当前位置: 仪器信息网 > 行业主题 > >

岩石剪切试验机

仪器信息网岩石剪切试验机专题为您提供2024年最新岩石剪切试验机价格报价、厂家品牌的相关信息, 包括岩石剪切试验机参数、型号等,不管是国产,还是进口品牌的岩石剪切试验机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合岩石剪切试验机相关的耗材配件、试剂标物,还有岩石剪切试验机相关的最新资讯、资料,以及岩石剪切试验机相关的解决方案。

岩石剪切试验机相关的资讯

  • 胶黏剂拉伸剪切试验方法电子拉力拉伸试验机
    胶黏剂拉伸剪切试验方法电子拉力拉伸试验机:原理试样为单搭接结构,在试样的搭接面上施加纵向拉伸剪切力,测定试样能承受的最大负荷。搭接面上的平均剪应力为胶粘剂的金属对金属搭接的拉伸剪切强度,单位为 MPa。试样1)试验机:使用的试验机应使试样的破坏负荷在满标负荷的(15~85)%之间。试验机的力值示值误差不应大于1%。试验机应配备一副自动调心的试样夹持器,使力线与试样中心线保持一致。试验机应保证试样夹持器的移动速度在 (5±1) mm/min 内保持稳定。2)量具:测量试样搭接面长度和宽度的量具精度不低于 0.05 mm。3)夹具:胶接试样的夹具应能保证胶接的试样符合要求,在保证金属片不破坏的情况下,试样与试样夹持器也可用销、孔连接的方法,但不能用于仲裁试验。4)标准试样的搭接长度是(12.5±0.5)mm,金属片的厚度是 (2.0± 0.1 ) mm,试样的搭接长度或金属片的厚度不同对试验结果会有影响。5)试样数量不应少于 5 个,仲裁试验试样数量不应少于 10 个;对于高强度胶粘剂,测试时如出现金属材料屈服或破坏的情况,则可适当增加金属片厚度或减少搭接长度,两者中选择前者较好。测试时金属片所受的应力不要超过其屈服强度 σS ,金属片的厚度 δ可按式( 11-12)计算:δ=( Lτ) /σ S (11-12)式中:δ——金属片厚度;L——试样搭接长度;τ——胶粘剂拉伸剪切强度;σS ——金属材料屈服强度(MPa)。试样制备1)试样可用不带槽或带槽的平板制备,也可单片制备。2)胶接用的金属片表面应平整,不应有弯曲、翘曲、歪斜等变形。金属片应无毛刺,边缘保持直角。3)胶接时,金属片的表面处理、胶粘剂的配比、涂胶量、涂胶次数、晾置时间等胶接工艺以及胶粘剂的固化温度、压力、时间等均按胶粘剂的使用要求进行。4)制备试样都应使用夹具,以保证试样正确地搭接和精确地定位。5)切割已胶接的平板时,要防止试样过热,应尽量避免损伤胶接缝。试验条件试样的停放时间和试验环境应符合下列要求:1)试样制备后到试验的最短时间为 16 h,最长时间为 30 d。2)试验应在温度为( 23±2)℃ 、相对湿度为( 45~55)%的环境中进行。3)对仅有温度要求的测试,测试前试样在试验温度下停放时间不应少于 0.5 h;对有温度、湿度要求的测试,测试前试样在试验温度下停放时间一般不应少于 16 h。实验步骤1)用量具测量试样搭接面的长度和宽度,精确到 0.05 mm。2)把试样对称地夹在上下夹持器中,夹持处到搭接端的距离为( 50± 1)mm3)开动试验机,在 (5±1) mm/min 内,以稳定速度加载。记录试样剪切破坏的最大负荷,记录胶接破坏的类型(内聚破坏、粘附破坏、金属破坏)。
  • 天水红山试验机公司4款试验机新品通过鉴定
    2010年12月11日,天水红山试验机有限公司在兰州饭店召开了2010年省级科技成果暨新产品鉴定会。甘肃省科技厅、甘肃省工信委、天水市科技局、天水市工信委相关领导共十六人出席了会议。鉴定会现场  本次会议由甘肃省科技厅组织、天水市科技局主持,邀请中国科学院院士、兰州大学副校长、博士生导师郑晓静担任鉴定委员会主任,甘肃省科学院副院长、研究员刘国汉,甘肃省机械科学院院长、研究员韩少平担任副主任,兰州理工大学流体学院副院长冀宏教授,甘肃省机电产品监督检验站站长、高级工程师张惠泽,天水锻压机床有限公司总工程师、高级工程师蒋文凯,天水星火机床有限公司总设计师、高级工程师许铭生为专家组成鉴定委员会,对天水红山试验机有限公司研制的“复杂荷载动静试验机”、“微机电液伺服控制膨胀管试验机”、“微机控制30000kN卧式多功能拉力试验机”、“1000kN花岗岩裂隙水渗透试验机”四个项目进行了科技成果暨新产品鉴定。  甘肃省科技厅成果处处长张怡静、甘肃省工信委技术创新处处长李开明代表省科技厅和省工信委讲话,对红山公司在科技创新中取得的高水平成果表示祝贺,对企业近年来在企业科技创新工作中所做的突出成绩给予高度评价,希望也相信红山公司在今后的工作中做出更大成绩,省上将一如既往的给予大力支持。  鉴定委员会认真听取了课题组所作的项目工作汇报,审阅了 相关材料,经质询讨论后,一致认为提交鉴定的项目执行了现行国家标准和企业标准,达到了预期的设计要求,提交会议的相关材料齐全、完整、统一。四个项目经甘肃省机电产品质量监督检验站现场检测,各项技术性能指标均达到标准要求,安全指标符合有关法规的规定。  “复杂荷载动静试验机” 产品主要针对海洋输油管道工程中高强度输油管道力学性能检测的需求,模拟海底输油钢管承受复杂荷载下的力学性能测试方法。可对钢管在轴向压力(或拉力)、内压、弯矩等多种载荷联合作用条件下的变形、承载能力和疲劳寿命进行静动态测试。该试验机采用独特的试件直立安装结构,可防止细长试样倾覆,试样钢管固定可靠。该产品设计合理,结构新颖,创新性突出,使用维护方便,各项指标达到预期设计要求,总体技术达到国际领先水平。  “1000kN花岗岩裂隙水渗透试验机” 产品针对地下裂隙岩石中的渗流特性测试的需求,可进行不同应力条件下的渗透试验,更好地获取花岗岩裂隙渗透测试数据,可对大尺度裂隙岩石的渗透水流进行全方位的温度、压力流量检测和控制。该试验机采用了一个竖向油缸和水平X-X、Y-Y向各两个油缸的五油缸加载系统,既可做三轴试验,也可做水平向剪切试验。总体技术达到国际领先水平。  “微机电液伺服控制膨胀管试验机”主要针对钢管在单向和多向受力情况下的静动态力学特性。该试验机主要用于高强度钢管在机械拉伸、内压膨胀、复合拉伸膨胀时单向和多向静动态力学特性的测试。具备机械牵引膨胀锥、高压水推动膨胀锥和机械牵引-高压水推动复合的三种膨胀方式,可对φ80mm—φ340mm各种钢管进行试验。也可对钢管膨胀进行径向变化量的实时动态测量,钢管内充压最高可达70MPa,总体技术达到国际先进水平。  “微机控制30000kN卧式多功能拉力试验机”主要用于钢丝绳、索具、锚链、钢缆、桥索、化纤缆绳、电缆等特长试件的抗拉强度或耐受试验,也适用于对金属结构件、系泊锚泊设备、吊梁及非金属材料的强度拉伸试验。该产品采用大小双油缸轴向叠加串联式加载系统,拼接式承载框架,扩展了试验范围,具有试件拉直功能,降低了成本。最大拉伸静载荷达30000kN,是目前国内最大的卧式拉力试验机。总体技术达到国内领先水平。  红山公司总经理李小宁代表企业讲话,对各位专家认真严谨、一丝不苟的工作精神表示钦佩,对各位领导在百忙之中莅临会议表示感谢,对省科技厅和省工信委近年来对企业的大力支持表示感谢。他指出,红山公司在省市有关部门的正确领导关怀下,在星火集团公司的大力支持帮助下,认真贯彻落实“和谐立本、创新为先”的企业理念,大力组织实施产学研工程,不断加大科技投入,走出了出一条以企业为主体、市场为导向、品牌为目标的创新发展之路,企业科技创新能力显著增强,研制开发了一批拥有自主知识产权的高新技术产品,取得了一批较高水平的科技创新成果,也得到了国家、省市有关部门资金上的大力支持,为企业发展注入了活力、增添了后劲。我们将以这次鉴定会会为契机,在省市有关部门的正确领导,在星火集团公司的关心支持下,紧紧抓住国家实施“十二五规划”的重大战略机遇,团结带领企业广大科技人员,不遗余力的推进企业技术创新,不断提高自主创新能力,不断创新完善以企业为主体、市场为导向、产学研相结合的技术创新体系,充分利用公司研发能力强,科技成果数量多、水平高的优势,把企业的产品制造、市场开拓、品牌打造的能力有效整合起来,与科研院所实现强强联合、优势互补,争取在关键技术领域取得重大突破,加速科技成果转化,不断培育新的经济增长点,为地方经济和社会发展作出更大的贡献,再创新的辉煌。
  • 全自动核酸剪切仪新品Megaruptor
    Diagenode公司推出全自动核酸剪切仪新品Megaruptor Diagenode公司推出全自动核酸剪切仪新品Megaruptor 比利时 Diagenode公司自成立以来,一如既往地服务表观遗传学研究领域,为表观遗传学科学工作者们提供卓越的自动化设备和优质的抗体等试剂,完善了该领域的实验流程同时提高了实验效率,研发的Bioruptor系列非接触式超声破碎设备,卓有成效地高重复性地解决了染色质片段化和核酸片段化,为chip(染色质免疫共沉淀)和二代测序等下游实验完美对接。在第三代测序仪器出现后,核酸大片段测序得以实现,全自动核酸剪切仪Megaruptor就是用于核酸大片段化的三代测序。Diagenode 全自动核酸剪切仪 MegaruptorMegaruptor的完美设计,使其具有简单化、自动化、高重复性,可以获得2 kb-75 kb长度的DNA片段。剪切性能卓越,不受DNA样品来源、集中度、温度、盐浓度的限制,完全符合了科研人员的实验要求。同时,在无人员值守的情况下,友好的软件系统可以允许两个样品相继被片段化处理,不存在交叉污染。科研人员只需要简洁有效地设定好参数,仪器便可以自动化地进行处理获得目的片段。仪器特点:设定目的片段长度(2kb-75kb),快捷方便地获得集中于目的长度的片段分布获得高质量文库,用于Illumina?, Ion Torrent?, 和 PacBio? 平台自动多端口阀,配置五通道的洗涤平台全程有软件控制,洗涤、剪切自动一体化,彻底解决管路堵塞问题一次可剪切两个样本,剪切参数可完全独立全程电脑程序自动操控,操作界面友善不须定期校正,仪器维护容易绝佳的结果重复性与精准的剪切范围技术参数1. 自动多端口阀,配置了5信道的洗涤平台用于洗涤DNA2. 全程由软件控制:洗涤、切割自动一体化。绝无有卡管问题3. 可产生完全随机、均匀、完整具有代表性的目标大小DNA片段4. 切割DNA片段大小:2-10kb 组件;13Kb-75kb组件, 剪切范围最宽广5. 样品DNA浓度:1-50ng/ul, 最适浓度为20ng/ul6. 样品DNA原始长度:对切割片段大小无影响7. 样品体积:50-400ul8. 一次可上两个样本, 剪切参数可完全独立9. 处理时间:每个样品10-20分钟, 包含样本处理与自动管线清洗时间10.计算机(笔记本)为标准配备及操控软件11.试剂:优化好, 客户可自行配置上海博谊生物科技有限公司是比利时Diagenode公司全自动核酸剪切仪 Megaruptor的代理商,欲知更多产品详情,请联系我们。 发布者:上海博谊生物科技有限公司联系电话:021-51691651E-mail:18616023651@163.com
  • 新品上市|涂料管道模拟方案---剪切应力模拟器
    剪切应力模拟器polyshear----模拟液体涂料和油漆的剪切效应在涂装车间或喷涂线上,涂料需从不同口径、不同排布的管道、减压器和泵中输送。此过程中会产生剪切力,这些剪切力可能会导致涂料的降解,变质,粘度和色彩的改变。通过使用德国orontec公司生产的polyshear剪切应力模拟器,可以判断某种涂料原料是否会在输送管道和搅拌中产生问题,降低风险。德国orontec公司制造的polyshear剪切应力模拟器可模拟合理测试时间中的剪切应力。包括与工业环境相关联的涂料管道。剪切应力模拟器polyshear仅使用确定的剪切力元件,装置体积小巧且有优秀的重复性。剪切应力模拟器polyshear客户剪切应力模拟器polyshear广泛运用在涂料,汽车油漆,以及工业喷涂线等领域,发挥出重要的作用。部分客户如下:polyshear剪切应力模拟器工作原理---泵跟剪切应力元件是剪切应力两个重要影响因素油漆在喷漆车间的管道中循环时,会在管道内的各种元件流动,在剪切力的作用下发生粘度和颜色改变,从而造成喷涂时的质量问题。使用剪切应力模拟器,可以重现这过程,为进料检验,产品优化提供快速有效的方法。☞ 泵以活塞泵为例,如下图所示,剪切应力总是发生在重要部位上(直径最小的位置),剪切率可以达到15000 1/s。以齿轮泵为例,如下图所示,剪切应力总是发生在重要部分上(齿轮口边缘),剪切率可以达到10000 1/s。☞ 剪切应力元件德国orontec的剪切应力模拟器中有个重要的剪切应力元件,可以模拟涂料在管道中受到的压力情况,如下图左所示,关闭剪切应力元件上的膜时引起的压力变化。压力的变化会改变流速,如下图右所示,剪切应力元件上膜关闭后,流速为0.12kg/s。剪切应力元件也可以很好的模拟涂料在管道中受到的剪切率,如下图所示,剪切应力元件可以达到大于10000 1/s的剪切率。涂料的颜色受到剪切应力的影响,如下图所示,在泵的作用下,涂料颗粒大小的分布发生了变化,因此模拟涂料在管道中受到的剪切应力,可以帮助客户对进料进行检验。剪切应力模拟器polyshear的基础模块由一个小机动柜组成,只需一个6条的压力线即可运行。喷涂材料充满小罐(1l)后,在泵的作用下通过剪切应力元件流动。其循环流动次数与涂装输送管道有良好的相关性,且相关性已被研究证明。在测试过程中或在测试后,都可以检测样品的粘性和颜色(使用液体涂料色浆测色系统lcm),由此可得出剪切应力与材料降解的相关性。与此同时,在基础模块上可额外添加额外的配件,例如有自动停功能的循环次数计数器、温度传感器。此外,还有另一型号可测试5升样品,此型号可装在手推车上并可以移到如喷涂机器人等装置上。剪切应力模拟器polyshear特点✔专为实验室研制,机动性强且占用空间小。✔涂料测试量仅为1l✔高重复性与与重现性✔与工业喷涂线有优秀的关联性(例如automotive oem paint shops)✔较短的循环周期✔模块化安装,基础模块可以通过更高级的在线测量传感器扩展✔可实现与模拟软件相结合✔可与lcm液体测色系统实现无缝联接✔德国fraunhofer ifam, bremen开发并获得专利剪切应力模拟器polyshear基础型号内部结构说明剪切应力模拟器polyshear基础型号技术参数材质不锈钢外壳和连接器用于测试观察和控制的玻璃窗尺寸长: 400 mm,宽: 660 mm,高: 640 mm重量约56kg压力锅体积约1 l最大压力输入6 bar最大材料压力21 bar泵比约3.5:1翁开尔是德国ORONTEC中国总代理,欢迎咨询剪切应力模拟器更多产品信息和技术应用
  • 836.6万元!三峡大学获批重大仪器项目“高坝大库岸坡岩体水岩与动力剪切耦合作用试验系统”
    据三峡大学网站信息,三峡大学于近日接到国家自然科学基金委通知,获批国家重大科研仪器研制项目“高坝大库岸坡岩体水岩与动力剪切耦合作用试验系统”。该项目由李建林教授主持申报,直接经费836.6万元,执行期限五年。该类型项目是三峡大学自建校以来首次获批,也是三峡大学受国家自然科学基金项目单项资助额最高的项目。项目面向高坝大库工程安全运行,研发模拟库岸边坡复杂条件耦合作用的试验系统,形成库岸边坡水岩与动力剪切耦合作用重大科学装置,解决库岸边坡岩体复杂库水和应力环境耦合作用的准确模拟的“卡脖子”问题,为岸坡岩体在复杂水力环境和应力耦合作用下的损伤劣化机制分析提供良好的试验平台,弥补国内在库岸边坡岩体水-岩作用试验研究中专用仪器设备的不足,有助于了解在水库蓄水条件下库岸再造的机理,对已建和在建的大中型水库,特别是库水深度达到100m以上的大型水库岸坡意义重大,同时,可以在水工隧洞、水封油库、地下开采、能源存储等水-力耦合作用相关的工程中推广应用。预期研究成果服务于“自然灾害防治九大工程”和“提高防灾减灾救灾和急难险重突发公共事件处置保障能力”等国家战略目标需求,对于保证水电工程的安全和有效运营以及库区人民的生命财产安全、航道安全和社会公共安全均有重要意义,有助于提升我国地质灾害防治技术水平和创新能力。
  • 深圳三思纵横试验机|电子万能试验机:工业质检与科研创新的助手
    在现代化工业生产和科研领域,测试与实验设备的重要性不言而喻。其中,电子万能试验机以其卓越的性能和广泛的应用领域,成为了众多行业不可或缺的关键设备。今天深圳三思纵横试验机小编将探讨电子万能试验机的功能与特点、应用领域及未来发展趋势等方面的内容,大家一起来了解下吧!一、电子万能试验机的功能与特点电子万能试验机是一种集力学性能测试、材料分析于一体的综合性试验设备。其基本功能包括拉伸、压缩、弯曲、剪切等多种力学性能测试,能够满足各种材料在不同环境下的性能评估需求。电子万能试验机具有高精度、高稳定性、高可靠性等特点,能够确保测试结果的准确性和可靠性。此外,电子万能试验机还具有智能化、自动化的特点。通过先进的控制系统和数据处理软件,能够实现测试过程的自动化控制和数据实时分析,大大提高了测试效率和准确性。同时,用户还可以通过软件对测试参数进行灵活设置,满足不同测试需求。二、电子万能试验机的应用领域电子万能试验机广泛应用于材料科学、机械工程、航空航天、汽车制造、电子电器等多个领域。1、材料科学领域:电子万能试验机可用于研究材料的力学性能、断裂行为等,为材料设计和优化提供重要依据;2、机械工程领域:电子万能试验机可用于评估机械零部件的强度和耐久性,确保产品的质量和安全性;3、航空航天领域:电子万能试验机可用于测试飞机零部件的力学性能和疲劳寿命,为航空器的设计和制造提供有力支持。此外,随着新能源汽车和智能电子产品的快速发展,电子万能试验机在汽车制造和电子电器领域的应用也日益广泛。通过对汽车零部件和电子元件的力学性能测试,可以确保产品的性能稳定性和可靠性,提高市场竞争力。三、电子万能试验机的未来发展趋势随着科技的不断进步和市场需求的变化,电子万能试验机也在不断发展和完善。未来,电子万能试验机将朝着更高精度、更高效率、更多功能的方向发展。同时,随着人工智能和大数据技术的应用,电子万能试验机将实现更高级别的智能化和自动化,为用户提供更加便捷、高效的服务。此外,随着绿色环保理念的深入人心,电子万能试验机在设计和制造过程中也将更加注重环保和节能。通过采用环保材料和节能技术,降低设备在运行过程中的能耗和排放,实现可持续发展。总之,三思纵横电子万能试验机作为一种重要的测试与实验设备,在各个领域发挥着不可替代的作用。随着技术的不断进步和市场需求的不断变化,三思纵横电子万能试验机将继续保持其领先地位,为科研和工业生产提供更加精准、高效的服务。
  • 2012年下半年仪器新品盘点:试验机
    新产品和新技术体现了相关行业的技术发展趋势,定期推出一定数量的新产品和新技术是一个仪器企业创新能力的具体表现。仪器信息网“半年新品盘点”旨在将最近半年内推出的新产品和新技术集中展示给广大用户,让大家对于感兴趣的领域有总体性了解,更多创新产品和更详细内容见新品栏目。  试验机是测试、评定和研究材料、零部件、整机(整车)和各类工程项目的物理性能、机械(力学)性能、工艺性能、安全性能、舒适性能的试验仪器和设备,广泛应用于机械、冶金、石油、化工、建材、航空航天、造船、交通运输等领域。  据了解,2012年中国试验机的市场容量大约60亿元,规模以上企业约20家左右,而产值在百万元以下的企业大约有200家。2012年下半年据笔者了解公开发布试验机新品的厂商有六家,其中四家产品为传统材料试验机,推出新产品的厂商主要有MTS系统(中国)有限公司、长春机械科学研究院有限公司、上海倾技仪器仪表科技有限公司、上海衡翼精密仪器有限公司。MTS继2010年推出Criterion系列万能试验机之后,时隔两年推出了Exceed系列万能试验机,将中国试验机品牌的成本优势和MTS试验机品牌的技术优势很好地结合起来 长春机械院推出的150吨电子式试验机,将载荷和吨位提高到新的水平,目前属国内最大吨位 上海倾技采用精度更高的传感器,提高了测量结果的准确性。  此外,深圳三思纵横科技股份有限公司在非标试验机领域又迈出了一步,研发的三轴五面液压试验系统为国内岩石与地质结构研究提供更为可靠的测试手段 而苏州东菱振动试验仪器有限公司继续完善自己的电动振动台技术,自主研制世界首台单体50吨推力超大型电动振动试验系统,填补国产50吨电动振动台的空白。  试验机产品种类繁多,但是其核心技术主要体现在测量元件上,因此谁采用了新的测量元件,谁的产品就提升了档次,谁就能向市场率先推出试验机新产品 同样,谁采用了新的控制元件,提升了控制水平,如拉伸速度、应力速率、应变速率、试验频率、试验模式等,谁就掌握了市场先机 此外,试验机的测量控制软件也是高性能试验机不可或缺的技术关键,也是区分试验机档次的主要考核标准。  为了让读者对试验机制造企业和试验机技术有所了解,我们拟对2012年下半年部分新产品介绍如下,以飨读者。  材料试验机MTS系统(中国)公司Exceed系列万能试验机(左图为E45电子万能试验机,右图为E64液压万能试验机)  2012年10月,笔者参加了MTS在北京的新品发布会。MTS本次发布的Exceed系列万能试验机产品属于中低端产品,主要应用在QC和QA领域。该试验机的突出特点是其同轴度可以满足脆性、航空材料的标准 控制器有两个模拟输出通道,用户可以将传感器采集到的电信号输入到所需要的系统里,不做任何线性修正,保证信号的真实性 试验机的带宽是可调的,用户可以从0.1到1000HZ根据不同的材料选择不一样的带宽 此外,MTS 耗时5年和微软公司合作研发了一款新的软件TestSuite TW,该软件也应用到了新产品Exceed系列万能试验机中。长春机械科学研究院有限公司150吨电子式压力试验机  2012年10月28日,长春机械科学研究院有限公司集合公司最先进的测试软件和控制器技术的全新电子式大吨位系列试验机新产品在长春亮相。以往,由于技术原因电子式试验机能够达到的最大试验力都比较小,一般在300-500kN,不能满足更大加载试验力的需求。  现在,长春机械科学研究院成功研制出国内第一台1500kN电子式试验机。该试验机传动、减速均采用齿形带配丝杆副结构,效率更高,更平稳,噪音小 配置长春机械院最新研制的CLY20型电子万能试验机专用高精度负荷传感器,传感器刚度大、独有的非线性数据校正技术,确保长时工作稳定可靠性 系统采用三闭环控制,无冲击平滑转换,技术运用更成熟。该系列试验机创造了国内电子式试验设备的最大试验力记录,打破了国外企业在大吨位电子式试验设备方面的垄断局面。上海倾技仪器仪表科技有限公司QJ211S四点静压试验机  上海倾技仪器仪表科技有限公司在今年11月推出了QJ211S四点静压试验机。该试验机适用于各种手机玻璃、电脑显示屏、电视屏、钢化玻璃、眼镜玻璃、有机玻璃、特种玻璃等材料的四点静压试验,配上倾技的不同夹具还可以完成材料的三点弯曲、拉伸、剪切、压缩、刺破等多种力学试验。较之前的四点弯曲试验机,该款试验机采用高精密荷重元测量及伺服电机驱动,可以得到精准的弯曲强度结果,可快速、自由调节跨距,还增加了对试验数据进行曲线编辑、叠加、分离、缩放等多项功能。上海衡翼精密仪器有限公司HY-0230打包带拉力机  上海衡翼公司在今年的一月份和二月份连续推出了两款产品,一款是卧式拉力试验机HY-0530,另一款是拉力试验机HY-0350。紧接着在10月又推出了HY-0230打包带拉力机。该款仪器是为客户专门定制的,可以做2500N以内整个材料中拉伸、压缩、弯曲、剥离、刺破等试验 可以全液晶数控设定所需参数,曲线、位移、力值能动态显示在数显器上 彻底改变传统材料试验机机台笨重、操作复杂、性能单一的缺点 此外,此款机器精度高,使用年限达70年之久。  结构试验机深圳三思纵横科技股份有限公司三轴五面液压试验系统  深圳三思纵横科技股份有限公司与徐州矿大合作开发的280项目---三轴五面液压试验系统,于2012年12月26日正式通过双方验收。  此三轴五面液压试验系统具有三轴五面结构,可三轴同步匀速加载,五面同步加载采取联动控制。主油缸最大载荷为20000kN,侧油缸最大载荷8000kN 拥有五个载荷传感器和五个位移传感器 软件可进行相应的曲线采集和分析,生成报告预留了试样开挖空间 可扩展变形测量装置等具有冷却装置,可以超长时间做保载试验。  振动台苏州东菱振动试验仪器有限公司50吨振动台  近年来随着我国登月工程、大飞机工程和高铁工程等国家重点工程的飞速发展,其所需要的振动试验系统的最大推力也在不断加大,现有的35吨电动振动试验系统的推力已不能满足试验需求。2011年,东菱自筹经费、自主研制世界首台单体50吨推力超大型电动振动试验系统,并于今年的9月正式亮相。  50吨电动振动试验系统振动台部分主要由垂直振动台和水平滑台两大部分组成,4.5m×4.0m×0.08m的水平滑台为世界目前之最 水平滑台台面使用了90个高精度T型导轨,使水平台面在运动中,不仅有了精确的运动轨迹,而且保证了其有足够的抗倾覆力矩的能力,另外T导轨油膜的设计,更使水平台面的承载能力大大提高,以至于可以达到270吨左右 垂直振动台的超大扩展台面,使50吨台体在做垂直振动试验时,承载和抗倾覆力矩的能力大大提高,且使一些大型的试件有一个可靠的载体,对于试验的可靠性更有保证。  延伸阅读:2012年上半年仪器新品盘点:试验机
  • 深圳三思纵横试验机|电液伺服万能试验机:在科研与生产中的价值
    在材料力学性能测试领域,电液伺服万能试验机凭借其卓越的性能和广泛的应用范围,成为了科研和生产领域中不可或缺的重要设备。今日深圳三思纵横试验机将跟大家一起来讨论电液伺服万能试验机的工作原理、应用领域以及未来发展趋势等方面的内容。一、电液伺服万能试验机的工作原理电液伺服万能试验机采用电液伺服控制技术,通过高精度传感器和伺服阀等元件,实现对试验过程的精确控制。在工作过程中,试验机通过加载系统对试样施加力或位移,同时传感器实时检测试样的力学响应,并将数据传输至控制系统。控制系统根据预设的试验参数和实时检测数据,通过伺服阀调节液压系统的压力和流量,从而实现对试验过程的精确控制。二、电液伺服万能试验机的应用领域电液伺服万能试验机广泛应用于金属材料、非金属材料、复合材料以及构件的力学性能测试。1、金属材料领域:试验机可用于测定材料的拉伸、压缩、弯曲、剪切等力学性能;2、非金属材料领域:可用于测定塑料、橡胶、陶瓷等材料的力学性能;3、复合材料领域:可用于测定复合材料的层间剪切强度、界面性能等;4、构件测试领域:可用于评估构件的承载能力、疲劳寿命等。三、电液伺服万能试验机的未来发展趋势随着科技的不断发展,电液伺服万能试验机也在不断进行技术更新和升级。未来,试验机将朝着以下几个方向发展:1、智能化:随着人工智能和大数据技术的应用,试验机将实现更高级别的智能化控制。通过引入智能算法和机器学习技术,试验机能够自动优化试验过程,提高测试效率和精度;2、多元化:针对不同行业和领域的测试需求,试验机将不断推出更加多元化的功能和测试模式。例如,针对新材料和特殊构件的测试需求,试验机将开发更加专业的测试模块和夹具;3、高精度化:随着制造业对产品质量要求的不断提高,试验机将追求更高的测试精度。通过优化传感器和伺服阀等关键部件的性能,以及引入先进的校准和补偿技术,试验机将能够实现更加精确和可靠的测试结果;4、绿色环保:在环保意识日益增强的今天,试验机也将注重绿色环保。通过优化液压系统和电气系统的设计,降低能耗和噪音排放;同时,采用环保材料和工艺,减少对环境的污染。三思纵横电液伺服万能试验机作为材料力学性能测试的重要设备,其性能和功能的不断提升将有力推动相关领域的发展。未来,随着智能化、多元化、高精度化和绿色环保等趋势的不断发展,三思纵横电液伺服万能试验机将在科研和生产领域发挥更加重要的作用。同时,相关从业人员也应不断学习和掌握新技术,以适应不断变化的测试需求和技术挑战。
  • 施一公组首次报道人源剪切体原子分辨率结构
    p  span style="font-family: 楷体, 楷体_GB2312, SimKai "施一公教授是剪切体结构和功能研究的权威,自2015年8月以来在Science杂志先后发表了6篇研究文章,解析了酵母中剪切体催化过程中5个关键状态的高分辨率结构。5月11日,施一公教授领导的团队又在Cell杂志上发表了题为“An Atomic Structure of the Human Spliceosome”的论文,这是该研究组在这一领域发表的第7篇高水平论文,也是首个人源剪切体关键状态的原子分辨率结构,第一次在原子水平解释了剪切体催化第二步转酯反应的功能机理。该论文的第一作者分别为张晓峰、闫创业和杭婧,施一公教授和闫创业博士为共同通讯作者。特别值得一提的是,这篇Cell论文从投稿到接收只用了11天。鉴于该成果的重要意义,BioArt特别邀请了著名的结构生物学家、清华大学生命科学学院杨茂君教授撰写了该篇特别评论文章,以飨读者。/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/4bc262af-0d77-4cd2-9b46-7d997bd2ca4c.jpg" title="微信图片_20170512000929_副本.jpg"//ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "/spanbr//pp  5月11日,清华大学施一公教授研究组在《细胞》杂志发表研究文章,首次报道了人源剪切体C* complex的原子分辨率结构。施一公教授是剪切体结构和功能研究的权威,自2015年8月以来在《科学》杂志先后发表了6篇研究文章,解析了酵母中剪切体催化过程中5个关键状态的高分辨率结构。这是施一公教授研究组在这一领域发表的第7篇高水平论文,也是首个人源剪切体关键状态的原子分辨率结构,第一次在原子水平解释了剪切体催化第二步转酯反应的功能机理。/pp  剪切体催化的前体mRNA剪切过程是生物体内最基础最关键的生命活动之一,是遗传信息从DNA传递给蛋白质的中心法则中关键的一环。在所有真核细胞中,基因表达分为三步进行,分别由RNA聚合酶 (RNA polymerase)、剪接体(Spliceosome)和核糖体 (Ribosome)执行。第一步简称转录(transcription),即储存在遗传物质DNA序列中的遗传信息通过RNA聚合酶的作用转变成前体信使RNA(pre-mRNA) 第二步简称剪接(splicing),即由多个内含子和外显子间隔形成的前体信使RNA通过剪接体的作用去除内含子、连接外显子,转变为成熟的信使RNA 第三步简称翻译(translation),即成熟的信使RNA通过核糖体的作用转变成蛋白质,从而行使生命活动的各种功能。描述这一过程的规律被称为分子生物学的中心法则,多个诺贝尔奖围绕此发现和阐述产生。其中,RNA聚合酶的结构解析获得2006年的诺贝尔化学奖,而核糖体的结构解析获得2009年的诺贝尔化学奖。/pp  由于真核生物中的基因编码区中存在不翻译成蛋白质的序列(称为内含子),染色体DNA转录出来的前体mRNA(pre-mRNA)并不直接参与蛋白质翻译,而是需要先将其中的内含子片段去除,才能进入核糖体进行蛋白质合成。内含子的去除需要通过两步转酯反应来实现:首先,位于内含子序列中下游被称为分支点(branch point sequence)的序列中有一个高度保守的腺嘌呤核苷酸(A),其2’羟基亲核攻击内含子5’末端的鸟嘌呤(G),于是第一步反应发生,形成套索结构 然后,5’外显子末端暴露出的3’-OH向内含子3’末端的鸟嘌呤发起攻击,第二步反应发生,两个外显子连在一起。通过这两步反应,前体信使RNA中数量、长度不等的内含子被剔除,剩下的外显子按照特异顺序连接起来从而形成成熟的信使RNA(mRNA)(下图)。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/8c47205d-f67a-471b-b897-662b42995cae.jpg" title="微信图片_20170512001013_副本.jpg"//pp  这两步化学反应在细胞内是由庞大、复杂而动态的分子机器——剪接体催化完成的。对于每一个内含子来说,为了调控反应的各个基团在适当时机呈现合适的构象从而发挥其活性,剪接体各组分按照高度精确的顺序结合和解离,组装成一系列具有不同构象的分子机器,统称为剪接体。根据它们在RNA剪接过程中的生化性质,这些剪接体又被区分为E、A、B、Bact、B*、C、C*、P、ILS等若干状态。剪接体由五个小核核糖核蛋白(snRNP)、十九号复合物(Nineteen Complex,简称NTC)、十九号复合物相关蛋白(NTC Related)和一系列的辅助蛋白所构成,共涉及到100多个蛋白质和至少五条RNA分子。在剪接的过程中,剪接体以前体信使RNA分子为中心,按照高度精确的顺序进行逐步组装并发生大规模结构重组,使之得以完成复杂的剪接任务。剪接是真核细胞进行正常生命活动不可或缺的核心环节,因此具有重大的生物学意义,获取剪接体在组装、激活、催化反应过程中各个状态的结构是最基础也是最富挑战性的结构生物学难题之一。/pp  此前,施一公教授研究组共报道了酵母来源的剪接反应中5个关键状态的剪接体复合物的高分辨率结构,分别是3.8埃的预组装复合物tri-snRNP、3.5埃的激活状态复合物Bact complex、3.4埃的第一步催化反应后复合物C complex、4.0埃的第二步催化激活状态下的C* complex以及3.6埃的内含子套索剪接体ILS complex。这5个酵母来源的高分辨率结构所代表的剪接体状态,基本覆盖了整个剪接通路中关键的催化步骤,提供了迄今为止最为清晰的剪接体不同工作状态下的结构信息,大大推动了RNA剪接研究领域的发展。而最新的这一篇《细胞》论文所报道的3.76埃第二步催化激活状态下的人源C* complex使我们第一次在原子分辨率上看到了人源剪切体的工作状态,并首次详细阐释了人源剪切体催化第二步转酯反应的功能机理。/pp  人源C* complex与酵母来源C* complex在结构上有许多不同。与酿酒酵母来源的复合物结构相比,在这一原子分辨率人源复合物结构中额外鉴定出9个蛋白亚基(Aquarius、Brr2、PPIL1、PRKRIP1、U5-40K、以及EJC的4个蛋白亚基)。另外,第二步反应的关键因子Slu7和Prp17在人源复合物中更加清晰。相反的,酵母复合物中第二步反应的关键因子Prp18在人源复合物中缺失,反映了人和酵母在催化第二步反应过程中功能机理的细微差别。另一个重要的差别是酵母复合物中的Ecm2和Cwc2亚基被人源复合物中的RBM22亚基所取代,使得其周围的蛋白亚基重新排布(下图)。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/f0ba68fc-ec88-43f2-b80b-2353dc5f37a3.jpg" title="微信图片_20170512001027_副本.jpg"//pp  此次发表的关于人源剪切体复合物原子分辨率结构的研究承接之前酵母来源剪切体复合物的研究工作,在攻克剪切过程详细反应机理的道路上再进一步。施一公教授这一系列的研究工作具有极为重要的意义,是对中心法则的研究中最为复杂、最为关键的一环。自1993年RNA剪接的发现被授予诺贝尔生理及医学奖以来,科学家们一直在步履维艰地探索其中的分子奥秘,期待早日揭示这个复杂过程的分子机理。剪切体一系列关键状态复合物高分辨率结构的解析,一步一步揭开了RNA剪接这一复杂生化过程神秘的面纱,可以说,这一系列研究工作是当今结构生物学领域里一项里程碑式的、有望获得诺贝尔奖的重量级工作。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/95c0871b-e076-40e5-8e71-19b0f0a22f55.jpg" title="微信图片_20170512001044_副本.jpg"//pp style="text-align: center "图为Cell论文的通讯作者施一公教授和卓越中心创新学者闫创业博士/pp style="text-align: right "span style="font-family: 楷体, 楷体_GB2312, SimKai "撰文丨杨茂君 (清华大学生命科学学院、结构生物学高精尖创新中心教授,“长江学者”特聘教授,国家“杰青”)/span/pp  span style="font-family: 楷体, 楷体_GB2312, SimKai "后记:到目前为止,闫创业博士已发表的53篇SCI论文中,其中在Nature、Science和Cell杂志上以第一作者(包含共同一作)或共同通讯作者身份已发表10篇研究型论文。自闫创业博士2005年进入清华化学系以来到如今成为清华结构生物学高精尖创新中心卓越学者总共已经快12年了。从施一公教授课题组的相继发表的这7篇有关剪接体结构的论文署名来看,闫创业博士是这7篇论文的第一作者(三篇)或共同第一作者(4篇),特别值得一提的是在这篇Cell文章中首次成为共同通讯作者。可以说,整个剪接体系列工作中,闫创业博士起到了中流砥柱般的作用,称得上当今结构生物学领域“夜空中最亮的星”/span。/ppbr//p
  • 模拟性质:聚环氧乙烷中的剪切诱导相变
    多年来,蜘蛛丝一直是仿生研究的主题。众所周知,它具有令人难以置信的拉伸强度和生物相容性。因此,基于各种材料的人工模拟例子数不胜数。研究较少但却同样有趣的是丝纤维的形成机制。蛛丝是在蛛丝导管对储存在蜘蛛体内的液体蛛丝的剪切力作用下形成的固体纤维。这些剪切力促使晶核的形成,材料在晶核上进一步结晶。有趣的是,相应的合成过程需要的活化能要比蛛丝形成的活化能高得多。谢菲尔德大学的G.J. Dunderdale等人现在已经成功地开发了一种节能程序,通过诱发剪切应力来诱导聚环氧乙烷水溶液(PEO)的结晶。 结晶的形成是通过加热溶液来获得均匀样品,然后通过冷却和剪切溶液来进行关键的具体工作。在小角和广角X射线散射(SAXS和WAXS)原位模式下收集到的图谱,以及当溶液被Linkam CSS 450剪切池剪切时,清楚地显示了结晶的开始。这不仅体现在散射强度的稳步增加,而且Herman定向函数P2(见上图2D SAXS图谱和演变的图像)的上升也表明了样品的方向。同时采集的2D WAXS图谱也清楚地显示了peo72螺旋结构形成的反射特性。 这些结果与剪切诱导偏振光成像(SIPLI)非常吻合,在SIPLI中Maltese Cross图谱的形成表明了结晶的开始。通过这种技术的结合,研究人员已经清楚地证明了在剪切过程中模拟聚合物水溶液到固体材料相变的能力。
  • ​深圳三思纵横试验机|闪耀第36届CHINAPLAS国际橡塑展备受关注!
    4月23日-26日,为期4天如火如荼的“CHINAPLAS国际橡塑展”圆满闭幕,塑料圈的朋友们相聚上海国家会展中心(虹桥),共话行业发展。此次展会观众人数再创新高,盛况空前。5.2馆D28展位三思纵横材料力学试验机以其卓越的产品质量和创新技术吸引了众多中外来宾的关注,展位现场人气爆棚!三思纵横试验机产品闪耀聚焦,咨询量创新高,中外来宾纷纷前来咨询和体验试验机产品,三思纵横的工程师们热情地接待了每一位前来咨询的客户,耐心解答各种技术问题。现场操作演示,详细介绍了每款设备的技术特点和应用场景,让现场观众深入了解 三思纵横试验机的专业水平和技术创新能力。展台现场,许多客户对三思纵横的试验机产品表示出浓厚的兴趣,并现场进行了深度交流,希望建立长期合作关系。展会期间,三思纵横展台亮相的几款电子万能试验机、电子式动态疲劳试验机、热变形维卡软化点试验机以及视频引伸计等设备以其精准的测试结果和优秀的性能赢得了广泛好评。这些产品采用了先进的技术和工艺,能够满足各种橡胶、塑料、复合材料等的测试需求,受到了广大咨询客户连连点赞。热点产品三思纵横微机控制全自动系列试验机,这是新型智能化高精度的材料力学测试设备,具备全自动引伸计和视频引伸计,可实现试样的自动测量和拉伸过程的自动控制,大大减少了人工操作,提高了试验效率。适用于各种金属、非金属材料的拉伸、压缩、弯曲、剪切、剥离、撕裂等试验。可满足GB/T、ASTM、DIN、JIS等相关标准,适用于不同行业的材料测试需求。采用高精度轮辐式传感器与活塞刚性联接,试验力值更准确,试样断裂时对地面冲击力小,保证了试验结果的准确性。具有全程智能自动化、精准的控制系统、多种试验模式、广泛的适用范围、高效的数据处理、安全可靠、友好的操作界面和良好的稳定性等优点。三思纵横电子万能试验机可以用来测试塑料、橡胶和复合材料的各种力学性能,如拉伸强度、压缩强度、弯曲强度、剪切强度、撕裂强度等。这些数据对于材料的研发、生产和质量控制至关重要。不仅帮助企业提高产品质量,还是新材料研发和生产过程不可或缺的工具。三思纵横动态疲劳试验机是一种模拟材料在实际使用中反复载荷作用下的性能变化的试验设备。能够连续不断地对试样施加周期性的载荷,模拟实际工程中的循环载荷效应。可根据试验需求选择不同的控制方式,能够提供广泛的载荷和频率范围,以适应不同材料和产品的测试需求。具备高刚性和高稳定性的结构设计,以确保试验过程中载荷的准确性和重复性。备有自动化和智能化系统,能够实现试验过程的自动控制、数据采集和处理,以及远程操作等。能够提供精确的试验数据,并通过软件进行数据分析,帮助用户评估材料的疲劳寿命和性能,可应用于金属、合金、陶瓷、塑料、橡胶、复合材料等多种材料的疲劳性能测试。三思纵横热变形维卡软化点试验机用于测定热塑性塑料及热塑性管材管件的热变形及维卡软化点温度。集高精度、自动化、多标准兼容、安全环保、用户友好操作界面、灵活的升温速率设定、试验结果可追溯性和报告生成以及优异的结构设计于一体,是非金属材料领域研发、生产和质量控制的重要工具,显著提升产品和市场的竞争力。三思纵横在材料力学试验机行业深耕多年,追求卓越品质,打造力学试验机行业标杆,始终致力于为用户提供精准可靠、操作简便的测试设备和完善的技术支持,为推动橡塑、复合材料等行业的发展,我们一直在努力。
  • 长安大学340.00万元采购压力试验机,万能试验机
    详细信息 长安大学大吨位多功能结构试验系统采购项目公开招标公告 陕西省-西安市-雁塔区 状态:公告 更新时间: 2022-12-18 长安大学大吨位多功能结构试验系统采购项目公开招标公告 2022年12月18日 14:01 公告信息: 采购项目名称 长安大学大吨位多功能结构试验系统采购项目 品目 货物/通用设备/仪器仪表/试验机/结构试验机 采购单位 长安大学 行政区域 雁塔区 公告时间 2022年12月18日 14:01 获取招标文件时间 2022年12月19日至2022年12月23日每日上午:9:00 至 12:00 下午:14:00 至 17:00(北京时间,法定节假日除外) 招标文件售价 ¥800 获取招标文件的地点 无须现场获取 开标时间 2023年01月08日 09:00 开标地点 西安市长安区沣东自贸产业园2号楼4层405培训室 预算金额 ¥340.000000万元(人民币) 联系人及联系方式: 项目联系人 王梅 项目联系电话 18710892128 采购单位 长安大学 采购单位地址 西安市南二环中段长安大学校本部 采购单位联系方式 韩老师 029-82334618 代理机构名称 永明项目管理有限公司 代理机构地址 陕西省西咸新区沣西新城尚业路1309号总部经济园6号楼516室 代理机构联系方式 王梅 18710892128 项目概况 长安大学大吨位多功能结构试验系统采购项目 招标项目的潜在投标人应在无须现场获取获取招标文件,并于2023年01月08日 09点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:CZB2022120H/YMD-2021226F-072 项目名称:长安大学大吨位多功能结构试验系统采购项目 预算金额:340.0000000 万元(人民币) 采购需求: 大吨位多功能结构试验系统一套;长安大学大吨位多功能结构试验系统是进行桥梁与土木工程材料、构件和结构大吨位受压、剪切、受拉、受弯等力学性能教学与科研试验的主要关键设备。该试验系统由20000kN电液伺服压剪试验机和4000kN拉压万能试验机组成。20000kN电液伺服压剪试验机由主体框架和台座、主加载系统、水平加载系统、液压系统及控制系统等组成;应可实现材料、构件和结构的压缩、剪切和弯曲试验;具有20000kN垂向加载能力和4000kN水平向拉压加载能力。4000kN拉压万能试验机由主体框架及台座、拉压加载系统、液压系统及控制系统等组成,可实现材料和典型受力构件的轴压和轴拉试验。该项目的建成可为我国桥梁等土木工程结构朝超高、大跨、重载等方向发展、超高强材料的研发及其在工程结构中的应用提供试验支撑;为长安大学 双一流 建设、土木工程和交通运输等学科的建设与发展提供重要的平台支撑。 合同履行期限:合同签订后180天内交货安装完成。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本项目属于非专门面向中小企业采购的项目。 3.本项目的特定资格要求:(1)营业执照:具有独立承担民事责任能力的法人、其他组织或自然人:法人参与的提供合法有效的营业执照或法人证书;其他组织参与的提供合法证明文件;自然人参与的提供其身份证明;(2)财务状况报告:提供2021年的财务审计报告或投标人开户银行近三个月内出具的银行资信证明;(3)书面声明:参加政府采购活动前3年内在经营活动中没有重大违法记录的书面声明;(4)法人代表身份证明或授权委托书:法定代表人授权委托书(附法定代表人、委托代理人身份证复印件)及委托代理人身份证;(法定代表人参加投标只需提供身份证)(5)所投产品证明文件:供应商为非所投产品制造厂商的,须提供制造厂家的营业执照并提供产品来源渠道合法的证明文件(包括但不限于销售协议、代理协议、制造商授权书且需提供该代理商具有有效授权权限的相关证明文件,证明文件需能显示设备制造厂家对所投产品授权链条的完整性等);制造厂商投标提供营业执照即可;(6)信誉要求:申请人不得在“信用中国”网站被列为失信被执行人;申请人不得在“信用中国”网站被列为重大税收违法案件当事人名单;申请人不得在各级建设诚信信息平台被列为投标受限制的行为人;申请人不得在国家企业信用信息公示系统中被列入严重违法失信企业名单;申请人不得在中国政府采购网中被列入政府采购严重违法失信行为记录名单;申请人无围标串标、弄虚作假的不良行为记录,且在受投标限制的;申请人不得受过行政处罚;申请人不得被查出与招标人有投诉或涉诉情形;(7)本项目不允许联合体投标。 三、获取招标文件 时间:2022年12月19日 至 2022年12月23日,每天上午9:00至12:00,下午14:00至17:00。(北京时间,法定节假日除外) 地点:无须现场获取 方式:在有效获取时间内,供应商需准备单位营业执照及被介绍人身份证,将上述准备资料的复印件加盖公章后连同单位介绍信一块扫描,编辑成一个PDF文件,发送至邮箱2213376382@qq.com,并致电采购代理机构王工:18710892128,获取采购文件;获取时间截止以后发送的资料视为无效; 售价:¥800.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2023年01月08日 09点00分(北京时间) 开标时间:2023年01月08日 09点00分(北京时间) 地点:西安市长安区沣东自贸产业园2号楼4层405培训室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、本次招标公告在《中国政府采购网》、《长安大学采购与招标管理办公室》媒介上发布。 2、需要落实的政府采购政策:《政府采购促进中小企业发展管理办法》(财库〔2020〕46号);《财政部司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号);《财政部民政部中国残疾人联合会关于促进残疾人就业政府采购政策的通知》(财库〔2017〕141号);《财政部国家发展改革委关于印发(节能产品政府采购实施意见)的通知》(财库〔2004〕185号);《国务院办公厅关于建立政府强制采购节能产品制度的通知》(国办发〔2007〕51号);《财政部环保总局关于环境标志产品政府采购实施的意见》(财库〔2006〕90号);《财政部发展改革委生态环境部市场监管总局关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库〔2019〕9号);《关于印发环境标志产品政府采购品目清单的通知》(财库〔2019〕18号);《关于印发节能产品政府采购品目清单的通知》(财库〔2019〕19号);《财政部农业农村部国家乡村振兴局关于运用政府采购政策支持乡村产业振兴的通知》(财库〔2021〕19号);《陕西省财政厅关于印发陕西省中小企业政府采购信用融资办法》(陕财办采〔2018〕23号);《陕西省财政厅关于加快推进我省中小企业政府采购信用融资工作的通知》(陕财办采〔2020〕15号)。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:长安大学 地址:西安市南二环中段长安大学校本部 联系方式:韩老师 029-82334618 2.采购代理机构信息 名 称:永明项目管理有限公司 地 址:陕西省西咸新区沣西新城尚业路1309号总部经济园6号楼516室 联系方式:王梅 18710892128 3.项目联系方式 项目联系人:王梅 电 话: 18710892128 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:压力试验机,万能试验机 开标时间:2023-01-08 09:00 预算金额:340.00万元 采购单位:长安大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:永明项目管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 长安大学大吨位多功能结构试验系统采购项目公开招标公告 陕西省-西安市-雁塔区 状态:公告 更新时间: 2022-12-18 长安大学大吨位多功能结构试验系统采购项目公开招标公告 2022年12月18日 14:01 公告信息: 采购项目名称 长安大学大吨位多功能结构试验系统采购项目 品目 货物/通用设备/仪器仪表/试验机/结构试验机 采购单位 长安大学 行政区域 雁塔区 公告时间 2022年12月18日 14:01 获取招标文件时间 2022年12月19日至2022年12月23日每日上午:9:00 至 12:00 下午:14:00 至 17:00(北京时间,法定节假日除外) 招标文件售价 ¥800 获取招标文件的地点 无须现场获取 开标时间 2023年01月08日 09:00 开标地点 西安市长安区沣东自贸产业园2号楼4层405培训室 预算金额 ¥340.000000万元(人民币) 联系人及联系方式: 项目联系人 王梅 项目联系电话 18710892128 采购单位 长安大学 采购单位地址 西安市南二环中段长安大学校本部 采购单位联系方式 韩老师 029-82334618 代理机构名称 永明项目管理有限公司 代理机构地址 陕西省西咸新区沣西新城尚业路1309号总部经济园6号楼516室 代理机构联系方式 王梅 18710892128 项目概况 长安大学大吨位多功能结构试验系统采购项目 招标项目的潜在投标人应在无须现场获取获取招标文件,并于2023年01月08日 09点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:CZB2022120H/YMD-2021226F-072 项目名称:长安大学大吨位多功能结构试验系统采购项目 预算金额:340.0000000 万元(人民币) 采购需求: 大吨位多功能结构试验系统一套;长安大学大吨位多功能结构试验系统是进行桥梁与土木工程材料、构件和结构大吨位受压、剪切、受拉、受弯等力学性能教学与科研试验的主要关键设备。该试验系统由20000kN电液伺服压剪试验机和4000kN拉压万能试验机组成。20000kN电液伺服压剪试验机由主体框架和台座、主加载系统、水平加载系统、液压系统及控制系统等组成;应可实现材料、构件和结构的压缩、剪切和弯曲试验;具有20000kN垂向加载能力和4000kN水平向拉压加载能力。4000kN拉压万能试验机由主体框架及台座、拉压加载系统、液压系统及控制系统等组成,可实现材料和典型受力构件的轴压和轴拉试验。该项目的建成可为我国桥梁等土木工程结构朝超高、大跨、重载等方向发展、超高强材料的研发及其在工程结构中的应用提供试验支撑;为长安大学 双一流 建设、土木工程和交通运输等学科的建设与发展提供重要的平台支撑。 合同履行期限:合同签订后180天内交货安装完成。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本项目属于非专门面向中小企业采购的项目。 3.本项目的特定资格要求:(1)营业执照:具有独立承担民事责任能力的法人、其他组织或自然人:法人参与的提供合法有效的营业执照或法人证书;其他组织参与的提供合法证明文件;自然人参与的提供其身份证明;(2)财务状况报告:提供2021年的财务审计报告或投标人开户银行近三个月内出具的银行资信证明;(3)书面声明:参加政府采购活动前3年内在经营活动中没有重大违法记录的书面声明;(4)法人代表身份证明或授权委托书:法定代表人授权委托书(附法定代表人、委托代理人身份证复印件)及委托代理人身份证;(法定代表人参加投标只需提供身份证)(5)所投产品证明文件:供应商为非所投产品制造厂商的,须提供制造厂家的营业执照并提供产品来源渠道合法的证明文件(包括但不限于销售协议、代理协议、制造商授权书且需提供该代理商具有有效授权权限的相关证明文件,证明文件需能显示设备制造厂家对所投产品授权链条的完整性等);制造厂商投标提供营业执照即可;(6)信誉要求:申请人不得在“信用中国”网站被列为失信被执行人;申请人不得在“信用中国”网站被列为重大税收违法案件当事人名单;申请人不得在各级建设诚信信息平台被列为投标受限制的行为人;申请人不得在国家企业信用信息公示系统中被列入严重违法失信企业名单;申请人不得在中国政府采购网中被列入政府采购严重违法失信行为记录名单;申请人无围标串标、弄虚作假的不良行为记录,且在受投标限制的;申请人不得受过行政处罚;申请人不得被查出与招标人有投诉或涉诉情形;(7)本项目不允许联合体投标。 三、获取招标文件 时间:2022年12月19日 至 2022年12月23日,每天上午9:00至12:00,下午14:00至17:00。(北京时间,法定节假日除外) 地点:无须现场获取 方式:在有效获取时间内,供应商需准备单位营业执照及被介绍人身份证,将上述准备资料的复印件加盖公章后连同单位介绍信一块扫描,编辑成一个PDF文件,发送至邮箱2213376382@qq.com,并致电采购代理机构王工:18710892128,获取采购文件;获取时间截止以后发送的资料视为无效; 售价:¥800.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2023年01月08日 09点00分(北京时间) 开标时间:2023年01月08日 09点00分(北京时间) 地点:西安市长安区沣东自贸产业园2号楼4层405培训室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、本次招标公告在《中国政府采购网》、《长安大学采购与招标管理办公室》媒介上发布。 2、需要落实的政府采购政策:《政府采购促进中小企业发展管理办法》(财库〔2020〕46号);《财政部司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号);《财政部民政部中国残疾人联合会关于促进残疾人就业政府采购政策的通知》(财库〔2017〕141号);《财政部国家发展改革委关于印发(节能产品政府采购实施意见)的通知》(财库〔2004〕185号);《国务院办公厅关于建立政府强制采购节能产品制度的通知》(国办发〔2007〕51号);《财政部环保总局关于环境标志产品政府采购实施的意见》(财库〔2006〕90号);《财政部发展改革委生态环境部市场监管总局关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库〔2019〕9号);《关于印发环境标志产品政府采购品目清单的通知》(财库〔2019〕18号);《关于印发节能产品政府采购品目清单的通知》(财库〔2019〕19号);《财政部农业农村部国家乡村振兴局关于运用政府采购政策支持乡村产业振兴的通知》(财库〔2021〕19号);《陕西省财政厅关于印发陕西省中小企业政府采购信用融资办法》(陕财办采〔2018〕23号);《陕西省财政厅关于加快推进我省中小企业政府采购信用融资工作的通知》(陕财办采〔2020〕15号)。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:长安大学 地址:西安市南二环中段长安大学校本部 联系方式:韩老师 029-82334618 2.采购代理机构信息 名 称:永明项目管理有限公司 地 址:陕西省西咸新区沣西新城尚业路1309号总部经济园6号楼516室 联系方式:王梅 18710892128 3.项目联系方式 项目联系人:王梅 电 话: 18710892128
  • ​深圳三思纵横试验机|新一代电子万能试验机:FBUTM风暴系列
    三思纵横风暴系列新一代电子万能试验机(双立柱试验机),该试验机引进西方先进技术,采用进口最新科学高能配件,历经多年结合试验机新产品市场需求研制而成,与国际研发接轨,独家研创,外形精美,操作方便,低耗高能,性能稳定可靠。能最大化的满足客户的试样试验需求,是各类金属、非金属材料试样试验的首选。广泛应用于各种塑胶、橡胶、金属、航空航天、船舰、建工、军工、商检、高等院校等相关行业的试验测试。三思纵横风暴系列新一代电子万能试验机(双立柱试验机)已批量生产,安全可靠。设备可在常温及高温状态下恒力保持不低于800小时。控制器具备2个BNC接口满足用户模拟数据采集,具有可编程数字输入通道1个,可编程数字输出通道2个。今天深圳三思纵横试验机小编就来给各位深入分析一下这款产品的优势吧!一、三思纵横风暴系列新一代电子万能试验机(双立柱试验机)1、产品型号:FBUTM5000、FBUTM6000、FBUTM4000;2、产品主要用途:可应用于各种金属材料及非金属材料的拉伸压缩、弯曲、剪切、剥离、撕裂等力学试验;广泛应用于航空航天、核能、军工、高等院校等领域;主要测试项目:断裂学测试、材料力学性能测试。二、三思纵横风暴系列新一代电子万能试验机(双立柱试验机)的设备优势1、试验机整体设计精致美观,减震地脚更平稳;2、国内首家独创新一代电子万能试验机横梁位移显示屏以及手控盒装置;3、独家首创测控系统机箱盒,独立于设备主机之外;4、动力系统引进高端科学技术,顶尖装配,低耗高能,环保安全。三、三思纵横风暴系列新一代电子万能试验机(双立柱试验机)的应用场景风暴系列新一代电子万能试验机的应用场景十分广泛,主要包括但不限于以下几个领域:1、航空航天:在航空航天领域,该试验机可用于各种金属材料及非金属材料的拉伸、压缩、弯曲、剪切、剥离、撕裂等力学试验,以测试材料的强度、韧性等性能指标,为航空航天器的设计和制造提供重要数据支持;2、核能:在核能领域,该试验机同样可用于测试核能设备所需材料的力学性能,确保设备在极端环境下的安全性和可靠性;3、军工:在军工领域,该试验机可用于测试各种武器装备材料的力学性能,为武器装备的研发和制造提供重要参考;4、高等院校:在高等院校的科研和教学工作中,该试验机可用于材料力学、机械工程等相关学科的实验教学和研究工作,为学生提供实践机会,促进科研创新。四、三思纵横风暴系列新一代电子万能试验机(双立柱试验机)的适用标准1、GB/T16491电子万能试验机;2、JB/T6146引伸计技术条件;3、JJG475电子式万能试验机计量检定规程;4、ASTM、DIN、JIS等相关标准。总的来说,三思纵横风暴系列新一代电子万能试验机(双立柱试验机)是一款具有高性能、高精度、广泛应用领域的先进试验设备。三思纵横风暴系列新一代电子万能试验机(双立柱试验机)能够为科研和工业领域提供精准的试样试验数据,是材料测试和产品研发的得力助手。
  • 岛津试验机丨夹具世界系列之复合材料测试
    导读随着科技发展的日新月异,汽车、航天、航空等工业对材料性能的要求越来越高,单一材料如金属、陶瓷、高分子材料几乎都难以胜任。若将不同性能特点的单一材料复合起来,取长补短,则能满足现代高新技术的需求。复合材料既能保持组成材料各自的优异特性,又具有组合后的新特性,如比强度和比模量高、抗疲劳和破断安全性良好、高温性能优良等。以汽车工业为例,在车身及主要零部件、汽车结构件、电动汽车高压电池组件等应用中,复合材料可减轻重量实现汽车轻量化,同时减少碳排放。在飞机工业中,以波音777为例,其机体结构中复合材料仅占到约11%,而且主要用于飞机辅件;但到波音787时,复合材料的使用出现了质的飞跃,不仅数量激增,而且开始用于飞机的主要受力件,如今,波音787的复合材料用量已占到结构重量的约50% 。因此对于复合材料的研究,根据不同需求测试评估各种复合材料的力学性能,就显得尤为重要。今天,我们一起来看看岛津试验机在复合材料力学测试方面的夹具与应用。1 ASTM D6641组合载荷压缩测试复合材料不同于以往的均质材料,具有各向异性,在承受载荷的应力主轴方向呈现出拉伸、压缩、弯曲、向内剪切、向外剪切或兼有上述动向的复杂受力情况。为了提高对所设计产品的性能预测精度,需要采集各种数据,因此,在进行复合材料试验时,对于分别测量各断裂现象的试验方法的要求越来越高。例如根据标准ASTM D6641的组合载荷压缩(CLC)试验(如下图)是一种具有剪切和端面载荷组合的试验方法,提供了实现强度评估的同时进行弹性模量的测量。点击查看视频:https://mp.weixin.qq.com/s/6xI_kByFbXRV7nm8g6MJOw2 ASTM-D6484 开孔压缩强度测试碳纤维增强塑料(CFRP)以其强度高、重量轻等优点,在航空航天领域得到了广泛的应用。碳纤维具有优良的强度特性和高刚度特性,但在开孔时会损失很大的强度。复合材料零部件实际使用中,常需要开孔与别的部件连接。因此,飞机上使用的复合材料,必须对中心切出一个孔的试样的试验进行评估。我们根据ASTM-D6484对碳纤维塑料进行了开孔压缩试验。点击查看视频:https://mp.weixin.qq.com/s/6xI_kByFbXRV7nm8g6MJOw3 ASTM-D7078 V型切口剪切测试为了减少试制次数,降低新产品开发的成本,计算机辅助工程(CAE)分析被广泛应用。为了提高对所设计产品的性能预测精度,需要采集各种数据,因此,在进行 CFRP 试验时,对于分别测量各断裂现象的试验方法的要求越来越高。评价复合材料的试验方法有多种。其中,作为面内剪切试验方法,以纤维强化复合材料的纤维方向或织物层压材料为目标,在设有缺口的样片上取非对称的 4 个点加载弯曲负荷的Iosipescu法(ASTM D5379),以及在±45&ring 的层压材料上加载拉伸负荷的方法(ISO 14129)最为普及。本次试验使用 V-Notched Rail Shear 法(ASTM D7078),能够稳定进行面内剪切试验。另外,因样片的测量部位较大,可同时适用于无孔样片及短纤维系列 CFRP 层压材料的测量。点击查看视频:https://mp.weixin.qq.com/s/6xI_kByFbXRV7nm8g6MJOw4 其他复合材料测试夹具展示结语岛津标准试验机,试验载荷从 1 N到600KN不等,可适应各种样品,如橡胶、塑料、复合材料、金属、木材、玻璃陶瓷等材料的板、棒、线、绳等样品。本文介绍了岛津试验机在复合材料测试中主要夹具。另外,岛津夹具设计团队还可以根据特殊需求和标准,设计、定制夹具,以满足复合材料行业客户需求,提高复合材料的研究深度和应用广度,同时助推产业结构优化升级,实现绿色发展。撰稿人:杨汉章本文内容非商业广告,仅供专业人士参考。如需深入了解更多细节,欢迎联系津博士 sshqll@shimadzu.com.cn
  • 力学所戴兰宏团队揭示非晶合金剪切带涌现的时空序列与临界行为
    非晶合金(又称金属玻璃)因具有一系列优异性能,在空天、国防、能源等领域显示出广阔应用前景。然而,非晶合金极易形成纳米尺度变形局部化剪切带,而剪切带快速扩展诱致的宏观脆性严重地限制了其走向广泛的工程应用。因此,非晶合金剪切带问题成为力学、物理与材料等相关领域共同关注的重要课题。本征上,非晶合金剪切带涌现是一类远离热力学平衡下时空多尺度耦合的非线性过程。空间上,固有的结构不均匀性会引起强烈的变形及动力学行为的梯度效应。时间上,涵盖原子振动、原子团簇协同重排、塑性流动等多个速率过程。这些事件均具有各自的特征时间和空间尺度,他们的关联耦合控制剪切带涌现,使变形高度集中在宽度或厚度为数十纳米的带状区域,并以近声速的模式快速扩展。与原子周期有序排列的晶态合金不同,原子长程拓扑无序堆垛的非晶合金变形内蕴三种高度耦合纠缠的原子尺度运动:剪切、体胀和旋转。这三种局域原子运动的强纠缠是非晶合金剪切带涌现精细物理图像尚未探明的关键瓶颈。近期,中科院力学所戴兰宏研究团队在该问题研究上取得新进展。基于连续介质力学理论框架,研究人员首先提出了一个同时考虑仿射和非仿射变形信息的两项梯度模型(Two-term gradient model, TTG模型),可以完整地描述无序固体介质的局部变形场,突破了目前广泛使用的单纯仿射或非仿射模型的局限。研究人员进一步完成了对剪切、体胀、旋转这三个高度纠缠的局域运动的解耦,并在原子尺度上定义了全新的局部剪切、体胀、旋转运动事件的定量描述符。为了表征这三类原子团簇运动,提出了剪切主导区(shear dominated zone, SDZ)、体胀主导区(dilatation dominated zone, DDZ)及旋转主导区(rotation dominated zone,RDZ)的概念和定量表征方法,克服了目前流行的剪切转变区(shear transformation zone, STZ)不能表征原子团簇旋转运动和定量描述体胀运动的不足。在此基础上,研究人员利用大规模分子动力学模拟,对非晶合金从均匀变形到局部化剪切带涌现全过程进行精细表征。通过追踪SDZ、DDZ及RDZ原子团簇运动演化时空序列,发现初始宏观均匀变形阶段剪切、体胀及旋转团簇运动事件呈现出类似“军队行动”式的步调协同一致行为,具体表现为SDZ、DDZ及RDZ在空间离散的“类液”软区随机同步激活。基于统计学的极值理论分析,研究人员发现在这个阶段,体胀局域运动事件较剪切和旋转事件的空间分布展现出更明显的非高斯长拖尾特征,表明体胀局域化流动(DDZ)起先导的主控作用。原子团簇通过体胀运动(DDZ)完成局部软化过程,随着变形加剧,这种体胀局域软化进一步激活其邻近硬区的旋转运动,进而逐渐打破了SDZ、DDZ和RDZ三者间同步激活,转变为SDZ、DDZ及RDZ的非均匀间隔分布。增强的RDZ运动又进一步加剧了SDZ和DDZ局域运动,进而诱发硬区团簇的软化。当软化程度达到临界时,硬区壁垒被打破,激活的SDZ、DDZ及RDZ相互贯穿形成剪切带。研究人员进一步基于逾渗理论,对SDZ、DDZ及RDZ原子团簇运动事件从初期均匀变形阶段的随机离散激活到变形局部化剪切带涌现时的群体贯穿演变全过程进行定量分析,发现剪切带涌现属于定向逾渗(directed percolation),并且呈现出临界幂律标度行为。本项工作提出的两项梯度(TTG)模型及三种原子团簇运动单元(SDZ、DDZ及RDZ)新概念为无序固体介质变形定量描述提供了基本工具,所揭示的剪切带涌现过程原子尺度精细图像及临界行为为深入认知非晶合金剪切带提供了新的线索。该研究成果近期以“Hidden spatiotemporal sequence in transition to shear band in amorphous solids”为题发表在Physical Review Research 4, 23220 (2022),第一作者为博士生杨增宇。该项研究工作得到了国家自然科学基金重大项目“无序合金的塑性流动与强韧化机理” 、基础科学中心项目“非线性力学的多尺度问题”、中科院B类战略性先导科技专项项目“复杂介质系统前沿与交叉力学”等资助。论文链接:doi:10.1103/PhysRevResearch.4.023220图1 非晶合金剪切带中的旋转(涡旋)、剪切和体胀运动事件图2 剪切-体胀事件与旋转事件的关联“破缺”,空间分布从同步激活转变为交替间隔分布图3 剪切带涌现前出现原子旋转团簇运动(RDZ)显著增强(图中白色气泡代表RDZ,也即原子运动的涡旋结构)图4 非晶合金剪切带涌现原子尺度演变过程示意图
  • ​电子万能试验机:功能、应用及选购指南?|深圳三思纵横试验机
    电子万能试验机是一种广泛用于材料力学性能测试的关键设备。它能够模拟各种受力情况,用于测试材料的强度、韧性等性能参数。今天跟着深圳三思纵横试验机小编一起来看看电子万能试验机的功能、应用领域以及选购指南,帮助您了解并正确选择适合自己需求的设备。一、电子万能试验机的功能概述电子万能试验机主要功能包括拉伸、压缩、弯曲、剪切等多种试验模式。其具备高精度的力学性能测试能力,可用于各种材料如金属、塑料、橡胶、复合材料等的测试。二、电子万能试验机的应用领域1、材料研发:电子万能试验机可用于材料的强度、韧性、断裂韧性等性能的测试,为新材料的研发提供可靠数据支持;2、质量控制:在生产过程中,电子万能试验机可以用于对原材料和成品进行质量检测,确保产品符合标准要求;3、教学科研:作为教学实验设备,电子万能试验机帮助学生理解材料力学性能的测试原理和方法,促进科研成果的产出。三、电子万能试验机的选购指南1、测试范围:根据实际需求选择测试范围,包括最大承载能力、拉伸速率、温度范围等;2、精度要求:不同的应用场景对精度有不同要求,需要根据实际情况选择合适的精度等级;3、控制系统:先进的控制系统能够提高试验效率和数据准确性,选择具有可靠控制系统的设备十分重要;4、软件支持:良好的数据分析和报告生成软件能够提高工作效率,确保数据分析的准确性和可靠性。四、结论电子万能试验机作为材料力学性能测试的重要设备,在材料研发、质量控制、教学科研等领域发挥着重要作用,正确选择和使用电子万能试验机对于提高工作效率和保证数据准确性至关重要。以上就是深圳三思纵横科技股份有限公司小编给您们介绍的电子万能试验机:功能、应用及选购指南的内容,希望大家看后有所帮助!深圳三思纵横科技股份有限公司是上市公司信测标准集团旗下一家专业性独立运营公司,是中国领先的材料力学试验与检测解决方案的专业服务厂商,公司集研发、生产、销售和服务四位一体,专业提供材料检测、结构试验和成品试验的一流试验仪器和全面解决方案。
  • Granutools发布粉体剪切性能分析仪 Granudrum新品
    说明GranuDrum是一种基于转鼓原理的粉体流动性自动测量方法。实验时,粉体样品将带有透明侧壁的水平圆筒的一半填满。圆筒绕轴旋转的角速度从每分钟2转到每分钟60转。运动到每一个角速度时,CCD相机都会拍很多快照。然后,对于每个转速,从平均界面位置计算出流动角度(一些文献中也称为“静止的动态角度”),从界面波动量计算出动态内聚指数。流动角值越低,则流动性越好。原理流动角度受一系列参数的影响:颗粒间的摩擦、颗粒的形状、颗粒间的内聚力(范德瓦尔斯力、静电力和毛细管力)。动态粘聚指数只与颗粒间的粘聚力有关。粘性粉体趋向于间歇流动,而非粘性粉体则为规则流动。因此,接近于零的动态粘性指数对应于非粘性粉体。当粉体的粘结性增大时,粘结指数也随之增大。因此,粘结指数也可以量化粉体的展布性。优势测量简单、快速、直观、易于解释。圆筒的填充和清洗简单快捷。在安全转移到仪器之前,圆筒可以放在手套箱、防尘罩或封闭的环境中进行操作。通过软件的直观性,平均和方差结果都很容易获得,并允许结果的比较。自动收集和存储所有的图片和数据,以便后期处理。数据传输和自动生成报告也非常方便。标准操作程序是可记录,增加了测量的重复性。圆筒具有化学涂层,可以处理各种规格的粉粉体。独特性测量范围广:低速和高速(1至70转/分,即4至290毫米/秒)下的动态静止角。简单明了的数据解释和物理原理。使用波动量来量化粉体的粘结力。在实验过程中,粉体的粘结力可能会发生变化,这种被称为“粉体触变性”的特性可以通过GranuDrum来表达。高测量重复性(例如不锈钢等高密度材料= 1.8%,或其他低密度材料= 4.2%)。理想的设计保证了稳定性和长使用寿命。圆筒可以通过手套箱在特定的环境(惰性气体、湿度和温度)下调节。应用在具有广泛的应用,需要对粉体流动性进行分析。适用于高剪切、低压力的工况下,如增材制造、铺展性、制药行业涉及的气力输送等。在增材制造的铺粉过程中,可用于量化粉体铺展能力和优化铺粉速度 (由于其原有的粘性指数分析)。气力输送过程中粉体流动特性的预测。可选附件额外的测量圆筒,满足小样品量测量 (10、20、30和40ml),特别适用于制药和贵金属。适用于高温工况的测量圆筒,可使用高达200℃校准套件。离线分析软件授权许可:一台计算机运行测量,同时可使用另一台计算机分析数据,从而提高实验和数据分析效率。GRANUDRUM 参数图 1: 增材制造中的粉体铺展性研究图 2: 气动传输工艺优化创新点:1.测量范围广:低速和高速(1至70转/分,即4至290毫米/秒)下的动态静止角。2.简单明了的数据解释和物理原理。3.使用波动量来量化粉体的粘结力。4.在实验过程中,粉体的粘结力可能会发生变化,这种被称为“粉体触变性”的特性可以通过GranuDrum来表达。5.高测量重复性(例如不锈钢等高密度材料= 1.8%,或其他低密度材料= 4.2%)。6.理想的设计保证了稳定性和长使用寿命。7.圆筒可以通过手套箱在特定的环境(惰性气体、湿度和温度)下调节。粉体剪切性能分析仪 Granudrum
  • 三思纵横30000KN压剪试验机入驻厦门合诚检测
    2017年12月底,厦门合诚工程检测有限公司从三思纵横购进大批试验机设备,目前已全部调试完成顺利验收,其中包括一台30000kn微机控制压剪试验机,两台微机控制电液伺服压力试验机,六台微机控制电液伺服万能试验机,一台微机控制电液伺服钢绞线试验机,十一台微机控制电子万能试验机。三思纵横30000kn压剪试验机创建于1997年厦门合诚工程检测有限公司是一家具有独立法人资格的第三方检测机构,是全国交通检测行业中检测资质较全、业务范围较广、规模较大的专业检测机构。公司所服务的工程项目涉及公路、桥梁、隧道、水运、市政、房建、轨道、铁路、水利水电等各类建设领域。其总公司合诚工程咨询集团股份有限公司成立于1995年,是一家综合型工程咨询公司,承接了多项国家重点项目,业务遍及全国十多个省市,是我国海峡西岸经济区建设工程咨询监理龙头企业,也是国内交通建设监理行业第一家以监理为主业的上市企业。厦门合诚工程检测有限公司此次,合诚检测在三思纵横订购的所有产品都是采用微机控制,不需要试验者手动操作,安全系数大大提高,满足客户多种试验的需求。其中订购最多的产品是微机控制电液伺服万能试验机和微机控制电子万能试验机。微机控制电液伺服万能试验机适用于金属棒材、板材、螺纹钢及紧固件等试样的拉伸试验以及水泥胶砂试样、混凝土试样的抗压试验、抗折试验。该产品采用全数字闭环控制系统,能实现三闭环控制要求,满足多种切换方式。微机控制电子万能试验机主要适合各种金属、非金属材料的拉伸、压缩、弯曲、剪切、剥离、撕裂等试验。三思纵横可以满足客户的要求灵活定制不同空间、不同附属装置的电子万能试验机。合诚检测实验室局部图合诚检测实验室局部图微机压剪试验机主要适用于交通行业(公路、铁路、桥梁)橡胶支座、减震器类成品的力学实验,微机控制电液伺服压力试验机适用于金属、水泥制品及混凝土等材料压缩性能试验,而微机控制电液伺服钢绞线试验机则应用于钢绞线、金属棒材、板材、螺纹钢及紧固件等拉伸试验。
  • ibiPore可视化的Transwell:可实时观察流动、剪切力作用下细胞迁移、侵袭、细胞间相互作用
    德国ibidi的ibiPore可以实时观察流动、剪切情况下的细胞侵袭、迁移、细胞相互作用等实验。对实验结果进行观察统计时,不需要将膜取下,也不需要将另一边的细胞擦掉(经常将膜擦破,导致实验失败),可直接将μ-Slide放于显微镜下观察统计。细胞可以通过两种方式,选择贴壁于氮化硅膜的上下两侧。可以把细胞种植在膜下边,避免自由落体的说法,大大提高了实验的准确性。21世纪注定是一个生命科学的世纪,科研工作者们如果想在这个世纪去决胜,能做到一点,不仅要好的idea,领先的技术,更需要得心应手的好工具。所谓工欲善其事必先利其器,今天为大家介绍德国ibidi的μ-Slide ibipore SiN (图1), 一款具有多孔氮化硅膜的μ-Slide载玻片,可用于实时观察流动、剪切力条件下的细胞侵袭、迁移以及细胞相互作用的可视化的“ transwell ”,更多应用请参阅文中(Intended Use的相关内容)。图1. ibipore及ibipore SiN氮化硅膜培养细胞的染色结果。图片背景为在ibipore氮化硅膜上培养细胞的荧光染色结果,规则排布的白色圆点为氮化硅膜的孔隙ibipore有上下两个独立的通道(见图2),两个通道 overlap 的区域由一个孔径大小均一的氮化硅膜隔离开(见图3)。两个通道可以分别培养细胞,通过两种方式,细胞可以贴壁于氮化硅膜的上下两侧。在细胞侵袭实验中,普通的transwell只能将细胞培养在上侧,这样所得到的实验结果并不能明确的说明是由于重力作用还是侵袭能力本身造成的。而ibipore考虑到这一因素,建议实验者在氮化硅膜的下侧进行细胞培养,检测细胞向上侧通道进行迁移的能力,进而巧妙的排除了重力作用对侵袭实验的影响。配合ibidi流体剪切力系统以及加热孵育系统,可以在流动、剪切力条件下实时的观察细胞的侵袭以及迁移等实验。德国ibidi公司为满足不同实验的需求设计了不同孔径的氮化硅膜(见图4)。ibipore与传统的transwell实验最大区别有三点:①. ibipore可以在上下两个通道中培养细胞,这样可以观察细胞向上的侵袭情况,排除以往实验中重力作用的影响;②. ibipore中间的氮化硅膜具有良好的光学特性,可以实时成像观察侵袭情况,也可以进行免疫荧光染色实验;③. ibipore可以配合ibidi流体剪切力系统,观察淋巴细胞等在流动状态下的侵袭情况。ibipore产品介绍ibipore产品特点:* 透过薄而多孔的薄膜获得卓越的光学性能* 有着广泛的应用,细胞可完全粘附到顶部-基底* 对于不同细胞类型有多种孔径大小可以选择应用:1.流动状态下跨内皮细胞迁移2.2D或3D凝胶内细胞层的共培养和传输分析3.顶部-基底细胞极性分析4.顶部-基底梯度的细胞屏障模型分析5.细胞迁移分析(例如,用于研究肿瘤侵袭或转移)在μ-Slide ibiPore IV型胶原涂层3μm孔径中人类内皮细胞的免疫荧光染色,相位对比度、DAPI(蓝色)、VE钙粘蛋白(绿色)和F肌动蛋白(红色)的叠加图像。技术特点:1.SiMPore的微孔氮化硅膜2.中间具有多孔光学膜的跨通道结构3.优异的光学性能,堪比盖玻片4.孔径大小0.5μm,3μm,5μm,8μm供选择5.中间膜0.4µ m(400 nm)6.使用工作距离0.5mm的物镜7.与ibidi泵系统(流体剪切力系统)完全兼容8.下部通道中明确的剪切力和剪切速率范围µ -Slide ibiPore SiN工作原理µ -Slide ibiPore SiN由插入两个通道之间的水平多孔膜组成。上部通道是膜上方的静态储液池。下部通道是灌注通道,用于对附着在膜上的细胞施加限定的剪切应力。上部通道和下部通道仅通过隔膜彼此连通。图2. ibipore组成示意图多孔膜由氮化硅(SiN)制成,这种材料具有非常高的化学和机械稳健性。400nm厚的氮化硅膜非常适合成像和显微镜观察,没有任何自发荧光或透明度问题(如玻璃)。SiN材料可以直接用于贴壁细胞培养,也可以选择用ECM蛋白包被。应用建议:孔径 & 孔密度什么是孔密度孔密度是指膜的空隙体积分数。是孔隙的体积除以膜的总体积。下面的图形为采用相同的放大倍数。图3. 不同孔径的氮化硅膜不同应用的建议孔径:不同的细胞大小和直径不同,根据具体实验请选择不同孔径图 4. 为不同应用推荐的不同孔径的氮化硅膜Intended Use经证实的应用这些应用已由ibidi研发团队或者我们的用户进行过试验。Endothelial Barrier Assays内皮屏障分析在膜一侧培养单层细胞。细胞可以在静止或者流动剪切力条件下培养。Co-Culture and Cell Barrier Assay共培养和细胞屏障分析在膜的两侧分别培养单层细胞。通过这种方法可以进行信号传递、共培养以及迁移实验(例如,分析药物通过上皮或内皮屏障的传递)。Apical-Basal Cell Polarity Assays顶端-?基底端细胞极性分析3D凝胶基质中的化学因子可以导向在膜另一侧培养的单层细胞的极性发生。Potential Use潜在应用以下示例将讲述该产品进一步的潜在应用。ibidi仍需在内部测试这些应用,因此我们无法提供特定的实验方案。但是,从技术角度来看,这些应用应该是可行的。Trans-Membrane Migration in 2D/2D跨膜迁移在膜的一侧培养单层细胞。可以观察悬浮的白细胞在流动状态下的滚动、粘附以及侵袭情况。Cell Transport in a 3D Gel Matrix细胞在3D凝胶基质中的传递3D凝胶基质中的细胞迁移:在流动状态下,观察白细胞的滚动、粘附以及向3D凝胶基质中肿瘤细胞方向的迁移情况。Application Examples 应用实例MDCK和NIH-3T3细胞的相差显微镜观察Madin-Darby犬肾(MDCK,左)和NIH-3T3(右)细胞在μ-Slide ibiPore SiN,孔径0.5μm的玻片中,无蛋白质包被。接种后,将细胞在静态条件下在培养箱中保持20小时。相差显微镜,4倍物镜。请注意,这张图像中的中心多孔区域看起来更暗,因为0.5μm的孔隙无法用低分辨率物镜分辨。流动条件下HUVECS的相差显微观察人脐静脉上皮细胞(HUVEC)在μ-Slide ibiPore SiN中,孔径3μm的玻片中,有纤连蛋白包被。将细胞接种并在具有ibidi泵系统/流体剪切力系统的流动条件(10达因/cm2)下在培养箱中保持12小时。固定后的相位对比显微镜,10倍物镜。流动下HUVECs F肌动蛋白细胞骨架的荧光显微镜观察人脐静脉上皮细胞(HUVEC)在μ-Slide ibiPore SiN,孔径5μm玻片中的免疫荧光染色,有纤连蛋白包被。将细胞接种并在具有ibidi泵系统/流体剪切力系统的流动条件(10达因/cm2)下在培养箱中保持12小时。绿色:肌动蛋白(鬼笔肽),蓝色:细胞核(DAPI)。荧光显微镜,20倍物镜。选择指南:ibidi跨膜分析实验解决方案参考文献:Salvermoser, Melanie, et al. "Myosin 1f is specifically required for neutrophil migration in 3D environments during acute inflammation." Blood, The Journal of the American Society of Hematology 131.17 (2018): 1887-1898. 10.1182/blood-2017-10-811851Rohwedder, Ina, et al. "Src family kinase-mediated vesicle trafficking is critical for neutrophil basement membrane penetration." Haematologica (2019). 10.3324/haematol.2019.225722Non-Recommended Applications不建议的应用因技术原因,本产品不适用于以下应用,应避免使用.本产品不适用于:1.上通道灌流2.两个通道的灌流3.跨膜流动4.筛选应用订购信息
  • 明珠发布电子拉力试验机(铝合金护罩) 新品
    MZ-4000D2电子拉力试验机(铝合金护罩) 特点及用途: MZ-4000D2电子拉力试验机适用于金属、非金属、复合材料及制品的拉伸、压缩、弯曲、剪切、撕裂、剥离等物理性能试验。运用Windows7操作系统平台,图形图象化的软件界面、灵活的数据处理方式、安全的限位保护等功能。还具有算法自动生成、试验报告自动编辑功能;大大方便了调试和系统再开发能力,可计算力、屈服力、非比例屈服力、平均剥离力、弹性模量等参数;其结构新颖,性能稳定。操作简单、灵活,维护方便;集高度自动化、智能化于一体。可用于科研部门、大中专院校和工矿企业对各种材料进行力学性能分析和生产质量检验。技术参数: 1.量程范围:5kN 力值精度:2.力值精度:示值的±0.5% 以内 力值分辨率: 1/2500003.有效拉伸行程(不含夹具):900mm4.有效试验宽度:385mm5.变形精度:示值的±0.5%以内 6.位移精度:±0.5% 7.试验速度:0.01mm/min-900mm/min(滚珠丝杠+伺服系统)8.返回速度:1000mm/min(滚珠丝杠+伺服系统)9.打印功能: 可打印测试后的力值、抗拉强度、 断裂伸长率以及相应曲线等。 10.电 源: AC220V±5% 50Hz 11.主机尺寸: 650mm×580mm×1450mm 12.主机重量: 110kg 控制软件主要功能介绍: 1.测试曲线:力值-变形、力值-时间、应力-应变、应力-时间、变形-时间、应变-时间; 2.单位切换:N、kN、lbf、Kgf、g; 3.操作语言:中文简体,中文繁体,英文随意切换; 4.接口方式:USB;5.多传感器支持功能; 6.系统提供参数公式自定义功能,用户可以根据要求定义参数计算公式,并根据需要编辑报表;7.试验数据采用数据库管理方式,自动保存所有试验数据和曲线; 8.可将试验数据导成WORD、EXCEL、PDF格式; 9.同一组试验的多次试验数据及曲线可打印在一份报告中; 10.可将历史数据添加在一起进行对比分析; 11.可自动校正:标定过程中,在菜单中输入标准值,系统可自动实现示值的准确值标定。 配置:1. 日本松下伺服电机;2. 高精度减速机1台;3. 台湾滚珠丝杆;4. 全自动测力系统及光电编码器1套;5. 美国传感器1只;6. 铝合金护罩;7. 联想品牌电脑及彩色喷墨打印机1套(不含电脑柜);8. 标准拉伸夹具1付;9. 拉力机测控系统试验软件一套(含拉伸、压缩、剪切、弯曲、撕裂、剥离软 件); 10. 工作台、顶板及移动横梁等关键件的中心距均由日本小巨人LGMazak加工中心加工;11. 旋转件均由日本小巨人LGMazak车削中心加工。 创新点:试验速度:从0.01-500mm/min 变成0.01-900mm/min外观:从白铁件护罩变成铝合金护罩电子拉力试验机(铝合金护罩)
  • 以后,请将食品质构检测交给Labthink智能电子拉力试验机!
    近日,Labthink销售工程师收到了一份特殊的定制需求。这是一位山东面食制品企业的负责人,使用Labthink XLW(EC)智能电子拉力试验机已经两年了。这次,他提出了一个特殊的夹具定制需求——面团粘性测试装置。  面团粘性测试,属于食品质构检测领域,对于专注于包装检测近30年的我们来说,既新鲜又充满挑战。喜欢较劲的Labthink定制研发工程师们盯上了这块“硬骨头”,在对国内外知名质构仪的测试原理、结构设计以及各种配套测试装置进行了详尽研究之后,终于给用户交了一份完美的答卷。这也意味着,Labthink智能电子拉力试验机又开启了一项新技能——食品质构测试!  是的,你没看错,像薯片的脆性、巧克力的硬度、香肠嫩度、黄油的硬度、奶酪的涂抹性、谷物条和小薄饼的破碎度、面包的硬度、生面团的粘性/拉伸性、面条的硬度、断裂强度和拉伸强度都可以通过Labthink强大且开放的定制服务,利用XLW(EC)智能电子拉力试验机来实现。  XLW(EC)智能电子拉力试验机,是一台提供拉伸、撕裂、剪切、剥离、压缩测试功能的多用途力学性能测试仪器。除了测试传统塑料薄膜等材料的力学强度,通过定制的特殊夹具,也能实现食品自身的拉伸力、粘着力,穿刺力、断裂伸长率等性能测定。  仪器有500N和50N两种规格的力值传感器可选,优于0.5级的测试精度能出具更加精确的试验结果。试验夹具的进程和返程速度划分为五档,从50mm/min到500mm/min,为用户开展不同试验条件的测试提供了便利。  已经购买Labthink XLW系列其他型号智能电子拉力机的用户,也可以联系我们提出食品质构试验的定制要求。在仪器满足拓展功能的前提下,Labthink将竭力实现用户的需求。  Labthink兰光,致力于通过包装检测技术提升和尖端检测仪器研发帮助客户应对包装难题,助力包装相关产业的品质安全。
  • 2020年试验机新品盘点:共12款,报价从1万至100万不等
    2020年度,国内外仪器生产厂商相继推出了一些试验机新品,仪器信息网编辑特别对此进行盘点,共收录试验机相关产品12款,以飨读者。在此特别需要说明,本次试验机相关新品盘点的范围仅限于本网收录的不完全统计。12款试验机相关新品多为国产仪器,涉及三思纵横、和晟、明珠、东莞皓天、久滨仪器、兰光、国检集团等国产品牌以及英斯特朗、岛津等进口品牌,产品报价从1万至100万不等。英斯特朗 INSTRON 6800系列单立柱电子拉力试验机(价格区间:30万-50万)英斯特朗 INSTRON 3400系列双立柱电子拉力试验机(价格区间:30万-50万)英斯特朗INSTRON6800/3400系列试验系统可对所有原材料和成品执行拉伸、压缩、弯曲、剪切、剥离、撕裂、穿刺、蠕变等试验。它具有精度高、耐用性强、可灵活适应需求变化等特点,大大提高试验效率和改善操作员试验体验。可应用于整个生物医疗、汽车、电子和包装等行业的标准典范以用千测试各种材料及由塑料、复合材料、弹性体 、薄膜、纺织品 、胶黏剂和各种材料制成的产品。产品特点:1、如果需要快速得到试验结果,可以使用QuickTest功能,只需输入几个关键参数,即可在几秒钟内开始试验;2、预先设定的模板Bluehill Universal具有庞大的预设试验方法库,能够符合最常用的ASTM、ISO和EN标准。3、带提示测试、自动定位、操作员保护以及内置安全提示等。三思纵横 SUNS 890系列桌面式电液伺服疲劳试验机(报价 50万-100万)该机型电液伺服疲劳试验机主要用于测试复合材料、金属及非金属材料,以及各种部件的静态和动态力学性能。可实现拉伸、压缩、弯曲等疲劳试验,还可实现高周疲劳、低周疲劳、裂纹扩展、断裂力学等试验,实现正弦波、三角波、方波、随机波等各种波形加载。配置高温炉、高低温箱和腐蚀箱可实现不同环境下的力学性能测试。厂商发布创新点:1、主机外形设计精美,整体造型及做工精致;2、体积小,占用场地空间小,安装及维护方便;3、采用T型台框架结构,机架刚度大,稳定性好,可配置各种试验工装;4、采用封闭式油源,噪音低,环境安静;5、采用油浸电机驱动油泵的工作方式,散热快,噪音低,确保长时间试验稳定可靠;6、采用油缸升降横梁,可无极调节试验空间,满足各种试验需求。三思纵横 SUNS 891系列桌面式电子疲劳试验机(报价 50万-100万)该机型电子式疲劳试验机主要用于测试各种橡塑材料、生物医用材料、以及微小金属材料及部件的静态和动态力学性能。可实现拉伸、压缩、弯曲等疲劳试验,还可实现高周疲劳、低周疲劳、裂纹扩展、断裂力学等试验,实现正弦波、三角波、方波、梯形波等各种波形加载。配置高温炉、高低温箱和腐蚀箱可实现不同环境下的力学性能测试。厂商发布创新点:1、主机外形设计精美,整体造型及做工精致;2、体积小,占用场地空间小;3、桌面式结构,符合人机工程学原理要求,操作简易方便;4、能耗低,噪音低,无液压油源及密封系统,清洁环保,维护成本低;5、采用高精度滚珠丝杠无极调节试验空间,扩展各种试验需求。和晟 HS系列九工位电池片剥离试验机(报价 10万-30万)该试验机可实现试验力、试样变形和横梁位移等参量的闭环控制,以及恒力、恒位移、恒应变、等速度载荷循环、等速度变形循环等试验。用户还可以使用PC机专家系统自主设置恒应力、恒应变、恒位移等控制模式,各种控制模式之间可以平滑切换。 在进行拉伸试验时,用户可清晰地观察低碳钢、铸铁等整个试验过程。该试验机专业用于太阳能行业电池片180度剥离强度试验。厂商发布创新点:该试验机可安装九个力量传感器,配合和晟自主研发专用软件,可达到九个传感器同时使用,并且测试数据可同时显示在电脑软件上,操作无误差,方便好用。明珠 MZ-2000D2型50N微型电子拉伸压缩万能试验机(报价 6万) MZ-2000D系列适用于金属、非金属、复合材料及制品的拉伸、压缩、弯曲、剪切、 撕裂、剥离等物理性能试验。用于科研部门、大中专院校和工矿企业等对各种材料进行力学性能分析和生产质量检验。 厂商发布创新点:微型拉力机完成了从传统的900mm较高行程到100mm微型行程的转变,大大节省了试验所需的空间。明珠 MZ-4005型带扭矩10000转油封旋转试验机台(报价 面议)油封旋转性能试验机采用西门子可编程控制系统.适用于各种回转式油封进行密封性能的试验和研究工作,油封安装在验机上,主轴以一定的速度回转,经过一定时间的运行,观察油封是否渗漏,每次可试验2件油封,测试轴可正、反转。厂商发布创新点:区别于市场无扭矩油封旋转试验台,此款为带扭矩油封旋转试验台,可在常温和高低温环境内进行试验。东莞皓天 SMC-210PF-FPC型耐寒耐热FPC折弯试验机(报价 9.65万)该试验机主要用于弯折FPC电路板(俗称软件电路板)作弯折测试,如手机、PDA、电子词典、手提电脑等电子产品FPC软板的耐挠折、耐屈折寿命检测试验。FPC耐弯折试验机以手机盖板玻璃连接瑞的PFC作弯折寿命测试。厂商发布创新点:针对FPC某一特定的应用领域而开发出的全新专用仪器。久滨 JB-C5型建筑外窗综合物理三性能试验机(报价 面议)现行标准GB/T7106-2019是2008年颁布的升级版,对于门窗抗风压的能力提高到8000Pa;对气密性的检测方法做了较大的修改,增加了气密性检测扣箱,检测试件通过气密性扣箱泄漏的空气量来确定试件的气密性。这些要求给门窗物理性能检测设备提出了更高的要求,其结构也发生了相应的改变。JB-C5系列建筑外窗综合物理性能试验机完全符合即将颁布的国家标准GB/T7106-2019各项技术指标的要求。厂商发布创新点:建筑外门窗气密水密抗风压性能检测,满足GB/T 7106-2019最新标准。兰光 C660B包装密封测量仪 负压密封试验机(报价 1万-3万)C660B包装密封测量仪 负压密封试验机,专业适用于食品、制药、医疗器械、日化、汽车、电子元器件、文具等行业的包装袋、瓶、管、罐、盒等的密封试验。亦可进行经跌落、耐压试验后的试样的密封性能测试。厂商发布创新点:1、多重试验模式,智能统计合格数量; 2、全新-专利-智能,全触控操作系统。国检集团 DST-Ⅴ1200型固体材料弹性模量测试仪(报价 10万-20万)DST-Ⅴ1200型固体材料弹性性能测试仪采用动态法(脉冲激振法)测试各种固体材料在不同温度下的弹性模量,包括杨氏弹性模量、剪切弹性模量和泊松比。仪器测量温度范围:室温-1200℃,设置升温曲线后,仪器可连续自动测量,无人值守。厂商发布创新点:1、弹性模量测量的温度上限控制在1200度,满足大多数客户需要,降低仪器采购成本;2、自动化程序高,仪器可连续测量样品在室温至1200度的的弹性模量,无人值守,自动生成不同温度下弹性模量数据曲线;3、仪器桌面摆放,占地小,开机即用,无需预热、校准或调整,测试速度快。支持网络版的岛津试验机软件LabSolutions™ AGLabSolutions™ AG软件可为试验机数据提供保密、安全的网络化数据管理系统,完全符合制药和医药设备行业机械特性测试的法规技术要求。可兼容AGX-V,AG-X,AGS-X和EZ-X等型号的试验机,以及兼容单一软件和控制软件。
  • 实现精准的基因剪切 中国科研人员开发出新型“基因剪刀”载体
    p  新华社华盛顿4月6日电(记者 周舟)来自南京大学、厦门大学和南京工业大学的科研人员日前在新一期美国《科学进展》杂志上发表论文说,他们开发出一种“基因剪刀”工具的新型载体,可实现基因编辑可控,在癌症等重大疾病治疗方面具有广阔的应用前景。/pp  被誉为“基因剪刀”的CRISPR基因编辑技术能精确定位并切断DNA(脱氧核糖核酸)上的基因位点,可以关闭某个基因或引入新的基因片段,从而达到治病目的。但脱靶效应一直是阻碍其应用的关键障碍之一。/pp  论文通讯作者、南京大学现代工程与应用科学学院教授宋玉君对新华社记者说,目前的CRISPR-Cas9技术本身具有脱靶效应,给精准治疗带来挑战,且这种技术主要以病毒为载体,还可能导致细胞癌化。/pp  据介绍,研究人员新开发的方法采用了一种名叫“上转换纳米粒子”的非病毒载体。这些被“锁”在“基因剪刀”CRISPR-Cas9体系上的纳米粒子可被细胞大量内吞。由于strong这些纳米粒子具有光催化性,在无创的近红外光照射下,纳米粒子可发射出紫外光,打开纳米粒子和Cas9蛋白之间的“锁”,使Cas9蛋白进入细胞核,从而实现精准的基因剪切/strong。研究显示,strong这种方法的有效性已在体外细胞和小鼠活体肿瘤实验中得到验证。/strong/pp  宋玉君说,红外光具有强大的组织穿透性,这为在人体深层组织中安全、精准地应用基因编辑技术提供了可能。/p
  • 高分子表征技术专题——流变技术在高分子表征中的应用:如何正确地进行剪切流变测试
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读.期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献.借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!原文链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304.2020.20230《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304流变技术在高分子表征中的应用:如何正确地进行剪切流变测试刘双1,2,曹晓1,2,张嘉琪1,2,韩迎春1,2,赵欣悦1,2,陈全1,21.中国科学院机构长春应用化学研究所高分子物理与化学国家重点实验室 长春1300222.中国科学技术大学应用化学与工程学院 合肥230026作者简介:陈全,男,1981年生.中国科学院长春应用化学研究所研究员.本科和硕士毕业于上海交通大学,2011年在日本京都大学取得工学博士学位,之后赴美国宾州州立大学继续博士后深造.于2015年回国成立独立课题组,同年当选中国流变学学会专业委员会委员;于2016年获美国TA公司授予的DistinguishedYoungRheologistAward(2~3人/年),同年入选2016年中组部QR计划青年项目;于2017年获基金委优青项目资助;于2019年入选中国化学会高分子学科委员会委员,同年获得日本流变学会奖励赏(1~2人/年),目前担任《NihonReorojiGakkaishi》(日本流变学会志)和《高分子学报》编委 通讯作者:陈全,E-mail:qchen@ciac.ac.cn摘要:流变学是高分子加工和应用的重要基础,流变学表征对于深入理解高分子流动行为非常重要,获取的流变参数可用于指导高分子加工.本文首先总结了剪切流变测试中的基本假设:(1)设置的应变施加在样品上,(2)应力来源于样品自身的响应和(3)施加的流场为纯粹的剪切流场;之后具体阐述了这些假设失效的情形和所导致的常见的实验错误;最后,通过结合一些实验实例具体说明如何培养良好的测试习惯和获得可靠的测试结果.关键词:流变学/剪切流场/剪切流变测试目录1.流场分类2.剪切旋转流变仪概述2.1测试原理2.2测试模式3.旋转流变仪测试中的常见问题3.1测试过程的基本假设和常见问题概述3.1.1输入(输出)应变为施加在样品上的应变3.1.2流场为简单的剪切流场3.1.3输入(输出)应力为样品的黏弹响应3.2测试中常见问题I:仪器和夹具柔量3.3测试中常见问题II:仪器和夹具惯量的影响3.4测试中常见问题III:样品自身惯量的影响3.5测试中常见问题IV:二次流的影响3.5.1同轴圆筒夹具二次流边界条件3.5.2锥板和平板夹具二次流边界条件3.6测试中常见问题V:样品表面张力3.6.1样品的各向对称性3.6.2样品本身表面张力大小3.6.3大分子聚集3.7测试中常见问题VI:测试习惯3.7.1样品的制备:干燥和挥发问题3.7.2确定样品的热稳定性3.7.3样品体系是否达到平衡态3.7.4夹具热膨胀对测试的影响3.7.5夹具不平行和不同轴对测试的影响4.结论与展望参考文献流变学是研究材料形变和流动(连续形变)的科学,其重要性已在学术界和工业界得到了广泛的认可.流变仪是研究材料流变性能的仪器,利用流变仪进行流变测试已成为食品、化妆品、涂料、高分子材料等行业的重要表征和研究手段[1~8].本文从流变测试的角度,详细介绍了流场的分类和旋转流变仪测试的基本原理和测试技巧,重点阐述了剪切流变学测试中的基本假设和这些假设在特定的条件下失效的情况.最后,通过结合具体的实验测试实例,详细地阐述了如何避免流变测试中的错误和不良测试习惯.笔者希望本文能够对流变学测试人员有一定的帮助和启发,找到获得更可靠和准确的实验测试结果的有效途径.1.流场分类高分子加工过程中的流场往往非常复杂,例如:在共混与挤出的工艺里,占主导的流场是剪切流场;在吹塑和纺丝等工艺里,占主导的流场是拉伸流场.更多加工过程中,用到的流场是剪切与拉伸等流场的复合流场[9~12].在流变学测试中,为了得到更明确的测试结果,往往选择比较单一和纯粹的流场,如剪切或者单轴拉伸流场(此后简称“拉伸流场”).流变仪的设计往往需要实现特定的流场,并表征材料在该特定流场下的响应.虽然剪切流场和拉伸流场在高分子加工中同等重要,高分子流变学的测试研究却呈现了一边倒的局面:目前大量常用的商用流变仪,如应力和应变控制型的旋转流变仪、转矩流变仪、毛细管流变仪的设计基础都是针对剪切流场的(利用这些仪器仅可进行比较粗略的拉伸流变测试,例如在旋转流变仪的基础上添加如SentmanatExtensionalRheometer在内的附件测量拉伸黏度[13]或者利用毛细管流变仪的入口效应来估算拉伸黏度.),而针对拉伸流场的拉伸流变仪则比较稀缺.剪切和拉伸流场自身的区别是造成以上局面的主要原因.图1中分别展示了剪切和拉伸2种形变[14].施加剪切形变时(图1上),力位于样品顶部,力的方向与上表面平行,该应力会造成样品的剪切形变,而连续的剪切形变则称为剪切流动.剪切流动的特点是,底部速度为0(不考虑滑移),顶部速度最大,速度梯度的方向与速度的方向垂直.而施加拉伸形变时(图1下),力位于样品右侧,力的方向与右侧面垂直,该应力会造成样品拉伸形变.同样,连续的拉伸形变称为拉伸流动.拉伸流动的特点是,样品左侧固定,速度为0,右侧拉伸速度最大,因此速度梯度的方向与速度方向平行.施加剪切流场时,剪切速率等于上表面的绝对速率除以两板间的距离.在旋转流变仪中,使用匀速转动的锥板或者同轴圆筒即可实现单一的剪切流场.然而,拉伸速率的大小等于右侧表面绝对速率除以样品的长度.在拉伸过程中,样品越拉越长,因此右侧面的速度需要越来越大,方可实现稳定的拉伸流场.假设t时刻样品的长度为L,则此时的拉伸速率等于[15]:图1Figure1.Illustrationoftworepresentativemodesofdeformation:thesimpleshearforwhichthedirectionofvelocitygradientisperpendiculartothatofvelocity,andtheuniaxialelongationforwhichthedirectionofvelocitygradientisparalleltothatofvelocity.(ReprintedwithpermissionfromRef.[14] Copyright(2012)Elsevier)将式(1)进行积分可以得到L(t)=L0exp(ε˙t),表明样品的长度正比于时间的幂律函数.为了实现稳定的拉伸流场,实验中右侧面速度随时间呈指数增长,因此拉伸流场相较剪切流场更难以实现,这就是造成拉伸流变仪器较为稀缺的主要原因.有人要问,为什么需要测试2种典型流场,我们能从剪切实验的结果来推导其拉伸的行为吗?对于线性流变的行为,答案是肯定的.即当体系位于平衡态附近,施加微弱的扰动时,拉伸黏度ηE,0与剪切黏度η0存在着简单的正比关系ηE,0=3η0=3∫0tG(t′)dt′,其中G(t)为线性剪切模量相对于时间的函数[16,17].该正比关系由Trouton在牛顿流体中发现,被称作Trouton比[18].然而,对于流场较强的非线性的流变测试,无法从剪切流变行为直接推导拉伸流变行为,或反之,从拉伸流变行为推导剪切流变行为,主要原因是,剪切与拉伸测试不同流场下的应力张量的不同分量:如在图1中可见,剪切测试中主要测量上板作用力Fs,其除以上板面积可得到剪切条件下应力张量σ的xy分量,而拉伸测试中主要测量右侧力FE,其除以右侧面面积主要得到拉伸条件下应力张量的xx分量.2.剪切旋转流变仪概述本文重点介绍剪切流变测试中的仪器原理和测试技巧(笔者计划在后续文章介绍拉伸测试的原理和技巧).目前商业的用于剪切测试的流变仪为旋转流变仪和毛细管流变仪.本小节主要围绕旋转流变仪展开介绍.旋转流变仪主要分为应力控制型和应变控制型2种.应力控制型旋转流变仪一般使用组合式马达传感器(combinedmotortransducer,CMT),即驱动马达和应力传感器集成在一端,也被简称为“单头”设计;应变控制型的流变仪一般使用分离的马达和传感器(separatemotortransducer,SMT),即驱动马达和应力传感器分别集成在上下两端,简称为“双头”设计,这2种设计的主要区别在于:“单头”设计更为简单,仪器容易保养和维护,但是夹具和仪器的惯量、马达内部的摩擦力容易对应力的测试结果造成影响,需要对仪器定期进行校正;“双头”的设计更为复杂,仪器操作步骤较多,需要更专业的仪器培训和仪器维护来防止操作不当带来的仪器损害,但是由于其马达和应力传感器分离的优势,可以更准确地进行应变和应变速率控制模式的测量,“双头”的流变仪的测试范围更宽,可以在更高的频率和更低的扭矩下得到准确的测试结果.下面我们将从旋转流变仪的测试原理(2.1节)和测试模式(2.2节)两个方面分别对于剪切流变测试进行简单的概述,这部分内容对于“单头”或者“双头”流变仪同样适用.之后,我们会结合具体例子详细地介绍流变仪测试中需要注意的问题,部分内容会涉及“单头”和“双头”流变仪的区别.对于流变测试比较熟悉的读者可以跳过2.1和2.2小节,直接阅读第3节.2.1测试原理对于旋转流变仪,无论是应力控制还是应变控制模式,应变γ和应变速率γ˙均分别通过电机马达旋转的角位移θθ和角速率Ω转换得到,而应力均通过扭矩T(T=R×F,其中F为力,R为力臂)转化得到,上式中Kγ和Kσ分别为应变因子和应力因子,由测试夹具的类型、大小、间距等夹具的几何因子决定,而流变学测得的所有流变学参量,如剪切模量,黏度等都是应力应变的函数.因此,可以从原始测量的角位移θθ、角速率ΩΩ、扭矩T和应变因子Kγ、应力因子Kσ计算得到:剪切流变测试中通常用到的夹具为平行板、锥板和同轴圆筒3种,其基本结构、流场特征,应变和应力因子(Kγ和Kσ)总结在图2中.图2Figure2.GeometryandparametersKγandKσofparallel-plate,cone-and-plateandCouettefixtures平行板、锥板和同轴圆筒三者基本结构的特点也决定了其使用场合不同,具体总结如下:(1)平行板夹具具有剪切流场分布不均一的特点,施加应变时,其圆心处剪切应变为0,最外侧剪切应变最大,应变沿半径方向线性增加;平行板夹具的优点是制样和上样都很方便,但由于其内部流场不均一的特点,平行板夹具一般只用于线性流变测试.但是,对于一些特殊的实验需求,选择平板进行剪切实验具有一定的优越性.例如,可以利用平板间剪切速率随半径线性增加的特性,研究不同剪切速率下的流动诱导结晶行为[19,20].(2)锥板夹具相对于平行板夹具具有内部剪切流场均一的特性,但其制样和上样相对于平行板要复杂,特别是难以流动的样品上样比较困难,因此一般仅在非线性流变测试时选择.此外,需要注意的是,为了避免测试时锥板和其对面板直接接触,通常在锥面顶点处截去一小段锥尖,使用锥板测试时,设定的夹具间距即被截去的锥尖高度.(3)同轴圆筒夹具相对于平行板和锥板通常需要使用更多的样品,但是由于其具有较平行板和锥板更大的夹具/样品接触面积和测试力臂(介于样品内径R1和外径R2之间),使用其测试可得到更高的扭矩,因此,其可用于测试更低黏度的样品.2.2测试模式仪器测试的基本原理通常是对样品施加一个扰动或者刺激并记录其响应.在旋转流变仪的测试中,通常对样品施加应变并记录应力响应,或反之,施加应力并记录应变的响应.根据施加应变或应力随着时间的变化情况,流变测试通常可以分为稳态、瞬态、动态3种测试模式(如图3),总结如下:图3Figure3.ThedifferentresponsesofNewtonianfluid,Hookeansolid,andviscoelasticmaterialstotheimposedsteadyflow(stressgrowth,transientorsteadymodethatdependsonthefocus),stepstrain(stressrelaxation,transientmode),stepstress(creepandrecovery,transientmode)andsmallamplitudeoscillatoryshear(SAOS,dynamicmode).(1)稳态测试模式通常测试样品在外加流场达到稳定状态下的响应.通常,达到稳定的状态需要一定的时间,如果测试关注的是体系达到稳态过程,其测试模式一般称作瞬态模式,而如果测试关注的是体系达到稳态之后的过程,则测试模式为稳态模式.通常仪器的软件内置了一些检验样品是否达到稳态的标准,如剪切速率扫描测试的过程中,仪器会记录应力的变化,当其测试应力在一定的时间内稳定后,仪器才会记录此时的应力.剪切条件下,牛顿流体通常可以瞬间达到稳态流动,黏弹体通常需要一定的时间达到稳态流动,而胡克固体通常应力随应变增加,在结构不破坏的前提下无法达到稳态流动.(2)瞬态测试模式通常指从一个状态瞬间变化到另一个状态的过程,如施加阶跃应变(应变控制模式)、阶跃应力(应力控制模式)或者阶跃剪切速率等.其中最典型的测试就是,施加一个固定应变,记录应力随时间变化的应力松弛(stressrelaxation)测试,施加或撤销一个固定的应力,记录应变随时间变化的蠕变和回复(creepandrecovery)测试,或者施加一个阶跃剪切速率,记录瞬态黏度随时间变化的应力增长测试(stressgrowth).这些测试的共性是关注样品在一个特定刺激下的转变过程.以阶跃应变为例,迅速施加应变后,牛顿流体的应力可迅速松弛,胡克固体的应力达到一个恒定值无法松弛,而黏弹体的应力需要经过一定的时间松弛,这个时间通常反映黏弹体系在应变下结构重整的特征时间.(3)动态测试模式是施加一个交变的应变或者应力,如正弦变化的交变应变或者应力,并记录响应.以施加正弦应变的测试为例,由于测试的频率和应变大小均可调整,因此,测试有很大的参数空间.通常,小应变下,体系结构仅稍微偏离无扰状态,应力响应的信号也是正弦波,该测试通常被称作小振幅振荡剪切(smallamplitudeoscillatoryshear,简称SAOS).对于胡克固体,应力的相位与应变相位相同;而对于牛顿流体,则应力的相位与应变速率(应变对时间的导数)的相位相同,与应变相位差π/2;对于黏弹体,应力的相位与应变的相位在0~π/2之间.当应变较大时,体系的结构严重偏离无扰状态且随时间改变,此时的应力响应通常不是正弦波,该测试通常被称作大振幅振荡剪切(largeamplitudeoscillatoryshear,简称LAOS).需要指出的是,一些仪器软件会用正弦波来拟合非正弦的应力结果得到包括模量在内的测量结果,此时对于结果的解读需要非常小心.因此,一般的测试过程中建议打开仪器的应力记录来观察测量应力波的波形,并据此判定测试的线性/非线性.3.旋转流变仪测试中的常见问题3.1测试过程的基本假设和常见问题概述上文提到,旋转流变仪的原始测量的角位移θ和扭矩T可转化为应变和应力.然而,测量的应变和应力是否就是施加在样品上的真实的应变和应力呢?这显然是流变测试中最关键的问题.需要指出的是,旋转流变仪的测试结果是建立在3个基本假设上面的:(1)应变作用在样品上;(2)应力为样品自身的响应;(3)流场为简单剪切流场.这些假设都是会在一定的测试条件下失效,从而导致测试结果不可靠.接下来我们将详细地介绍这些假设条件分别在什么测试情况下失效.3.1.1输入(输出)应变为施加在样品上的应变该假设的关键在于没有考虑仪器和夹具柔量的影响,即假设样品的应变可以直接从角位移得到.然而,在力的作用下,仪器和夹具自身也会旋转一定的角度.只有当该角位移远小于作用在样品上角位移时,上述假设才能成立.由于夹具通常由不锈钢或者其他金属材料制造,其模量通常在~1011Pa或者更高的范围,而测试样品,特别是高分子材料即使是在玻璃态,模量通常小于1010Pa,因此,似乎夹具的形变可以忽略.但是,需要指出的是,平板和锥板的夹具通常被设计成细长空心的圆柱形,而夹具中间的样品通常为扁平的圆片状,这种形状上的差异会显著增加夹具柔量的影响.除此之外,夹具与样品之间的滑移也可造成施加应变和样品实际应变的区别[21~23].这种滑移会消耗一部分施加的角位移,假设被消耗的角位移为θslip,则样品上的实际角位移θeff小于施加的角位移θ(=θslip+θeff).对于平行板样品,由于应变参数Kγ=R/H,这使得在相同的实际应变Kγθeff下,旋转的角位移θeff随着板间距H的增加而增加,而θslip则改变较少,因此,滑移的效应会随着板间距的增加而弱化,该结果也可以用做滑移是否存在的间接判据:即如果存在滑移,则其造成的误差会随着板间距的增加而减少.对于滑移效应更为直接的判据就是通过微小的示踪粒子直接观测板附近的粒子的运动是否和板的运动一致.3.1.2流场为简单的剪切流场上文中提到,剪切流变仪设计的一个基本原则就是生成纯粹的剪切流场并记录样品在该流场下的响应.然而,由于受到界面和样品自身的影响,样品中实际的流场未必为纯粹的剪切流场,该效应通常在大剪切速率下出现.例如,对于同轴圆筒夹具测试低黏度样品,当泰勒数大于一个定值时,或者对于平行板和锥板测试低黏度样品,当雷诺数大于一个定值时,流场会偏离简单的剪切流场.以平行板为例(如图4所示),在高雷诺数下,由于离心作用,旋转的上板附近的流体沿着板的径向向外运动,为了填补这些流体流出的空隙,静止下板附近的流体会沿着径向向内运动,这2种流体的运动就会造成一次流基础上出现叠加的二次流,从而导致测试扭矩的增加和相应的剪切增稠假象[24].图4Figure4.Thesecondaryflowoccurswhensampleunderrotarygeometrymovesradiallyoutwardandsampleonthestaticgeometrymovesradiallyinward.对于具有一定弹性的样品,假设其自身的松弛时间为τ,当韦森堡数Wi=τγ˙大于1时,也可能会在低泰勒数(同轴圆筒)或者低雷诺数(平行板或者锥板)的条件下出现弹性非稳定二次流,这种二次流的出现也会造成剪切增稠的假象.下文中,我们会对同轴圆筒和锥板以及平板出现二次流的边界条件进行更详细的讨论.此外,在高度缠结的高分子溶液或者高分子熔体等黏度较高的体系中,剪切速率过高的时候可能会出现剪切带或者较强的壁面滑移,这种剪切速率的非均一分布往往有利于体系自由能的降低.对于高分子熔体,在高剪切速率时,自由表面附近可能出现熔体破裂的现象.这些现象的出现也都会导致测量体系的流场严重偏离简单剪切流场.通常,剪切带、壁面滑移和熔体破裂等现象都会导致体系的应力减少及随之增强的剪切变稀效应(应力或者黏度随时间急剧下降).对于一些极端的情况,甚至会出现剪切应力σ不随剪切速率γ˙γ˙的增加而增加的特殊现象(此时黏度η=σ/γ˙γ˙~γ˙β且β≤−1).为了减弱熔体破裂的现象带来的实验误差,通常可以采用锥板加组合板的特殊夹具(cone-partitionedplate,简称CPP夹具)(如图5所示).CPP夹具中,锥板(绿色)与马达相连,组合板分为2个部分,中心平板(尺寸小于锥板,灰色)和环绕中心平板的环状板(蓝色),两者同轴且分离,共同组合成类似于与锥板同等大小的平板.其中,中心板与传感器相连并记录扭矩,环状板与仪器相连且被固定.测试过程中,一般熔体破裂发生在样品边缘.因此,只要当破裂的边缘没有深入到中心板,所记录的扭矩受到边界熔体破裂的影响就可以忽略[25].图5Figure5.SchematicviewoftheCPPfixture.Green:cone red:sample blue:outerpartition(section) yellow:translationstages(section) orange:bridge(section) grey:innertool(Drawingnotinscale).Thesamplediskshouldhavesizesufficientlylargerthantheinnerplate.(ReprintedwithpermissionfromRef.[25] Copyright(2016)AmericanChemicalSociety)3.1.3输入(输出)应力为样品的黏弹响应其实,上述二次流出现是由样品内部流场的不稳定性带来的效应,会导致额外的应力.在流变测试中,另一个无法忽略的就是测试扭矩的贡献中包含仪器和夹具自身的惯量的贡献.对于真实样品的测试扭矩应该等于测试总扭矩减去仪器和夹具自身的惯量造成的额外扭矩.上面文中提到,对于纯弹性的流体,流变测试中其自身的弹性产生的扭矩T与旋转角度θ具有正比的关系,即T~θ,此时T相对于θ的相位角δ为0°;对于纯黏性的样品,流变测试中其自身的黏性所产生的扭矩与旋转角度相对于时间的导数具有正比的关系,即T~θ˙,此时T相对于θ的相位角δ为90°;对于惯性导致的扭矩,其大小与加速度成正比,即T~θ¨,此时T相对于θ的相位角δ为180°,这种区别可以作为出现惯量效应的判据.例如,在动态测试中,样品黏弹性引起的相位角在0°和90°之间,一旦测试时出现了90°和180°之间的相位角,则必然出现了仪器惯量效应.特别是在高频动态测试中,由于θ=θ0sin(ωt),则惯量I贡献的扭矩高达T0=Iω2θ0,因此,商业的旋转流变仪通常频率ω的测试上限在102rad/s.虽然有些仪器支持测试更高的频率,如103rad/s或者更高,但是测试高于102rad/s的数据时,需要时刻注意分析惯量对于扭矩的贡献.此外,由于自由表面的存在,表面张力对于扭矩的贡献有时也是难以忽略的,该贡献在低黏度的样品中表现得尤为突出.由于表面张力的存在,样品具有收缩表面积的趋势,这会造成剪切作用下界面形状或面积变化时额外的法向力或者剪切力.例如,在平板和锥板夹具中,样品过度充满或者未充满的时候,样品的自由表面会产生突出或者凹陷的曲面结构,这种曲面结构的产生会引起额外的法向力.当样品在剪切流场中,自由表面的面积也会随之出现波动性的变化,这种变化通常会产生弹性应力响应,从而导致额外的应力贡献.通常可以通过填充合适量的样品、增加样品的各方向对称性和引入表面活性剂降低表面张力等方法来抑制表面张力的影响.下文中,我们会结合一些实验实例进一步阐释上述旋转流变仪测试的假设条件失效的情况.此外,我们总结了流变测试中一些不良测试习惯导致无法正确获取实验数据的情况.最后,我们会针对上述内容,给出一些避免类似错误结果的建议.3.2测试中常见问题I:仪器和夹具柔量流变仪能够准确测量样品模量的一个前提是传感器和夹具的柔量远小于样品的柔量,或者换言之,传感器和夹具的刚度远大于样品的刚度(刚度等于柔量的倒数).其中,夹具的刚度不仅与夹具的模量相关,也与夹具的尺寸和形状相关.如果将夹具设计成圆柱形,则其刚度κ与夹具横截面半径R的4次方成正比,与圆柱体的高h成反比:一方面,为了抑制样品的温度对传感器和马达的影响,并减少夹具的惯量,平行板和锥板夹具常被设计成细长的形状(较小的R和较大的h),这种结构会减少夹具的刚度;另一方面,为了增加样品的测试扭矩,常将样品制成扁平的形状,这种形状的差别使得夹具与样品刚度的区别远低于制造夹具的材料和样品模量上的区别,而导致实际施加在样品上的真实应变低于设定应变,这种应变的误差会导致样品流变测试结果的显著误差.例如,刘琛阳等分析了双头应变控制型流变仪ARESG2(TA)的仪器柔量对线性黏弹性的影响[26].如图6(a)所示,在样品模量大于105Pa时,用25mm平行板的测量结果明显偏离8mm平行板的测量结果.虽然样品的模量不发生变化,样品的刚度随着尺寸R的增加而增加,造成了测量时夹具产生了更多的形变,这导致了实际施加在样品上的应变的减少和相应的测试模量的降低;为了说明这个问题,图6(b)展示了相对于指令应变(黑色方块),经过传感器校正后的实测应变(红色圆点)较小,而经过夹具校正后的应变则更小(绿色三角),该应变可反映施加在样品的实际应变.图6Figure6.(a)Theeffectofgeometrycomplianceonlinearviscoelasticity (b)Comparisonofcommandedstrain(as100%),measuredstrain(withforcerebalancetorquetransducers(FRT)compliancecorrection),andcorrectedstrain(withtoolcorrection)obtainedforapolyisobutylenesampleat−20°Cusing25mmparallelplates(ReprintedwithpermissionfromRef.[26] Copyright(2011)SocietyofRheology)为了准确地测量样品的模量,通常建议选取合适尺寸的夹具来直接测量.由于夹具的形变通常正比于扭矩,因此在测量较高模量范围的样品时,为避免柔量的影响,需减少样品和夹具尺寸来降低扭矩.而对于测量较低黏度的样品,需要增加样品和夹具的尺寸来增加扭矩,使得扭矩大于仪器传感器的测试下限.笔者的经验是,25mm板使用的上限通常为~105Pa,8mm板的使用上限为~107Pa,而如果需要准确地测量高分子玻璃态模量(~109Pa),需要使用3mm左右的夹具.对于黏度极低的样品,除了选择更大的板(如50或60mm的夹具)以外,还可以使用过采样技术(oversampling)[27],拓宽动态测试的扭矩测试下限,提高相位角的准确程度.但是考虑到小夹具上样的困难,可利用柔量校正来拓展夹具的使用上限.很多流变学者具体研究了柔量的校正方法,例如1982年,Gottlieb和Macosko[28]讨论了仪器柔量对动态流变测量的影响以及力传感器的校正方法.在2008年,Hutcheson和McKenna[29]详细地研究了夹具尺寸对玻璃化转变区附近的流体的动态振荡测试和应力松弛测试结果的影响,并提出相应的校正方法.本文以Hutcheson和McKenna的校正方法为例[29],简单介绍一下动态剪切数据的校正方法.为了准确测定特定夹具下整个仪器系统的柔量系数,作者设计加工了上下板“连体”的参比夹具(如图7所示),并直接测量了参比夹具的柔量.根据柔量相加原则,流变仪器实测复合扭转刚度κ0∗的倒数等于仪器夹具刚度κt和样品刚度κs∗的倒数之和:由于仪器和夹具的柔量均来源于其固体弹性,可以将两者简化为一个与黏弹样品串联的弹簧,其刚度可简化为实数κt.在已知κt的基础上,可利用公式(6)校正测试的实验数据κmes∗,得到样品的实际复数刚度κs∗.图7Figure7.Asimpleschematicshowingthegeometryofthesolidrodandthedisposableplatens(ReprintedwithpermissionfromRef.[29] Copyright(2008)AmericanInstituteofPhysics).3.3测试中常见问题II:仪器和夹具惯量的影响对于仪器和夹具惯量的校正是准确进行瞬态和动态流变测试的基础.旋转流变仪测得的扭矩不仅来源于样品自身的应力响应,也来源于马达和夹具在加速过程中的惯量贡献.早在1991年,Krieger等讨论了单头的应力控制型流变仪仪器和夹具惯量对测试的影响[30],他们发现,当仪器施加恒定的扭矩时,部分扭矩用于加速驱动马达和夹具旋转,当旋转速度达到稳定时候,测试的扭矩才是真实的样品扭矩.最近,Lauger等研究了流体在振荡剪切模式下的仪器和夹具惯量的影响[31],并给出了通过流变仪测量的实测扭矩、样品产生的扭矩以及仪器和夹具自身惯量产生的扭矩的三者之间的矢量关系(图8).图8Figure8.Vectordiagramoftorques,includingaccelerationtorqueTa,totalorelectricaltorqueT0,andsampletorqueTs,whereδδandααarephaseangleofT0andTs,respectively.ThesampletorquecanbedecomposedintoviscouspartTvandelasticpartTe(ReprintedwithpermissionfromRef.[31] Copyright(2016)SocietyofRheology).其中,仪器测试的实测扭矩T0等于样品扭矩Ts和仪器加速惯量产生的扭矩Ta之和.换言之,样品产生的扭矩应该等于总扭矩减去仪器加速时惯量产生的扭矩,该扭矩可利用相位角分解成弹性贡献部分Te和黏性贡献部分Tv.此外,Lauger等研究表明[31].:对于牛顿流体,惯量产生的扭矩与样品扭矩的比率可表达为其中I为测量设备的转动惯量,|G∗|为样品的复数模量的绝对值,ω为测试的角频率.然而,需要指出的是公式(8)仅适用于牛顿流体,对于黏弹性体系并不准确.据此,可以通过计算仪器和夹具惯量产生的扭矩与样品扭矩之比来判断仪器和夹具惯量的影响.例如:图9展示了Lauger等利用单头的MCR系列流变仪(AntonPaar)测试黏度为4mPas的S4oil频率扫描测试.在测试的频率范围内,该流体应为牛顿流体.其中蓝色正三角表示实测的扭矩T0,绿色倒三角表示校正了仪器和夹具惯量贡献后的样品贡献的扭矩Ts.在最低频区域,实测扭矩与样品贡献扭矩近似相等,说明样品的贡献占主导,此时测得的复数黏度(红色圆)接近样品稳态黏度4mPas.但是随着频率的增加,实测扭矩大于样品贡献的扭矩且两者差距逐渐增加,在频率小于25rads−1(竖箭头所示)的区域,虽然实测扭矩已经远大于样品的扭矩贡献,即实测的T0/Ts已接近2个数量级(横箭头所示,这与通过公式(8)计算的结果Ta/Ts=Iω2Kσ/(Kγ|G∗|)=IωKσ/(Kγ|η∗|)=95近似相等),经过校正得到的样品扭矩计算的黏度仍然接近4mPas,说明测试结果仍然有效.该例子展示了当前流变仪的技术水平已经臻于成熟:即使在惯量贡献的扭矩占主导的情况下,仍然可以通过仪器校正得到准确的样品扭矩.但是在频率高于25rads−1区域惯量校正开始失效,造成了稳态黏度激增的假象.图9Figure9.FrequencysweepmeasurementontheS4oilsamplewithviscosityof4mPas(CP60-0.5geometry).Inadditiontothecomplexviscosity,themeasuredtotaltorqueT0andthesampletorqueTsobtainedaftertheinertiacorrectionareplottedagainstangularfrequencyωω.Arrowspointtodatapointsat25rads−1(seetext),abovewhichtheinertiacorrectionfails.(ReprintedwithpermissionfromRef.[31] Copyright(2016)SocietyofRheology)在动态振荡测试中,样品黏弹性引起的相位角应当在0°和90°之间(图8所示),因为90°和0°相位角分别对应纯黏性和纯弹性的扭矩贡献Tv和Te,而惯量产生的相位角为180°.图8中,高频处仪器测试的实测扭矩T0远大于样品测试扭矩Ts,表明仪器加速扭矩Ta在测试T0中占据主导,此时的相位角应接近180°.因此,一旦测试时出现了90°和180°之间的相位角,或者动态测试出现G' ~G"~ω2的结果,即可判定出现了仪器惯量效应[32].为了避免实验测试中的不良数据,仪器惯量造成的扭矩Ta与材料自身产生的扭矩Ts之比Ta/Ts应小于一个极限值(该值与仪器的状态和校正的准确性相关).减少惯量影响的一个行之有效的方法是选择合适的夹具.公式(8)中,与夹具几何尺寸相关的参数为Kσ/KγKσ/Kγ.对于锥板,Kσ/Kγ=3β/(2πR3),因此,减少锥角ββ和增加板半径R均有利于减少惯量影响,而对于平板,Kσ/Kγ=2h/(πR4),因此,减少板间距h和增加板半径R均有利于减少惯量影响,或者选择更轻质的夹具来减少I亦可减少惯量影响.总之,无论锥板或平板,增加R或者选择轻质夹具都是减少惯量影响的有效手段.为了降低仪器和夹具惯量影响,对于单头的应力控制型流变仪,需要定期进行惯量的校正,并在更换夹具时做相应的校正.对于双头的应变控制型的流变仪,使用具有力反向平衡功能的传感器可以极大地抑制惯量带来的误差,其表现虽远超单头的流变仪,但也无法完全消除惯量的影响.因此,需要对具体的实验测试结果进行综合的分析和甄别.3.4测试中常见问题III:样品自身惯量的影响剪切流变仪测试中一个基本假设是流场的单一性,即流场是纯粹的剪切流场,这一假设在高速振荡测试过程中失效[33].即在振荡测试中,流变仪通过夹具迫使样品产生往复运动,使得样品内部产生剪切波,当板(夹具)间距与剪切波波长相当或大于剪切波波长时,样品的自身惯量的影响会使得施加样品的剪切流场偏离纯粹的剪切流场.Schrag给出了在剪切流变测试不受该剪切波干扰的临界条件[34],即板间距需远小于其波长λs,其表达式为:式中ρ是流体的密度,|η∗|=|G∗|/ω是复数黏度的绝对值,其中|G∗|是复数模量的绝对值,δ是相位角.研究表明,在给定的频率范围内选取合理的板间距h是减少样品惯量影响数据误差的关键.以水为例,密度为ρ≈1gcm−3,黏度为η≈10−3Pas,相位角δ≈90°,当频率ω=102rads−1时,可估算出λs≈0.9mm.用平板测试一般要求间距在0.5~1mm,因此无法满足hλs.当使用锥板测试时,板间距最宽的部分可以估算为h=βR,因此,半径为25mm、锥角为1°的锥板,h=0.44mm,同样也无法满足hλs.由公式(9)可知剪切波长λs随着样品黏度的增加而增加,因此,上述问题一般不会在黏度较高的高分子溶液或高分子熔体中出现.图10展示了Lauger等利用双头的MCR系列流变仪(AntonPaar)对牛顿流体S4oil在半径相同(R=30mm),锥角分别为0.5°(红色)、1°(绿色)、2°(蓝色)不同的夹具下的振荡剪切测试,研究了样品惯量对流体相位角的影响[31].该流体在测试范围内为牛顿流体.我们发现样品在低频区域表现牛顿流体性质,相位角均为90°,随着频率的增加,相位角逐渐降低,流体出现了一定的弹性响应,且锥角越大,相位角降低越多(箭头指向).相位角的减少导致了储能模量G' ~ω2的标度区域的出现,该结果非常类似于黏弹流体的松弛末端行为,但其实为样品惯量造成的实验假象.显然,此相位角减少的不同来源于测试夹具的区别而非样品的区别.究其原因,是锥板最外侧的板间距βR(0.5°,1°,2°板分别为0.26,0.52和1.05mm)逐渐逼近于通过公式(9)计算出来的λs≈2.0mm,使得样品惯量造成的实验误差逐渐显现.图10Figure10.Phaseangle(circles)andstorageG' (triangles)andlossmodulusG"(squares)fortheS4oilmeasuredinSMTmodewiththreeconeangles,0.5°(red),1°(green),2°(blue).Thearrowindicatesthedirectionofincreasingtheconeangle.(ReprintedwithpermissionfromRef.[31] Copyright(2016)SocietyofRheology)3.5测试中常见问题IV:二次流的影响在稳态或瞬态测试中,高剪切速率时,由于流动不稳定性的影响可能导致剪切流场出现失稳,造成二次流的出现[24,35~37],使得剪切流变仪测试中剪切流场单一性的基本假设失效.二次流叠加在剪切流场上,会增加仪器测量的扭矩,导致测试样品的表观黏度突然增加.研究表明,对于不同夹具,均可出现二次流.下面我们将对同轴圆筒、锥板和平板3种夹具的几何流场出现二次流的边界条件进行阐述,并通过实例展示二次流对实验数据的影响.3.5.1同轴圆筒夹具二次流边界条件泰勒给出了牛顿流体在同轴圆筒夹具的测量过程中失稳的临界条件[38~40]:可避免Taylor-Couette涡流出现的稳定区间的泰勒数Ta满足:其中R1和R2分别为同轴圆筒夹具中流体的内径和外径(如图2所示),而同轴圆筒夹具的剪切速率为:γ=ΩKγ≈ΩR1/(R2−R1),由此可以得到避免Taylor流的条件:3.5.2锥板和平板夹具二次流边界条件锥板和平板具有不同于同轴圆筒的边界条件,其产生二次流的一个主要原因是离心作用:即高速转动的板附近的流体产生沿着半径方向向外的速度分量,同时诱发静止板附近的流体向内流动(如图4所示).对于锥板和平板夹具,雷诺数Re可定义为[41]:其中h为特征的板间距(平行板h等于间距,锥板h=βR).Turian等研究表明[41],对于利用锥板和平板测试的牛顿流体,实际扭矩T和理想稳定流场下的扭矩T0之比与雷诺数相关:给定T/T0误差1%,即T/T0=1.01,可以得到一个特征的临界雷诺数Recrit=4,该情况下尚未发生持续的湍流.利用Recrit和剪切速率γ˙=ΩR/h,可以估算锥板和平板稳态剪切的临界条件:据此我们可以根据实验条件和夹具参数计算出不稳定流场的临界条件.从公式(14)可以看出,选择较小h的平行板可以抑制二次流,但h过小的时候,两板间微小的不同轴或不平行都会被放大,影响测试的准确性[42].因此,需要选择合适的板间距.为了更直观地展示牛顿流体的二次流不稳定流场对实验数据的影响,图11是我们利用单头应力控制型流变仪MCR-302(AntonPaar)实测的水在剪切速率扫描实验中的黏度相对剪切速率的图,可以看出,在低剪切速率出现的类似于剪切变稀的现象(蓝色区域)可能由于传感器扭矩低于仪器测试下限(Tmin=0.11~0.25μNm)或者表面张力的影响,而在高剪切速率下(红色区域),剪切增稠的异常现象是由于板的高速转动引发了二次流.图11Figure11.SteadyshearflowmeasurementsofH2Ousingcone-and-platewithdiameterof50mm,thescatteredplotsintheblueregimeareobtainedfromtorquebelowthelow-torquelimit,thethickeningbehaviorintheredregimeisduetosecondaryfloweffect.3.6测试中常见问题V:样品表面张力在使用旋转流变仪测试低黏度的牛顿流体时,表面张力往往会影响到测试结果.很多低黏度流体异常的实验数据都和其表面张力有关[42,43].而表面张力的产生与样品的各向对称程度、样品的自身表面张力以及样品是否存在吸附和聚集有着密切关系[32,44~47].为了使读者更加清楚地了解表面张力对流变实验数据的影响,下面我们将分别从样品的各向对称性、样品自身表面张力的大小以及样品自身存在吸附和聚集3种情况阐述表面张力对实验结果的影响.3.6.1样品的各向对称性保证样品的各向对称是流变测试中获得准确实验数据的基础,样品的各向非对称性可能在填充上样时即存在,如过度填充或者填充不足均可造成样品的各向非对称性,各向非对称性也可能在测试过程中产生,如样品的边界在流场下存在一定的形状的波动,或样品不对称的挥发引起样品边缘与板的接触线和接触角的不对称性.Ewoldt等[32,44]研究低黏度样品的剪切流变测试时,发现测试扭矩会受到这些边缘形状变化的影响(如图12所示).对比完全对称的理想条件,非理想情况下接触线、接触角Ψ(s)和半径都发生了明显的变化.将接触线看作闭合曲线,可沿闭合曲线积分得到由表面张力引起的扭矩变化.例如,沿z轴的扭矩Tz可表示为:图12Figure12.(a)Contactlineandinterfaceangle:idealversusnon-idealcases.Inthenon-idealcase,asymmetriesareexaggeratedcomparedtotypicalloadingandcanalsooccurasaresultofoverfilling (b)Contactlineinz=0planerepresentedbyanarbitraryparametriccurve,r–r_(s).(ReprintedwithpermissionfromRef.[44] Copyright(2013)SocietyofRheology).公式中,r(s)是半径,Γ(s)是表面张力,t^l,r是闭合曲线的切线矢量.从公式(15)中可知表面张力产生的扭矩与接触线的几何形状、样品的表面张力和界面角均相关.样品填充不足或过量填充都会导致表面张力引起扭矩增加.此外,样品挥发也可导致样品填充不足,是高分子溶液或水凝胶体系流变测试过程中最容易忽略的问题.图13显示了Johnston等[44]研究了随着水分蒸发,样品从填充过度到填充不足过程中扭矩的变化.他们发现,刚开始填充过度会随着水蒸发而缓解,扭矩先减小并保持了一定时间,之后的样品量继续减小导致样品填充不足,接触线断开,此时产生更大的扭矩,然后扭矩会继续保持,直到在更长的时间再次提高.出现此现象的原因是水蒸发会同时导致接触线和接触角的改变,从而增加了样品的各向非对称性.因此,对于溶液体系的测试,需要考虑溶剂挥发、样品填充不足导致表面张力引起的扭矩增加,这些因素会影响测试结果.图13Figure13.Evaporation-inducedcontactlinemigration,whichcausessurfacetensiontorque.Thegeometryisparallelplate(diameter40mm)withconstantvelocityΩΩ=0.01rads−1.Insetimages(viewsfrombelow)illustratethecontactlinesoftheoverfilledandunderfilledcases(ReprintedwithpermissionfromRef.[44] Copyright(2013)SocietyofRheology).3.6.2样品本身表面张力大小样品自身的表面张力的不同也可造成测试结果的显著不同.Johnston等[44]讨论了水和正癸烷在稳态剪切测试过程中测试扭矩与剪切速率的依赖关系,虽然两者室温下的黏度近似,分别为1.17和1.57mPas,利用同轴圆筒测量的低剪切速率下的扭矩却大相径庭,这主要源于水和正癸烷表面张力的不同(75和25.3mNm−1),从图14可以看到,相对于正癸烷溶液,具有更高表面张力的水在低剪切速率下显示出由表面张力导致的扭矩平台1μNm,值得注意的是,其中4组水的测试结果表现出该扭矩平台,但仍有2组水的测试结果没有表现出扭矩平台,Johnston等认为这可能与前面3.6.1节讨论的接触线的不确定性有关.图14Figure14.Steadyshearflowwithdifferentsurfacetension(waterandn-Decane)usingtheconcentricdoublegap(DG)geometry(ReprintedwithpermissionfromRef.[44] Copyright(2013)SocietyofRheology)3.6.3大分子聚集对于一些低黏度的蛋白溶液体系,在低剪切速率下的流变测试时,通常需要考虑空气与水界面处形成的蛋白表面膜产生的界面张力和蛋白溶液中蛋白聚集的影响[46,47],表面膜形成和蛋白聚集可导致包括黏度增加、剪切变稀增强和表观屈服应力的出现,这些表面的因素有时会误导研究人员对溶液的整体流动特性的判断.例如,Castellanos和Colby等研究了牛血清蛋白和抗体溶液黏度对剪切速率的依赖性[47].他们发现:不含表面活性剂成分的牛血清蛋白在液-气界面处形成聚集膜,在低剪切速率下出现明显的表观屈服应力和相应的η∼γ˙−1η∼γ˙−1的屈服区域(图15(a)).添加表面活性剂能抑制和延缓蛋白表面膜的产生,从而弱化了屈服区域,但经过较长的等待时间(41天),蛋白聚集导致屈服区域逐渐重新形成(图15(b)).图15Figure15.(a)Increaseofapparentviscosityofsurfactant-freeBSAsolutionsduringtheproteinaggregation.(b)Increaseofviscositywithtime,owingtotheproteinaggregationinthemAbsolutionsevenafterintroductionofthesurfactant.(ReprintedwithpermissionfromRef.[47] Copyright(2014)TheRoyalSocietyofChemistry)3.7测试中常见问题VI:测试习惯如上面所述,3个基本假设都是在比较极端的情况下会失效,如样品刚度足够高,需要考虑仪器和夹具柔量的影响;黏度足够低或者剪切强度足够大,需要考虑仪器夹具惯量和样品惯量的影响以及施加流场是否为纯粹的剪切流场.而在实际流变测试中,也有一些情况满足上述3个基本假设,却得不到准确的测量数据.下面总结了流变测试过程中一些容易忽略的问题.为了避免这些问题,提高流变测试的正确性和准确性,需要建立良好的测试习惯.3.7.1样品的制备:干燥和挥发问题对于聚合物熔体,如果样品干燥不充分时,或者测试过程中暴露在湿度较大的环境中,样品中的微气泡和水分会对测试结果产生显著影响,尤其含有氢键和离子极性组分的聚合物(如离聚物),溶剂(如水)对其流变行为的影响明显.此外,对于水凝胶和溶液体系,测试前和测试过程中需要考虑样品自身溶剂挥发对测试结果的影响,对于溶剂高挥发性的溶液体系这是常见的问题,通常可以使用液封(如用石蜡油密封水溶液)的方法避免溶剂的挥发.图16展示的是Wolff等[48]对聚二甲基硅氧烷树脂(PDMS)在具有气泡(圆)和无气泡(三角)条件下的频率扫描测试,发现损耗模量几乎不受气泡的影响,松弛末端满足G' ' ∼ω1∼ω1标度关系,而储能模量受气泡影响较大,逐渐偏离G' ∼ω2标度关系,这是气泡/样品界面的慢松弛过程导致的.图16Figure16.ThestorageandlossmoduliasfunctionsoftheangularfrequencyforaPDMSsiliconeoilwithandwithoutbubbles(ReprintedwithpermissionfromRef.[48] Copyright(2013)Spring)图17展示了Shabbir等[49]对聚四氢呋喃磺酸锂离聚物(PTMO-Li)在干燥和一定湿度条件下的频率扫描测试,他们发现湿度对离聚物的流变性能有很大影响,储能模量和损耗模量相较干燥条件下下降一个数量级左右,由此可见干燥样品对于流变测试的重要性.图17Figure17.ThestorageandlossmoduliasfunctionsoftheangularfrequencyforPTMO-Liindriedandundriedstates.(ReprintedwithpermissionfromRef.[49] Copyright(2017)SocietyofRheology)3.7.2确定样品的热稳定性在进行流变测试之前,对于不熟悉的聚合物样品,需要进行TGA和DSC测试,了解样品的热稳定性和玻璃化转变温度,以便于测试条件的选择,比如:低温测试时样品接近玻璃态,模量接近109Pa左右,样品较高的模量下突然变化夹具间隙会导致仪器法向力的激增,损坏空气轴承和力传感器;高温测试时,不了解样品热稳定性,测试温度过高会导致样品发生化学交联和降解行为,影响测试结果.通常,对于容易交联的样品,可以采取添加少量稳定剂的办法抑制化学交联,获取准确的实验数据.图18展示了Stadler等[50]对低分子量低密度聚乙烯分别在加入少量稳定剂和不加稳定剂条件下,复数黏度随时间扫描变化,可以看出当时间经过4300s之后,样品黏度突然增加,这主要由于体系中含少量双键的组分发生化学交联导致,而加入少量稳定剂的样品持续到8.24×105s(~9.5天)后,样品才开始降解,说明加少量稳定剂的办法可以有效抑制样品的化学交联.此外,为排除样品在测试过程中发生变化,对测试产生的影响,建议完成所有测试后,再次重复第一步测试,通过数据重复性来考察样品是否在测试过程中发生变化,以保证样品数据的可靠性.图18Figure18.ThermalinstabilityofsamplemLLDPEF18F.Thesamplewithoutstabilizerexceedsthe±5%criterionafter4300sowingtothecrosslinking,whilethesamplewithstabilizerstayswithinthiscriterionfor8.24×105s(≈9.5days).(ReprintedwithpermissionfromRef.[50] Copyright(2014)Springer).3.7.3样品体系是否达到平衡态在测试过程中确保样品体系在测试前是否达到平衡稳态是获取准确数据的前提.例如超高分子量聚乙烯样品,从结晶状态加热到熔体状态后,往往需要较长时间才能达到链充分缠结的平衡态.例如,图19展示了超高分子量聚乙烯样品在加热到160°C熔融后,体系从低缠结状态达到缠结平衡态的过程中储能模量G' 的变化,作者发现,热平衡时间随着合成分子的时间(图中标示),也即分子量增加而增加,对于合成30min的样品,热平衡时间长达约一天之久[51].这种缠结程度低于平衡缠结程度的样品也可以通过在稀溶液中沉降高玻璃化温度的长链高分子(如高于缠结分子量的聚苯乙烯)来制备[52,53].图19Figure19.Buildupofmodulusindisentangledpolymermeltswithtimeofultra-high-molecular-weightpolyethylene.ThetopschemeshowsthemechanismandthebottomfigureshowsthemeasuredstoragemodulusG' (t)againsttime(symbols),whereG' (t)hasbeennormalizedbytheequilibriumplateaumodulusGN0.Curvesarethepredictionsbasedontubetheory.(ReprintedwithpermissionfromRef.[51] Copyright(2019)AmericanChemicalSociety)此外,对于高填充体系、不相容聚合物共混物等极难达到平衡态的体系,常需高速施加预剪切,使体系保持初始态的一致性.需要注意的是,该初始态往往处于非平衡态.3.7.4夹具热膨胀对测试的影响除了前面3.1和3.2节提到夹具柔量和惯量对测试结果的影响,在测试过程中还需要考虑夹具的热膨胀对测试结果的影响,不同材质的夹具具有不同的热膨胀系数.现在很多仪器在输入夹具类型时已经考虑到热膨胀系数.但是很多自制的夹具和可抛弃的夹具在使用之前需要人为地测量热膨胀系数并输入.此外,样品也具有一定的热膨胀系数,因此在测试温度范围很宽时,需要在加热过程中适当增大板间距,在降温过程中适当减少板间距,从而保持样品的填充程度一致.此外,还需考虑控温组件的结构也会对夹具的传热温度梯度造成影响[54],即使是同一个夹具在不同控温组件下的膨胀系数也是不同的,夹具膨胀系数的差异直接会影响设置夹具间距的大小,尤其在设置夹具间距很小的情况下(如锥板),板受热膨胀可能会使两板直接接触,造成法向应力的激增从而损坏空气轴承和力传感器.3.7.5夹具不平行和不同轴对测试的影响保证夹具的平行与同轴也是获取实验数据的关键.随着测试夹具频繁使用,以及不小心跌落,非常容易造成夹具不平行和不同轴,这样会导致仪器校零出现误差以及仪器法向力影响测试结果.因此,在测试中需要注意夹具的正确使用,特别是不要将不使用的夹具立在桌面上或者高处,以防止跌落造成夹具的变形.4.结论与展望本文结合作者多年的流变测试经验,从流场类型和仪器的特征出发,对流变仪进行了简单的分类.重点阐述了旋转流变仪的工作原理,剪切流变测试的假设条件及其失效的情况,和实际测试中一些不良的测试习惯及其导致的结果.简言之,流变仪器测试时,只有当输入或输出的应变或应力为施加在样品上的应变或应力,且流场为纯粹的剪切流场时,测试的结果才是可靠的结果.这些基本前提都是会在一定的测试条件下失效.我们结合一些实验实例,具体解释了这些假设条件失效的情况,以及在实际流变测试中仪器完全满足基本假设的情况下,一些不良测试习惯对测试的影响,具体总结如下:(1)当样品的刚度接近仪器夹具和传感器的刚度时,在样品形变的同时,仪器夹具和传感器也会发生一定的形变,造成样品的真实应变低于仪器设定的应变.此时,准确校正夹具和传感器的扭转柔量对于样品的测试是非常重要的.一般的校正过程中考虑夹具和传感器的柔量(或者刚度)为常数.然而,真实测试中,该柔量也会随着测试条件(如温度)和仪器状态的变化而变化.因此,从实验操作上来讲,更可行的方法就是选择合适的夹具来增加施加在样品上的应变和因仪器柔量消耗的应变之比.(2)当仪器施加恒定的扭矩时,部分扭矩用于加速驱动马达和夹具旋转,当旋转速度达到稳定时候,测试的扭矩才是真实的样品扭矩.因此,在瞬态和动态等具有加速过程的测试中,当样品反馈的实际扭矩较小时,源于仪器和夹具加速度过程中的惯量贡献会影响到测试结果.对于单头的旋转流变仪来说,马达和传感器集成在一边,仪器惯量的影响更大.虽然双头的旋转流变仪具有力反向平衡功能的传感器,可以很大程度上抑制仪器惯量的影响,但是也无法完全消除该影响.由于仪器的惯量影响与夹具和仪器的状态相关,需要对仪器进行定期的惯量校正.(3)在高速振荡测试过程中,样品在往复运动过程中会产生剪切波,当(夹具)板间距与该剪切波波长相当时,样品自身的惯量影响会使得施加样品内部的流场偏离纯粹的剪切流场,造成相位角的变化和相应的测试模量的变化;在高剪切速率时(如稳态或瞬态测试时),流动的不稳定性使剪切流场产生失稳,造成二次流的出现,二次流叠加在剪切流场上会增加仪器测量的扭矩,导致测试中出现“剪切增稠”的假象.因此,给定的频率范围内选取合理的板间距h是减少样品惯量影响和抑制二次流的关键.(4)对于低黏度的牛顿流体,表面张力对实验结果的影响往往会被忽略.表面张力产生的扭矩大小与样品的各项对称性、样品的自身表面张力以及样品是否存在吸附和聚集有着密切关系.因此,在低黏度样品测试过程中,建议结合显微工具在线地观测测试过程中样品形状的变化.(5)上述四个方面是在样品模量足够高、黏度足够低或者剪切强度足够大的极端情况下,测试中3个基本假设失效的情形.其实,在实际流变测试中即使仪器完全满足测试需求和基本假设的情况下,流变测试者如果没有养成良好的测试习惯,也会得不到准确的数据.因此,我们总结了一些常见容易忽略的问题,例如样品干燥和挥发、样品自身热稳定性,样品是否达到平衡态,夹具和样品热膨胀、夹具的不平行不同轴等问题.我们针对上述容易忽略的问题进行了阐述,希望有助于流变测试的初学者养成良好的测试习惯,了解这些知识对于维护仪器、保护样品以及获取准确的测试数据都是十分重要的.虽然流变仪器测试过程中会存在上述因素的干扰,但是读者在熟悉流变仪的原理和养成良好的测试习惯的前提下,是很容易判断出实验数据出现问题的“症结”所在,使得流变仪不再成为科研工作中的“黑箱”.最后需要指出,本文关注的测试手段仅限于剪切流场.由于拉伸流场较剪切流场难实现,高分子流变学的实验研究多数在剪切流场下进行.对于加工过程中同等重要的拉伸流场下测试的仪器和研究还在快速的发展之中[15,55~57].笔者计划在后续的综述中探讨拉伸测试的仪器原理和测试技巧.参考文献[1]TadmorZ,GogosCG.PrinciplesofPolymerProcessing.2nded.Hoboken,NewJersey:JohnWiley&Sons,2013[2]PtaszekP.LargeAmplitudeOscillatoryShear(LAOS)measurementandfourier-transformrheology:applicationtofood.In:AhmedJ,PtaszekP,BasuS,eds.AdvancesinFoodRheologyandItsApplications.London:WoodheadPublishing,2017.87−123[3]KanedaI.RheologyControlAgentsforCosmetics.RheologyofBiologicalSoftMatter.Tokyo:Springer,2017,295−321[4]EleyRR.JCoatTechnolRes,2019,16(2):263−305doi:10.1007/s11998-019-00187-5[5]AhmedJ,PtaszekP,BasuS.AdvancesinFoodRheologyandItsApplications.London:WoodheadPublishing,2016[6]ZhangZ,LiuC,CaoX,GaoL,ChenQ.Macromolecules,2016,49(23):9192−9202doi:10.1021/acs.macromol.6b02017[7]ChenQ,TudrynGJ,ColbyRH.JRheol,2013,57(5):1441−1462doi:10.1122/1.4818868[8]LiuS,WuS,ChenQ.ACSMacroLett,2020,9:917−923doi:10.1021/acsmacrolett.0c00256[9]LarsonRG.TheStructureandRheologyofComplexFluids.NewYork:OxfordUniversityPress,1999[10]MihaiM,HuneaultMA,FavisBD.PolymEngSci,2010,50(3):629−642doi:10.1002/pen.21561[11]AriawanAB,HatzikiriakosSG,GoyalSK,HayH.AdvPolymTechnol:JPolymProcessInst,2001,20(1):1−13[12]LundahlMJ,BertaM,AgoM,StadingM,RojasOJ.EurPolymJ,2018,109:367−378doi:10.1016/j.eurpolymj.2018.10.006[13]LiB,YuW,CaoX,ChenQ.JRheol,2020,64(1):177−190doi:10.1122/1.5134532[14]WatanabeH,MatsumiyaY,ChenQ,YuW.Rheologicalcharacterizationofpolymericliquids.In:MatyjaszewskiK,MöllerM,eds.PolymerScience:AComprehensiveReference.Amsterdam:Elsevier,2012.683−722[15]MarínJMR,HuusomJK,AlvarezNJ,HuangQ,RasmussenHK,BachA,SkovAL,HassagerO.JNon-NewtonFluid,2013,194:14−22doi:10.1016/j.jnnfm.2012.10.007[16]WatanabeH,MatsumiyaY,InoueT.Macromolecules,2002,35(6):2339−2357doi:10.1021/ma011782z[17]YoshidaH,AdachiK,WatanabeH,KotakaT.PolymJ,1989,21(11):863−872doi:10.1295/polymj.21.863[18]TroutonFT.ProcRSocLondon,SerA,1906,77(519):426−440doi:10.1098/rspa.1906.0038[19]LiuC,ZhangJ,ZhangZ,HuangS,ChenQ,ColbyRH.Macromolecules,2020,53(8):3071−3081doi:10.1021/acs.macromol.9b02431[20]ZhangJ,LiuC,ZhaoX,ZhangZ,ChenQ.SoftMatter,2020,16(21):4955−4960doi:10.1039/D0SM00572J[21]BuscallR,McGowanJI,Morton-JonesAJ.JRheol,1993,37(4):621−641doi:10.1122/1.550387[22]BuscallR.JRheol,2010,54(6):1177−1183doi:10.1122/1.3495981[23]BallestaP,PetekidisG,IsaL,PoonW,BesselingR.JRheol,2012,56(5):1005−1037doi:10.1122/1.4719775[24]MagdaJ,LarsonR.JNon-NewtonFluid,1988,30(1):1−19doi:10.1016/0377-0257(88)80014-4[25]CostanzoS,HuangQ,IannirubertoG,MarrucciG,HassagerO,VlassopoulosD.Macromolecules,2016,49(10):3925−3935doi:10.1021/acs.macromol.6b00409[26]LiuCY,YaoM,GarritanoRG,FranckAJ,BaillyC.RheolActa,2011,50(5−6):537doi:10.1007/s00397-011-0560-3[27]PogodinaN,NowakM,LäugerJ,KleinC,WilhelmM,FriedrichC.JRheol,2011,55(2):241−256doi:10.1122/1.3528651[28]GottliebM,MacoskoC.RheolActa,1982,21(1):90−94doi:10.1007/BF01520709[29]HutchesonS,McKennaG.JChemPhys,2008,129(7):074502doi:10.1063/1.2965528[30]KriegerIM.JRheol,1990,34(4):471−483doi:10.1122/1.550138[31]LäugerJ,StettinH.JRheol,2016,60(3):393−406doi:10.1122/1.4944512[32]EwoldtRH,JohnstonMT,CarettaLM.Experimentalchallengesofshearrheology:howtoavoidbaddata.ComplexFluidsInBiologicalSystems.In:SpagnolieSE,ed.ComplexFluidsinBiologicalSystems.NewYork:Springer,2015.207−241[33]YosickJA,GiacominJA,StewartWE,DingF.RheolActa,1998,37(4):365−373doi:10.1007/s003970050123[34]SchragJL.TransactionsoftheSocietyofRheology,1977,21(3):399−413doi:10.1122/1.549445[35]ShaqfehES.AnnuRevFluidMech,1996,28(1):129−185doi:10.1146/annurev.fl.28.010196.001021[36]McKinleyGH,PakdelP,ÖztekinA.JNon-NewtonFluid,1996,67:19−47doi:10.1016/S0377-0257(96)01453-X[37]PakdelP,McKinleyGH.PhysRevLett,1996,77(12):2459doi:10.1103/PhysRevLett.77.2459[38]ChandrasekharS.HydromagnetsandHydrodynamicsStability.NewYork:DoverPublishing,1981[39]LarsonRG.RheolActa,1992,31(3):213−263doi:10.1007/BF00366504[40]TaylorGI.PhilosTransRSocLondon,SerA,1923,223(605-615):289−343doi:10.1098/rsta.1923.0008[41]TurianRM.IndEngChemFundam,1972,11(3):361−368doi:10.1021/i160043a014[42]Andablo-ReyesE,VicenteJd,Hidalgo-AlvarezR.JRheol,2011,55(5):981−986doi:10.1122/1.3606633[43]GriffithsD,WaltersK.JFluidMech,1970,42(2):379−399doi:10.1017/S0022112070001337[44]JohnstonMT,EwoldtRH.JRheol,2013,57(6):1515−1532doi:10.1122/1.4819914[45]ShipmanRW,DennMM,KeuningsR.IndEngChemRes,1991,30(5):918−922doi:10.1021/ie00053a014[46]SharmaV,JaishankarA,WangYC,McKinleyGH.SoftMatter,2011,7(11):5150−5160doi:10.1039/c0sm01312a[47]CastellanosMM,PathakJA,ColbyRH.SoftMatter,2014,10(1):122−131doi:10.1039/C3SM51994E[48]WolffF,MünstedtH.RheolActa,2013,52(4):287−289doi:10.1007/s00397-013-0687-5[49]ShabbirA,HuangQ,BaezaGP,VlassopoulosD,ChenQ,ColbyRH,AlvarezNJ,HassagerO.JRheol,2017,61(6):1279−1289doi:10.1122/1.4998158[50]StadlerFJ.Korea-AustRheolJ,2014,26(3):277−291doi:10.1007/s13367-014-0032-2[51]HawkeLGD,RomanoD,RastogiS.Macromolecules,2019,52(22):8849−8866doi:10.1021/acs.macromol.9b01152[52]WangX,TaoF,SunP,ZhouD,WangZ,GuQ,HuJ,XueG.Macromolecules,2007,40(14):4736−4739doi:10.1021/ma0700025[53]TengC,GaoY,WangX,JiangW,ZhangC,WangR,ZhouD,XueG.Macromolecules,2012,45(16):6648−6651doi:10.1021/ma300885w[54]LippitsDR,RastogiS,TalebiS,BaillyC.Macromolecules,2006,39(26):8882−8885doi:10.1021/ma062284z[55]StadlerFJ,StillT,FytasG,BaillyC.Macromolecules,2010,43(18):7771−7778doi:10.1021/ma101028b[56]LingGH,WangY,WeissR.Macromolecules,2012,45(1):481−490doi:10.1021/ma201854w[57]ScherzLF,CostanzoS,HuangQ,SchlüterAD,VlassopoulosD.Macromolecules,2017,50(13):5176−5187doi:10.1021/acs.macromol.7b00747
  • 三思纵横国内首台新型扭转试验机顺利发货
    8000NM微机控制电子扭转试验机 新年伊始,三思纵横捷报频传!继营销中心取得辉煌战绩后,三思纵横研发中心研发生产的8000NM微机控制电子扭转试验机也顺利发往签约客户单位,如此大力值复合材料环形缠绕圆筒面内剪切性能检测的新型扭转机为国内首台,标志着我司大力值面内剪切夹具技术再次走在试验机行业的前沿!能够轻松实现最大扭转力值测试试验 自去年7月份与客户签订8000Nm微机控制电子扭转试验机的购销合同后,在总工程师钱正国和技术研发部部长李团结的带领下,研发中心着手投入到设备的研发生产中去。秉承“专心研发,优质生产,客户满意”的研发生产理念,研发中心技术人员,根据客户的具体需求和实际情况,制定了严密精湛的技术方案,严格按照国家标准和精确的技术参数进行产品的研发和生产,他们希望用最先进的技术给客户带去最好的试验体验。三思纵横研发中心 将始终坚持“提供一流仪器设备,服务超出客户期望”的企业理念,用最好的产品和极致的服务回馈客户对三思纵横的信赖和期许!测试试验能够实现全自动平移 作为三思纵横核心技术的保障基地,研发中心拥有强大的研发能力,研发技术人员放眼全球,始终走在试验技术的前沿阵地,追求设备产品的精益求精,用赶超国际一流的技术水平实现三思纵横一次又一次高端产品的飞跃,大力提升三思民族品牌试验机在国内外的影响力!
  • 教你如何高效购买液压万能试验机
    液压万能试验机,以高压液压源为动力源,采用手动阀、伺服阀或比例阀作为控制元件进行控制的试验机设备,它广泛适用于金属材料的拉伸、压缩、弯曲、剪切试验,也可用于水泥、混凝土等非金属材料的抗压和抗折试验。想高效率买到合用的液压万能试验机?这是需要做一番功课的。  液压式万能试验机适用于金属资料在静力作用下停止拉伸、紧缩、或弯曲等试验,亦可用于混凝土和砖石等构筑资料的试验,并备有弯曲附件,兼作金属材料工艺试验。现在常见的液压万能试验机分手动液压万能试验机、数显式液压万能试验机和电液伺服万能试验机。  手动液压万能试验机 使用简易高压的油源作为动力源,运用手动调停阀作为控制元件,通过人工手动完成试验力加载,属于开环节制系统。受油源流量及主机机构的限制,它的油缸活塞行程相对较小,一般为300mm左右,试验速度也比较小 受价格因素的影响,多采用液压压力传感器。  优点:操作简便,成本低廉,实验数据显示直观  缺点:加载速度慢,试验效率低,实验结果不精确,试验力小  数显式液压万能试验机:采用精密高压油源作为动力源,使用伺服阀或比例阀作为控制元件进行闭环自动控制,因而控制性能较高,一般可实现载荷、应变、位移三种控制模式。由四立柱双丝杠油缸下置式主机及琴式油源控制柜组成,油泵采用进口低噪音高性能齿轮泵。试验空间的调整通过中横梁移动来实现,中横梁升降采用链条传动。一般采用电子压力传感器测试实验数据,  优点:操作简单,成本较低,实验数据显示较精确,直观、清晰  缺点:实验数据显示单一,无法综合显示试验情况,  电液伺服液压万能试验机 紧张使用了精密的高压的油源作为动力源,它运用的是伺服阀或比例阀作为节制元件,使用闭环主动控制,以是它的控制功用较高,一般可完成载荷、位移、应变三种节制方式。电液伺服试验机的吨位大,承载力强,加载稳定性好。专用软件有多种控制方式,因而具有运用灵活,功用较高的特征。  优点:自动化程度高,通过电脑设置后,全程自动控制,精确性好,实验数据全程自动统计分析,实时显示,可任意放大显示,并可输出打印实验报告 不同控制模式可以平滑转换  缺点:成本相对高,只有试验力30吨以上电液伺服液压万能试验机的性价比才比较突出。  综上所述,三种液压万能试验机都有自己突出的优势和适用的范围,如果你需要购买一台液压万能试验机,请参考自己实际情况再进行选择。
  • 自然资源部发布 《海洋饱和软黏土强度的测定 微型十字板剪切仪法》等多项行业标准报批稿
    按照自然资源行业标准制定程序要求和计划安排,自然资源部组织有关单位制定了《海洋饱和软黏土强度的测定 微型十字板剪切仪法》等10项行业标准,并于2024年1月18日予以公示。其中4项标准涉及在线监测设备、便携设备等。一、《海洋饱和软黏土强度的测定 微型十字板剪切仪法》(报批稿)规定了微型十字板剪切仪测定饱和软黏土不排水抗剪强度的仪器及组件要求、仪器标定方法、试验步骤与要求和试验数据采集与处理方法等,适用于海洋原状或重塑饱和软黏土的不排水抗剪强度和灵敏度的室内或野外现场测定。二、《海上油气生产设施水文气象观测系统建设规范规范》(报批稿)规定了海上油气生产设施水文气象观测系统的选址、观测要素、系统组成、仪器安装、试运行管理、接收岸站的要求,适用于在海上油气生产设施上新建或升级改造的水文气象观测系统。海上油气生产设施水文气象观测系统的观测要素主要包括以下内容:a)水文要素应包括但不限于:流向、流速、水位、水温、波向、波高、波周期、潮高等;b)气象要素应包括但不限于:风向、风速、气温、气压、相对湿度、能见度等。海上油气生产设施水文气象观测系统主要包括:数据采集器、定位装置、方位传感器、风速风向传感器、气温和湿度传感器、气压传感器、波潮仪、能见度传感器、流速流向传感器、水温和盐度传感器、卫星通信系统、供电系统、防雷系统等。三、《海洋岸(岛)基水质自动监测站在线运行维护技术要求》(报批稿)规定了海洋岸(岛)基水质自动监测站在线运行维护管理基本要求、检查维护、质量保证与质量控制及运行维护记录等内容,适用于海洋岸(岛)基水质自动监测站在线运行维护管理工作。海洋岸(岛)基水质自动监测站用于海岸(岛)边海洋水质监测,通过系统集成技术、数据采集与传输技术及通讯网络集成的综合性监测系统。主要由站房、分析单元、采配水单元、控制单元、通讯单元和辅助设备等组成,其核心设备为在线分析仪器,可以定期或长期、在线、自动、连续地进行采集、处理、存储和传输监测数据。四、《走航式温盐深剖面测量仪》(报批稿)本文件规定了走航式温盐深剖面测量仪的要求、检验方法、检验规则以及标注、包装、运输和贮存。本文件适用于走航式温盐深剖面测量仪的设计、生产、试验和检验。走航式温盐深剖面测量仪以海上移动载体为使用平台,在规定航速范围内,利用可回收的测量探头进行海水温度、电导率和压力剖面测量的仪器。
  • 电子剥离试验机测试压敏胶带的标准适用于捆扎线束胶带吗
    在胶带行业中,压敏胶带和捆扎线束胶带各自扮演着不同的角色。压敏胶带以其特有的粘附性能,广泛应用于各类包装、固定、密封等场景。而捆扎线束胶带则因其出色的绑扎、绝缘和固定性能,在电子、电气等领域发挥着不可替代的作用。然而,关于电子剥离试验机测试压敏胶带的标准是否适用于捆扎线束胶带这一问题,却常常引发业内的讨论和争议。一、电子剥离试验机与压敏胶带测试标准电子剥离试验机作为一种精密的测试设备,主要用于测量胶带在一定条件下的剥离强度。在压敏胶带的测试标准中,通常规定了剥离速度、剥离角度、剥离力等参数,以确保测试结果的准确性和可靠性。这些标准旨在反映压敏胶带在实际应用中的粘附性能,为产品质量的评估和改进提供依据。二、捆扎线束胶带的特性与应用捆扎线束胶带通常由尼龙或其他高强度材料制成,具有优异的绝缘性、耐磨性和耐候性。它主要用于电子线束的固定和绝缘保护,确保线束在复杂的工作环境中能够稳定运行。捆扎线束胶带不仅需要具备一定的粘附力,还需要能够承受一定的拉伸和剪切力,以满足线束固定的需求。三、电子剥离试验机测试标准与捆扎线束胶带的适用性从理论上讲,电子剥离试验机测试压敏胶带的标准在一定程度上可以应用于捆扎线束胶带的测试。毕竟,剥离强度是评估胶带粘附性能的重要指标之一。然而,在实际操作中,我们需要注意到捆扎线束胶带与压敏胶带在结构和性能上的差异。捆扎线束胶带往往需要承受更大的拉伸和剪切力,因此在测试时可能需要调整剥离速度、角度等参数,以更准确地反映其实际性能。此外,由于捆扎线束胶带的应用场景较为特殊,其阻燃性、耐磨损性和降噪性等性能也是评估其质量的重要指标。这些性能在电子剥离试验机的测试中可能无法得到充分体现,因此需要结合其他测试方法进行综合评估。四、结论与建议综上所述,电子剥离试验机测试压敏胶带的标准在一定程度上可以应用于捆扎线束胶带的测试,但需要注意调整测试参数以更准确地反映其实际性能。同时,为了全面评估捆扎线束胶带的质量,还需要结合其他测试方法进行综合评估。建议相关企业和研究机构在制定捆扎线束胶带测试标准时,充分考虑其特殊性能和应用场景,确保测试结果的准确性和可靠性。
  • 中国第一台界面剪切流变仪ISR400在中石油落户
    2008年3月24日,中国第一台界面剪切流变仪ISR400在中国石油天然气股份有限公司&中国科学院 廊坊分院渗流流体力学研究所正式落户。制造商芬兰KSV公司专门派遣工程师来华进行培训。
  • 电子拉力试验机选购时候需要注意事项
    市面上有一些高档电子拉力试验机除以上项目外,因其传感器精度高(有的达到三十五万分之一)还可以测试摩擦系数。  丝杠,对拉力精度测量具有决定作用。一般的有滚珠丝杠,梯形丝杠,一般丝杠。其中,滚珠丝杠的精确度最高,但是其性能的发挥要靠电脑伺服系统操作才能发挥,整套价格也比较昂贵。采用一般丝杠和梯形丝杠就可以达到软包装所要求的精度,即0.1-1%精度。  传动,有齿轮传动和链条传动,前者昂贵,用于高精度;后者便宜,用于低精度,传感器,主要成本在于寿命,光电感应是其中比较先进的技术,一般可用十万次以上,进口和国内部分合资厂家可以达到更好技术,下面我们看看八点注意事项。    1.标准配置问题。  智能化的三种基本配置:主机、微电脑、还有打印机,如果微电脑功能强可以直接打印。另外也可配备普通电脑。有了电脑,就可以进行复杂的数据分析,如数据编辑,局部放大,可调整报告形式,进行成组式样的统计分析,如配用电脑,厂家应给加入相应控制系统。  2.产品机械主要配置:  传动,有丝杠传动和齿条传动,前者昂贵,用于高精度,测试重复性高;后者便宜,用于低精度,测试重复性低,与单臂式相对应结构的是门式结构,它是适应比较大的拉力,如一吨或以上。所以软包装厂家基本用不着。  3.测量精度。  精度问题,包括测力精度,速度精度,变形精度,位移精度。这些精度值最高都可达到正负0.5。但对于一般厂家,达到1%精度就足够了。另外,力值分辨率几乎都能达到40万分之一。  4.试验行程的问题。  根据自己公司需要试验的物品性质进行选型,如对弹性较大、长度较长的物品进行试验,订购拉力试验机时就要提前和厂家技术部门沟通好。以软包装薄膜为例,其需要测试的性能和要求,行程在600-1500mm就可以。材料伸长率超过1000%的可以选用行程1000或是1200mm。  5.在可做实验项目上。  软包装要求拉力机一机多用,即在配备不同夹具的基础上,可做拉伸、压缩、弯曲、撕裂、剪切、180度剥离、90度剥离试验。  6.首先应考虑需要测试材料拉力范围。  电子拉力试验机范围的不同,决定了所使用传感器的不同,也就决定了拉力机的结构,但此项对价格的影响不大(门式除外)。对于一般软包装生产厂家,拉力范围在100牛顿的了就已经足够。因此也决定了采用单臂式的就可以了。  7.输出结果。  电子拉力试验机试验结果输出结果可任意设置:最大力值、伸长率,抗拉强度、定力伸长、定伸长力值、屈服强度,弹性模量、最大试验力8项。这可以说是微电脑操作时,输出的最全面的结果。国外一些厂家的产品,一般可以输出这8项。国内有的厂家可以输出5-6项,有的厂家就只能输出最大力值,平均值,最小值六项。  8..试验速度。  市面设备有的在10~500mm/min,有的在0.001~500mm/min,前者一般使用普通调速系统,成本较低,影响精度;后者使用伺服系统,价格昂贵,精度高,对于软包装企业,选用伺服系统,调速范围1~500mm/min的就足够了,这样既不影响精度,价格又在合理范围之内。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制