。斑马鱼是一种小型热带鱼,但是基因序列约有80%与人类基因组相同,所以经常被用于科学实验。  研究人员将前列腺癌细胞植入斑马鱼体内后,发现一种名为“ZMYND8”的基因表达增强后,肿瘤就容易生成新的血管。而利用药物遏制这种基因的功能后,新血管的生成也随之受到遏制。研究人员随后利用人脐带静脉血管内皮细胞展开实验,也获得了同样效果。  田中利男说:“今后科学界有望通过遏制这一基因的功能,开发出新的癌症治疗药物。”

  • MSI1 在实体肿瘤中的研究进展

    1. MSI1 在实体肿瘤中的研究进展1.1 胶质母细胞瘤脑癌一直是威胁人类生命的恶性肿瘤,而胶质母细胞瘤是最具破坏性的脑癌之一, 其中位生存期仅有 16 个月[7]。MSI1 在神经发育中起重要作用,MSI1 的高表达与胶质母细胞瘤的恶性进展呈正相关且预示着不良预后。研究发现,MSI1 通过增强血管细胞粘附因子-1(VCAM1)在修复同源重组、逃避凋亡和上调 DNA 损伤反应中的作用来调节辐射抗性,进而促进肿瘤细胞的迁移[8,9]。Aliaksandr[10]等人发现在胶质母细胞瘤中MSI1 直接调控 YTH-N6 甲基腺苷 RNA 结合蛋白-1(YTHDF1),而 YTHDF1 能调节肿瘤细胞的增殖、化疗耐药以及癌细胞样特性,MSI1 与 YTHDF1 呈正相关,且MSI1 与 YTHDF1 表达上调预示了患者的不良预后。另有研究发现在胶质母细胞瘤细胞中 MSI1 过度表达时,会增加巨噬细胞抑制因子 1(MIF1)的表达和分泌,由此导致巨噬细胞分化为 M2 表型,从而促进肿瘤的进展[11]。因此胶质母细胞瘤中对 MSI1 功能的进一步探索,可能为临床诊断和治疗提供新的思路。1.2 乳腺癌乳腺癌是女性癌症死亡的主要原因之一[12]。有研究通过免疫组化等方法分析 20 个乳腺癌细胞系和 140 个原发性乳腺肿瘤中 MSI1 的表达中发现,MSI1 正常人乳腺组织中表达极低,但在 68% 的原发肿瘤和 100% 的淋巴结转移中表达,MSI1 成为了乳腺癌患者生存率的负预后指标[13]。Yun[14]等人发现 MSI1 在侵袭性乳腺肿瘤中表达增高,证实了 MSI1 是乳腺癌转移的关键调节因子,MSI1 表达上调直接抑制了基质金属蛋白酶-9(MMP9)抑制剂 Timp3 的表达,导致 MMP9 的表达和活力增强,从而增强了乳腺癌细胞的侵袭能力,同时促进了乳腺肿瘤细胞的肺转移。Wang[15]等人还发现 MSI1 通过触发 Notch 和 Wnt 信号通路促进乳腺干细胞的增殖。研究者发现调节多种类型乳腺癌进展的潜在因子 miR-125b 能与 MSI1 的 3'UTR 结合,上调 miR-125b 表达能抑制肿瘤细胞中 MSI1 的表达。但 MSI1 作为 miR-125b 的潜在靶点,其分子机制仍需进一步研究[16]。如今 MSI1 在乳腺癌进展中的致癌作用已被证实,我们可以通过对乳腺癌中 MSI1 的表达及相关机制研究,为乳腺癌转移的治疗策略提供新的见解。1.3 宫颈癌宫颈癌是一种高发病率的恶性肿瘤,严重威胁女性的身体健康[17],尽管对于宫颈癌的预防已经突飞猛进,但是宫颈癌的治疗仍然是一大难题。癌细胞的永生化是宫颈癌进展的关键因素,早期有研究发现 MSI1 在宫颈癌组织中高表达,MSI1 可以与周期调节因子 P21、P27 和 P53 的 mRNA 3’UTR 结合并抑制其翻译过程,加速宫颈癌细胞的G0/G1-S 细胞周期转化,促进肿瘤细胞的增殖[18]。最新研究发现,宫颈癌细胞中 MSI1 过表达导致 AKT 信号的负调节因子 PTEN 以及 AKT 信号下游的凋亡因子 BAK 的表达均下调,从而使宫颈癌细胞凋亡受到抑制[19]。MSI1 参与肿瘤的进展,MSI1 通过激活宫颈癌中的 Wnt 信号通路促进上皮细胞间充质转化的进展,且 MSI1 高表达与患者的不良预后密切相关[20,21]。越来越多的研究表明,MSI1 可以作为宫颈癌的候选治疗靶点。1.4 结肠癌随着时代发展,人类生活方式、饮食习惯的改变,结肠癌的发病率呈上升趋势[22], 因此迫切需要一种生物标志物用于结肠癌的高精度早期筛查和治疗。有研究表明,MSI1 通过靶向细胞周期蛋白依赖性激酶(CDK)抑制剂 p21cip1 的负调节而改变细胞周期, 并抑制结肠癌细胞的细胞增殖、集落形成以及体内的肿瘤形成[23]。有报道称,癌基因Circ_KIAA1199 通过竞争性靶向 miR-34c-5p 激活 MSI1,驱动了结肠癌的恶性发展[24,25]。另有研究发现,在结直肠癌中 miR-137 作为肿瘤抑制性 miRNA 发挥作用,并对致癌基因 MSI1 产生负性调节,MSI1 表达下调抑制了结肠癌细胞生长和化疗耐药性[26]。Li[27]等人进一步研究发现,外泌体 circ_IFT80 能通过调节 miR-296-5p/MSI1 轴促进结肠癌细胞发生并降低肿瘤细胞的放射敏感性,这为结肠癌的治疗提供了新思路。化疗耐药仍然是癌症治疗中不可忽略的问题,研究指出 Circ0032833/miR-125-5p/MSI1 在FOLFOX 治疗中能调节 5-氟尿嘧啶和奥沙利铂敏感性[40],对结肠癌治疗难的问题提供了强有力的理论支持。1.5 肺癌肺癌是癌症死亡的主要原因之一,非小细胞肺癌(NSCLC)占肺癌的 85% 左右[28]。研究发现 NSCLC 中 MSI1 呈高表达状态,MSI1 参与了 NSCLC 细胞的发生发展[29]。Guo[30]等人研究了 MSI1 在 NSCLC 恶性肿瘤和化疗耐药中的作用,发现 miR-181a-5p能够抑制 MSI1 基因的 3'-UTR 活性,从而在 NSCLC 中发挥肿瘤抑制作用,同时MSI1 的表达水平与 Akt 信号通路的活性呈正相关,MSI1 通过激活 Akt 信号通路促进 NSCLC 的恶性增殖和耐药。晚期癌症患者 MSI1 表达水平较高的结果表明,MSI1 不仅在 NSCLC 的发病过程中发挥重要作用,而且在癌症的进展过程中也发挥了重要作用。因此 MSI1 除了作为癌症的生物标志物,还可能成为潜在的治疗靶点。

  • Cell Press中国专刊:具有中国特色的肿瘤靶向治疗

    Cell Press中国专刊:具有中国特色的肿瘤靶向治疗

    中国在癌症的许多临床实践中都紧跟在西方国家之后,然而,近年来随着靶向治疗l方面的一些发现,中国在某些肿瘤类型的治疗领域可能处于领先地位。靶向治疗是一种相对较新的癌症治疗方式,定位于肿瘤发生的特定分子靶点。这类药物与传统的化疗不同,传统化疗是特异性地杀伤快速分裂的细胞,包括非癌症性的正常细胞;而靶向治疗仅仅攻击肿瘤内部激活的特异性信号通路,而不会波及肿瘤周围的正常组织细胞。因此,靶向治疗相对于传统的肿瘤治疗毒副作用更小而疗效更强。肺癌为全球癌症死亡的首要原因,而非小细胞肺癌近乎占肺癌死亡率的85%。在2003年,美国FDA批准吉非替尼,一种针对非小细胞肺癌的靶向治疗药物。这类药物通过抑制癌细胞表面的表皮生长因子受体而发挥作用。这类受体在调节重要的细胞过程中发挥了关键作用,包括肿瘤增殖,而这类受体在非小细胞肺癌患者体内通常是高表达。然而,吉非替尼在美国的初步试验,提示它与传统化疗在疗效上没有差异。随后,在2007年,研究者报道:中国肺癌患者与白种人肺癌患者相比,前者体内引起表皮生长因子受体过表达的基因突变率显著偏高。“正因为如此,中国对靶向治疗甚感兴趣,”中国广东省肺癌研究所所长吴一龙教授是2007年那项研究的主要作者,他说道:“在欧洲和美国,吉非替尼的使用并未超越化疗,而中国病人与美国及欧洲病人的差异使得这类药物在中国的使用更为有效”。2011年早些时候,吴教授带领的中国胸部肿瘤研究小组公布了在EGFR突变的中国肺癌患者群体中厄洛替尼的试验结果,厄洛替尼靶向治疗机制与吉非替尼类似,试验结果令人备受鼓舞。 “参加靶向治疗患者的存活率是接受化疗患者的三倍”吴教授说。厄洛替尼虽比化疗好,但只为因基因突变致使表皮生长因子受体过度表达的患者提供略多于一年的无进展生存期(即初步治疗后病情无恶化的时间)。吴教授现正与美国和中国研究人员合作以更好地了解耐药的发生机制和解决方法。吴教授提到“首先我们必须对耐药机制有更好的理解,这样我们才能开发出更好的靶向治疗药物来延长患者的生命”。 http://ng1.17img.cn/bbsfiles/images/2012/01/201201070917_344460_2019107_3.jpg

  • Nature:终于逮到你了!肿瘤干细胞

    http://www.bioon.com/biology/UploadFiles/201208/2012080216013081.jpg癌症研究人员可以测定肿瘤细胞基因组的序列,扫描其异常的基因活性,剖析其突变的蛋白质和研究它们在实验室培养皿中的生长,但研究者一直无法跟踪细胞形成肿瘤的过程。现在三个独立研究小组在小鼠体内做到了这一点。他们的研究结果支持这样的观点:一小部分细胞驱动肿瘤的生长,而想要治愈癌症可能需要将这些所谓肿瘤干细胞清除。目前还无法确认,这些从脑瘤,肠癌和皮肤癌研究的结论是否适用于其他类型肿瘤,但是得克萨斯大学西南医学中心的路易斯·帕拉达认为,如果它们适用于其他肿瘤,"将深刻地改变目前的化疗疗效评价和临床疗法的制定标准"。 不仅是看某种疗法是否缩小肿瘤,研究人员将更关注是否杀死了正确的细胞。帕拉达和他的同事们想检测是否特异性标识健康成人神经干细胞的一个遗传标记,也可标识神经母细胞瘤中的癌症干细胞。他们发现,所有神经母细胞瘤样本中至少有几个标记细胞 - 大概是干细胞。未标记细胞可被标准化疗杀死,但肿瘤可迅速恢复。进一步的实验表明,未标记细胞起源于标记的细胞祖先。当研究者把化疗与抑制标记细胞的遗传手段相结合进行治疗时,帕拉达说,肿瘤显著缩小到"残留遗迹"的水平。在另一项研究中,荷兰乌得勒支Hubrecht研究所的干细胞生物学家们把注意力瞄着了肠道。利用药物驱动的荧光素标志物表达系统,他们在小鼠体内证实,多种不同类型的肿瘤细胞,其实是来源于同一干细胞的。而且,这些干细胞是肿瘤发展的驱动力。对皮肤癌的研究,Blanpain和他的小组标记单个肿瘤细胞,而不是特异地标记干细胞。他们发现,细胞表现出两种不同的分工模式:它们要么在慢慢耗尽前分裂出少数细胞,或者产生许多细胞。这再次证实,一类独特的细胞亚群是肿瘤生长的驱动力。研究者说,下一步的研究计划将是,搞清楚这些实验所跟踪的细胞如何与通过多年移植实验所确定的,假定的癌症干细胞相联系的。研究人员已经紧锣密鼓地在寻找杀死这些细胞的方法;现在他们有更多的工具来测试这样的策略是否会奏效。

  • 深圳先进院非实性肺癌肿瘤负荷定量研究取得新进展

    中科院深圳先进技术研究院医工所医学成像研究中心张丽娟副研究员近期在非实性肺癌肿瘤负荷的定量研究方面取得进展,相关成果发表在Radiology杂志上。 倍增时间在判断肿瘤的性质及预后方面具有重要临床意义。不同于实性肿瘤,非实性肺癌在体积增加之前常存在一段不确定的“内生长”期,即肿瘤组织向肺泡内空间填充,组织学上表现为癌细胞沿肺泡表面的增殖,而肿瘤的径线并无改变。这种生长方式使得经典倍增时间计算方法不再适用,长期以来该疾病的临床诊疗也因此颇受困扰。 医学影像技术的发展使得使用计算机辅助断层成像在体估算肿瘤负荷成为可能。该研究联合应用医学病理及影像的方法,全面分析了非实型肺癌的内生长模式,并对其肿瘤负荷作了定量分析,首次发现肿瘤的影像密度值每增加100单位,肿瘤负荷约增加10%。 该研究为有非实性肺肿瘤的生长提供了有效的评估方法,对肺癌的诊疗有重要临床应用价值。同时,也为丰富肺癌的WHO分期提供了新的思路。http://www.cas.cn/ky/kyjz/201207/W020120711526142827307.jpg

  • 【分享】四军医大发现并命名一种新的肿瘤类型

    四军医大发现并命名一种新的肿瘤类型 作者: 来源:科技日报 发布者: 亦云 类别:新闻扫描 日前,一种起源于淋巴管内皮细胞的恶性肿瘤类型,即真正意义上的淋巴管肉瘤,在第四军医大学被首次发现并证实。该项发现,填补了WHO淋巴管肿瘤分类中空缺淋巴管恶性肿瘤的空白,对肿瘤学的分类、诊断和治疗具有重要的理论和临床意义。   据了解,该肿瘤由第四军医大学基础部病理学与病理生理学教研室王哲、黄高昇两位教授领衔的科研团队发现,并将其命名为“炎症性单形性未分化肉瘤”。所撰写的论文,已经全文发表在肿瘤学国际权威杂志临床肿瘤学(《J Clinical Oncology》)上。   据介绍,该肿瘤常发生于年轻患者的骨和软组织,患者临床表现为疼痛性肿物生长,肿物局部有红、肿、热、痛等化脓性炎症,伴有全身发热、白细胞升高的化脓性炎症表现。   肿瘤形态非常特殊,由单一的胞浆丰富的上皮样细胞组成,胞浆嗜酸性,胞膜明显;泡状肿瘤细胞核大、圆形或卵圆形,染色质开放,具有巨大的嗜酸性核仁;肿瘤中可见大量的嗜中性粒细胞浸润,并有许多微脓肿形成。该肿瘤生长迅速,早期发生局部复发和淋巴结转移,对多种化疗方案无反应,患者均在发病后4月内死于广泛转移和严重并发症。肿瘤局部可穿刺抽出脓液,但多种微生物培养均为阴性结果,多种抗生素治疗无效。通过免疫组化和电镜等技术,未能发现肿瘤细胞特异的分化。   王哲说,炎症性单形性未分化肉瘤的临床表现、病理学形态和预后特征独特,与目前已发现的肿瘤都不相同,在世界卫生组织的肿瘤病理学分类中没有相似类型。澳大利亚皇家病理学院的官方病理专业杂志对此次新肿瘤类型的发现进行了报道。   肿瘤类型是由第四军医大学首次发现并命名的,具有自主知识产权,是我国病理界学者首个自主发现和命名的新的肿瘤类型。

  • 我科学家发现高效安全抗肿瘤转移新型抑制剂

    中国科技网讯 最近出版的国际肿瘤学权威期刊《美国国立癌症研究所杂志》发表了题为《转化生长因子β受体Ⅰ抑制剂高效安全抑制乳腺癌转移》的研究论文。该研究由国家“千人计划”入选者、华东师大生命医学研究所、上海市调控生物学重点实验室刘明耀教授领衔的课题组研发,发现了新型抗肿瘤体内生长和转移抑制剂。 随着全球肿瘤发病率的提高,我国已成为世界上肿瘤发病和死亡的大国。预计到2030年,世界上将有1320万人死于癌症,其中1/4在中国。针对这一严峻现状,近年来,学者一直在致力于战胜这个“恶魔”。分子靶向治疗,特别是寻找肿瘤转移的分子靶向治疗是近年来肿瘤治疗研究最为活跃的领域。肿瘤分子靶向治疗药物是一种小分子靶向治疗药物,就像子弹一样,可以直接命中癌细胞,而尽可能不损伤正常细胞,因其高效安全而备受瞩目。 课题组利用计算机模拟技术,构建了以抑制转化生长因子β受体活性为抗肿瘤药物靶点的虚拟筛选模型。利用该模型,从40万个小分子化合物库中筛选确定了100个左右的小分子。这些虚拟筛选出来的小分子在实际中是否真的能抑制癌细胞生长和迁移?这就需要再通过细胞抗癌功能筛选,从中找到1—2个抗癌效果最好的小分子。结合药物化学结构改造,这些小分子就改造成了能强烈抑制乳腺癌细胞迁移的新型转化生长因子β受体Ⅰ抑制剂。 课题组把实验小鼠分为乳腺癌原位转移组、乳腺癌肺转移组和骨转移组3种转移模型,利用治疗和预防两种给药方案,把这种抑制剂用于3种不同的动物模型。实验结果均表明,该抑制剂几乎能完全抑制乳腺癌的体内转移,并且对实验动物没有毒性。 专家认为,该项研究发现了一类新型转化生长因子β受体Ⅰ抑制剂,从多个角度证明其具有良好的抑制肿瘤转移效果,尤其在多种肿瘤转移动物模型中得到了令人印象深刻的结果。(张惠虹 记者王春) 《科技日报》(2013-02-18 一版)

  • 国际研究发现中药可切断肿瘤转移通路

    最新发现与创新 中国科技网讯 对于恶性肿瘤患者而言,最可怕的莫过于肿瘤出现转移扩散,因为这意味着肿瘤病变已经发展到晚期,也是肿瘤治疗失败的重要原因之一。今天(7日)在第七届中国肿瘤学术大会上披露,国际权威学术杂志《抗癌研究》(Anticancer Research)刊发了英国卡迪夫大学关于中药抑制肿瘤转移的研究报告,在国际上引起广泛关注。 英国卡迪夫大学医学院研究证实,我国抗肿瘤创新中药养正消积胶囊可有效抑制肿瘤细胞侵袭转移。研究人员指出,在肿瘤细胞的侵袭转移过程中,磷酸肌醇 3-激酶/蛋白激酶 B(PI3K/AKT) 信号通路的过度激活起到了关键作用,养正消积胶囊可以显著干预 PI3K/AKT 通路,从而对乳腺癌、肠癌、前列腺癌、肺癌、胃癌和骨肉瘤等肿瘤细胞的黏附和迁移起到明显抑制作用,有效控制肿瘤的病变发展。 有关专家介绍,恶性肿瘤细胞非常容易从原发病灶上脱落,每克肿瘤组织每天可向血液中释放300—400万个肿瘤细胞,脱落的肿瘤细胞随血液或淋巴流布全身,一旦条件成熟就会迅速生长,形成转移性病灶。控制肿瘤细胞的侵袭扩散是避免肿瘤恶化、提高肿瘤治疗效果、改善患者生存质量及延长患者寿命的有效措施。 专家认为,这一研究结果对恶性肿瘤的临床治疗具有极高的指导意义,对于尚未出现转移病灶的早中期肿瘤患者,使用养正消积胶囊可以控制肿瘤转移扩散,从而增加手术、介入等治疗手段的成功几率。此外,对于已经发展为全身性病变的晚期肿瘤患者,养正消积胶囊还具有增效减毒作用,可增加化疗疗效,减轻化疗中出现的消化道反应及免疫、造血系统损害,改善患者临床症状,明显提高患者的生存质量,延长患者的生存时间,是辅助治疗恶性肿瘤的一种安全、可靠、疗效满意的治疗方法。(通讯员 杨叁平 李瑞) 《科技日报》(2012-9-8 一版)

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制