氯代肉桂醛

仪器信息网氯代肉桂醛专题为您提供2024年最新氯代肉桂醛价格报价、厂家品牌的相关信息, 包括氯代肉桂醛参数、型号等,不管是国产,还是进口品牌的氯代肉桂醛您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氯代肉桂醛相关的耗材配件、试剂标物,还有氯代肉桂醛相关的最新资讯、资料,以及氯代肉桂醛相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

氯代肉桂醛相关的资料

氯代肉桂醛相关的论坛

  • 肉桂油中的桂皮醛

    [align=right][b]SGLC-GC-003[/b][/align][b]摘要:[/b]本文建立了肉桂油中桂皮醛的检测方法。结果表明,采用色谱柱SH-5 (1.0um*0.53mm*30m)分析肉桂油中的桂皮醛,理论板数按桂皮醛峰计算为133586,满足《中国药典》要求。此方法可为肉桂油中的桂皮醛测定提供参考。[b]关键词:[/b]桂皮醛 SH-5[b]1. 实验部分1.1 实验仪器及耗材[/b]GC-FID[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-氢火焰离子化检测器;色谱柱:SH-5 (1.0um*0.53mm*30m;P/N 221-75710-30);SHIMSEN Arc Disc HPTFE针式过滤器(P/N:380-00341-05);[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]认证样品瓶LabTotal Vial(P/N:227-34002-01);SHIMSEN Pipet[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url]:SHIMSEN Pipet PMII-10(P/N:380-00751-02);SHIMSEN Pipet PMII-100(P/N:380-00751-04);SHIMSEN Pipet PMII-1000(P/N:380-00751-06)。[b]1.2 分析条件[/b]色谱柱:SH-5 (1.0um*0.53mm*30m)柱温:初始温度为100℃:,以每分钟5℃的速率升温至150℃,保持5分钟,再以每分钟5℃的速率升温至200℃,保持5分钟;载气:氮气进样口:200°C 分流比20:1检测器:220°C进样量:1 μL[b]2.结果及讨论2.1 色谱图[/b]按照上述色谱条件(1.2)进行采集,色谱图如下:[img=肉桂油中的桂皮醛]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGLC-GC-006_1.png[/img][b]3. 结论[/b]参考《中国药典》中色谱条件,并对其条件进行优化,最终建立了肉桂油中的桂皮醛的检测方法。结果表明,采用色谱柱SH-5 (1.0um*0.53mm*30m)分析肉桂油中的桂皮醛,理论板数按桂皮醛峰计算为133586,满足《中国药典》要求。此方法可为肉桂油中的桂皮醛测定提供参考。

  • 天然药物肉桂醛性质简介

    [font=黑体] [/font][b]天然药物肉桂醛性质简介[/b][font=宋体]随着对天然药物分子活性成分的深入研究,已发现很多具有独特活性和药效的潜在创新药物。天然药物分子作为一种防治疾病的有效手段,在疗效、适应症以及给药方式等方面凸显出了极大的优越性,也为现代医学的不断发展提供了新的方法和思路。[/font][font=宋体]中国肉桂是一种从肉桂树的内部树皮中提取的广泛使用的香料。如图[/font]1-1[font=宋体],几千年来一直作为药材使用,并被认为是传统中药中 [/font]50 [font=宋体]种基本药材之一。据报道,肉桂提取物具有各种有益的作用[/font][sup][1][/sup][font=宋体],包括抗过敏[/font][sup][2][/sup][font=宋体]、抗菌[/font][sup][3, 4][/sup][font=宋体]、抗病毒[/font][sup][5][/sup][font=宋体]、抗氧化[/font][sup][6][/sup][font=宋体]、胃保护、抗血管生成和抗老年痴呆等。肉桂中含有多种活性成分,如精油(肉桂醛和肉桂醇)、单宁、粘液和碳水化合物[/font][sup][7][/sup][font=宋体]。其中,肉桂醛[/font][font=宋体]([/font]CA[font=宋体])是一种黄色的粘稠液体,占肉桂树皮精油的[/font]98%[font=宋体],被认为是肉桂中的主要活性分子之一。[/font]CA [font=宋体]最早由 [/font]Dumas [font=宋体]和 [/font]Péligot[font=宋体]分离出来,随后,意大利化学家[/font]Luigi Chiozza[font=宋体]于 [/font]1854 [font=宋体]年首次在实验室合成。[/font][font=宋体] [/font][font=宋体]在传统上,[/font]CA[font=宋体](图 [/font]1-2[font=宋体])已被证明具有抗炎、抗病毒、抗细菌[/font][sup][8][/sup][font=宋体]和抗氧化等多种药理作用。其中,[/font]CA[font=宋体]对人口腔鳞状细胞癌 [/font]HSC-3[font=宋体]细胞有着显著降低细胞谷胱甘肽含量和谷胱甘肽过氧化物酶活性的作用,所以 [/font]CA [font=宋体]可能具有抗口腔癌的活性[/font][sup][9][/sup][font=宋体]。基于 [/font]CA [font=宋体]在黏膜肥大细胞活化中干扰 [/font]PLCγ1 [font=宋体]信号传导的新机制,有助于开发针对与黏膜肥大细胞[/font][align=center]1[/align][font='Times New Roman',serif][/font][font=宋体]相关的过敏性疾病的有效治疗剂[/font][sup][10, 11][/sup][font=宋体]。此外,还报道了 [/font]CA [font=宋体]的降血糖和降血脂作用, 所以 [/font]CA[font=宋体]可以作为一种潜在的抗糖尿病剂[/font][sup][12, 13][/sup][font=宋体]。[/font] [table][tr][td] [table=100%][tr][td] [/td][/tr][/table] [/td][/tr][/table][font=宋体]尽管 [/font]CA[font=宋体]及其衍生物在不同的癌细胞系中表现不同,但仍被认为是乳腺癌、结肠癌、前列腺癌等的潜在抗癌剂(图 [/font]1-3[font=宋体])[/font][sup][14][/sup][font=宋体]。[/font]Wang [font=宋体]等人报道 [/font]CA [font=宋体]可通过 [/font]Sept9 [font=宋体]抑制胶质瘤增殖,并进一步揭示 [/font]Sept9 [font=宋体]在肿瘤微环境方面与 [/font]Pi3k/Akt[font=宋体]通路相关[/font][sup][15][/sup][font=宋体]。[url=https://pubs.rsc.org/en/results?searchtext=Author%3AVarsha%20Shetty][font='Times New Roman',serif][color=windowtext]Varsha[/color][/font][/url][/font] [url=https://pubs.rsc.org/en/results?searchtext=Author%3AVarsha%20Shetty][color=windowtext]Shetty [/color][/url][font=宋体]等将 [/font]CA [font=宋体]进一步[color=#1C1D1E]加工为功能化的纳米颗粒,[/color][color=black]通过降低 [/color][/font][color=black]MMP-2 [/color][font=宋体][color=black]和 [/color][/font][color=black]VEGF [/color][font=宋体][color=black]的表达来减少乳腺癌细胞扩散以达到抗癌效[/color][/font][font=宋体][color=#1C1D1E]果[/color][/font][sup][color=#1C1D1E][16][/color][/sup][font=宋体][color=#1C1D1E]。[/color][/font][align=center][font=宋体] [/font][/align][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][align=center]2[/align][align=center] [/align]

  • 33.7 HPLC法测定桂枝中桂皮醛和肉桂酸的含量

    33.7 HPLC法测定桂枝中桂皮醛和肉桂酸的含量

    【作者】 王连芝; 蒋维谦;【机构】 黑龙江中医药大学中医药研究院;【摘要】 目的:建立HPLC法测定桂枝中桂皮醛和肉桂酸含量。方法:采用Diamonsil C18(250mm×4.6mm,5μm)色谱柱,以乙腈-0.1%磷酸溶液(38:62)为流动相,流速为1.0ml.min-1,检测波长为276nm和289nm双波长扫描。结果:样品中桂皮醛的平均回收率为99.48%,RSD为1.21%;肉桂酸的平均回收率为98.76%,RSD为1.29%;桂皮醛在0.01~0.03之间峰面积与浓度线性关系良好(r=0.9998);肉桂酸在0.002~0.01μg之间峰面积与浓度线性关系良好(r=0.9997)。结论:该实验方法简便,重现性好,回收率高,可作为同时测定桂枝中桂皮醛和肉桂酸含量的方法。 更多还原【关键词】 桂皮醛; 肉桂酸; 高效液相色谱法; 桂枝; 【基金】 黑龙江中医药大学科研基金项目(200745)http://ng1.17img.cn/bbsfiles/images/2012/08/201208071034_382135_2352694_3.jpg

氯代肉桂醛相关的方案

氯代肉桂醛相关的资讯

  • 【名家案例】一步到位——醛的直接氧化酯化反应
    【名家案例】一步到位——醛的直接氧化酯化反应康宁反应器技术 2023-05-25 16:43 发表于上海研究背景将醛直接氧化酯化是有机合成的研究热点,但醛直接氧化酯化却常有以下问题:“贵”:氧化醛酯化的典型方法依赖于在不同氧化剂,如H2O2、叔丁基过氧化氢(TBHP)或O2存在下的各种过渡金属催化剂,这种方法通常需要将昂贵的配体与特殊催化剂相结合;“危”:过氧化反应生产的过氧化物都含有过氧基(-O-O-),属含能物质。过氧化反应体系危险度已达到了四级或五级,而采用降低过氧化剂累积度的措施降低危险度很难保证不发生操作失误。欧洲著名连续流专家,奥地利Graz大学C.Oliver Kappe教授开发了一种过硫酸原位生成并在线消耗,直接实现醛的氧化酯化连续流合成的工艺,大大降低了安全隐患。该工艺可扩展到多种脂肪族和芳香族醛的转化,并通过多克级合成验证了其制备能力。研究过程01 过硫酸的生成Oliver教授将H2O2与硫酸混合生成过硫酸。考虑到过硫酸的不稳定性和爆炸性分解的倾向,作者通过连续流反应器,实现过硫酸的原位生成与在线消耗,提高过硫酸的实用性,并将安全风险降至最低。在连续流工艺开发之前,为了表征过硫酸的形成和分解,评估反应过程中潜在的安全隐患,作者使用反应量热仪探究了H2SO4-H2O2反应体系的热行为。图1. 热量滴定试验研究发现过硫酸的形成需要高于70°C (图 1),过硫酸在生成后直接发生降解,反应焓(-271.5±10.1 KJ.mol-1)包括过硫酸的生成和分解。02 氧化醛酯化反应装置搭建:在获得了足够的过硫酸形成与分解的数据后,作者搭建了连续流的反应装置:在甲醇存在下形成过硫酸并随后进行氧化醛酯化反应。图2. 直接氧化酯化的连续流动示意图实验中肉桂醛作为底物溶解在MeOH中,将H2SO4的MeOH溶液与H2O2溶液进行连续混合,分别泵入反应器。经反应器流出的反应液又通过加热且带有背压的反应线圈,最后反应液被导入含有饱和NaHCO3水溶液以及MnO2混合物的烧瓶中,进行反应的在线淬灭。反应优化:作者对反应进行了优化,结果如下。表1. 肉桂醛直接氧化酯化反应的优化在反应温度为100℃,H2SO4和H2O2都只有2eq. 时,转化率可以达到100%,仅检测到少量的副产物氢肉桂酸(2) (table1,entry2);相对于H2O2,使用过量的H2SO4更加有利于反应。推测其原因是更加利于缩二甲酯的形成(table1, entry6, entry7);当H2SO4为2.4eq.,反应器温度达到120°C时,可以实现定量转化和97%的选择性(table 1, entry9 VS entry10)。反应机理研究:通过对反应的研究,作者给出了可能的硫酸醛类氧化酯化反应的反应机理。图3. 可能的反应机理03 过硫酸氧化酯化反应拓展作者进一步研究了多种脂肪醛以及取代芳醛作为底物的反应体系,验证过硫酸氧化酯化反应的实用性。向下滑动查看完整表格表2. 取代芳醛作为底物的拓展研究研究表明,该方法不管是对脂肪醛还是对芳香醛都有着广泛的实用性。04 可持续性和对环境影响的研究为了评估过程的可持续性和对环境的影响,作者研究了著名药物帕罗西汀合成中的关键中间体。帕罗西汀是一种选择性血清素再摄取抑制剂,广泛用于治疗抑郁症和惊恐障碍。图4. 帕罗西汀的合成对γ-硝基醛(5)氧化酯化制γ-硝基酯(6),作者利用连续过硫酸氧化酯化得到的数据和基于N-溴代琥珀酰亚胺(NBS)的氧化的文献数据,进行了分析E因子、过程质量强度(PMI)、反应质量效率(RME)、原子经济性(AE)和最优效率(OE)的比较。表3. 可持续性和对环境影响的研究结果表明,流动过程执行地更好。流动过程对环境更友好、产生的废物更少,因此更可持续。研究小结作者提出了一种过硫酸原位生成并在线消耗,直接实现醛的氧化酯化连续流合成的工艺。将过硫酸的安全隐患降到最低。通过一系列脂肪族和芳香族底物的氧化酯化反应,验证了该工艺的拓展通用性,均实现了良好的转化率和较高的选择性。连续流反应器的应用使过硫酸成为一种简单而有效的氧化剂,它在各种通量规模的合成应用都将成为可能。流动过程对环境更有友好、产生的废物更少,因此更可持续。参考文献:ChemSusChem 2023, 16, e202201868
  • 合肥研究院制备可穿戴传感器实现对尿素的视觉监测
    近期,中国科学院合肥物质科学研究院固体物理研究所研究员蒋长龙团队在可穿戴水凝胶贴片及体液中尿素视觉监测方面取得进展,通过在三维多孔聚丙烯酰胺(PAM)水凝胶中嵌入上转换光学探针,设计制备了一种可穿戴传感贴片,并将该贴片与智能手机的颜色识别器结合,实现了对尿素的现场快速定量分析。相关研究成果发表在Analytical Chemistry上。   尿素是人体含氮物质最终代谢的主要产物,会通过汗液、尿液、唾液和血液排出,其在临床诊断中被认为是肾功能的重要指标,因此有效检测尿素水平对于疾病的研究和早期诊断至关重要。可穿戴传感器由于可以直接佩戴在人体皮肤上且具有非侵入性的特性受到广泛关注,三维网络状结构的水凝胶具有良好的柔韧性、拉伸性和生物相容性,这些特性使其成为可穿戴传感器的理想材料,然而目前报道的大多数荧光水凝胶都是由短波长激发的,在检测生物样品时容易受到自发荧光和背景荧光的干扰。上转换纳米粒子(UCNPs)与传统的荧光材料相比,能消除生物样品的自荧光和背景干扰,提高检测灵敏度。因此,利用UCNPs设计可穿戴传感器是检测人类生物标志物的有效策略。   鉴于此,研究团队设计了一种基于上转换光学探针的聚丙烯酰胺水凝胶传感器。探针由UCNPs和对二甲氨基肉桂醛(p-DMAC)组成,基于内滤效应(IFE),尿素与p-DMAC反应产生的红色产物猝灭UCNPs的绿色荧光,使上转换荧光从黄色转变为红色,实现尿素的荧光检测。在此基础上该研究结合PAM水凝胶制作了柔性可穿戴传感器,并利用3D打印技术构建便携式传感平台。   研究团队设计的上转换荧光探针和水凝胶传感器的检测限(LOD)分别为1.4μM和30μM。水凝胶传感贴片为检测体液中的生物标志物提供了便利和准确的传感策略,在疾病预警和临床诊断设备上具有应用潜力。图(a)设计可穿戴水凝胶传感贴片;(b)汗液中尿素的传感和水凝胶的SEM图像;(c)水凝胶传感贴片在980 nm激发光和日光下对尿素的响应;(d)便携式尿素检测传感平台;(e) G/R比值与尿素浓度在0-40 mM范围内的线性关系。
  • 贵州大学绿色农药全国重点实验室在病毒病防控又有新发现
    植物病毒病严重危害农作物的整个生长发育周期,是农业生产中仅次于真菌的第二大类世界性植物病害。其中马铃薯Y病毒(potato virus Y,PVY)是十大植物病毒病害之一,其主要危害茄科、豆科和藜科等农作物,给农业生产带来了极为严重的损失。PVY在植物体内绝对寄生性,植物体对其又缺乏完整有效的免疫系统,使PVY在实际的生产活动中的防治变得特别困难。目前,田间用于防治PVY的商品化药剂主要有氨基寡糖素、病毒唑和宁南霉素等,但是这些商品化的药剂仍不同程度的存在防治效果不够理想和防治成本高等问题。因此,创制高效、绿色友好和作用机制独特的抗PVY活性药物分子,仍然是现代农业生产中一个亟待解决的科学问题。植物病毒的功能性外壳蛋白(Coat protein, CP)对于病毒生命周期的多个阶段至关重要,参与病毒颗粒组装、病毒基因组保护、宿主细胞间运动和媒介传播等。因此,战略性地靶向PVY CP的抗病毒策略已经备受关注。然而,尽管许多抗病毒药物是基于PVY CP而设计或者是宣称其可能靶向CP,但这些药物具体是如何作用于 CP 来抑制病毒致病性的,在很大程度仍是未知的。2024年3月13日,贵州大学绿色农药全国重点实验室宋润江教授作为通讯作者、博士生韦春乐作为第一作者在Advanced Science(影响因子IF=15.1)发表了题为“Innovative Arylimidazole-Fused Phytovirucides via Carbene-Catalyzed [3+4] Cycloaddition: Locking Viral Cell-To-Cell Movement by Out-Competing Virus Capsid-Host Interactions”的文章,该研究通过氮杂环卡宾催化合成得到的手性苯并咪唑并二氮杂卓衍生物-3j (S)具有较好抗PVY活性,进一步机制研究揭示了小分子-3j (S)与PVY CPR¹⁹¹形成的氢键影响了PVY CP与NtCPIP蛋白之间的互作,进而影响PVY在宿主细胞间的移动从而实现对病毒侵染的抑制。 研究结果1、氮杂环卡宾催化高效合成手性的苯并咪唑并二氮杂卓衍生物作者以具有广泛生物活性的苯并咪唑类衍生物1a和α-溴代肉桂醛2a作为模型反应对反应条件进行筛选,通过N-杂环卡宾(NHC)一步合成苯并咪唑并二氮杂卓衍生物3a。最终以NHC A作催化剂、碳酸钾作碱和THF作溶剂,在室温下反应12h,以优秀的收率和对映选择性得到目标化合物(图1)。在最优条件下对底物普适性进行研究,该反应在不同取代基的苯并咪唑类衍生物1a和不同取代基的α-溴代肉桂醛2a下反应都能以高收率和高对映选择性得到目标化合物(图2)。图1. 反应条件的优化图2. 底物的普适性研究2、苯并咪唑并二氮杂卓衍生物的抗PVY活性测试通过半叶枯斑法测试了所有苯并咪唑并二氮杂卓衍生物的目标化合物的抗PVY活性。测试的结果表明,部分苯并咪唑并二氮杂卓衍生物对PVY表现出了较好的抑制活性。其中,化合物-3j (S)(239、198和98 μg/mL)抗PVY的治疗、保护和钝化活性均优于对照药剂病毒唑(650、627和242 μg/mL),表现出最佳的抗PVY活性。值得注意的是,化合物-3j表现出了与手性构型相关的活性差异。其中,-3j (S)的活性优于其对映异构体-3j (R)以及外消旋体-3j (rac)。这意味着-3j (S) 可能作为一种潜在的手性药物。表1. 目标化合物抗PVY活性的EC₅₀值 (μg/mL)3、潜在靶标位点的筛选和功能验证PVY CP是一个多功能的关键靶标蛋白,与病毒的细胞间移动、长距离移动和蚜虫的传播等密切相关,常常被作为潜在的靶标蛋白进行研究。活性小分子-3j (S)与PVY CP进行的分子对接表明,PVY CPR¹⁹¹和PVY CPN¹⁵¹可能是小分子-3j (S)作用于PVY CP的潜在靶标位点。作者通过原核表达分别纯化了野生型和突变型的PVY CP,并通过微量热涌动法测试了突变前后与小分子-3j (S)结合力的差异,验证了潜在的靶标位点。通过定点突变策略构建了突变的PVY CPR¹⁹¹A-GFP和PVY CPN¹⁵¹A-GFP侵染性克隆,在活体上对潜在的靶标位点进行验证和功能分析。结果表明PVY CPN¹⁵¹位点对病毒的系统侵染几乎没有影响,而PVY CPR¹⁹¹位点病毒的系统侵染至关重要。图3. 潜在靶标位点的筛选与验证图4. 潜在的靶标位点的验证与功能分析为进一步解释PVY CPR¹⁹¹和PVY CPN¹⁵¹结合位点对PVY系统侵染的影响,作者通过激光共聚焦显微镜观察了不同处理组浸润烟草后的胞间移动现象。结果表明,突变型PVY CPN¹⁵¹A-GFP的胞间移动效率与野生型PVY-GFP相当,而将PVY CPR¹⁹¹突变后,能破坏病毒的胞间移动。进一步验证小分子-3j (S)对病毒侵染影响的实验表明,与DMSO处理组后相比,经小分子-3j (S)处理后,PVY-GFP在本氏烟中的胞间移动效率和系统侵染显著受到抑制。图5. 潜在的靶标位点的验证与功能分析4、寄主关键蛋白的筛选和功能验证植物寄主因子对植物病毒的有效侵染至关重要,参与马铃薯Y病毒属的胞间移动同时与CP相互作用的寄主因子也被逐渐揭示。其中来自烟草的DnaJ样蛋白NtCPIPs,主要参与病毒的细胞间运动,并在与CP相互作用后导致PVY在宿主植物中的有效扩散。作者通过共免疫沉淀实验验证了寄主因子NtCPIP与野生型GFP-PVY CP和突变型GFP-PVY CPR¹⁹¹A蛋白的互作差异。同时,在烟草植株上过表达NtCPIP后,促进了PVY在烟草中的侵染。总的来说,实验的数据表明PVYR191A-GFP的胞间移动受阻可能是由于PVY CPR¹⁹¹A和NtCPIP之间的相互作用中断,并且NtCPIP能有效促进病毒的胞间移动和系统侵染。图6. 潜在的靶标位点的验证与功能分析总结研究团队通过NHC催化[3+4]七元氮杂环化合物的不对称合成,实现了手性苯并咪唑并二氮杂卓类化合物的高效合成。以PVY为研究对象,通过半叶枯斑法从75个目标化合物中筛选出最佳抗PVY活性的苯并咪唑并二氮杂卓衍生物-3j (S),化合物-3j (S)抗PVY的治疗、保护和钝化活性均优于市售的对照药剂病毒唑,表现出良好的应用前景。初步的作用机制研究揭示了手性的活性小分子-3j (S)与PVY CPR¹⁹¹形成的氢键竞争性地阻碍了PVY CP与NtCPIP蛋白之间的正常互作,进而影响PVY病毒粒子在宿主植物细胞间的移动,导致植物中病毒的积累水平下降,从而实现对病毒侵染的抑制。总之,这项工作通过不对称催化与生物活性测试相结合发现了具有良好抗PVY活性的手性小分子,并利用分子生物学技术深入揭示其分子机制,为促进交叉学科发展提供了研究基础。此工作部分结果近期发表于Advanced Science。贵州大学绿色农药全国重点实验室博士生韦春乐为论文第一作者。图7. 活性分子抑制PVY侵染可能的作用机制模式图

氯代肉桂醛相关的仪器

  • 肉桂醛一、肉桂醛基本信息英文名:Cinnamaldehyde Cinnamic aldehyde Cinnamyl aldehydeCAS No.:104-55-2/14371-10-9FEMA No.:2286分子式:C9H8O二、肉桂醛产品性能含量:≥99%外观:浅黄色液体密度:1.05折射率:1.61香气:有强烈的桂皮油和肉桂油的香气,温和的辛香气息,不应有辣味,香气强烈持久。桂醛较桂醇香气清强。溶解性:难溶于水、甘油和石油醚,易溶于醇和醚。能随水蒸气挥发。稳定性:在强酸性或者强碱性介质中不稳定,易导致变色,在空气中易氧化。三、肉桂醛产品应用食品及日化香精、制药及缓蚀剂等。肉桂醛也是重要的医药原料之一,常用于外用药、合成药中,因其具有促进血液循环,使皮肤回温,紧实皮肤组织、 对水分滞留的现象可以得到充分的改善,具有很强的脂肪分解作用。对皮肤的疤痕、纤维瘤的软化与清除皆具效果。散淤血。有抗凝血酶效果,具有镇静、镇痛、解热、抗惊厥等作用,还具有抑制霉菌的效果。此外,也是重要香料之一,常用于皂用香精,调制栀子,素馨、铃兰、玫瑰等香精。食品中用于水果保鲜,最近研究表明肉桂醛用于口香糖对口腔可起到杀菌和除臭双重功效。包装:210KG/塑料桶可按客户要求分装
    留言咨询
  • 肉桂酸一、肉桂酸基本信息英文名:Cinnamic acid, Cinnamyl acidCAS No.:140-10-3FEMA No.:2288分子式:C9H8O2二、肉桂酸产品性能含量:≥99%外观:白色或无色结晶粉末气味:稍有辣味然后转变成甜的和杏子味道熔点:133°C沸点:300°C三、肉桂酸产品应用香精香料、制药、化妆品等。主要用于配制香辛料,樱桃,杏,蜜蜂等型香料。亦可用于新鲜水果蔬菜的防腐.作为有机合成中间体,主要用于医药行业,可用于生产阿斯巴甜的主原料L-苯丙氨酸.也是用来制备用于因膀胱过度兴奋引起的尿频的药物毒蕈碱受体拮抗剂托特罗定.抗肿瘤药多紫杉醇的制备也有用到肉桂酸.还可用于制造局部麻醉剂,杀菌剂,止血药等。在农药方面,可作为生长促进剂和长效杀菌剂而用于果品和蔬菜的防腐。食品添加剂肉桂酸用微生物酶法合成L-苯丙氨酸。L-苯丙氨酸是重要的食品添加剂-甜味阿斯巴甜(Aspartame)的主要原料。英国联合利华取得了世界知识产权组织专利PCTInt。Appl。Wo01 87,080(2001,11.22)该文介绍肉桂酸和巴氏杀菌助剂组成,具有很强的杀菌、防腐作用。利用肉桂酸的防霉防腐杀菌可应用于粮食、蔬菜、水果中的保鲜、防腐。肉桂酸用于蜜饯中,能改善口感风味,尤其是在食品防腐保鲜上,具有无公害的环保防腐剂。替代(苯甲酸钠,山梨酸钾,等产品)还可用在葡萄酒中,使其色泽光鲜。肉桂酸具有很强的兴奋作用,可广泛直接添加于一切食品中。美容方面肉桂酸可应用于美容方面,酪氨基酸酶是黑色素合成关键酶,它启动了由酪氨酸转化为黑色素生物聚合体的级链反应,肉桂酸有抑制形成酪氨基酸酶的作用,对紫外线有一定的隔绝作用,能使褐斑变浅,甚至消失,是高级防晒霜中必不可少的成分之一。肉桂酸显著的抗氧化功效对于减慢皱纹的出现有很好的疗效。肉桂酸同时还具有很好的保香作用,通常作为配香原料,被用作日化香精中的定香剂。农药方面在农业工业中,肉桂酸作为生长促进剂和长效杀菌剂而用于果蔬防腐。有机合成在有机化工合成方面,肉桂酸可作为镀锌板的缓释剂,聚氯乙烯的热稳定剂,多氨基甲酸脂的交联剂,乙内酰和聚己内酰胺的阻燃剂,化学分析试剂。也是测定铀、钒分离的试剂;它还是负片型感光树脂的最主要合成原料。主要合成桂酸酯、聚乙烯醇肉桂酸酯、聚乙烯氧肉桂酸乙酯和侧基为肉桂酸酯的环氧树脂。应用于塑料方面,可用作PVC的热稳定剂,杀菌防霉除臭剂,还可添加在橡胶、泡沫塑料中制成防臭鞋和鞋垫,也可用于棉布和各种合成纤维、皮革、涂料、鞋油、草席等制品中防止霉变。包装:25KG/牛皮纸袋
    留言咨询
  • 肉桂酸甲酯一、肉桂酸甲酯基本信息英文名:Methyl cinnamateCAS No.:103-26-4FEMA No.:2698分子式:C10H10O2二、肉桂酸甲酯产品性能含量:≥99%外观:无色或白色晶体气味:具甜带涩的桂味琥珀膏香,草莓样果香。折射率:1.563-1.568密度:1.092三、肉桂酸甲酯产品应用香料、有机合成中间体、制药等。肉桂酸甲酯又称β- 苯基丙烯酸甲酯,具有可可香味,主要用于日化和食品工业,是常用的定香剂或食用香料,同时也是重要的有机合成原料。目前它的合成方法有无机酸 (如盐酸 、硫酸) 催化酯化法、有机酸催化酯化法、多相催化酯化法和高压微波合成法。肉桂酸甲酯的药用价值:咪唑与肉桂酸甲酯以甲基作为中间连接体,制备对溴甲基肉桂酸甲酯,这个中间体则是生产奥扎格雷的主要原料。肉桂酸甲酯对抑制白癜风有积极作用。在美白,防晒中,肉桂酸甲酯的作用更是无可替代!包装:200kg/塑料桶
    留言咨询

氯代肉桂醛相关的耗材

  • 北京绿百草现货提供培养基原材料 各种规格
    北京绿百草现货提供培养基原材料 北京绿百草现货提供培养基各原材料:蛋白胨,牛肉粉,牛肉膏,干酪素,酵母膏,胆酸(牛/猪),卵磷脂,琼脂粉,乳糖,胰酶粉,糊精,肝素钠,烟酸,小牛血清,肉桂酸,酸水解酪蛋白,脑浸粉(牛),肝浸粉(猪/牛),心浸粉(牛),明胶,禽胆盐,熊去氧胆酸,去氢胆酸,蛋白酶抑制剂,亚甲基蓝,虎红,孔雀石绿,酸性品红,胰蛋白眎,灿烂绿等。 需要详细信息请联系北京绿百草:010-51659766. 登录网站获得更多产品信息: www.greenherbs.com.cn
  • 北京绿百草现货提供培养基原材料
    北京绿百草现货提供培养基原材料 北京绿百草现货提供培养基各原材料:蛋白胨,牛肉粉,牛肉膏,干酪素,酵母膏,胆酸(牛/猪),卵磷脂,琼脂粉,乳糖,胰酶粉,糊精,肝素钠,烟酸,小牛血清,肉桂酸,酸水解酪蛋白,脑浸粉(牛),肝浸粉(猪/牛),心浸粉(牛),明胶,禽胆盐,熊去氧胆酸,去氢胆酸,蛋白酶抑制剂,亚甲基蓝,虎红,孔雀石绿,酸性品红,胰蛋白眎,灿烂绿等。 需要详细信息请联系北京绿百草:010-51659766. 登录网站获得更多产品信息: www.greenherbs.com.cn
  • 铝材密封圈,带隔垫 (20 mm, 预先组装)
    铝材密封圈,带隔垫 (20 mm, 预先组装)订货信息:说明密封圈隔垫材料100个/包1000个/包密封圈,带隔垫银色PTFE/灰丁基橡胶2176121762密封圈,带隔垫银色PTFE/硅胶2176321764减压密封圈,带隔垫银色PTFE/灰丁基橡胶2176521766减压密封圈,带隔垫银色PTFE/硅胶2176721768

氯代肉桂醛相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制