当前位置: 仪器信息网 > 行业主题 > >

影像式烧结点仪

仪器信息网影像式烧结点仪专题为您提供2024年最新影像式烧结点仪价格报价、厂家品牌的相关信息, 包括影像式烧结点仪参数、型号等,不管是国产,还是进口品牌的影像式烧结点仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合影像式烧结点仪相关的耗材配件、试剂标物,还有影像式烧结点仪相关的最新资讯、资料,以及影像式烧结点仪相关的解决方案。

影像式烧结点仪相关的资讯

  • 智能“智”造 | 如何提高烧结球团生产抗风险能力
    2020年伊始,新冠疫情的阴霾迟迟不肯散去,它对经济的影响,正逐渐蔓延开来。钢铁行业作为国内最重要的经济支柱产业之一,人员密集,涉及的物流量大,在新冠肺炎的袭击下,更是遭受了巨大的经济损失。不论是平时生产还是疫情阴霾下,钢厂的生产都面临着诸多波动、诸多风险,如何让钢厂日常情况下可以稳定、高质量生产,且在特殊情况下能减少损失,提高企业抗风险能力,是每个企业值得深入研究的课题。以下,编者就应用SpectraFLow在线矿石品位智能分析系统加快钢厂铁前系统的智能化生产建设做一定的讨论。首先,我们要明确这一阶段的生产中面临的主要风险:一是原料的波动。由于市场原因,铁矿石价格弹性较大,各厂家所用原料可能来自于世界各个地区,其成分品位,最优配矿配比和条件也有着差异。生铁成本占钢铁生产成本的70%以上甚至更多,铁前系统的成本控制就是整个钢厂成本控制的关键。如何在保障生产系统稳定的同时降低生产成本也就成为了关键。第二类风险主要来自于人。人力资源同高炉等设备一样,都是钢厂宝贵的资产。在疫情下的非常时期:人员波动,人力资源不能及时到岗,复工率低;复工成本增加以及心里人员压力巨大,是当前钢厂面临的主要问题。同时在平常的正常生产中,人的影响也需要重视。 在这样的背景下,优化烧结配矿是保证优质高产的最重要手段之一。各个厂家各工程师,应用不同的配矿模型、考虑矿粉结构、高炉炉渣、水分、价格、高炉需求等等因素,得出最优的配矿方案。然而实际生产中的原料并不是一成不变的,原料的波动造成了配矿结果达不到预期,因此实时对原料成分特性了如指掌,才能扬长避短做到最优。传统烧结生产中,各企业所用传统方法主要是先取样,经过数小时制样、检测后,得到结果反馈到中控室,再进行相关调控(如下图)。在这个过程中,暴露出传统检测方法中诸多不足:1)严重的滞后性:一个是取样周期的滞后,分析结果得到的是一个取样周期内原料成分平均值,不能及时反应该取样周期内原料成分的变化,甚至掩盖了该取样周期内原料成分的异常变化。工程师根据这样的数据去调节当下的配料生产,是存在很大偏差的;还有一点,是检测结果的滞后,从取样到分析,最快需要两个小时,一般要3至4小时;因此延误了工艺参数的针对性调整。这些是传统测试方法的滞后性造成的问题。2)在取样过程存在抽样误差,取样的量以及频次影响着样品的代表性。传统检测中的抽样方法,代表性差,不能代表整体原料,难以反应全部原料成分。同时取样、制样的过程都是人工来操作的,在这个过程中,受生产管理、操作习惯、责任心、随机性等影响,存在一定偏差,受人为的影响的因素非常大。这些不足,极大地制约着生产的稳定性和烧结矿的质量。因此,改变传统检测方法,应用安全绿色的SpectraFlow在线矿石品位智能分析系统,提高原料和生产过程中物料成分的稳定性,是提高钢厂应对原料波动风险和人工操作风险的能力,是帮助钢厂降本增效的一个有效途径。SpectraFlow在线矿石品位智能分析系统以近红外光作为发射源,安全绿色,可实时检测传送带上物料成分:包括总铁、水分、碳含量、碱度等,而且可区分磁铁矿、赤铁矿、菱铁矿等不同类型的铁矿石。它强大的数据库和超快超密集的检测频率,使得实时检测的结果准确、代表性强。同时,它自带控制系统,可根据设定和检测结果,自动调节给料机加料,实现配料过程的的自动化、智能化。极大降低了钢厂铁前系统原料方面及人员波动性风险。可想而知SpectraFlow在线矿石品位智能分析系统的应用,可在钢厂的降本增效和智能化改造中发挥重要的力量!可以看到,即便在日本成熟的钢厂中,设定碱度值为 2.00 的情况下,实际生产的碱度值 也有着大幅度波动 而所得烧结矿质量(落下强度)也有着很大波动,且质量偏低,普遍低 于 90。
  • 为您揭秘 | 烧结球团矿碱度稳定率控制新方法
    烧结是钢铁生产工艺中的一个重要环节。烧结生产的主要流程为将铁粉矿、各类助熔剂及细焦炭等原料,经由混拌、造粒后,通过布料系统加入烧结机,完成烧结反应。经破碎、冷却、筛选后送往高炉,作为冶炼铁水的主要原料。经烧结而成的,有足够强度和粒度的烧结矿是炼铁的熟料,利用优质的烧结熟料炼铁,对于提高高炉利用系数、降低焦比,提高高炉透气性,节能降耗、保证高炉高效运行均有重要意义。烧结的主要流程图烧结生产过程中,进厂原料的监控,混料配比以及入窑配料的监控十分重要。目前钢厂原料来源逐渐复杂化:由于市场因素,各原料价格存在波动,钢厂不时更换主料来源;其次随着地球资源的不断开采,富矿短缺,各不同品相资源的不断被扩大利用,造成原料品相波动;且即便同一批矿,其品位也存在着差异,这些因素都为烧结配料增加了困难。当前传统取样检测的方法,已经暴露出越来越多的问题,不能很好的满足混料和入窑配料的需求:取样存在抽样误差,不能代表整体原料;测试有频次限制;测试结果滞后实际原料,延误工艺参数的实时调整,造成大量废料以及低质量烧结矿的产生,甚至影响高炉的稳定生产。为了解决烧结生产中的上述问题,SpectraFlow在线矿石品位智能分析系统应运而生,克服了传统检测缺陷,进行实时在线检测,自动调节控制,是优化生产,节能降耗,实现智能制造的有效途径。SpectraFlow在线矿石品位智能分析系统调节混料成分的稳定下图为日本JFE钢厂,实际烧结生产中记录的对碱度控制的结果,以及测得的烧结矿落下强度质量的结果:可以看到,即便在日本成熟的钢厂中,设定碱度值为2的情况下,实际生产的碱度值也有着大幅度波动;而所得烧结矿质量(落下强度)也有着很大波动,且质量偏低,普遍低于90。下图是JFE厂家应用SpectraFlow在线矿石品位智能分析系统之后得到的碱度和落下强度结果:可以看到,经SpectraFlow系统的优化后,原料碱度值的波动幅度骤降,紧紧贴合2.00的目标值!且测试频次十分高,为原料和参数的实时调节提供了条件。而烧结矿落震强度,由原先的鲜有达到90者,变为大部分产品分落下强度都高于90!且有关数据表明,当高炉原料碱度波动值由0.1降至0.075时,高炉增产1.5%,焦比降低0.8%。因此使用SpectraFlow在线矿石品位智能分析系统,提高了碱度稳定率,降低了高炉的焦比,对钢铁企业来说,能直接给高炉带来增产效益和结焦效益。由此应用全新的SpectraFlow在线矿石品位智能分析系统,克服传统检测方法的不足。实现智能制造、降本增效的目标,势在必行! SpectraFlow在线矿石品位智能分析系统是怎样检测和调节混料成分的呢?将SpectraFlow在线矿石品位智能分析仪安装在如下图中B位置传送皮带上方,分析仪中光源发射光线照射到传送带上的物料上,不同矿物成分的物料会在特定波长和强度吸收部分光线能量;SpectraFlow中光谱仪连续扫描物料表面并分析其近红外波段的光谱及其强度,经分析处理即可得到传送带上物料中包括CaO, Fe, C, SiO2, MgO等的成分。同时SpectraFlow自带的自动控制系统,根据测试结果,以及设定的碱度值或其他参数值,自动调节给料机给料,达到最优的混料成分。下图是在钢厂变更原料来源时,应用SpectraFlow在线矿石品位智能分析系统前后的混料调节,对生产率、烧结料碳浓度以及运输板速度的影响对比图:使用SFA之后使用SFA之前图中灰色区域为”原料变更期”,以上对比明显得到,在变更材料批次后,使用SFA分析仪,可以迅速恢复生产,绿色节能,提高经济效益。SpectraFlow在线矿石品位智能分析系统调节窑炉稳定在烧结生产中,来料质量控制是保证混合效果的第一步;混料中配料的精细混合,是保证优质烧结效果的前提。SpectraFlow在线矿石品位智能分析系统除了可以在A/B位置(如上图)安装,检测和控制来料和混料,还可安装在C/D/E处,针对性的调节混料中水分和燃料等相应成分的配比,保证烧结窑炉的温度稳定。例如将SpectraFlow在线矿石品位智能分析系统安装在上图D位置,以FeO浓度为主要检测指标。一旦检测到FeO含量增加,SFA立即控制调整运输机移动速度,并且降低焦炭添加量,从而控制了烧结矿的温度在可接受范围内,FeO的浓度也在原料处的SFA帮助下快速调整(如下图),保证了烧结矿稳定高效的生产。若没有在D处的SpectraFlow在线矿石品位智能分析系统的即时调整,若FeO含量增加,则会导致出口温度超标,冷却器被强制停止,从而温度下降,调节焦炭含量增加,运输车行使速度减慢,甚至造成生产的停滞。如下图:SpectraFlow在线矿石品位智能分析系统在球团生产中的应用与烧结矿类似,在球团生产中,SpectraFlow在线矿石品位智能分析系统可实时在线检测球团原料,控制原料的稳定性以及球团生产的稳定性。球团的生产过程主要是将精矿粉、若干添加剂以及燃料等,经过混匀、研磨、干燥、筛分等处理,经过配料皮带配料处理后,在造球机上加水混合造球,生球造好后加到焙烧机内焙烧,冷却后筛分,得到成品矿、垫底料以及返料。如下图,在生产线的A-E不同位置安装SpectraFlow在线矿石品位智能分析仪,可以有针对性的对总铁、碳含量、碱度、水分等进行实时的自动控制,从而保证生产的稳定性和产品质量,减少返料,降低能耗,提高生产率和生产效益。SpectraFlow在线矿石品位智能分析系统特点总结SpectraFlow在线矿石品位智能分析系统实时检测分析物料成分,并自动控制调整相关参数,克服了传统检测方法的不足,是实现智能制造、降本增效的有效途径:1、实时在线检测,避免传统测试方法的滞后、无代表性缺点。2、测试准确:采用最先进NIR测试技术,为混料提供数据依据。3、智能化程度高,符合智能制造工厂要求:数据自动传输到中控室,减少实验室现场取样、制样、测试、数据上传过程。实现用机器替代人工目的。4、完全符合绿色工厂要求,保证节能减排的环保要求:减少操作人员参与,对原料中S/P/N等元素监控,同时可以预测烧结中SOx气体的排放。5、智能配料:整个系统完全符合全智能系统,SFA系统实现在线监测同时提供反馈系统,将信息反馈给智能配料系统,通过系统进行补偿,实现配料方案合理性。6、系统安全性:检测系统采用NIR检测源,无任何辐射,符合省、国家环保工程项目等标准要求。7、运营成本低,维护简单:无需任何其他维护,只需定期吹扫光源。SpectraFlow在线矿石品位智能分析系统,安全环保,提高烧结、球团产品率,降低返矿率和燃料比、使产品稳定,最大程度地保证高炉顺畅、高产稳产。
  • News|欧波同亮相2018全国烧结球团技术交流年会
    2018年5月23日,全国烧结球团技术交流年会暨“绿色转型与可持续发展”行业主题研讨会,在四川成都隆重开幕。此次研讨会由全国烧结球团信息网、国家烧结球团装备系统工程技术研究中心、中冶烧结球团及直接还原工程技术中心联合主办,旨在更好地发挥行业学术交流主渠道的作用,引领和推动烧结球团工艺、装备及节能减排技术的进步与合作。欧波同(中国)有限公司应邀参会,并带来精彩的技术报告。图1:烧结球团技术交流年会会议现场近四百位来自国内外钢铁企业、烧结球团厂、高校及科研院所的领导和技术人员参会,围绕“绿色转型与可持续发展”的主题,通过学术报告、分组讨论、产品发布等多种形式进行深入的技术交流,共襄行业发展大计。图2:欧波同展示区欧波同(中国)有限公司总经理皮晓宇先生、副总经理张国滨先生出席年会,产品应用专家童捷失博士在会上作精彩技术报告,向与会者介绍了自动显微矿相分析系统,该系统由蔡司光学部件、高配置PC和Auto-OIA软件构成,可对铁矿粉矿、铁矿块矿、烧结矿、球团、焦炭等进行分析,自动生成样品原图及对应矿物组成、矿物分布图和样品分析数据图表等。图3:欧波同产品应用专家童捷失博士作技术报告自动显微矿相分析系统一般应用于铁矿矿床价值评估、辅助选矿工艺设计、监督、优化烧结工艺、监督、优化炼铁工艺和评估焦炭对炼铁工艺的影响,主要服务于铁矿开发公司、铁矿公司、钢铁公司、相关专业的高等院校和专业第三方检测公司等客户群体。图4:童捷失博士童博士的报告内容得到了现场烧结及球团技术应用专家的高度认可,引起参会嘉宾们的极大兴趣,在会议茶歇期间来到欧波同展示区咨询,与童博士和销售人员进行深入的沟通。图5:欧波同展台,众多参会者前来交流为了活跃气氛,增进互动,年会特别设置了抽奖环节。欧波同副总经理张国滨先生现场抽出了10位幸运参会者,并为每位幸运者送出500元人民币的现金红包,现场气氛十分热烈。图6:欧波同副总经理张国滨先生为幸运参会者颁奖随着行业产能结构的深入调整,以及更趋严格的减排标准的推行,行业发展已经步入绿色转型和提质升级的关键机遇期。新技术的研发与应用正是产业转型的关键所在,欧波同也将持续关注烧结球团行业的发展动态,提供更多前沿的应用技术与先进设备。
  • 清华大学两台放电等离子烧结设备验收完毕
    清华大学两台放电等离子烧结设备验收完毕 由日本富士电波工机株式会社为清华大学制造的2台放电等离子烧结设备SPS-211Lx近日在清华大学材料学院顺利安装完毕。 创元公司代理的日本富士电波工机株式会社的放电等离子烧结设备以其优异的品质获得了用户的青睐。富士电波工机株式会社是最早开发出SPS制造技术的住友石炭公司的继承人,拥有世界上最先进的SPS技术。世界范围内拥有多达350多名的用户,其生产的放电等离子烧结设备已经广泛应用于各种新材料的研发和生产。 清华大学继2000年首次购置SPS-1050T以来取得了一系列令人瞩目的成果。时隔15年后清华大学材料学院李敬锋副院长和林元华副院长再次同时购置2台SPS设备说明了以其为代表的国内知名高校以及科研机构对于富士电波工机株式会社SPS产品的充分认可。
  • AGUS发布SPS-225Sx放电等离子烧结系统新品
    日本SUGA公司自SPS-放电等离子烧结技术诞生以来,一直伴随着SPS技术在全世界的发展,1997年开始代工生产SPS设备,经过多年的技术积累,现推出Sx、Rx系列SPS放电等离子烧结炉。 SPS-放电等离子烧结炉是当今世界上先进的快速热压炉之一,由于工件直接由热流脉冲加热,所以烧结工艺周期可以缩短至几分钟,因此具备烧结速度快,样品致密度高等优点,是烧结纳米相材料,梯度功能材料,介孔纳米热电材料,稀土永磁材料,合金非平衡态材料及生物材料最有力的工具。SPS-225Sx 主机压力系统立式单轴伺服电机最大压力20 kN最小压力0.5kN最高烧结温度2500℃加压行程50 mm开放高度200mm烧结电极特殊的密封水冷结构真空腔水冷腔脉冲电源电源AC 200V, 3相,50/60Hz输出电流2500A脉冲控制On 1~999 ms, Off 1~99 ms创新点:1.采用Tie-Bar框架,保证压力装置更稳固; 2.匹配中国电源要求,无需用户再配置变压器; 3.优于同行业的真空技术,可3min内从常压抽到5Pa; 4.多种安全措施,保证设备安全运行;如:烧结腔室门未关闭,烧结电源无法启动;
  • 线上研讨会|SFA在线矿石品位智能分析系统助力烧结球团智能化生产
    绿色工厂,智能时代SpectraFlow 在线矿石品位智能分析系统应用近红外技术,来料混料实时检测在线连续检测各种矿石含量指导配矿工艺,提高产品质量,降低返矿率烧结质控得力助手降本增效必备神器3月18日,欧波同产品应用工程师在线解读SFA如何助力烧结球团智能化生产&降本增效诚邀广大客户在线交流
  • 公开征求|国家生态环境标准《钢铁工业烧结废气超低排放治理工程技术规范(征求意见稿)》
    为落实《关于推进实施钢铁行业超低排放的意见》(环大气〔2019〕35号)有关要求,指导钢铁企业高质量实施超低排放改造并规范化运维,生态环境部组织起草了《钢铁工业烧结废气超低排放治理工程技术规范(征求意见稿)》及其编制说明,现公开征求意见(可登录生态环境部网站http://www.mee.gov.cn/“意见征集”栏目检索查阅),征求意见截止时间2023年12月29日。2022年,生态环境部办公厅印发《关于开展 2022 年度第二批国家生态环境标准项目实施工作的通知》 (环办法规函 (2022) 205 号),下达了编制《钢铁工业(烧结)超低排放治理工程技术规范》的任务,由冶金工业规划研究院承担,生态环境部环境工程评估中心为协作单位,依托中冶北方工程技术有限公司、中钢集团天澄环保科技股份有限公司、山东国舜建设集团有限公司、南京泽众环保科技有限公司、广州市华滤环保设备有限公司等单位组建了标准编制技术支撑团队。本标准规定了钢铁工业烧结工序废气污染物超低排放治理工程的污染物与污染负荷、总体要求、工艺设计、主要工艺设备和材料、检测与过程控制、主要辅助工程、施工与验收、运行与维护等技术要求。本标准为首次发布。生态环境部等五部委联合印发的《关于推进实施钢铁行业超低排放的意见》中提到, 2025年底前,重点区域钢铁企业超低排放改造基本完成,全国力争 80%以上产能完成改造。烧结工序作为钢铁企业产排污强度最大的节点,颗粒物、二氧化硫和氮氧化物排放总量可占到全厂总量的 45%、65%与 60%,是钢铁全流程超低排放的关键环节。本标准按政策相符、综合防治、全面覆盖、客观公正和动态调整的原则进行制订。本标准将规范钢铁工业烧结废气治理技术的工程设计、施工、运行、维护、管理等方面的技术要求。技术路线附件:征求意见单位名单.pdf钢铁工业烧结废气超低排放治理工程技术规范(征求意见稿).pdf《钢铁工业烧结废气超低排放治理工程技术规范(征求意见稿)》编制说明.pdf
  • 清华大学两台放电等离子烧结设备从日本出港
    由日本富士电波工机株式会社为清华大学制造的2台放电等离子烧结设备SPS-211Lx近日从日本东京顺利出港。创元公司代理的日本富士电波工机株式会社的放电等离子烧结设备以其优异的品质获得了用户的青睐。富士电波工机株式会社是最早开发出SPS制造技术的住友石炭公司的继承人,拥有世界上最先进的SPS技术。世界范围内拥有多达350多名的用户,其生产的放电等离子烧结设备已经广泛应用于各种新材料的研发和生产。清华大学继2000年首次购置SPS-1050T以来取得了一系列令人瞩目的成果。时隔15年后再次同时购置2台SPS设备说明了以其为代表的国内知名高校以及科研机构对于富士电波工机株式会社SPS产品的充分认可。
  • 国内首个微波能真空热压烧结炉通过专家鉴定
    该系类产品通过纯微波加热、传统电加热、两者混合加热三种加热功能集成合一。可实现金属试验材料在内的热压烧结,短时升温速率可达1000℃该系列产品解决了防微波泄漏、防微波干扰、精确测温及快速降温等关键技术难题。http://www.chinesevacuum.com/ShowArticle.aspx?id=50601 新成立的巨源微波仪器公司是主要从事实验室级和工业级微波能加热仪器研发、制造和销售高科技企业,推出了微波材料学工作站等一些列微波加热产品,申报了多项国家发明专利,在国际上率先提出了“微波材料学”“混合加热、~传统电加热、微波加热”“微波材料学工作站”等一系列新概念。目前,微波能真空系列热压烧结炉系列产品已进入70多家高校实验室,企业具备年产2000台的生产能力。
  • 日本新型SPS-211Lx烧结炉盐城工学院中标
    滨州创元设备机械制造有限公司全权代理的日本著名高端研究设备生产厂家富士电波公司的新型SPS-211Lx烧结炉近期在盐城工学院投标中标.已经签定技术协议.正在签定外贸易合同. 20-400KN双电源单体化动态金属热模拟装置静态全自动相变仪 formastor-FII/薄板全自动相变仪 formastor-Ft微波加热金属纳米粉末装置高频真空感应融化炉高频感应熔化炉高温摩擦磨损试验装置滚动高温摩擦试验装置实物透平机叶片热应力疲劳试验研究装置薄板热处理模拟装置,线材热处理模拟装置全自动精密热循环模拟装置快速加热/冷却热循环模拟装置表面融化/快速焊接装置高温真空滚焊装置扩散焊接装置磁悬浮熔化装置水平方向区域熔化精炼装置垂直方向区域熔化精炼装置半融化型短纤维增强金属炉超细粉装置双辊型非晶金属制做装置单辊型非晶金属制做装置以上业务主要由该富士电波公司第2事业部负责.随着公司业务发展,该公司于2011年收购了日本最早开始SPS烧结装置研究生产的住友SPS系统公司.弥补了富士电波公司在陶瓷领域高端研究设备的不足.受柳桥社长的委托,创元公司除了代理上述富士电波公司第2事业部产品以外,也自然成为该公司SPS 事业部的中国代理.经过1年多努力,终于成功中标盐城工学院材料系.新型SPS-211Lx烧结炉主要是针对科研院校而开发的研究型烧结装置.取名为Dr.Sinter.Lab,Jr Spark Plasma Sintering System.从其命名即可知道它特别适合作为高校研究所的实验设备.它性能高而稳定,再现性好,体积小,耗电少,重量轻,价格合理,价格已经接近中国国产同类产品价格.一经推出深受国内外同行青睐.相信该装置将风靡中国.将成为中国新材料研发,尤其是纳米材料烧结,梯度材料烧结,非真空烧结,各种复合材料烧结等领域不可缺少的研究设备.其主要构成和技术参数如下 设备主要构成 烧结主机烧结用DC脉冲电源真空系统烧结操作和控制系统 设备主要技术指标 最高温度 2500℃升温速度 1-500℃/分,但是对不同温度区间和不同烧结体尺寸,数值有所不同最大压力 20kN最大功率 28kVA此外,该公司还可以提供更大吨位的SPS设备,如50KN的SPS-511S, SPS-515S100KN的SPS-615,SPS-625200KN的SPS-3.20MK-Ⅳ250KN的SPS-725,SPS-825,SPS-925500KN的SPS-5.40MK-Ⅳ1MN的SPS-7.40MKⅣ1.5MN的SPS-8.40MK VII3MN的SPS-9.40MK-VIII5MN的SPS-10.40MK-VIII最近还可以提供优生产型的Sinter Expert SPS 30300T.已经成功用于生产.详细请参阅附件1. 最新SPS-211Lx彩页 2 SPS综合彩页
  • 富士电波双电源放电等离子烧结炉SPS-211Lx在重庆大学中标
    p 日本富士电波工机株式会社制造的双电源SPS-211Lx放电等离子烧结炉近期在重庆大学中标,这是一台全新技术的放电等离子烧结设备,具有无可比拟的加热速率,在双电源致热效应的作用下,加热速率可达15度/秒,可以使纳米材料的烧结在更短的时间内完成。我公司所代理的SPS放电等离子烧结设备近几年来被众多大学及研究机构所采购,说明SPS烧结设备在材料创新领域越来越受到科研人员的欢迎。SPS设备可以广泛应用于各种新材料的制备和研究,尤其是在纳米烧结和功能梯度材料烧结方面。双电源SPS-211Lx以其小巧的设计,精良的制造工艺,优异的烧结性能和经济适用的特点尤其广受青睐。 br/ & nbsp & nbsp & nbsp & nbsp 富士电波工机株式会社还提供更多型号的SPS烧结设备,敬请垂询。 br/ br/ /p p & nbsp /p p br/ /p
  • SPS-211 Lx放电等离子烧结炉在中国石油大学顺利验收
    SPS-211 Lx放电等离子烧结炉在中国石油大学顺利验收 日本富士电波的SPS烧结设备已经广为人知,强大的烧结能力,精良的制造工艺,脉冲电源性能稳定烧结再现性好等方面得到广大用户一致好评,近日SPS-211 Lx放电等离子烧结炉在中国石油大学顺利验收。350多家遍布世界的用户也充分表明了富士电波公司在这个领域遥遥领先的地位。如您需要开展纳米材料和梯度功能材料快速烧结研究或生产的话,日本富士电波的SPS烧结设备将是您的最佳选择。注:该公司主要SPS产品如下,供您参考: 1.SPS-211Lx,20KN,1000A 研究型2.SPS-331Lx, 30KN,3000A 研究型3.SPS-630Kx,60KN,3000A 研究型4.SPS-515s,50KN,1000-1500A研究型5.SPS-625,100KN,3000-10000A 研究型6.SPS-725,100-250KN,5000A 研究型7.SPS-825,100-250KN,8000A 研究型8.SPS-925,100-250KN,5000-15000A半研究半生产型 9.SPS-3.20MK-Ⅳ,200KN,8000A半研究半生产型10.SPS-5.40MK-Ⅳ,500KN,8000A半研究半生产型11.SPS-5.40MK-VI,500KN,1500A半研究半生产型12.SPS-7.40MK-V,1MN,10000A半研究半生产型13.SPS-8.40MK-VII,1.5MN,20000A半研究半生产型14.SPS-9.40MK-VII,3MN,20000A半研究半生产型15.SPS-9.40MK-VIII,3MN,30000A 半研究半生产型16.SPS-10.40MK-VIII,5MN,30000A 半研究半生产型 17.Sinter Expert SPS 30300T 批量生产型
  • 日本富士电波公司等离子放电烧结装置SPS-211H在厦门大学顺利中标。
    日本富士电波公司等离子放电烧结装置SPS-211H在厦门大学顺利中标。 我司全权代理的日本富士电波公司SPS-211H装置在厦门大学顺利中标并于近日签订商务合同。该装置是日本富士电波公司推出的世界最新型可扩展为双电源放电等离子烧结炉。放电等离子烧结炉SPS-211H以其精巧的设计,精良的制造工艺,优异的烧结性能和经济适用的特点正在引领SPS行业向新的方向进军。等离子放电装置SPS-211H可以根据客户需要将来追加高频电源等扩展为双电源放电等离子烧结炉SPS-211HF。后者具有比较前者更快的加热速率,在双电源复合磁热效应的作用下,加热速率可达1000度/分,可以使纳米材料的合成在更短的时间和更低温度进行得以完成。同时一台烧结设备可以当做3种烧结设备使用也进一步提高研究效率。
  • 南方科技大学再次购置SPS-211L放电等离子烧结设备
    南方科技大学再次购置SPS-211L放电等离子烧结设备创元公司代理的日本富士电波公司的SPS-211Lx放电等离子烧结设备于2014年底在南方科技大学顺利验收完毕,经过这段时间的使用,基于对sps-211LX的良好认同,南方科技大学在购置一台SPS-211Lx之后,决定再购买一台以增加科研能力。这款设备可以广泛用于各种新材料研究。尤其是纳米烧结和梯度烧结。该设备以其精良的制造工艺,优异的烧结性能和经济适用的特点,非常适合各大学、大专院校材料实验及研究开发,一经推出就深受广大用户喜爱。请参见本网站有关SPS的详细技术资料。
  • 国内首台自主研发的高性能3D激光烧结机问世
    今日(28日),2012科交会主场增量制造产业高端论坛暨激光烧结装备发布会上,湖南华曙高科有限责任公司展示了其自主研发的国内首台高性3D激光烧结机。   第三次工业革命是以数字化制造及新材料、新能源应用为代表的科技领域的又一次重大飞跃,3D增量制造技术是数字化制造的重要标志,选择性激光烧结技术被公认为3D增量制造技术的最佳途径。   黄伯云、卢秉恒、徐僖3位院士在会上共同分享3D激光烧结机带来的新思想、技术和市场,探讨增量制造产业的未来发展,探寻如何在第三次工业革命中实现“中国制造”向“中国创造”的深刻转型。   会上,华曙高科与全球知名激光烧结粉末材料销售商美国3D林克公司就激光烧结材料应用开发项目签订合作协议,拟利用国产高分子材料母材及加工设备条件,在粉末材料配方、粉末粒径优化方法、新型热处理工艺以及粉末材料成型工艺等方面采取自主创新技术,开发高性能激光烧结粉末材料,并应用到国内外各领域产品的激光烧结制造中。
  • 中科院福建物质结构研究所成为富士电波等离子放电烧结炉SPS-925新用户
    中科院福建物质结构研究所成为富士电波等离子放电烧结炉SPS-925新用户 日本富士电波等离子放电烧结炉SPS-925(250KN,10000A)近期以绝对优势在中国科学院福建物质结构研究所国际招标中胜出。说明了日本富士电波的烧结炉设备广受国内材料研究者的认可。富士电波公司SPS烧结炉除了在国际上起步最早之外,另外一个特点是用户已经遍布全世界,在世界上拥有350多家用户。在中国也已经拥有30多家用户。远远多于竞争对手。该公司不仅生产实验室专用的小型设备如,SPS-211Lx,331Lx,630Lx等,还生产SPS-925这样兼顾实验和生产的中型设备以及大型批量生产型SPS30300T等烧结设备。在日本已经有10余家公司使用该公司设备生产各种过去难以制造的产品,这表明该公司在SPS烧结技术方面日趋成熟已为工业界所接受,进入了新的发展阶段。希望国内广大用户根据自己需求选择自己喜欢的SPS装置。注:该公司主要SPS产品如下,供您参考: 1.SPS-211Lx,20KN,1000A 研究型2.SPS-331Lx,30KN,3000A 研究型3.SPS-630Kx,60KN,3000A 研究型4.SPS-515s,50KN,1000-1500A研究型5.SPS-615,100KN,3000A 研究型6. SPS-625,100KN,5000A 研究型7.SPS-725,250KN,5000A 研究型8.SPS-825,250KN,8000A 研究型9.SPS-925,250KN,1000A半研究半生产型 10.SPS-3.20MK-Ⅳ,200KN,8000A半研究半生产型11.SPS-5.40MK-Ⅳ,500KN,8000A半研究半生产型12.SPS-5.40MK-VI,500KN,15000A半研究半生产型13.SPS-7.40MK-V,1MN,10000A半研究半生产型14.SPS-8.40MK-VII,1.5MN,20000A半研究半生产型15.SPS-9.40MK-VII,3MN,20000A半研究半生产型16.SPS-9.40MK-VIII,3MN,30000A 半研究半生产型17.SPS-10.40MK-VIII,5MN,30000A 半研究半生产型 18.Sinter Expert SPS 30300T 批量生产型 3MN,30000A,可烧结出高质量φ300xH250mm产品
  • 日本新型SPS-625烧结炉中科院重庆绿色研究院贸易合同签定完毕
    日本新型SPS-625烧结炉中科院重庆绿色研究院贸易合同签定完毕 滨州创元设备机械制造有限公司全权代理的日本著名材料高端研究设备生厂 家富士电波公司的新型SPS-625烧结炉近期经过艰苦谈判终于顺利签定正式外贸合同.预计4个月后该装置将落户中科院重庆绿色研究院.相信配合该院3D打印技术研究一定会取得丰硕高科技成果.参见附属SPS-625等离子体烧结炉详细技术规格. SPS-625等离子体烧结设备技术参数 1.工作条件: 工作环境温度: 7° ~ 35° C。 工作环境湿度:20~80%,无结露 工作电源:三相电 380V 海拔:低于1000m 避免处于易燃和易腐蚀环境. 要求放置环境应防电干扰,防尘防污.远离SEM系统以防电磁波干扰SPS系统的CRT. 2. 设备用途,生产厂家及型号: 设备用途: 本设备主要用于原料粉末在脉冲放电作用下的低温快速烧结。广泛应用于金属、陶瓷、纳米材料、非晶材料、复合材料、功能/成分梯度材料的快速、高品位烧结。 设备生产厂家:富士電波工機株式会社 设备型号:SPS-625 3. 技术规格: 3.1 液压系统 3.1.1 压力:100 kN; 3.1.2 压头行程:&ge 150mm,可自动控制实现连续位移; 3.1.3 压头行程分辨率:&le 0.01mm; 3.1.4 压力控制系统:带反馈控制; 3.2 炉体 3.2.1 炉体大小:可放入外径150mm的模具 3.2.2 炉体:双层炉体,带水冷; 3.2.3 炉内可通保护气; 3.3 脉冲电源系统 3.3.1 脉冲电流输出上限:5000A 3.3.2 输出电压上限:10V 3.3.3 脉冲电源开/关时间可调,可编程; 3.3.3 最小时间分辨率优于3.3毫秒; 3.4 温控 3.4.1 两套测温系统:低温用热电偶,型号为K, 产地为日本 高温用红外测温仪,型号为IR-AHU2产地为日本 3.4.2 最高工作温度:&ge 2500摄氏度 3.4.3 最大升温速率:&ge 800oC/分钟 3.5 抽真空系统 3.5.1 冷态真空:&le 6Pa 3.5.2 配备真空计;Pirani和Bourdon管式压力计 3.5.3 抽速:室温下从1个大气压抽到6Pa,用时&le 10分钟 机械泵由日本Ulvac公司生产, 型号为VD301 3.6 冷却水装置 3.6.1冷却水装置功率及流量需与仪器本身所需冷却水相匹配。冷却水装置为日本产(Orion机械社製 RKE3750A-V). 3.7 控制系统 3.7.1 电源、压力及温度的监控有自动记录功能,且实验参数可简单导出; 3.7.2 装载有紧急停机系统,过载保护系统以及报警系统。 3.8 变压器 SPS装置所需变压器均为日本東洋技研社製/TP17K-4C109。 4. 备件及消耗品: 4.1. 高密度高纯石墨模具:内径:&Phi 10 5个,&Phi 20 5个, &Phi 30 5个, &Phi 40 1个, &Phi 50 1个 (富士电波产) 4.2 高纯石墨纸:10张(富士电波产) 4.3 炉体密封圈:一套 4.4 石墨隔热垫:一套 4.5 氮化硼喷剂:4瓶 4.6 备用保险丝一套 4.7 备用K型热电偶:3支 4.8 气路备用卡箍一套 日本新型SPS-625烧结炉中科院重庆绿色研究院贸易合同签定完毕 滨州创元设备机械制造有限公司全权代理的日本著名材料高端研究设备生厂 家富士电波公司的新型SPS-625烧结炉近期经过艰苦谈判终于顺利签定正式外贸合同.预计4个月后该装置将落户中科院重庆绿色研究院.相信配合该院3D打印技术研究一定会取得丰硕高科技成果.参见附属SPS-625等离子体烧结炉详细技术规格. SPS-625等离子体烧结设备技术参数 1.工作条件: 工作环境温度: 7° ~ 35° C。 工作环境湿度:20~80%,无结露 工作电源:三相电 380V 海拔:低于1000m 避免处于易燃和易腐蚀环境. 要求放置环境应防电干扰,防尘防污.远离SEM系统以防电磁波干扰SPS系统的CRT. 2. 设备用途,生产厂家及型号: 设备用途: 本设备主要用于原料粉末在脉冲放电作用下的低温快速烧结。广泛应用于金属、陶瓷、纳米材料、非晶材料、复合材料、功能/成分梯度材料的快速、高品位烧结。 设备生产厂家:富士電波工機株式会社 设备型号:SPS-625 3. 技术规格: 3.1 液压系统 3.1.1 压力:100 kN; 3.1.2 压头行程:&ge 150mm,可自动控制实现连续位移; 3.1.3 压头行程分辨率:&le 0.01mm; 3.1.4 压力控制系统:带反馈控制; 3.2 炉体 3.2.1 炉体大小:可放入外径150mm的模具 3.2.2 炉体:双层炉体,带水冷; 3.2.3 炉内可通保护气; 3.3 脉冲电源系统 3.3.1 脉冲电流输出上限:5000A 3.3.2 输出电压上限:10V 3.3.3 脉冲电源开/关时间可调,可编程; 3.3.3 最小时间分辨率优于3.3毫秒; 3.4 温控 3.4.1 两套测温系统:低温用热电偶,型号为K, 产地为日本 高温用红外测温仪,型号为IR-AHU2产地为日本 3.4.2 最高工作温度:&ge 2500摄氏度 3.4.3 最大升温速率:&ge 800oC/分钟 3.5 抽真空系统 3.5.1 冷态真空:&le 6Pa 3.5.2 配备真空计;Pirani和Bourdon管式压力计 3.5.3 抽速:室温下从1个大气压抽到6Pa,用时&le 10分钟 机械泵由日本Ulvac公司生产, 型号为VD301 3.6 冷却水装置 3.6.1冷却水装置功率及流量需与仪器本身所需冷却水相匹配。冷却水装置为日本产(Orion机械社製 RKE3750A-V). 3.7 控制系统 3.7.1 电源、压力及温度的监控有自动记录功能,且实验参数可简单导出; 3.7.2 装载有紧急停机系统,过载保护系统以及报警系统。 3.8 变压器 SPS装置所需变压器均为日本東洋技研社製/TP17K-4C109。 4. 备件及消耗品: 4.1. 高密度高纯石墨模具:内径:&Phi 10 5个,&Phi 20 5个, &Phi 30 5个, &Phi 40 1个, &Phi 50 1个 (富士电波产) 4.2 高纯石墨纸:10张(富士电波产) 4.3 炉体密封圈:一套 4.4 石墨隔热垫:一套 4.5 氮化硼喷剂:4瓶 4.6 备用保险丝一套 4.7 备用K型热电偶:3支 4.8 气路备用卡箍一套
  • 清华大学同时导入日本富士电波2台放电等离子烧结炉SPS-211Lx
    创元公司全权代理的日本著名材料领域高端设备生产厂家富士电波工机株式会社生产的SPS-211Lx烧结炉近期在清华大学顺利中标并且一次性购买2台。1991年日本住友石炭公司推出的SPS烧结炉首次登陆中国。经过9年孕育期之后,2000年清华大学,中国科学院硅酸盐研究所和武汉理工大学同年各自分别购买了SPS-1050T,SPS-2040和SPS-1050。时隔14年后清华大学再次购买日本富士电波公司(2011年收购了原住友石炭/SPS SINTEX公司)SPS-211Lx,说明了清华大学的材料科学研究人员对于该型设备优异品质的充分肯定。近年我们的国内用户不断快速增多,我们从心里感到由衷的高兴。感谢广大用户一直以来的支持和信赖,真诚地希望能和广大材料科学研究人员有更多的合作。
  • 黑龙江科技大学订购的最新双电源型放电等离子烧结炉SPS-211H近日顺利出东京港
    黑龙江科技大学订购的最新双电源型放电等离子烧结炉SPS-211H近日顺利出东京港黑龙江科技大学订购的日本富士电波工机株式会社制造的世界最新型高双电源放电等离子烧结炉SPS-211H近日顺利从日本东京港发出,预计下周到达天津新港。我司全权代理的日本富士电波公司SPS-211H装置是日本富士电波公司推出的世界最新型可扩展为双电源放电等离子烧结炉。SPS-211H以其精巧的设计,精良的制造工艺,优异的烧结性能和经济适用的特点正在引领SPS行业向新的方向进军。等离子放电装置SPS-211H可以根据客户需要将来追加高频电源等扩展为双电源放电等离子烧结炉SPS-211HF。后者具有比较前者更快的加热速率,在双电源复合磁热效应的作用下,加热速率可达1000度/分,可以使纳米材料的合成在更短的时间和更低温度进行得以完成。同时一台烧结设备可以当作3种烧结设备使用也进一步提高研究效率。近年来上海硅酸盐研究所,北京科技大学,厦门大学等陆续导入该装置。希望大家来电咨询!
  • 南方科大订购的双电源放电等离子烧结炉SPS-625HF近日顺利出横滨港
    南方科大订购的最新双电源放电等离子烧结炉SPS-625HF近日顺利出横滨港南方科技大学何佳清教授订购的日本富士电波工机株式会社制造的世界最新高双电源放电等离子烧结炉SPS-625HF近日顺利从日本横滨港发出,预计今日抵达蛇口。该装置一台设备可以作为3台烧结炉(单脉冲电源烧结,单高频电源烧结,混合电源烧结)使用。尤其是在电磁波和直流脉冲双重热效应的作用下它的加热速率可达1000度/分,从而使纳米材料的烧结在更短的时间内或更低温度下完成,或者说更细晶粒的新纳米材料可以被合成出来。此外双电源使得用户更方便地用它制作各种梯度材料。第4个特点是它还可以大幅度提高加热均匀性。因此人们期待着用它探讨新的材料合成机理进而创制出各种新材料。和重庆大学,东莞理工大学等导入的SPS-212HF装置相比,南方科技大学的SPS-625HF装置最大脉冲电流和载荷分别提高了5倍,即最大压力和脉冲电流分别是100KN和5000A。此外何教授5年前曾导入我司同样品牌不同型号的小型SPS-211Lx,此次是第2次导入我司产品,南方科技大学的其他2位教授也紧随何教授之后分别导入SPS-211Lx。由此足以看出我司产品在南科大具有良好的口碑。希望广大用户来电垂询!
  • 富士电波放电等离子烧结炉SPS-211Lx和日本Advance-riko公司热电特性评价装置ZEM-3在北京师范大学同时中标
    富士电波放电等离子烧结炉SPS-211Lx和日本Advance-riko公司(原日本真空理工公司)热电特性评价装置ZEM-3在北京师范大学同时中标,我公司所代理的SPS放电等离子烧结设备近几年来被众多大学及研究机构所采购,说明SPS烧结设备在材料创新领域越来越受到科研人员的欢迎。SPS设备可以广泛应用于各种新材料的制备和研究,尤其是在纳米烧结和功能梯度材料烧结方面。对于研究热电材料的科学家来说ZEM-3是不可或缺的试验装置。ZEM-3可以精确地测定半导体材料、金属材料及其他热电材料(BiTe, PbTe, Skutterudites等)的Seebeck系数及电导率。该产品在该领域处于No.1的地位。主要原理和特点如下 该装置由高精度,高灵敏度温度可控的红外线金面反射炉和控制温度用的微型加热源构成。通过PID程序控温,采用四点法的方式精确测定半导体材料及热电材料的Seebeck系数及电导率、电阻率。试样与引线的接触是否正常V-1装置可以自动检出。期待北京师范大学在两台设备的配合下取得更加卓越的成果。
  • 线边缘粗糙度(LER)如何影响先进节点上半导体的性能
    作者:Coventor(泛林集团旗下公司)半导体工艺与整合团队成员Yu De Chen 介绍 由后段制程(BEOL)金属线寄生电阻电容(RC)造成的延迟已成为限制先进节点芯片性能的主要因素[1]。减小金属线间距需要更窄的线关键尺寸(CD)和线间隔,这会导致更高的金属线电阻和线间电容。图1对此进行了示意,模拟了不同后段制程金属的线电阻和线关键尺寸之间的关系。即使没有线边缘粗糙度(LER),该图也显示电阻会随着线宽缩小呈指数级增长[2]。为缓解此问题,需要在更小的节点上对金属线关键尺寸进行优化并选择合适的金属材料。 除此之外,线边缘粗糙度也是影响电子表面散射和金属线电阻率的重要因素。图1(b)是典逻辑5nm后段制程M2线的扫描电镜照片,可以看到明显的边缘粗糙度。最近,我们使用虚拟工艺建模,通过改变粗糙度振幅(RMS)、相关长度、所用材料和金属线关键尺寸,研究了线边缘粗糙度对线电阻的影响。 图1:(a) 线电阻与线关键尺寸的关系;(b) 5nm M2的扫描电镜俯视图(图片来源:TechInsights) 实验设计与执行 在晶圆厂里,通过改变线关键尺寸和金属来进行线边缘粗糙度变化实验很困难,也需要花费很多时间和金钱。由于光刻和刻蚀工艺的变化和限制,在硅晶圆上控制线边缘粗糙度也很困难。因此,虚拟制造也许是一个更直接和有效的方法,因为它可以“虚拟地”生成具有特定线边缘粗糙度的金属线结构,进而计算出相应显粗糙度条件下金属的电阻率。图2(a)显示了使用虚拟半导体建模平台 (SEMulator3D®) 模拟金属线边缘粗糙度的版图设计。图2(b)和2(c)显示了最终的虚拟制造结构及其模拟线边缘粗糙度的俯视图和横截面图。通过设置具体的粗糙度振幅(RMS)和相关长度(噪声频率)值,可以在虚拟制造的光刻步骤中直接修改线边缘粗糙度。图2(d)显示了不同线边缘粗糙度条件的简单实验。图中不同RMS振幅和相关长度设置条件下,金属的线边缘展示出了不同的粗糙度。这些数据由SEMulator3D的虚拟实验仿真生成。为了系统地研究不同的关键尺寸和材料及线边缘粗糙度对金属线电阻的影响,使用了表1所示的实验条件进行结构建模,然后从相应结构中提取相应条件下的金属线电阻。需要说明的是,为了使实验更为简单,模拟这些结构时没有将内衬材料纳入考虑。图2:(a) 版图设计;(b) 生成的典型金属线俯视图;(c) 金属线的横截面图;(d) 不同RMS和相关长度下的线边缘粗糙度状态 表1: 实验设计分割条件 实验设计结果与分析 为了探究线边缘粗糙度对金属线电阻的影响,用表1所示条件完成了约1000次虚拟实验设计。从这些实验中,我们了解到: 1. 当相关长度较小且存在高频噪声时,电阻受到线边缘粗糙度的影响较大。2. 线关键尺寸较小时,电阻受线边缘粗糙度RMS振幅和相关长度的影响。3. 在所有线关键尺寸和线边缘粗糙度条件下,应选择特定的金属来获得最低的绝对电阻值。结论由于线边缘粗糙度对较小金属线关键尺寸下的电阻有较大影响,线边缘粗糙度控制在先进节点将变得越来越重要。在工艺建模分割实验中,我们通过改变金属线关键尺寸和金属线材料研究了线边缘粗糙度对金属线电阻的影响。在EUV(极紫外)光刻中,由于大多数EUV设备测试成本高且能量密度低,关键尺寸均匀性和线边缘粗糙度可能会比较麻烦。在这种情况下,可能需要对光刻显影进行改进,以尽量降低线边缘粗糙度。这些修改可以进行虚拟测试,以降低显影成本。新的EUV光刻胶方法(例如泛林集团的干膜光刻胶技术)也可能有助于在较低的EUV曝光量下降低线边缘粗糙度。在先进节点上,需要合适的金属线材料选择、关键尺寸优化和光刻胶显影改进来减小线边缘粗糙度,进而减少由于电子表面散射引起的线电阻升高。未来的节点上可能还需要额外的线边缘粗糙度改进工艺(光刻后)来减少线边缘粗糙度引起的电阻。
  • 【技术知识】分析影响微量氧分析仪测定结果的4个因素
    微量氧分析仪主要半导体元件用热敏元件和所述金属电阻丝的类型。敏感半导体元件小,热惯性小,大的电阻温度系数,高的灵敏度,一个小的时间滞后。在铂线圈作为传感元件,则内电阻,围绕作为补偿元件的非反应性气体的交界处材料的金属氧化物烧结珠等于铂相同体积的发热线圈。构成该臂作为一个桥式电路,即,一个测量电路这两个部件。金属氧化物半导体气体传感元件吸附法测定的,并发生变化的电导率的速率即,散热元件的状态也改变。在铂线圈的可变电阻的温度变化,则存在在电桥输出电压,从而能够检测气体浓度的不平衡。微量氧分析仪的应用非常广泛,除了通常用于分析氢,氨,二氧化碳,二氧化硫含量和低浓度的可燃气体,也可作为色谱检测分析器,用于分析的其他组件。当我们用微量氧分析仪测量氧含量时数值飘移不定,出现分析结果数据不准确。其主要原因是氧气分析仪使用不当造成,以下仅谈几点影响测定的因素:1.氧气测定仪上的过滤器要洁净。每使用过一段时间就要清洗过滤器或者更换过滤器来确保测得数值不飘移,只有这样才能保证氧气测定仪不被影响,所得数据正确。2.氧气测定仪的环境破坏。在使用氧气测定仪时,环境的好坏也会对传感器进行一定的干扰,适当的清理灰尘和清除污渍,这样对传感器的寿命也会增长使用。3.管道材质的选择。管道材质及表面的湿度也将影响样气中氧含量的变化。一般不宜用塑料管,橡胶管等作为连接管路。通常选用不锈钢管和四氟管。4.氧气测定仪的泄漏。氧气测定仪在初次启用前必须严格检漏。氧分析仪只有在严密不漏的条件下才能获得正确的数据结果。任何连接点,焊点,阀门等处的不严密,将会导致空气中的氧反渗进进管道及氧分析仪内部,从而得出含氧量偏高的结果。  相关仪器C1020微量氧分析仪采用了高性能的电化学式气体传感器和微处理机技术,具有数字显示、通迅记录等功能。适用于对氮气、氩气、一氧化碳、氢气等还原性气体中的微量氧气浓度连续监测。
  • 质谱成像:沃特世全谱图分子影像系统介绍
    p strong    span style=" color: rgb(84, 141, 212) " 全谱图分子影像 /span /strong    /p p   全谱图分子影像系统将多种分析技术整合至同一仪器平台并进行了优化,能够更好地了解细胞功能和生理机能,或监测整个组织或器官中的药物化合物分布情况。它可以结合多种成像技术获得全面分析结果。& nbsp /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/222f22ae-9fa8-40b9-a478-bfe553697df5.jpg" / /p p style=" text-align: center " strong 小脑中三种脂质离子的特定分布叠加图像 /strong /p p   沃特世全谱图分子影像系统通过将MALDI& #8482 、DESI、离子淌度质谱技术和信息学工作流程整合入单个系统,可以带来其它任何单一影像技术都无法企及的详细分子信息。全谱图分子影像系统可用于: /p p   发现、识别并测定目标分子的空间分布; /p p   有效研究各种大分子和小分子; /p p   无需标记探针即可进行成像研究; /p p   可从单个样品获取尽可能多的信息; /p p style=" text-align: left "   获得关键化合物的最终分子分布。& nbsp /p p   全谱图分子影像功能能够帮助用户更加深入地了解癌症潜在机制,并能够通过测定细胞和组织中的分子转运发现心血管疾病以及神经退行性疾病。在其它研究中,全谱图分子影像系统可根据分子组成对不同的组织类型进行鉴定,也可以区分病变和正常组织。& nbsp & nbsp /p p strong    span style=" color: rgb(84, 141, 212) " 全谱图分子影像技术 /span /strong /p p   全谱图分子影像系统可用于Xevo G2-XS或SYNAPT G2-Si质谱平台。如有需要,上述全谱图分子影像系统完全可作为标准ESI-TOF仪器用于除分子成像之外的其它应用。 /p p   全谱图分子影像系统与质谱技术结合后非常适用于分析特定类型的分子(多肽、脂质、小分子代谢物和糖类等等),这两项技术相互补充,可为质谱成像提供最全面的信息。& nbsp /p p    strong 全谱图分子影像系统可采用的技术包括: /strong /p p    strong 基质辅助激光解吸电离(MALDI)成像 /strong /p p   MALDI成像技术利用激光直接电离法分析化学基质包被样品中的分子。MALDI成像技术是公认的质谱成像应用标准技术。 /p p   利用MALDI质谱成像技术直接生成组织截面的图谱是一种直接从生物学基质研究其大、小分子空间分布的强大工具。质谱数据图像的描述作为二维图像,允许从视觉上确定其分子的空间分布。不像昂贵耗时的传统空间图谱方法,如放射自显影术、闪烁计数器,它不需要放射标签。 /p p   MALDI SYNAPT& #8482 HDMS& #8482 系统成像设备,为小分子、药物及其代谢产物提供了最佳的特异性和灵敏度。MALDI Q-Tof Premier& #8482 质谱仪,利用一个能够进行快速数据采集的200赫兹固态激光器,可以方便地提取质量、强度和位置等信息。提取的数据可以输入适当的软件包,如用于图像生成和操控的BioMap(Novartis)。其技术优势为: /p p   卓越的空间分辨率; /p p   适用于分析多种分子类型; /p p   尤其擅长大分子成像。 /p p    strong 电喷雾解吸电离(DESI)成像 /strong /p p   DESI成像技术利用溶剂电离喷雾直接进行成像,此电离技术无需进行样品预处理。沃特世在传统DESI成像技术的基础上强化了其功能性,赋予该创新型成像方法以更好的可用性和性能。使用DESI成像技术的部分优势: /p p   最简单的样品制备过程; /p p   擅长脂质和小分子成像; /p p   可在同一个样品上进行多个成像实验。 /p p style=" text-align: center " img title=" DESI_MaldiWorkflow_White.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/d38df7b4-3558-4637-9e34-f18a3c1bd077.jpg" / /p p style=" text-align: center " strong DESI-MALDI流程图 /strong /p p   strong  离子淌度技术的质谱成像 /strong /p p   离子淌度可为成像研究增加另一个维度的分子分离,此技术能够根据分子大小和形状对其进行分离分析。离子淌度技术可用于消除干扰或分离目标分子用以通过更加严格的审查,利用更强的分子区分能力来提升成像系统分析性能。离子淌度可用于: /p p   消除图像中的干扰分子; /p p   区分结构极其相似的分子(例如脂质等); /p p   分离特定类型的目标分析物。 /p p style=" text-align: center " & nbsp img title=" 1Triwave_Figure10_lg_700.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/4aeda8b7-4c91-428b-a85a-5c896fac8c01.jpg" / /p p style=" text-align: center " strong 离子淌度分离技术 /strong /p p   与UPLC/MS不同,质谱成像在电离前不涉及任何形式的分离。由于观察的详细程度和可能的背景干扰,产生的数据通常非常复杂。SYNAPT HDMS实现了MALDI和DESI成像与离子淌度质谱的强大结合,离子可以按质谱成像实验中的化合物种类和电荷进行气相分离,提供单独的质谱不具备的选择性水平。该技术可以使得到的成像数据更清楚,可以更精确地看到背景存在下的分子分布。 /p p style=" text-align: center " img title=" 1DESI-Systems.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/955d4a17-0825-444a-acef-9c6f1de56666.jpg" / /p p style=" text-align: center " strong 全谱图分子影像系统所采用技术 /strong /p p    span style=" color: rgb(84, 141, 212) " strong 全谱图分子影像系统组件 /strong /span /p p    strong SYNAPT G2 Si质谱仪 /strong /p p   SYNAPT平台是一款功能强大且非常灵活的仪器,可配备各种选件(MALDI、DESI、离子淌度技术)进行成像研究。这款强大的系统可根据具体需要添加任意数量的配置,能够最好地满足几乎任何实验室对分析性能的要求。SYNAPT G2-Si在所有成像模式中均表现出众,是唯一能够将离子淌度功能与成像技术充分结合的系统。基于SYNAPT的全谱图分子影像系统非常适用于蛋白质组学、代谢组学、细胞生物学、生物化学乃至临床研究病理学和组织学应用,是质谱成像研究的终极解决方案。 /p p    strong Xevo G2-XS QTof质谱仪 /strong /p p   Xevo G2-XS QTof是一款高性能、高灵敏度分析平台,专为某些最具挑战性的成像研究而设计。全谱图影像系统借助Xevo G2-XS QTof出色的分析性能并结合DESI成像技术,能够对整个样品和组织中的小分子分布进行研究,尤其适用于脂质组学、代谢组学和药物分布研究。 /p p style=" text-align: center " img width=" 200" height=" 345" title=" _1rgp8465_ian2.jpg" style=" width: 200px height: 345px " src=" http://img1.17img.cn/17img/images/201708/insimg/055e40bb-04f6-471f-8746-0b498bd9c17c.jpg" border=" 0" vspace=" 0" hspace=" 0" / & nbsp /p p style=" text-align: center " strong Xevo G2-XS QTof质谱仪 /strong /p p    strong HDI成像软件 /strong /p p   这款功能强大且直观的软件包中含有针对复杂成像数据进行高效、快速数据分析时所需的全部数据分析和先进统计工具。HDI软件简单易用且专门为质谱成像而开发,可查询多维度数据,并能够轻松给出丰富详实的图像和统计数据,这些都使得质谱成像技术成为一项极具前景的分析技术。 /p p style=" text-align: center " img title=" 1WG_HDI_Software_schematic_950px.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/78843426-0455-43b6-af8d-930c34f8143a.jpg" / /p p style=" text-align: center " strong HDI成像软件 /strong /p p & nbsp /p
  • 中南大学刘绍军和河北工业大学胡宁团队程立金《Additive Manufacturing》:3D打印
    5G毫米波通讯技术的到来促使基站滤波器朝着小型化、轻量化、形状复杂化和低介电损耗化方向发展。为了兼顾滤波器尺寸和形状设计的需要,具有适中介电常数、超低介电损耗和近零谐振频率温度系数的微波介质陶瓷已经成为毫米波通讯的首选。其中具有优异微波介电性能(介电常数:14,品质因子:150,000GHz)的Mg2TiO4微波陶瓷成为最具有代表性的材料。然而由于微波陶瓷具有较高的硬度和脆性使得高性能高精度复杂形状的Mg2TiO4陶瓷的制备和加工面临极大的挑战。为了制备出高精度复杂形状的微波陶瓷器件,基于立体光刻的微型3D打印方法受到越来越广泛的关注。近期,中南大学刘绍军课题组和河北工业大学胡宁团队的程立金老师通过面投影微立体光刻技术(microArch S240,摩方精密)成功制备了高性能高精度的Mg2TiO4微波陶瓷,并澄清了加工参数(激光功率、曝光时间和铺层厚度)对加工精度和介电性能的影响,最终制备出加工误差为16微米和品质因子为142,000GHz的Mg2TiO4微波陶瓷。该制备方法成功解决了3D打印功能陶瓷的多重问题,例如成形样品精度差,密度低和介电性能较传统成形方法低等诸多问题。同时该研究为3D打印结构和功能陶瓷的商业化应用提供了理论基础。相关成果以“Influence of layer thickness on microstructure and dielectric properties of Mg2TiO4 microwave ceramics fabricated by vat photopolymerization”为题发表在《Additive Manufacturing》期刊上。 图1面投影微立体光刻技术示意图。团队成员使用面投影微立体光刻技术(microArch S240,摩方精密)制备高性能高精度无缺陷的Mg2TiO4微波陶瓷,装置如图1所示。当曝光功率为7.7 mW/cm2和曝光时间为0.8秒时,随着铺层厚度从20微米增加到50微米,打印样品的加工误差从31微米降低到12微米。这是由于随着铺层厚度的增加,来自粉末散射紫外光的能量和固液界面反射紫外光的能量逐渐减小,如图2所示。 图2功率密度和铺层厚度对样品加工误差的影响,(a)铺层厚度对加工误差影响机理示意图,(b)和(c)功率密度和铺层厚度对打印样品过固化宽度影响。打印样品在1550摄氏度条件下烧结4小时。烧结样品密度随着铺层厚度增加逐渐增加。当样品的铺层厚度为20微米和30微米时,在样品的侧面(平行于打印方向)发现许多呈线性排列的微孔,而当铺层厚度增加到40微米和50微米时,样品侧面的微孔不仅在数量上有所减少并且不再呈线性排列,如图3所示。这说明层间界面的微观结构与铺层厚度密切相关。同时孔隙的消除与烧结过程密切相关,在烧结中期层内孔隙逐渐向层间处偏移,同时层间处的小孔隙逐渐消失,大孔隙逐渐长大。在烧结末期,位于层间处的孔隙通过体积扩散机制不断减小。当铺层厚度从20微米增加到50微米时,叠层数量减少一半以上,导致位于层间处的孔隙缺陷的数量明显减少,孔隙的减少也会促进晶粒的生长。因此烧结样品的品质因子从123,000GHz增加到142,000GHz。 图3 在1550摄氏度烧结4小时的样品侧面(平行于打印方向)的微观结构。图4 铺层厚度为20微米的样品在不同烧结条件下侧面的微观结构,(a)1000摄氏度烧结1小时,(b)1150摄氏度烧结1小时,(c)1300摄氏度烧结1小时,(d)1450摄氏度烧结1小时,(e)1550摄氏度烧结4小时,(f)1600摄氏度烧结4小时。
  • 催化燃烧技术终结者——红外气体分析技术
    催化燃烧技术传感器应用广泛并且价格便宜,但易被污染中毒、缺乏安全自检、要求定期维护、标定以及使用寿命短。红外气体传感器这些年发展迅速,克服了以上催化燃烧的缺点,符合IEC61508安全标准,在检测碳氢化合物气体时可提供快速可信的检测结果。本文将就两种传感器的不同优缺点作出比较,以供大家了解。催化燃烧 催化燃烧最早起源于十九世纪六十年代采矿业,早期简单的铂丝线圈传感器由于能耗大、零点漂移严重不适于连续操作。 当前催化燃烧检测器连接两个铂丝线圈,每个都包裹着氧化铝粘土。检测单元包裹着催化剂,可燃气通过时可促进氧化发热。 催化燃烧优点 1、 检测器价格低廉、供应广泛; 2、 可使用各种可燃气,如果方法正确,可用于特殊物质检测; 3、 装置简单,除了标准气,没有其他特殊的维护装备; 催化燃烧缺点 1、 易中毒,如果暴露在有机硅、铅、硫和氯化物组分中,将失去对可燃气的作用; 2、 易产生烧结物,阻止可燃气与传感器接触; 3、 没有自动安全防护装置; 4、 在某些环境下灵敏度会下降(特别是硫化氢和卤素); 5、 需要至少12%的氧气浓度,在氧气浓度不足情况下工作效率明显下降; 6、 如暴露在可燃气体浓度过高的环境下,会被烧坏; 7、 使用时间越长,灵敏度越低; 8、 寿命有限,最长3-5年; 9、 需定期进行气体测试和标定;红外技术 包含一个原子以上的气体能吸收红外光,这样碳氢化合物和一些气体比如二氧化碳、一氧化碳能通过红外技术进行检测。二氧化碳气体分析示意图 为了区分红外吸收,气体和其他物质比水,需要额外增加一个波长宽带为2.7-3um的传感器。碳氢化合物在此范围没有吸收峰。这可以阻止错误报警发生和减小干扰物质的信号。双光束设计就是被用来防止光学组分污染造成错误报警。 红外技术优点 1、 较快的反应速率:响应时间一般小于7秒; 2、 自动故障操作:电源错误、信号错误、软件错误都能反馈给控制系统; 3、 对污染性气体的信号抗干扰能力强; 4、 寿命长,一般大于10年; 5、 维护成本低; 6、 无需氧气; 7、 高浓度可燃气体条件下,不会烧坏; 8、不会烧结,相应的问题也不会发生; 红外技术缺点 购买价格高于催化燃烧检测器 催化燃烧需要定期测试(通过标气)。有些海洋石油平台通常每六周需测试一次,每3-5年需要更换一次,这样需要耗费大量的成本。 不会烧结的红外气体检测仪器可自我检测,比检测如灯、传感器、窗口、软件等这些不可恢复的问题,从而大大降低出现问题的可能性。较少的零点、量程漂移及高灵敏度意味着红外气体检测仪器的校准和常规维护少,一般为6-12个月。 同时,红外传感器的价格近年已经显著下降,虽然价格还是高于催化燃烧检测器,但实践经验表明,红外传感器的成本可通过减少维护成本来降低。故红外气体传感技术取代催化燃烧技术大势所趋。 四方仪器自控系统有限公司,以自主知识产权的红外传感器核心技术为依托,成功研制红外烟气、沼气、煤气、尾气、天然气等节能减排仪器仪表,并已广泛应用于电力、钢铁、有色金属、煤化工、石油化工、垃圾焚烧、厌氧发酵、机动车及发动机检测、石油天然气勘探、煤层气综合利用、空分、节能环保部门、科研院校及民用等领域。 红外传感器可检测特征吸收峰位置的吸收情况,以确定某种气体的浓度。这种传感器过去都是大型的分析仪器,但近些年,随着以MEMS技术为基础的传感器工业的发展,这种传感器的体积已经由10升,45公斤的巨无霸,减小到2毫升(拇指大小)左右。 微型红外传感器 使用无需调制光源的红外传感器使得仪器完全没有机械运动部件,实现免维护,有效降低维护成本,从而降低工业过程气体的监测成本。(欢迎转载,转载请注明来源:工业过程气体监测技术)
  • 贺利氏:半导体封装材料的未来方向
    p & nbsp & nbsp & nbsp & nbsp 半导体生产流程由晶圆制造、晶圆测试、芯片封装和封装后测试组成。封装测试是半导体产业的重要环节。在摩尔定律发展脚步迟缓的情况下,对芯片制造商而言,光是靠先进制程所带来的效能增进,已不足以满足未来的应用需求,因此先进封装技术显得尤为重要。然而目前的封装技术在封装材料上存在一些问题亟待解决。 /p p & nbsp & nbsp & nbsp & nbsp 在微型化的趋势下,封装尺寸越来越小,这对封装材料的散热、可靠性要求越来越高。但在超细间距应用中,焊接材料面临着工序复杂、空焊、冷接和焊接不良等问题。贺利氏为此推出了Welco AP5112焊锡膏,使用一体化印刷方案简化了封装流程,同时去除了空焊、冷接和焊接不良现象,减少了材料管理成本。 /p p & nbsp & nbsp & nbsp & nbsp 在高功率器件封装中,不同于传统半导体硅功率器件,第三代半导体功率器件工作温度突破了200℃,这对封装材料提出了新的要求。因此,功率器件封装中需要关键焊接材料具有较低的工艺温度、较高的工作温度、很好的导电性和散热能力。针对此,贺利氏推出了通过扩散将芯片背银和框架上的银(铜)连接在一起烧结银材料。 /p p & nbsp & nbsp & nbsp & nbsp 在存储器件封装应用中,引线键合高度依赖金线。随着国产存储芯片开始量产,急需降低引线键合成本。对此,贺利氏在去年发布了全球首款AgCoat Prime镀金银线,显著降低了净成本。 /p p & nbsp & nbsp & nbsp & nbsp 随着半导体制造工艺越来越难以继续缩微,先进封装对继续提升芯片性能的重要性日益凸显,对半导体封装材料也将带来更多要求。 /p p 原文: /p p style=" text-align: center " strong 贺利氏:全球化分工不可逆,构建可靠的供应链至关重要 /strong /p p & nbsp & nbsp & nbsp & nbsp 集微网消息,过去50年来,随着半导体工艺节点向7nm及以下节点工艺发展的速度减慢,摩尔定律减速,是否已到达效率极限已经引起全球辩论。尽管如此,5G、物联网和人工智能等新的终端市场应用正在彻底改变半导体行业,这些新兴应用对高效节能芯片的要求越来越强烈,小型化变得越来越重要,半导体业界正在积极探索解决方案,推动了对新的先进封装技术的需求。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" http://s.laoyaoba.com/jwImg/news/2020/07/01/15936066458907.png" / /p p & nbsp & nbsp & nbsp & nbsp 贺利氏电子中国区销售总监王建龙对集微网记者表示,先进封装发展趋势走向了模块化。一方面,在微型化趋势下,系统级封装(SiP)中的元件数量不断增加,但同时封装体尺寸越来越小。受此影响,手机等消费电子产品的先进封装对于连接材料的要求越来越苛刻。在窄间距、高密度的封装要求下,呈现出模块化封装的发展趋势。另一方面,在新能源汽车、轨道交通、智能电网等应用中,呈现数十颗功能芯片集成在一个模块里封装的趋势。而无论是传统的硅功率器件,还是以氮化镓和碳化硅为代表的第三代半导体器件,大量的大功率器件集成在一个模块中,对散热、可靠性的要求越来越高。 /p p & nbsp & nbsp & nbsp & nbsp “随着技术不断进步,对于元器件的要求越来越严苛。面对激烈的竞争,制造商们倍感压力,不得不努力缩短产品上市时间。贺利氏电子了解这些挑战,也知道客户需要什么样的产品和服务来满足这些严苛的要求。”王建龙表示。例如在消费电子的超细间距应用中,对焊接材料的要求越来越严苛,贺利氏为此推出了Welco AP5112焊锡膏,可以用一体化印刷方案解决SiP封装的SMD和Flip Chip两次工序需求,减少加工步骤,简化SiP封装流程。同时去除了空焊和冷接、焊接不良现象,也减少了材料管理成本。最小可以支持钢网开孔尺寸70um,线间距50um的印刷。 /p p & nbsp & nbsp & nbsp & nbsp 在高功率器件封装中,对于传统的硅功率器件,受本身半导体结构的限制工作温度限定在175° C,第三代半导体功率器件则突破了200° C。因此一方面要延长硅基功率器件的使用周期,另一方面要适应碳化硅等第三代半导体小型化高散热的要求,这对作为功率器件封装中关键焊接材料也提出了新的要求,既要有低的工艺温度和高的工作温度,还要有很好的导电性和散热能力。贺利氏的烧结银材料主要用到了熔点961° C的银,保证了焊接材料可以工作在 200° C 以上,具有高导电性、高散热能力和热机械稳定性。从焊接工艺来说,这种烧结材料不同于锡膏,在整个焊接过程中,银始终作为固态形式存在,通过扩散将芯片背银和框架上的银(铜)连接在一起,烧结后具备很好的剪切强度、高的导电性和散热性,提高了功率器件的工作温度和可靠性。 /p p & nbsp & nbsp & nbsp & nbsp 在半导体市场中,存储器件占据非常大的比例。在许多半导体应用中,封装中使用的金线已被银线、裸铜线和镀钯铜线所取代。然而在存储器件封装应用中,引线键合仍然高度依赖金线。随着中国国产存储芯片开始量产,降低生产成本的需求十分强烈。针对此贺利氏在去年发布了全球首款AgCoat Prime镀金银线,性能和可靠性堪比金线,可显著降低净成本。王建龙表示,AgCoat Prime产品前期在国内一些客户中进行验证,可能个别客户会有一些工艺参数的微调,也可能需要他们跟客户再进行一定的重复验证。“可以肯定的是这款产品可以大幅降低存储器件的成本,也不排除将来成为一种行业标准解决方案。”他指出,“AgCoat Prime起初是针对半导体存储器设计的,但是也可以用到RFID、LED等应用中。” /p h4 疫情、国际局势加速半导体产业升级 /h4 p & nbsp & nbsp & nbsp & nbsp 今年爆发的疫情,先后在中国和全球半导体产业中掀起不小的震荡。因为终端需求下滑,许多市场研究机构预测今年半导体的增速也会大幅下滑乃至继续为负,但是中国市场呈现出了不一样的活力。 /p p & nbsp & nbsp & nbsp & nbsp 根据近日上海市委常委、副市长吴清公布的数据,在1-5月份各个领域受到挑战的情况下,上海集成电路逆势增长,销售收入实现38.7%的增长。对此王建龙表示,中国半导体市场在未来五年里预计都将处于明显的上升周期中。疫情虽然短时间内对产业造成了一定冲击,但长期来看,疫情催生线上经济、加速“远程办公”,以及生活方式变革,对5G、存储、新能源技术等领域都是很大的推动力,中国半导体产业也在加紧技术研发和产业升级。“在这些因素作用下,贺利氏今年1~5月份市场表现甚至优于去年同期。除了汽车电子业务受市场需求影响略有下滑,在先进封装和功率电子业务上都呈现上升态势。”他补充说,“但是随着汽车互连化以及新能源车的加快推进,以及碳化硅功率器件的普及,贺利氏也将迎来巨大的增长机会。” /p p & nbsp & nbsp & nbsp & nbsp 另一方面,疫情和中美贸易冲突加剧,全球半导体产业链受到不同程度的停工、断供危机。王建龙认为,因为某一个工厂出了问题就断供,这是非常不可靠的公司行为。 /p p & nbsp & nbsp & nbsp & nbsp “贺利氏2016年建立的‘备份工厂’机制很好的避免了这些问题。我们的每个产品线都有备份工厂,某个工厂出现问题,其他的工厂可以马上替补生产。很多客户的产品都认证过,他们的产品可以在两个工厂之间随时切换。当然正常时期会优先选择供应周期更短、效率更高的工厂。在疫情期间我们的客户已经体会到‘备份工厂’带来的便利。”他表示,“另一方面,美国制裁华为,华为想要在国内建立更多供应链,以及多个国家想要将产业链迁出中国。从这方面看,短期内中国在全球制造业的地位是不会改变的。全球化不会因为政治影响而改变,最终还是需要用户受益,因此产业链也不可能逆市场而行。显然,市场、人才、效率、产业链,都在中国这里。全球分工、全球合作,不是某个人、某个国家可以改变的。” /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" http://s.laoyaoba.com/jwImg/news/2020/07/01/15936066061463.png" / /p p & nbsp & nbsp & nbsp & nbsp 作为贺利氏全球最重要的市场之一,为了贴近客户需求,贺利氏在上海先后成立了上海产品创新中心和技术应用中心,分别从事与客户及合作伙伴共同进行电子材料系统的研发测试和应用认证。王建龙透露,上海创新应用中心成立近两年来,多个重要客户在这里与贺利氏一起完成了他们关键产品的封装挑战。“例如某个新能源车企在这里,通过贺利氏的材料解决方案解决了在新能源车核心的电控部分的技术难题,使电控模块性能得到了显著升级。”他解释,& nbsp & nbsp & nbsp & nbsp “这是一个创新中心与客户共同研发、投入量产,以此推动产业发展的一个成功案例。相信在未来两年,国内主要的新能源车电控部分都会直接或间接与贺利氏合作。贺利氏也将继续以完善的材料产品与服务组合,来满足中国市场对于高性能电力电子产品日益增长的需求。” /p p & nbsp & nbsp & nbsp & nbsp 最后,王建龙强调,半导体制造工艺越来越难以继续缩微,而先进封装对继续提升芯片性能的重要性日益凸显,进而对半导体封装材料带来了更多要求。“芯片的集成度可能会受到摩尔定律逼近极限的影响,但是人们追求先进电子设备的脚步不会因此停下。封装技术无疑是一个重要途径,这也是为什么贺利氏将先进封装业务提升到更高的战略层面的原因。”王建龙强调。 /p
  • 10nm及以下技术节点晶圆缺陷光学检测
    作者朱金龙*、刘佳敏、徐田来、袁帅、张泽旭、江浩、谷洪刚、周仁杰、刘世元*单位华中科技大学哈尔滨工业大学香港中文大学原文链接:10 nm 及以下技术节点晶圆缺陷光学检测 - IOPscience文章导读伴随智能终端、无线通信与网络基础设施、智能驾驶、云计算、智慧医疗等产业的蓬勃发展,先进集成电路的关键尺寸进一步微缩至亚10nm尺度,图形化晶圆上制造缺陷(包括随机缺陷与系统缺陷)的识别、定位和分类变得越来越具有挑战性。传统明场检测方法虽然是当前晶圆缺陷检测的主流技术,但该方法受制于光学成像分辨率极限和弱散射信号捕获能力极限而变得难以为继,因此亟需探索具有更高成像分辨率和更强缺陷散射信号捕获性能的缺陷检测新方法。近年来,越来越多的研究工作尝试将传统光学缺陷检测技术与纳米光子学、光学涡旋、计算成像、定量相位成像和深度学习等新兴技术相结合,以实现更高的缺陷检测灵敏度,这已为该领域提供了新的可能性。近期,华中科技大学机械科学与工程学院、数字制造装备与技术国家重点实验室的刘世元教授、朱金龙研究员、刘佳敏博士后、江浩教授、谷洪刚讲师,哈尔滨工业大学张泽旭教授、徐田来副教授、袁帅副教授,和香港中文大学周仁杰助理教授在SCIE期刊《极端制造》(International Journal of Extreme Manufacturing, IJEM)上共同发表了《10nm及以下技术节点晶圆缺陷光学检测》的综述,对过去十年中与光学晶圆缺陷检测技术有关的新兴研究内容进行了全面回顾,并重点评述了三个关键方面:(1)缺陷可检测性评估,(2)多样化的光学检测系统,以及(3)后处理算法。图1展示了该综述研究所总结的代表性晶圆缺陷检测新方法,包括明/暗场成像、暗场成像与椭偏协同检测、离焦扫描成像、外延衍射相位显微成像、X射线叠层衍射成像、太赫兹波成像缺陷检测、轨道角动量光学显微成像。通过对上述研究工作进行透彻评述,从而阐明晶圆缺陷检测技术的可能发展趋势,并为该领域的新进入者和寻求在跨学科研究中使用该技术的研究者提供有益参考。光学缺陷检测方法;显微成像;纳米光子学;集成电路;深度学习亮点:● 透彻梳理了有望实现10nm及以下节点晶圆缺陷检测的各类光学新方法。● 建立了晶圆缺陷可检测性的评价方法,总结了缺陷可检测性的影响因素。● 简要评述了传统后处理算法、基于深度学习的后处理算法及其对缺陷检测性能的积极影响。▲图1能够应对图形化晶圆缺陷检测挑战的各类光学检测系统示意图。(a)明/暗场成像;(b)暗场成像与椭偏协同检测;(c)离焦扫描成像;(d)外延衍射相位显微成像;(e)包含逻辑芯片与存储芯片的图形化晶圆;(f)X射线叠层衍射成像;(g)太赫兹成像;(h)轨道角动量光学显微成像。研究背景伴随智能手机、平板电脑、数字电视、无线通信基础设施、网络硬件、计算机、电子医疗设备、物联网、智慧城市等行业的蓬勃发展,不断刺激全球对半导体芯片的需求。这些迫切需求,以及对降低每片晶圆成本与能耗的不懈追求,构成了持续微缩集成电路关键尺寸和增加集成电路复杂性的驱动力。目前,IC制造工艺技术已突破5nm,正朝向3nm节点发展,这将对工艺监控尤其是晶圆缺陷检测造成更严峻的考验:上述晶圆图案特征尺寸的微缩,将极大地限制当前晶圆缺陷检测方案在平衡灵敏度、适应性、效率、捕获率等方面的能力。随着双重图案化、三重图案化以及四重图案化紫外光刻技术的广泛使用,检测步骤的数量随着图案化步骤的增加而显著增加,这可能会降低产率并增加器件故障的风险,因为缺陷漏检事故的影响会被传递至最终的芯片制造流程中。更糟糕的是,当前业界采用极其复杂的鳍式场效应晶体管 (FinFET) 和环栅 (GAA) 纳米线 (NW) 器件来降低漏电流和提高器件的稳定性,这将使得三维 (3D) 架构中的关键缺陷通常是亚表面(尤其是空隙)缺陷、深埋缺陷或高纵横比结构中的残留物。总体上而言,伴随工业界开始大规模的10 纳米及以下节点工艺芯片规模化制造,制造缺陷对芯片产量和成本的影响变得越来越显著,晶圆缺陷检测所带来的挑战无疑会制约半导体制造产业的发展。鉴于此,IC芯片制造厂商对晶圆缺陷检测技术与设备的重视程度日渐加深。在本文中,朱金龙研究员等人对图形化晶圆缺陷光学检测方法的最新进展进行了详细介绍。最新进展晶圆缺陷光学检测方法面的最新进展包含三个方面:缺陷可检测性评估、光学缺陷检测方法、后处理算法。缺陷可检测性评估包含两个方面:材料对缺陷可检测性的影响、晶圆缺陷拓扑形貌对缺陷可检测性的影响。图2展示了集成电路器件与芯片中所广泛采纳的典型体材料的复折射率N、法向反射率R和趋肤深度δ。针对被尺寸远小于光波长的背景图案所包围的晶圆缺陷,缺陷与背景图案在图像对比度差异主要是由材料光学特性的差异所主导的,也就是复折射率与法向反射率。具体而言,图2(c)所示的缺陷材料与图案材料的法向反射率曲线差异是优化缺陷检测光束光谱的基础之一。因此,寻找图像对比度和灵敏度足够高的最佳光束光谱范围比纯粹提高光学分辨率更重要一些,并且此规律在先进工艺节点下的晶圆缺陷检测应用中更具指导意义。▲图2集成电路中典型体材料的光学特性。(a)折射率n;(b)消光系数k;(c)法向反射率R;(d)趋肤深度δ。晶圆缺陷拓扑形貌对缺陷可检测性的影响也尤为重要。在图形化晶圆缺陷检测中,缺陷散射信号信噪比和图像对比度主要是受缺陷尺寸与缺陷类型影响的。图3展示了存储器件中常规周期线/空间纳米结构中的典型缺陷,依次为断线、边缘水平桥接和通孔、凹陷、之字形桥接、中心水平桥接、颗粒、突起、竖直桥接等缺陷。目前,拓扑形貌对缺陷可检测性的影响已被广泛研究,这通常与缺陷检测条件配置优化高度相关。例如,水平桥接与竖直桥接均对照明光束的偏振态相当敏感;在相同的缺陷检测条件配置下,桥接、断线、颗粒物等不同类型的缺陷会展现出不同的缺陷可检测性;同时,缺陷与背景图案的尺寸亦直接影响缺陷的可检测性,尺寸越小的缺陷越难以被检测。▲图3图形化晶圆上周期线/空间纳米结构中的典型缺陷(a)断线;(b)边缘水平桥接和通孔;(c)凹陷;(d)之字形桥接缺陷;(e)中心水平桥接;(f)颗粒物;(g)突起;(h)竖直桥接。丰富多彩的新兴光学检测方法。光是人眼或人造探测器所能感知的电磁波谱范围内的电磁辐射。任意光电场可采用四个基本物理量进行完整描述,即频率、振幅、相位和偏振态。晶圆缺陷光学检测通常是在线性光学系统中实施的,从而仅有频率不会伴随光与物质相互作用发生改变,振幅、相位、偏振态均会发生改变。那么,晶圆缺陷光学检测系统可根据实际使用的光学检测量进行分类,具体可划分为明/暗场成像、暗场成像与椭偏协同检测、离焦扫描成像、外延衍射相位显微成像、X射线叠层衍射成像、太赫兹波成像缺陷检测、轨道角动量光学显微成像。图4展示了基于相位重构的光学缺陷检测系统,具体包括外延相位衍射显微成像系统、光学伪电动力学显微成像系统。在这两种显微镜成像系统中,缺陷引起的扰动波前信号展现了良好的信噪比,并且能够被精准地捕获。后处理算法。从最简单的图像差分算子到复杂的图像合成算法,后处理算法因其能显著改善缺陷散射信号的信噪比和缺陷-背景图案图像对比度而在光学缺陷检测系统中发挥关键作用。伴随着深度学习算法成为普遍使用的常规策略,后处理算法在缺陷检测图像分析场景中的价值更加明显。典型后处理算法如Die-to-Die检测方法是通过将无缺陷芯片的图像与有缺陷芯片的图像进行比较以识别逻辑芯片中的缺陷,其也被称为随机检测。Cell-to-Cell检测方法是通过比较将同一芯片中无缺陷单元的图像与有缺陷单元的图像进行比较以识别存储芯片中的缺陷,其也被称为阵列检测。至于Die-to-Database检测方法,其本质是通过将芯片的图像与基于芯片设计布局的模型图像进行比较以识别芯片的系统缺陷。而根据原始检测图像来识别和定位各类缺陷,关键在于确保后处理图像(例如差分图像)中含缺陷区域的信号强度应明显大于预定义的阈值。基于深度学习的缺陷检测方法的实施流程非常简单:首先,捕获足够的电子束检测图像或晶圆光学检测图像(模拟图像或实验图像均可);其次,训练特定的神经网络模型,从而实现从检测图像中提取有用特征信息的功能;最后,用小样本集测试训练后的神经网络模型,并根据表征神经网络置信水平的预定义成本函数决定是否应该重复训练。然而,深度学习算法在实际IC生产线中没有被广泛地接收,尤其是在光学缺陷检测方面。其原因不仅包括“黑箱性质”和缺乏可解释性,还包括未经实证的根据纯光学图像来定位和分类深亚波长缺陷的能力。而要在IC制造产线上光学缺陷检测场景中推广深度学习技术的应用,还需开展更多研究工作,尤其是深度学习在光学缺陷检测场景中的灰色区域研究、深度学习与光学物理之间边界的探索等。▲图4代表性新兴晶圆缺陷光学检测系统。(a)外延相位衍射显微成像系统;(b)光学伪电动力学显微成像系统。(a)经许可转载。版权所有(2013)美国化学会。(b)经许可转载。版权所有(2019)美国化学会。未来展望伴随集成电路(IC)制造工艺继续向10nm及以下节点延拓,针对IC制造过程中的关键工序开展晶圆缺陷检测,从而实现IC制造的工艺质量监控与良率管理,这已成为半导体领域普遍达成的共识。尽管图形化晶圆缺陷光学检测一直是一个长期伴随IC制造发展的工程问题,但通过与纳米光子学、结构光照明、计算成像、定量相位成像和深度学习等新兴技术的融合,其再次焕发活力。其前景主要包含以下方面:为了提高缺陷检测灵敏度,需要从检测系统硬件与软件方面协同创新;为了拓展缺陷检测适应性,需要更严谨地研究缺陷与探测光束散射机理;为了改善缺陷检测效率,需要更高效地求解缺陷散射成像问题。除了IC制造之外,上述光学检测方法对光子传感、生物感知、混沌光子等领域都有广阔的应用前景。
  • 岂止于图谱——TA仪器测试技术分享会取得圆满成功
    2015年4月28日,“岂止于图谱——TA仪器测试技术分享会”在上海西藏大厦万怡酒店顺利举行。此次会议有别于传统的以产品推介为主的分享会,主要针对工业客户的需求,以日常分析测试工作为基础,就如何正确又巧妙的安排热分析测试,如何正确解读热分析、流变和热物性测试数据,及许多客户关心的热点问题和应用进行了讲解。 本次会议主题新颖、内容针对性强、技术含量高,因此吸引了来自工业领域及学术领域的数十家单位超过百名用户的参加,更有从苏南和浙江的用户特意赶来参加我们的分享会。会上, TA仪器亚太区的产品应用经理许炎山先生结合自己丰富的应用经验对热分析数据差异进行了详细的解读。除此以外,作为热分析领域首屈一指的应用专家,许经理通过对TA仪器国内外各种经典案例的阐述和分析, 深入浅出的向大家展示了如何做出真正好的数据和图谱以及如何辨别数据的真伪,确保实验结果的真实可靠。 许经理还特别就热分析在几个热点行业中的应用做了深入大探讨,如:1)关于利用TGA如何判定分解温度及分解速率,指出了不同的TGA方法应对不同测试目的而得到准确的测试数据和效果。如使用高分辨TGA方法测定材料的分解温度较之常规的TGA升温方法更为精确;利用不同气氛比例下样品的分解速率获得样品的饱和蒸汽压和热分解速率;利用TGA分解动力学的方法分析了材料的长期耐热性和失效时期;利用温度调制TGA方法直接获得材料的分解活化能; 2)用DSC的方法解决工业中出现的不同材料问题。如家电产品各部件正常与失效品材质分析比较;PP/PE BLEND 定量检测;封装用PI膜材质鉴定;PET宝特瓶胚加工性优劣分析;3)DMA中时间温度等效(TTS)在分析产品中的应用。如通过TTS功能选择智能手机中的高分子振膜。由于案例生动形象,加上许经理风趣幽默的讲解,与会者纷纷对此演讲表现出了浓厚的兴趣,高度赞扬了许经理的高超的专业技术知识及大师风范。 当天下午,TA仪器应用专家李润明博士以及马倩博士分别就材料研发涉及的黏弹测试技术以及如何测定材料的热传导性能进行了生动的讲解。李润明博士的报告集中介绍了流变技术在日常工作中的重要应用,如日常建筑、航空航天,汽车行业等各个领域中所使用的材料都经历着流变学的行为,而用流变的技术来模拟和反馈这些材料的行为是各个研发分析专家必不可少的手段。特别地,李博士深入地探讨了利用流变技术获得材料研究中应力-应变曲线的速率依赖性,应力-应变曲线的温度依赖性,固体/流体的模量对频率依赖特征,结晶对动态模量的影响,交联对动态模量的影响,固化过程中的黏弹性演变,最低黏度温度和凝胶化温度测定等诸多方面。 对于TA仪器新产品家族——热物性测量仪器,马倩博士深入潜出地介绍了不同热物性测量仪器在日常生活中的应用。热物性仪器包括了导热仪,热膨胀仪,热相变仪和热显微镜等,可覆盖的材料包括了高分子材料,复合材料,金属材料,无机非金属材料等等。马博士对日常生活中人们通常忽略的应用场合作了精彩的分析,如测定热扩散系数对于盘式制动器的重要指导意义,灶台材料热扩散系数的重要性,建筑材料导热系数的指导意义,电子元器件热管理和散热设计等。特别地,马博士指出了不同的材料应当使用不同的测试方法,而TA仪器的热物性测量仪器涵盖了不同形态的材料,如除了常规的固体材料外,对于膜状材料,液体材料和粉体材料也能轻松测量。最后,马博士对新仪器高温光学膨胀仪作了详细介绍。高温光学膨胀仪可以实时监控和测定材料在升温过程中形态的变化过程,其收缩、膨胀,熔融坍缩等过程能采用实时视频的方式记录下来,并直接得出材料的烧结点、软化点、球化、半球化和熔点等重要信息。 TA仪器优秀的技术专家们的精彩演讲获得了与会者的热烈反响,演讲结束后的互动环节上大家纷纷提出自己的问题及看法。甚至在结束后,仍有大量与会者们希望与技术专家们进行进一步交流。 会后,与会者们纷纷表示TA仪器应多多举办这种技术应用为主的,并切合用户需求的分享会;同时,TA仪器还借此会议公布了官方微信公众账号,希望为大家提供一个更好的线上交流互动平台,供用户获得更多的应用文章、技术视频等产品技术信息。TA仪器亚太区的产品应用经理许炎山先生正在报告中TA仪器流变技术专家李润明博士正在进行案例讲解会议间歇,许炎山经理就客户提出的问题进行耐心的回答会议间歇,TA仪器南方区经理董传波先生正在和客户进行技术交流TA仪器热物性技术技术专家马倩博士正在回答客户关于导热仪的相关技术问题
  • 微反应器用于研究影响迈克加成的动力学及生产放大因素
    摘要:微反应器是一种有效的工艺开发和强化的工具,但是从实验室工艺开发到放大实际生产仍然存在挑战,因为通道尺寸的改变极大的影响了传质传热过程。本文主要演示了一个放热迈克加成的完整的工艺开发过程,综合考虑了在实验室工艺开发阶段及生产放大过程中的通道尺寸,停留时间分布,反应物混合,反应热移除等关键影响因素。图1 合成3-哌啶丙酸乙酯反的反应原理图 环戊胺和丙烯酸乙酯经迈克加成反应生成3-哌啶丙酸乙酯,反应温度30-70oC,淬灭剂:乙酸的甲醇容液(乙酸体积分数:11% )。根据微反应器内部反应体积(开始混合处和加入淬灭剂处之间的反应器体积)和反应物流速计算。 图2 用于动力学研究的微反应器设计图(a)和实际管式微反应器图(b) 反应物先通过毛细管柱预热,然后通过混合器混合后再后续的不锈钢螺旋管中进行连续流动反应,反应温度由外部热浴装置控制,最后通过T型混合器加入淬灭剂终止反应,产物收集后自动进行GC分析。表1 不同尺寸通道内径传质效果比较表2 不同尺寸通道内径传热效果比较  保持反应器MR1和MR2长度相同,泵速基本相同的条件下,增大反应器通道尺寸后,净流速明显下降,MR2(0.008)相比于MR1(0.10 m/s)缩小了约10倍,径向扩散相关系数Re和Dn分别减小了4倍和2倍,轴向扩散相关系是B0变大,表明混合传质效果变差,理想的活塞流混合模式只有径向扩散,没有轴向扩散。在传热方面,大尺寸的微通道反应器MR2的比表面积和传热系数相对于明显变小,散热时间延长了9倍。   图3 ESK陶瓷SiC反应器(左)和反应板(右) 为了进一步扩大反应器通道内径进行对比,本文采用了Chemtrix公司的MR260型号的连续流动反应器,该反应器由混合板(含预热, T型混合和2.9mL的反应通道)和两个反应板(反应体积分别为16.8和33.6 mL,通道尺寸2.0×2.0 mm)组成。反应板内部通道90o折行排布(图3 右),极大增强了混合效果。MR260反应板是由3M ESK代加工生产,每个反应板都是陶瓷SiC材质,由换热层和反应层或混合层无压烧结而成,传热性能极好,生产通量最高达36L/h,可用于实际生产。 图4 ESK反应器和微反应器 MR2的产率对比图 通过对比发现,在保证较高的传热传质效率的前提下,4mL ESK流动反应器由于反应体积相对过小,产率较低外,MR2及54mL的ESK流动反应器的产率均达90%。由此证明微通道流动反应器工艺参数可一步放大,直接用于实际生产。 为了便于生产工艺的直接放大,我司还代理了Chemtrix其他型号的微通道反应器(流动反应器)。其中: 图5 Protrix微反应器 图6 Labtrix Start 微反应器 Protrix也是一款无压烧结3M ESK碳硅合金材质的模块化低通量流动合成反应器,可灵活安装1-4块SiC模块,每个模块上均设计两组体积不同的独立的流体通道,用户可根据需要灵活搭配,开发的生产条件可以直接放大到MR260或MR555进行实际生产。  玻璃材质的微通道反应器(芯片反应器)Labtrix系统,0.2-100 μL/min低通量,保留时间1.2 s-100min,也可用于快速筛选反应,研究反应动力学,教学演示等。尤其在教学演示方面,由于流动合成工艺的日趋成熟和完善,多所世界著名高校陆续将连续流动化学开展为一个单独的学科,如华盛顿大学,普度大学,赫尔大学,四川大学,中山大学等。为了便于教学,Chemtrix公司还专门为Labtrix系列配备了“Micro Reaction Technology on Organic Synthesis”教科书一本,教学方法一套及流动化学计算软件一套。  更多连续工艺设备及方案问题,请详询深圳市一正科技有限公司官网www.e-zheng.com或info@e-zheng.com参考文献:[1] Sebastian S. etc Kinetic and scale-up investigations of a Michael Addition in microreactors, Org. Process Res. Dev.,2014,18,1535-1544.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制