当前位置: 仪器信息网 > 行业主题 > >

烟气多效取样管

仪器信息网烟气多效取样管专题为您提供2024年最新烟气多效取样管价格报价、厂家品牌的相关信息, 包括烟气多效取样管参数、型号等,不管是国产,还是进口品牌的烟气多效取样管您都可以在这里找到。 除此之外,仪器信息网还免费为您整合烟气多效取样管相关的耗材配件、试剂标物,还有烟气多效取样管相关的最新资讯、资料,以及烟气多效取样管相关的解决方案。

烟气多效取样管相关的论坛

  • 烟气脱硝系统中CEMS 存在的主要问题

    1.1 粉尘浓度高引起的采样系统堵塞问题脱硝系统的CEMS 布置在省煤器和空预器之间,由于烟气没有经过除尘器,烟气中的粉尘浓度高达30g/m3,有的甚至更高,极易造成烟气采样系统堵塞。用探头位置设置过滤装置,避免粉尘颗粒进入采样管,引起采样管线堵塞,一旦堵塞,处理起来的难度就会很高。同样,在测量烟气流速时,也要考虑皮托管的堵塞问题。因而解决好采样系统中过滤器的堵塞和清理对烟气样气分析至关重要。共性问题:1.烟气采样系统中采样管线伴热效果差,采样管线的伴热温度不能维持在烟气露点温度以上,造成烟气在管内结露、在烟气中粉尘的共同作用下引起采样管堵塞。2.因锅炉投油助燃,烟气中的大量油烟污染并堵塞取样探头。3.烟气中粉尘含量过大,导致取样探头内的过滤器堵塞。4.取样探头内的过滤器滤芯孔径的选择不合理,孔径过大,进入取样管线的灰尘过多。5.采样探头中过滤网的孔径的选择太小,增大了堵塞几率。6.安装时,管道弯曲半径过小或打折,流道受阻,产生堵塞。7.吹扫时间间隔设置过长。8.吹扫用压缩空气是带水、含油,从而污染堵塞管道。1.2 分析仪因无流量而失灵由于脱硝CEMS 的工作环境相当恶劣,可能造成取样系统堵塞,因此分析仪会因无流量而失灵,监测分析数据失效。共性问题:1.取样管道或探头堵死。2.预处理系统内部过滤器堵塞。3.预处理系统中冷凝器结冰,除湿效果差;4.预处理系统中蠕动泵故障,冷凝器不能正常工作,除湿效果差。5.预处理系统中的抽气泵长时间带水运行,烟气抽取不出。1.3 高温的问题一般情况下,脱硫系统入口的烟温约为115~150℃,脱硫系统出口的烟温约为50℃(无GGH)。而在脱硝系统入口的烟温在310~420℃左右,出口烟温与入口相差不大。因此,如果采用与脱硫CEMS 系统相同的测量方法,则采样探头、皮托管流量计的取压元件,温度仪表等需插入烟道中设备必须选用耐高温的材料,确保其能在高温环境下安全、稳定的运行,从而保证数据的准确性。1.4 腐蚀变形的问题脱硝系统中的烟气中含有、NO、NO2、水蒸气、NH3、和SO2 等。烟气在反应过程中可能生成酸或者碱以及强酸弱碱盐等物质。工作环境比较恶劣,采样探头、皮托管流量计的取压元件、温度仪表都置于烟道内,同时烟道内的烟气流速比较快(一般为15m/s),这些都会导致传感器的变形和腐蚀,引起测量仪表失效。共性问题:脱硫脱硝系统中的SO22 气体都易溶于水,溶解体积比分别为1:40(水:气)和1:4(水:气)。SO22 气体溶于水后分别生成硫酸和硝酸溶液,该酸性溶液的腐蚀性随其浓度的增大而变大。脱硫系统的SO2/SO3 原烟气露点温度在120℃~130℃;脱硝系统的NOx 原烟气露点温度在60℃左右。对于直接抽取式CEMS,如果取样管线温度控制不当,则污染物气体会直接结露。脱硝系统净化烟气中NH3 与SO3 反应生成硫酸氢铵和硫酸铵。这两种物质都是强酸弱碱盐,水溶液具有一定的腐蚀性。并且,硫酸铵固体在280℃开始分解,分解物质为硫酸氢铵和氨气,因此这两种物质在取样管中有结晶的可能。1.5 分析传感器的量程以及检出限的问题针对燃煤锅炉的实际情况,脱硝装置前烟道内NOx 的浓度在400~1000 mg/Nm3,《大气污染物排放标准》(GB13223-2011)规定脱硝后的氮氧化物浓度不大于100mg/Nm3。因此脱硝装置前后NOx的检测要求传感器具有较大的量程,并且具有较低的检测限,确保脱硝前后NOx 的检测的准确性。同时,为了防止脱硝过程中还原剂NH3 的逃逸造成二次污染,以及生成氨盐腐蚀下游设备,在脱硝装置的出口设置了氨逃逸检测设备,《火电厂烟气脱硝工程技术规范_SCR》(HJ_562-2010)逃逸氨的浓度不大于3 ppm,因此对逃逸氨设备最低检测限的要求则更高,一般要求为0.15~0.3 ppm。3 针对主要问题的解决措施针对以上脱硝系统中CEMS 系统中存在的主要问题,提出相应的对策,以供参考。3.1 取样管堵塞解决对策3.1.1 加强电加热器装置的定期维护,保证设备的正常运行,建议伴热管线的温度设定的参考值为150℃-180℃。3.1.2 根据实际烟气成分,选择合适的过滤器滤芯。3.1.3 安装时,管道弯曲度要平缓,保证流道通畅。3.1.4 吹扫频率或者间隔时间必须满足取样管基本使用要求。3.1.5 提高吹扫压缩空气品质,确保满足要求。3.2 取样探头堵塞解决对策:3.2.1 锅炉启动投油阶段,一直进行取样器反吹,避免油烟进入。3.2.2 根据实际烟气成分,选择适合的过滤器滤芯。3.2.3 定期清洗、及时维护取样探头,如每三个月清洗维护一次。3.3 分析仪因无流量而失灵解决对策:3.3.1 取样管道或者探头防堵见前面相应的对策。3.3.2 定期检查

  • 烟气烟尘分析仪执行标准有哪些?

    烟气烟尘分析仪(执行标准HJ/T 47-1999《烟气采样器技术条件》HJ/T 48-1999《烟尘采样器技术条件》JJG 968-2002《烟气分析仪》JJG 680-1990《烟尘测试仪》烟气烟尘分析仪(适用范围锅炉、炉窑烟尘排放浓度、折算浓度和排放总量测量配油烟、沥青烟取样管,可进行油烟、沥青烟采样烟气连续在线检测系统(CEMS)的准确度评估和校准脱硫除尘设备效率的测定烟气烟尘分析仪(主要特点一机多用(可测烟尘、烟气、油烟、沥青烟)高性能长寿命烟气采样泵,负压高达60KPa烟气恒流抽取,测定值更加稳定准确实测NOx=NO+NO2二氧化碳(CO2)浓度可计算,可实测(NDIR)先进可靠的SMT工艺数字版大容量数据存储(1000组)内置打印机,打印更方便坚固外壳,可在恶劣环境下使用

  • 烟气类仪器常见故障及解决方案

    烟气类仪器常见故障及解决方案

    [b][color=#ff0000]烟气类仪器常见故障及解决方案[/color][/b][hr/][b]一、仪器测量的烟气数据异常。[/b]故障判断:化学传感器的时效期、气路漏气、采样流量、气泵负载、参数标定、标定方法、化学传感器进水损坏或传感器路板损坏、气体交叉干扰、气路堵塞、管路吸附、未清洗和强制校零、震动和预热时间不足;可能的原因:1、时效期:如果是化学传感器的仪器,有效期的期望值是两年,但随着随着使用的频次和待测气体浓度的大小,使用寿命会越来越低,一般来说正常的实际使用寿命大约在一年半左右,如果是氧气,因为安装位置和空气损耗等原因,使用寿命可能更短;2、漏气:最直观的现象是采样时氧气的数值没有变化或变化很小。主要分为外置气路漏气和内部气路漏气,其中外部气路需检查:取样器、预处理器、25连接管、聚四氟乙烯管,工况入口密封;内部气路需检查:安装滤芯处透明罩底的O型圈、内部所有管路连接、流压传感器、孔板流量计、传感器气室包括连接气嘴和O型圈。可以通过分别堵住烟气进气嘴和出气嘴,观察烟气采样流量变化的简易方法判断泵前和泵后是否有漏气情况;3、采样流量:气路的不完全堵塞(如有泡沫颗粒或者灰尘残留颗粒);气流压传感器损坏;气泵自身故障(如,泵负载达不到、泵头内腔有污染等);气泵流量参数被改动;气流压传感器管路脱落;4、负载:工况烟道的负压较大,有可能会出现烟气泵功率已经满负荷,但仍达不到设定的烟气流量。此时可以通过将烟气进气端和出气端同时甩到工况中,依靠工况自身的静压来平衡气泵前后端的负载,达到正常采样流量;5、参数:烟气参数的改动会引起烟气数据的差异,可以通过恢复出厂设置的方式进行修正。烟气标定是需要注意的两点:1、主副倍率;2、变更量程范围;6、调试方法:气袋法和旁通法,严禁将标气瓶减压阀的出气口直接与烟气分析仪的进气口相连接,即便是流量调节至相同状态也不能直接相连。7、传感器损坏:因为操作或保养不当造成气路进水或者传感器路板腐蚀等情况,要求采样时前端处理必须达到脱水效果,并且在日常存放时也不应放置在湿度较大的地方,需定期启动运行;8、交叉干扰:化学传感器难免会出现气体交叉干扰的情况,可以通过过滤干扰气或者数据补偿的方式对目标气体进行修正,另外超量程使用或者使用环境中有改变传感器性质的气体存在时会造成化学传感器中毒且永久损伤;9、气路堵塞:烟气采样流量在空载时就达不到设定流量,或者空载时采样流量始终波动无法稳定。①烟气过滤芯。进水、变黑、堵塞;②进气嘴或管路中的泡沫颗粒造成不完全封堵;③预处理器中的聚四氟乙烯管的融化变形;10、管路吸附:水(汽)、硅橡胶管、橡胶管、304不锈钢,都对烟气(尤其是SO[sub]2[/sub])有较大的吸附,因此要求提高前处理效率,避免使用烟尘管或者动静压管进行烟气采样;11、未清洗和强制校零:当仪器显示还有较高的烟气数值时,点击强制校零,会将当前状态当做零点状态强制校正,导致实测数值远远偏离真实值;当烟气采样完毕,仪器气室与管路中还有较多的残留气体时,未进行清洗过程便停止采样、关机装箱。残留的气体会长时间侵蚀化学传感器,致其精度降低、使用寿命缩短;12、震动和预热:如果是光学设备,在使用现场是不允许有较剧烈的震动的,震动会导致光学设备测量烟气产生误差;另外,光学设备在正式采样前都需要一段预热的时间,如预热时间不够也会造成数值偏差;[hr/][b]二、氮氧化物的转化与计算。[/b]氮氧化物是NO和NO2的混合气并最终以NO2的成分含量进行表示,因此需要将NO的浓度进行折算然后再与实测的NO2浓度相加才是最终的NOX含量。如果是以质量浓度表示时,NOX=NO×1.53+NO2;若果是以体积浓度表示时,NOX=NO+NO2 。[align=center][img=,690,138]http://ng1.17img.cn/bbsfiles/images/2017/11/201711291533_01_3254867_3.jpg!w690x138.jpg[/img][/align]

  • 【崂应有奖答题】如何降低烟气预处理系统中被测气体的损失率?

    活动二:2. 参与公共讨论话题,并将您的见解发表在论坛的回帖当中。本活动并无标准答案,仅供版友们分享心得和见解之用。活动二问题:如何降低烟气预处理系统中被测气体的损失率?对取样管进行加热保温,可有效降低烟气预处理系统中被测气体的损失率。问题分析:相对湿度反映了烟气中水蒸气的含量接近饱和的程度,烟气中相对湿度的RH值大小对要SO2的监测结果有很大影响,对于含湿量在5﹪以上的烟气进行监测时,若对取样管不进行加热保温,SO2的监测结果会明显偏低。因为二氧化硫容易容易溶于水开成酸酐,在正常情况下每ml水可溶解SO2约40ml,从而严重影响测量结果,使得SO2的监测结果会低于实际值。崂应1080D型烟气预处理器用于对工况湿烟气进行滤尘、加热、冷凝脱水及自动排水处理有很大应用效果,与崂应3012H系列烟尘(气)测试仪(或崂应3022型烟气综合分析仪、崂应3023型紫外差分烟气综合分析仪以及崂应3026型红外烟气综合分析仪)配套使用,可有效降低烟气成分监测时的损失,并可有效提高配套主机测量精度,延长传感器使用寿命。

  • 烟气用加热防腐采样管

    哪位知道有生产烟气用加热防腐采样管的厂家,国内的、国外的,价位如何啊?望能够给小弟提供一些线索。[em06] [em06] [em06]

  • 焦炉烟气脱硫脱硝技术应用

    1、前言  在烟气治理领域焦炉烟气脱硝一直是时下关注的重点,特别是国家颁布了最新的《炼焦化学工业污染物排放标准》之后,对焦化烟气脱硝技术提出了更高的要求,本文针对焦炉烟气脱硫脱硝技术进行阐述,希望能给钢铁企业提供一定的借鉴价值。  2、脱硫脱硝工艺及原理  2.1 密相干塔脱硫+SCR脱硝技术  密相干塔脱硫+SCR脱硝技术是利用脱硫脱硝等各分系统的协同组合,实现焦炉烟气大气污染物的协同治理,具有良好的脱硫脱硝除尘效果和技术经济性,正在逐步被国内各大钢厂所采用。其中脱硝采用烟气经热风炉升温后(烟气温度280—320℃)的准低温SCR技术,脱除效率高,运行稳定可靠,脱硝后烟气利用余热锅炉进行热量回收。  2.2 半干法SDA脱硫+SCR脱硝技术  半干法SDA脱硫+SCR脱硝的主要流程为:废气首先进入脱硫塔,在脱硫塔内进行脱硫;从脱硫塔出来的脱硫后烟气进入除尘装置,烟气先经除尘器布袋除尘,除尘后的烟气与加入的还原剂(氨气)充分混合,混合后的烟气进入脱硝催化剂层,在催化剂作用下发生还原反应,脱除NOx;净化后的洁净烟气经过系统引风机送回烟囱排放。该工艺采用低温脱硝工艺,在脱硝之前采用半干法高效脱硫并除尘,延长低温脱硝催化剂在高效脱硝区的使用寿命,降低烟气净化工艺运行费用。主要工艺流程图如下:  3、两套脱硫脱硝装置的优越性  3.1 密相干塔脱硫+SCR脱硝技术的优势  3.1.1对脱硫脱硝原料品质要求低,价格低廉  该脱硫脱硝使用的原料为CaO和自产氨水,CaO的价格相对便宜,而且原料充足,脱硝效果良好。脱硝效率在80%以上。  3.1.2、节能效果良好  脱硝后的烟气经余热锅炉进行余热回收,除盐水吸收热量最终形成饱和蒸汽,送至焦化厂蒸汽总管,降低能源消耗,余热锅炉采用全自动运行。  3.1.3、自动化性能高,安全性能好  整个过程采用自动控制,工艺流程简单,设备少,容易操作。热风炉程序设有自动点火和自动吹扫操作,当高炉煤气压力较低时,可以适当补充焦炉煤气,提高炉膛温度,进而提高废气温度,满足脱硝要求。  3.2 半干法SDA脱硫+SCR脱硝技术的优势  3.2.1采用旋转喷雾干燥法(SDA法)进行高效低温降烟气脱硫,满足SO2排放要求的同时,吸附烟气中焦油等粘性物质,降低烟气中SO2及其他组分對低温脱硝效率的影响;并可根据烟气入口SO2浓度调节脱硫剂溶液的喷入量,实现在满足排放要求的前提下减少脱硫剂的使用量,以最经济的方式运行。  3.2.2采用低温脱硝催化剂利用NH3-SCR原理进行低温脱硝。此种催化剂对焦炉烟气具有很强的适应性,具有良好的低温活性,焦炉煤气升温幅度小,降低了高炉煤气的用量。  3.2.3脱硝前除尘,减少烟气中的粉尘在通过脱硝催化剂层时对催化剂表面的磨损,可以有效延长脱硝催化剂的使用寿命,减少脱硝催化剂的用量,同时可以脱出烟气中的粉尘等颗粒物,使烟气的颗粒物排放达标。  4、结语  通过两套脱硫脱硝装置的应用,焦炉废气中的颗粒物、SO2和NOx等三大指标全部满足国家特排标准,氮氧化物和颗粒物已经完全实现了超低排放,确保了焦炉生产稳定,有很好的推广价值。

  • 【分享】烟气分析仪高温探管使用手册

    [size=3] 高温探针由高硬度陶瓷管、铂铑-铂[url=http://www.18show.cn/product/st479.html]热电偶[/url](分度号S)、铂铑-铂补偿插头等组成。[/size][size=3]  长期使用:0~1300℃(连续高温中工作)[/size][size=3]  短期使用:0~1600℃(短暂测量高温)[/size][size=3]  高温探针与MRU专用“把手”连接后,可进行烟气采样和烟气温度测量。[/size][size=3]  虽然探针所用陶瓷管具有很高的强度,但与金属材料相比,在跌落、弯折、冲击、受力不均等意外情况下极易破碎。因此在使用过程中请注意如下事项:[/size][size=3]  1、 在操作过程中,必须指定人员单独监护,保证探头在现场测量中定位稳定可靠,防止折断。[/size][size=3]  2、 高温探头插入烟道的正确位置,禁止将探针“把手”前段的Φ12mm的不锈钢保护管深入炉膛内,以免膨胀系数不一致而引起陶瓷管与不锈钢管粘接处破裂。[/size][size=3]  3、 探针插入采样孔时,应缓慢的向前推进,减少温度的突变。当达到最最高测量温度时,可停止向前伸入,尽量缩小探针插入炉膛的深度,避免悬臂过长引起陶瓷管变形。测试结束后,同样需要缓缓的抽出探针,使灼热的陶瓷管逐渐褪去“火红”色后再取出全部探头。[/size][size=3]  4、 刚从采样点取出的探头,不应该放置在湿度很大的水泥地和泥土地上,严禁喷淋冷水,以免引起冷爆。应放置在干燥的不易燃烧的地方进行冷却。[/size][size=3]  5、 在测试1000℃以下的烟气时,可配置一支不锈钢管探针,交替使用,这样可减少高温探针的使用频率和损坏的几率。[/size]

  • 焦炉烟气脱硫脱硝技术进展与建议

    摘要:分析了我国焦化行业SO2、NOx排放现状及污染物浓度的主要影响因素,对比了以氨法、石灰/石灰石法、双碱法、氧化镁法、喷雾干燥法、循环流化床法等为代表的焦炉烟气脱硫技术,以低氮燃烧技术、低温选择性催化还原脱硝技术、氧化脱硝等为代表的焦炉烟气脱硝技术,以活性焦、液态催化氧化等为代表的焦炉烟气脱硫脱硝一体化技术的工艺原理、脱硫脱硝效率及各自优缺点;总结了焦炉烟气脱硫脱硝技术在工艺路线选择、烟气排放、次生污染等方面存在的问题。指出焦炉烟气污染治理需有效融合源头控制、低氮燃烧、末端净化3方面,并不断加强焦炉操作管理水平及新技术的应用。  引言  燃煤烟气中的SO2和NOx所引起的酸雨、光化学烟雾和雾霾等环境污染已严重影响人类生存与发展。目前最有效且应用最广的燃煤烟气SO2和NOx污染治理措施是燃烧后烟气脱硫脱硝技术。作为国内第二大用煤领域,我国煤炭焦化年耗原煤约10亿t,占全国煤炭消耗总量的1/3左右。当前,燃煤发电领域气脱硫脱硝技术发展及应用相对成熟,大部分煤电企业SO2和NOx排放已达超净标12017年第6期洁净煤技术第23卷准;但作为传统煤化工行业,我国焦化领域发展相对粗放,污染物治理措施更是在近年来不断严苛的环保政策下迫以实行,多数焦化企业尚未实现焦炉烟气SO2和NOx排放有效防控,与GB16171—2012《炼焦化学工业污染物排放标准》中的规定有一定差距。由于焦炉烟气与燃煤电厂烟气在烟气温度、SO2和NOx含量等方面均存在差异,故二者的脱硫脱硝治理技术路线不能完全等同。研究与实践表明,我国焦炉烟气脱硫脱硝技术在工艺路线选取、关键催化剂国产化、系统稳定运行等方面存在一定问题,严重制约了焦化行业污染物达标排放。  1焦化行业SO2及NOx排放现状  据统计,2015年全国SO2排放总量为1859.1万t、NOx排放总量为1851.8万t。煤炭焦化是工业用煤领域主要污染源之一,焦炉烟气是焦化企业中最主要的废气污染源,约60%的SO2及90%的NOx来源于此。焦炉烟气中SO2浓度与燃料种类、燃料中硫元素形态、燃料氧含量、焦炉炭化室串漏程度等密切相关;NOx浓度则与燃烧温度、空气过剩系数、燃料气在高温火焰区停留时间等密切相关。以焦炉煤气为主要燃料的工艺,其烟气中的SO2直接排放浓度为160mg/m3左右、NOx直接排放浓度为600~900mg/m3(最高时可达1000mg/m3以上);以高炉煤气等低热值煤气(或混合煤气)为主要燃料的工艺,其烟气中的SO2直接排放浓度为40~150mg/m3、NOx直接排放浓度为300~600mg/m3。可见,无论以焦炉煤气或高炉煤气为主要燃料的工艺,如未经治理,其烟气中的SO2和NOx浓度均难以稳定达到标准限值排放要求。  随着国家对环境保护的日益重视,我国焦化领域烟气达标排放势在必行。2017年起,《排污许可证申请与核发技术规范-炼焦化学工业》将首次执行,该规范对焦化行业污染物排放提出了更高要求。如前所述,焦炉烟气中SO2和NOx达标排放的主要技术手段为末端脱硫脱硝治理,故本文将对比分析我国焦炉烟气现行脱硫脱硝技术工艺原理、硫硝脱除效率及各自技术优缺点,总结国内焦炉烟气脱硫脱硝技术应用存在的共性问题,以期为我国焦化行业脱硫脱硝技术的选择与优化提供参考。  2焦炉烟气脱硫脱硝技术  目前,我国焦炉烟气常用的末端脱硫脱硝的治理工艺路线可分为单独脱硫、单独脱硝、脱硫脱硝一体化等3类。  2.1脱硫技术  根据脱硫剂的类型及操作特点,烟气脱硫技术通常可分为湿法、半干法和干法脱硫。当前,焦炉烟气脱硫领域应用较多的为以氨法、石灰/石灰石法、双碱法、氧化镁法等为代表的湿法脱硫技术和以喷雾干燥法、循环流化床法等为代表的半干法脱硫技术,而干法脱硫技术的应用较为少见,故本文着重介绍湿法及半干法焦炉烟气脱硫技术。  2.1.1湿法脱硫技术  1)氨法  氨法脱硫的原理是焦炉烟气中的SO2与氨吸收剂接触后,发生化学反应生成NH4HSO3和(NH4)2SO3,(NH4)2SO3将与SO2发生化学反应生成NH4HSO3;吸收过程中,不断补充氨使对SO2不具有吸收能力的NH4HSO3转化为(NH4)2SO3,从而利用(NH4)2SO3与NH4HSO3的不断转换来吸收烟气中的SO2;(NH4)2SO3经氧化、结晶、过滤、干燥后得到副产品硫酸铵,从而脱除SO2。  焦炉烟气氨法脱硫效率可达95%~99%。吸收剂利用率高,脱硫效率高,SO2资源化利用,工艺流程结构简单,无废渣、废气排放是此法的主要优点;但该法仍存在系统需要防腐,氨逃逸、氨损,吸收剂价格昂贵、脱硫成本高、不能去除重金属、二噁英等缺点。  2)石灰/石灰石法  石灰/石灰石法脱硫工艺由于具有吸收剂资源丰富、成本低廉等优点而成为应用最多的一种烟气脱硫技术。该工艺主要应用氧化钙或碳酸钙浆液在湿式洗涤塔中吸收SO2,即烟气在吸收塔内与喷洒的吸收剂混合接触反应而生成CaSO3,CaSO3又与塔底部鼓入的空气发生氧化反应而生成石膏。焦炉烟气石灰/石灰石法脱硫效率一般可达95%以上。石灰/石灰石法脱硫的优点在于吸收剂利用率高,煤种适应性强,脱硫副产物便于综合利用,技术成熟,运行可靠;而系统复杂、设备庞大、一次性投资大、耗水量大、易结垢堵塞,烟气携带浆液造成“石膏雨”、脱硫废水处理难度大等是其主要不足。  3)双碱法  双碱法,即在SO2吸收和吸收液处理过程中使用了不同类型的碱,其主要工艺是先用碱金属钠盐清液作为吸收剂吸收SO2,生成Na2SO3盐类溶液,然后在反应池中用石灰(石灰石)和Na2SO3起化学反应,对吸收液进行再生,再生后的吸收液循环使用,SO2最终以石膏形式析出。双碱法焦炉烟气脱硫效率可达90%以上。双碱法脱硫系统一般不会产生沉淀物,且吸收塔不产生堵塞和磨损;但工艺流程复杂,投资较大,运行费用高,吸收过程中产生的Na2SO4不易除去而降低石膏质量,吸收液再生困难等均是该技术需要解决的问题。  4)氧化镁法  氧化镁法脱硫是一种较成熟的技术,但由于氧化镁资源储量有限且分布不均,因此该法在世界范围内未得到广泛应用;而我国氧化镁资源丰富,有发展氧化镁脱硫的独特条件。该工艺是以氧化镁浆液作为吸收剂吸收SO2而生成MgSO3结晶,然后对MgSO3结晶进行分离、干燥及焙烧分解等处理后,MgSO3分解再生的氧化镁返回吸收系统循环使用,释放出的SO2富集气体可加工成硫酸或硫磺等产品。该法脱硫效率可达95%以上。氧化镁法脱硫技术成熟可靠、适用范围广,副产品回收价值高,不发生结垢、磨损、管路堵塞等现象;但该法工艺流程复杂,能耗高,运行费用高,规模化应用受到氧化镁来源限制且废水中Mg2+处理困难。  2.1.2半干法脱硫技术  1)喷雾干燥法  喷雾干燥法脱硫是利用机械或气流的力量将吸收剂分散成极细小的雾状液滴,雾状液滴与烟气形成较大的接触表面积,在气液两相之间发生的一种热量交换、质量传递和化学反应的脱硫方法。该法所用吸收剂一般是碱液、石灰乳、石灰石浆液等,目前绝大多数装置都使用石灰乳作为吸收剂。一般情况下,喷雾干燥法焦炉烟气脱硫效可达85%左右。其优点在于脱硫是在气、液、固三相状态下进行,工艺设备简单,生成物为干态易处理的CaSO4、CaSO3,没有严重的设备腐蚀和堵塞情况,耗水也比较少;缺点是自动化要求比较高,吸收剂的用量难以控制,吸收效率有待提高。所以,选择开发合理的吸收剂是喷雾干燥法脱硫面临的新难题。  2)循环流化床法  该法以循环流化床原理为基础,通过对吸收剂的多次循环延长吸收剂与烟气的接触时间,通过床层的湍流加强吸收剂对SO2的吸收,从而极大地提高了吸收剂的利用率和脱硫效率。该法的优点在于吸收塔及其下游设备不会产生黏结、堵塞和腐蚀等现象,脱硫效率高,运行费用低,脱硫副产物排放少等。但此法核心技术和关键设备依赖于进口,且造价昂贵,限制了其应用推广。因此因地制宜的研究开发具有自主知识产权,适合我国国情的循环流化床焦炉烟气脱硫技术成为研究者关注的重点;此外,该法副产物中亚硫酸钙含量大于硫酸钙含量,并且为了达到高的脱硫率而不得不在烟气露点附近操作,从而造成了吸收剂在反应器中的富集,这也是循环流化床脱硫工艺有待改进的方面。  2.1.3焦炉烟气常用脱硫技术对比  焦炉烟气常用脱硫技术对比见表1。  2.2脱硝技术  当前,焦炉烟气常用脱硝技术主要包括低氮燃烧技术、低温选择性催化还原(低温SCR)技术和氧化脱硝技术等3种。  1)低氮燃烧技术  低氮燃烧技术是指基于NOx生成机理,以改变燃烧条件的方法来降低NOx排放,从而实现燃烧过程中对NOx生成量的控制。焦炉加热低氮燃烧技术主要包括烟气再循环、焦炉分段加热、实际燃烧温度控制等技术。烟气再循环是焦化领域目前应用较普遍的低氮燃烧技术,我国现有焦炉大部分采用该技术。研究实践表明:烟气再循环的适宜控制量32017年第6期洁净煤技术第23卷为10%~20%,若超过30%,则会降低燃烧效率;该方法的控硝效果最高可达25%。焦炉分段加热一般是用空气、煤气分段供给加热来降低燃烧强度,从而实现热力型氮氧化物生成量减少的效果。实际燃烧温度控制技术是我国自主研发的焦炉温度控制系统,该技术可优化焦炉加热制度,调整焦炉横排温度,降低焦炉操作火道温度,避免出现高温点,降低焦炉空气过剩系数,从而减少NOx生成。理论计算表明,焦炉若采用烟气再循环与分段加热技术组合,可实现NOx排放量低于500mg/m3以下的目标;若采用烟气再循环与实际燃烧温度控制技术组合,NOx排放可控制在600mg/m3左右。  2)低温SCR脱硝  与火电厂烟[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]比,焦炉烟气温度相对较低,一般为170~280℃;针对该特性,我国相关机构开发出低温SCR焦炉烟气脱硝技术,该技术的脱硝效率可达70%以上。低温SCR焦炉烟气脱硝工艺是在一定温度的烟气中喷入氨或尿素等还原剂,混有还原剂的烟气流经专有催化剂反应器,在催化剂作用下,还原剂与烟气中的NOx发生还原反应而生成氮气和水,从而达到脱硝的效果。  低温SCR烟气脱硝技术是目前焦炉烟气脱硝技术中相对成熟和可靠的工艺,脱硝效率较高且易于控制,运行安全可靠,不会对大气造成二次污染;催化剂是制约低温SCR脱硝技术发展的核心问题,降低催化剂进口依赖程度、防止催化剂中毒、解决废弃催化剂所产生的二次污染问题是低温SCR焦炉烟气脱硝技术应努力攻关的方向。  3)氧化脱硝  氧化脱硝技术是利用强氧化剂将NO氧化成高价态的氮氧化物,然后利用碱液进行喷淋吸收的脱硝工艺;目前,在焦炉烟气脱硫脱硝措施中应用的氧化剂主要为臭氧和双氧水。该法设备占地面积小,能同时脱除汞等其他污染物;但该工艺存在氧化剂消耗量大,运行费用高,能耗高,对设备材质要求高,易产生臭氧二次污染等问题。  2.3脱硫脱硝一体化技术  烟气脱硫脱硝一体化技术在经济性、资源利用率等方面存在显著优势,成为近年来研究与利用的点。焦炉烟气脱硫脱硝一体化技术主要集中于活性焦脱硫脱硝一体化技术和液态催化氧化法脱硫脱硝2种。  1)活性焦脱硫脱硝一体化技术  活性焦脱硫脱硝一体化技术是利用活性焦的吸附特性和催化特性,同时脱除烟气中的SO2和NOx并回收硫资源的干法烟气处理技术。其脱硫原理是基于SO2在活性焦表面的吸附和催化作用,烟气中的SO2在110~180℃下,与烟气中氧气、水蒸气发生反应生成硫酸吸附在活性焦孔隙内;脱硝原理是利用活性焦的催化特性,采用低温选择性催化还原反应,在烟气中配入少量NH3,促使NO发生选择性催化还原反应生成无害的N2直接排放。  该法SO2和NOx脱除效率可达80%以上。不消耗工艺水、多种污染物联合脱除、硫资源化回收、节省投资等是焦炉烟气活性焦法脱硫脱硝技术的优点;而该工艺路线也存在活性焦损耗大、喷射氨造成管道堵塞、脱硫速率慢等缺点,一定程度上阻碍了其工业推广应用。  2)液态催化氧化法脱硫脱硝技术  液态催化氧化法(LCO)脱硫脱硝技术是指氧化剂在有机催化剂的作用下,将烟气中的SO2和NOx持续氧化成硫酸和硝酸,随后与加入的碱性物质(如氨水等)发生反应而快速生成硫酸铵和硝酸铵。焦炉烟气液态催化氧化法SO2、NOx脱除效率可分别达到90%及70%以上。硫硝脱除效率高、不产生二次污染、烟温适应范围广等优势使焦炉烟气液态催化氧化法脱硫脱硝技术具有较好的推广前景;但硫酸铵产品纯度、液氨的安全保障、有机催化剂损失控制、设备腐蚀等问题仍是液态催化氧化脱硫脱硝技术亟需解决的难点。  2.4当前焦炉烟气脱硫脱硝技术存在的问题  1)单独脱硫与单独脱硝组合顺序的选择  根据工艺条件要求,脱硝需在高温下进行,脱硫需在低温下进行。若选择先脱硫后脱硝,则经过脱硫后烟温降低,进入脱硝工序之前需将烟温由80℃提升至200℃以上,这将造成能源浪费并增加企业成本;若选择先脱硝后脱硫,在脱硝催化剂作用下,烟气中SO2被部分催化氧化成SO3,生成的SO3与逃逸的NH3和水蒸气反应生成硫酸氢铵,硫酸氢铵具有黏性和腐蚀性,会对脱硝催化剂和下游设备造成堵塞和腐蚀,从而影响脱硝效果及设备使用寿命。  2)焦炉烟气脱硫脱硝后烟气排放问题  焦炉烟气经脱硫脱硝后,可选择直接通过脱硫脱硝装置自带烟囱排放或由焦炉烟囱排放2种方式。若选择直接通过脱硫脱硝装置自带烟囱排放,则当发生停电事故时,烟气必须通过焦炉烟囱排放,而焦炉烟囱由于长时间不使用处于冷态,无法及时形成吸力而导致烟气不能排放,从而引发爆炸等安全事故;脱硫脱硝后的烟气若选择通过焦炉烟囱排放,由于当前很多脱硫脱硝工艺经净化后焦炉烟气温度低于130℃,这种低温将使烟囱吸力不够、排烟困难,从而引起系统阻力增大、烟囱腐蚀,不利于整个生产、净化系统稳定,甚至引起安全事故。  3)焦炉烟气脱硫脱硝后次生污染问题  焦炉烟气经脱硫脱硝后可能产生以下次生污染:①湿法脱硫外排烟气中的大量水汽与空气中漂浮的微生物作用形成气溶胶,最终导致雾霾天气的发生;②氨法脱硫工艺存在氨由于挥发而逃逸的问题;③当前,脱硫副产物的市场前景及销路不畅,会大量堆存污染环境;④当前的脱硫脱硝催化剂大多为钒系或钛系,更换后,用过的催化剂成为危废,若运输和处理过程中管理不当易产生污染。  3结语与建议  1)焦炉烟气污染治理需有效融合源头控制、低氮燃烧、末端净化3方面;应重视污染物源头控制措施,如:有条件的企业应采用高炉煤气或高炉煤气与焦炉煤气的混合作为加热燃料,从源头控制污染物的产生,从而为后续净化系统降低处理难度;选择合理的焦炉煤气脱硫工艺,将焦炉煤气中的硫化氢、氰化氢等尽可能脱除,以减少焦炉煤气作为加热热源燃烧时产生的硫氧化物。  2)加强焦炉操作管理,对控制污染物排放具有积极促进作用,如:通过加强炉体维护可有效控制炉体串漏,从而避免未经净化的荒煤气进入燃烧室而引起焦炉烟气污染物排放超标;故焦化企业应重视并采取可靠手段加强焦炉操作与管理,以实现控制污染物排放、延长焦炉使用寿命、维护产品质量稳定的多重效益。  3)烟气燃烧温度对氮氧化物产生量具有重要影响,煤炭焦化领域可采取适用的低氮燃烧技术从源头控制污染物产生;如:可采取分段燃烧、烟气再循环等加热方式,控制燃烧室温度,从而抑制氮氧化物产生,以减少后续脱硝系统净化难度。

  • 【原创】CEMS烟气在线监测系统在火电厂的应用

    1.引言火力发电厂是排放二氧化硫的主要排放源。二十世纪七十年代一些发达国家就开始对烟气排放的二氧化硫进行监测。烟尘分析对于电厂烟气排放也是一个主要指标。烟气连续监测系统(简称CEMS)是为烟气排放污染物连续监测而专门设计的在线监测系统。下面以西克麦哈克(北京)仪器有限公司的SMC-9021为例介绍一下CEMS在火电厂的应用。2. 系统构成该系统由SO2/O2/NOX分析仪、烟尘仪、流量计、压力变送器、湿度/湿度计及数据处理单元(DAS)组成。见下图: 图1:系统构成图2.1. 气态污染物监测系统气态污染物监测系统有三种设计方法:直接抽取法,稀释取样法和现场安装型。对于电厂的脱硫系统过程控制和环境监测,高温处理的直接抽取法是最适合的方法。这种方法的优点是维护方便、校准简单、测量准确。SMC-9021就是这种利用方法。SMC系统采用高温取样,高温输气和快速制冷脱水的方法,保证测量结果的准确性。高温取样探头包括进入烟囱/烟道中的取样管和在烟囱/烟道外的取样过滤器及其恒温控制器。见采样探头示意图。 图2: 采样探头示意图从烟囱/烟道中通过取样探头抽出的样气通过加热输气管线到达气体分析系统。输气管线是自热式的,利用加热材料的居里点进行控温。系统的预处理包括压缩机制冷器、泵、取样/校准/反吹电磁阀组、蠕动泵、细过滤器和流量控制器等。压缩机制冷器降温效果好,SMC-9021采用两级制冷,第一级将温度从140℃降至室温,随后经过泵输入到第二级制冷器把温度降到4℃±0.1℃。整个过程的时间小于5秒钟。因此,SO2可以认为没有损失。蠕动泵将冷凝水排出,收集在储液管中。系统还配备了温度报警、压力报警和湿度报警。对高温取样的状态、取样过滤器的堵塞和冷凝情况进行监控,与取样泵连锁,保证系统取样的准确和仪器工作的可靠性。2.2. 烟尘测定仪在线尘监测仪用得最多的是光学方法。其原理分浊度法测量和激光散射法测量两种。FW300设计中对光路采用两种方案,大烟囱采用单光路单光程,小烟囱采用单光路双光程,使量程和精度得到了兼顾。同时在软件设计中引入了消光值差的慨念,使灵敏度又提高了10倍。即0-100mg/m3的测量范围的灵敏度提高到0-10mg/m3。FW300配备了具有无故障连续工作的特点的2BH13型鼓风机,与清洗连接部件一起使仪器不受烟气的污染,该鼓风机还有故障报警功能。2.3. 气体流速仪气体流速测量有三种方法:压差法、热差法和超声波方法。热差法适宜于便携式测量,超声波法测量结果最好,皮托管差压法为常用方法。在此我们采用超声波方法进行气体流速测量。用的是FLOWSIC100UHA SSTi超声波型流量计。测量过程为非接触式,具有较高的测量精度,并可以进行烟气的温度测量。两套超声波的发射器/接收器成直线安装在烟道中,与烟气流向成一定的夹角a,声波的传输时间随气体的流向变化:在与气流方向相同的方向上,传播时间Tv被缩短;在与气流方向相反方向上,传播时间Tr被延长。声波的传输时间随气体的流向变化;气体流速计算公式为 设烟道横截面积为A,烟气体积流量为: 其中,Vm——测定烟道断面的烟气平均流速L——超声波在烟道中的传播路径a——烟道中心线与超声波的传播路径的夹角Tv——声波顺气流方向在烟道中的传播时间Tr——声波逆气流方向在烟道中的传播时间FLOWSIC100UHA SSTi超声波型流量计是通过测量超声波在烟气中顺流和逆流行进的时间差来计算烟气流速,与环境温度、压力及气体的具体成分没有关系,测量精度高。而且,测量所得是烟道横截面的平均流速,代表性很强。超声波发送器用钛制造,探头用SS316制造,耐腐蚀性很好。系统不需要进行反吹,操作简单。结合中国目前CEMS的安装使用情况,超声波流量计的成本过高,在一般电厂又常采用热差法来测量烟气流量。2.4. 湿度测量系统采用的是一种高温应用的湿度传感器HMP235,该系列湿度连续监测仪采用电容型传感器,湿度变化引起电容解质介电常数的变化,因而使电容量发生变化,通过测量电容就可以测量湿度。其外型图如下: 图5 湿度仪外形图2.5. 数据采集系统系统采用SMC-900型数据采集系统。该采集系统是以数据采集/控制仪为基础建立的,它是以工控机为主体设计的,具有强大的硬件和软件功能。其硬件有:CPU:P4 1.8G或以上、硬盘:40G、内存:256M、光驱:CD-ROM、软驱:3.5”1.44M、显示器:17’纯平、打印机:A4幅面激光打印机、模拟输入:24路4-20mA、状态输入:32路开关量、输入电流:4-20mA、用电量(KVA):0.2、输入阻抗:250Ω、数字接口:RS232,RS485(可选)。软件主要功能有:使用含氧量计算折算浓度、使用湿度计算干气浓度、使用温度,压力计算标态浓度、计算总排放量、形成实时报表、自动生成日报表,月报表,年报表、记录故障事件、故障报警:声,光、缺失数据的处理、记录校准报告、通过数据通讯终端向上位机传送数据和报表,数据处理和表格型式符合HJ/T76-2001的规定。可以扩充的功能有:对气体分析系统的反吹,校准进行控制。对探头堵塞,加热输气管温度,气体湿度进行连锁控制。显示CEMS的流程图,帮助操作人员了解系统运行情形。形成趋势图,棒图、实现无线通信等。3. 结论 SMC-9021系统采用全新模块式设计,可以灵活地根据应用场合及用户的具体需要,进行自由设置和组合。系统可提供6种测量模块,可测量多达60种不同气体组分。在电厂运行中系统可与DCS系统连接并在控制室中进行监测。在古交电厂、合山电厂实际应用效果非常好。[IMG]http://[/IMG]

  • 求问版友,管式炉燃烧烟气中的颗粒物如何测量?

    求问版友,管式炉燃烧烟气中的颗粒物如何测量?

    用管式炉燃烧试样(如下图所示。画图工具随手画的……),产生的烟气中的颗粒物该如何测量?只测颗粒物的质量。目前想到用玻璃纤维滤膜截留烟气称量来测,但不知道该怎么固定滤膜好。炉子管径40mm左右,出口温度约500℃。希望大家不吝赐教!http://ng1.17img.cn/bbsfiles/images/2016/04/201604012203_588914_3094317_3.png

  • 烟气分析仪如何正确使用。

    环境监测中烟气分析仪是使用比较频繁的一种仪器,常见的仪器一般有德图350、凯恩9506(定电位电解法)和雪迪龙(非分散红外法)等,如何正确使用烟气分析仪尤其重要:1. 烟气分析仪需在使用前和使用后进行校准,在使用频次较高的时候适当考虑安排期间核查。2. 测量前要进行气密性检查;3. 仪器开机时要在清洁空气中,等仪器稳定后再联接烟气取样枪;4. 仪器出现死机、停电等原因导致仪器重启时,仪器可能会出现无法归零,数据偏移等现象,应现场用标气重新标定后再进行测量,避免数据产生误差。5. 仪器测量完成后,应继续在清洁空气中保持运行5~10分钟,否则会加速传感器的损耗。6. 定期更换滤芯及冷凝器过滤片,防止灰尘污染传感器,影响数据精度。7. 仪器工作时放置的位置要远离热源或热辐射,因为传感器工作有温度要求(传感器工作温度22~25℃),在温度过高的环境下可能使传感器工作不正常。8. 对于便携式仪器每隔2~3周充电一次。9. 对于高浓度烟气含高浓度粉尘的气体(比如电厂脱销进出或除尘进口),测量烟气时应加装过滤器过滤烟气。10. 对于低浓度烟气测量时,应有加温(120°~140°)、除尘、抽湿等预处理设备。11. 烟气分析仪应轻拿轻放,不然很容易损坏内在部件。仪器的干扰情况及解决方案探讨:1. 定电位电解法中CO和SO2 的交叉感染性,两者互相影响,出现情况最多的是天然气锅炉SO2异常偏高。首先建议调整工况,其次实在调不出来,那建议用非分散红外法仪器测量。2. 烟气湿度对仪器的干扰,主要体现在低浓度烟气的测量(高浓度烟气的误差在允许范围内):烟气湿度大,本身烟气浓度不高,水汽对烟气产生吸附,会导致数据偏低或者索性出现0的现象,这种情况大多出现在电厂脱硫出口等。解决方案,加装烟气前处理设备,通过实验,德图原有的过滤及冷凝烟气效果均没有特定的前处理设备效果好,而且缺少烟气加热装置,在实验中,德图用其他烟气分析仪的前处理设备,效果一样非常好。3. 对讲机对仪器数据的干扰,大家可以试试,大多都有影响,影响有大有小。有什么不足的地方欢迎大家一起来讨论。

  • 【参数解读】解读烟尘烟气分析仪的参数(九月)

    【参数解读】解读烟尘烟气分析仪的参数(九月)

    [size=3][font=arial, 宋体, sans-serif] 烟尘烟气测试仪应用皮托管等速采样重量法捕集管道中的颗粒物,应用定电位电解法定性定量测定有害气体,可供环保、卫生、劳动、安监、军事、科研、教育等部门用于各种锅炉、炉窑烟尘(气)的排放浓度/总量及设备除尘脱硫效率的测定。 可测烟气动压、烟气静压、流量计前压力、流量计前温度、烟气温度、含湿量、O2、SO2、CO、NO、NO2、H2S、CO2、等速吸引流速等。[/font][img]http://ng1.17img.cn/bbsfiles/images/2012/09/201209141428_390919_1617423_3.jpg[/img]主要适用范围1. 各种锅炉、工业炉窑的烟尘排放浓度、折算浓度和排放总量的测定。2 .选配油烟取样管,可以进行油烟采样。3 .各种除尘脱硫设备效率的测定。4 .烟道排气参数(动压、静压、温度、流速、标干流量、含湿量等)的测定。5 .烟气含氧量、空气过剩系数的评定。6 .烟气连续测量仪器准确度的评估和校准。7 .各种锅炉、工业炉窑的SO2、NO、NO2、NOx、CO、H2S等有害气体的排放浓度、折算浓度和排放总量的测定。[/size][size=4][back=rgb(251, 251, 249)][color=rgb(0, 33, 176)]◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆[/color][/back] [font=arial, 宋体, sans-serif][/font][/size][font=arial, 宋体, sans-serif][/font][color=#8c7301][size=3]烟尘烟气测试仪 主要技术参数[font='Times New Roman'][/font]动 压:0-2000Pa静 压:-30-+30kPa计前压:-30-0 kPa采样流量:5-80L/min烟气温度:0-500℃干球温度:0-100℃计前温度:-30-150℃含湿量:0-40%0.10%±5%流速:5~45m/s流量稳定性≤±2%跟踪响应时间不大于4秒[/size][/color][color=#c001cb][/color][size=3][font=宋体, Arial, Helvetica, sans-serif][color=#c001cb]〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓分割线〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓请您来解析:1.什么是干球温度?干湿球法的原理是什么?2.什么是动压,什么是静压?3.什么是跟踪响应时间?4.什么是标杆流量?5.空气过剩系数指的是什么,该如何计算?6.什么是等速采样,“等速”指的是与什么等速?那什么又是恒流量采样?[/color][/font][/size][color=#0021b0][size=3][font=宋体, Arial, Helvetica, sans-serif]◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆[/font][/size][/color][color=#156200][size=3][font=宋体, Arial, Helvetica, sans-serif][/font][/size][/color][color=#156200][size=3]请您来提问:(提问5个积分奖励)问题汇总处.........[/size][/color]

  • 烟气黑度观测

    电厂有三台机组,每台机组由一根钢管烟筒向外排放,三根钢管靠在一起,外面还有一层混凝土外壳,远看就像一根烟筒,由于挨得很近,三个机组的烟气排出后混合在一起,在观测处无法分辨各个机组的烟气,但是排污许可要求三个机组都测黑度,请问这种情况该如何处理?

  • 烟气(废气)采样时的参数怎样录入lims

    公司领导欲将废气检测原始记录纳入lims,我是lims联络员,对烟气采样和CNAS的要求都略知一二,1、烟气烟尘的平台面积小,采样枪、热电偶、皮托管本身都又重体积又大;平台高,风一吹采样人员都感觉摇晃眩晕,怎么能在当场记录(CNAS要求)排气参数呢?我们就是纸头上记录下,算是当场记录了2、如果用lims,一是没有网(wifi上不了内网),二是假使有网了(VPN也是解决办法)手一抖pad掉了,钱啊请教大神们,1、如果采样部分、实验室部分都纳入lims,怎么满足当场记录排气参数?回实验室在录入lims,保留纸头的方式ok吗?2、如果采样部分不纳入lims中,只把实验室部分纳入lims,最终报告也从LIMS发,可否?

  • 【分享】烟气排放连续监测系统在水泥厂的应用前景

    为了控制水泥工业的大气污染物排放,促进水泥工业产业结构调整,国家环境保护总局组织中国环境科学研究院、合肥水泥研究设计院、中国材料工业科工集团公司起草了新的《水泥工业大气污染物排放标准》(GB4915-2004)。新的排放标准要求从2005年1月1日起,新、改、扩建水泥生产线,水泥窑排气筒应当安装烟气颗粒物、二氧化硫和氮氧化物连续监测装置;烘干机、烘干磨、煤磨及冷却机排气筒应当安装烟气颗粒物连续监测装置;对现有水泥生产线,应当逐步安装连续监测装置,各省、自治区、直辖市人民政府环境保护部门应当根据水泥工业结构调整和达标进展情况制定安装计划。近年来国内企业也日益重视环境监测问题和完善监测系统,越来越多的电厂、石化、冶金企业已率先开始进行烟尘和SO2浓度监测,而国内水泥生产企业则相对开始的较晚,但随着新的水泥行业大气排放标准的颁布实行,水泥企业也日益重视环境监测问题和完善监测系统,所以烟气排放连续监测系统(CEMS)在水泥厂的应用前景很好。欧美发达国家环境治理、保护的实施与优化得益于环境参数的检测或监测水平的提高,不仅大量采用了先进的测控仪表与计算机系统,而且各企业在环境监测与保护方面投入巨资进行全方位的检测、监控与管理。上个世纪90年代,我国也开始环境监测自动在线监测仪的开发研制。目前,仍处在发展中,国产化进程较慢,烟气排放在线监测系统(CEMS)使用成功与否的关键在于检测仪表的选型设计与系统的集成,因过程分析面对的困难与问题很多:高温、高粉尘、高水份、负压及腐蚀性等恶劣气体条件;应保证必要的检测准确度;应有较快的反应速度;应易安装、易标定;防尘、防溅、防腐等防护要求;应有较高的自动化程度,较少的维护工作量。一、水泥厂污染源的主要分布与特点水泥厂的污染源主要分布在以下几个生产环节中:1.水泥回转窑窑尾是水泥生产环节中粉尘排放量最大的排放点,窑外分解窑尾烟尘浓度为60g/m3~80g/m3,这一环节的污染物成分复杂,除粉尘、烟尘外,还有二氧化硫、氮氧化物、氟化物等有害气体。2.烘干机、烘干磨、煤磨、冷却机、破碎机、磨机、包装机及其他通风生产设备污染物主要为固体颗粒物排放浓度大。二、分析气体成分针对水泥厂污染源的特点,新标准只要求对水泥窑及窑磨一体机需进行气体分析。一般可以有几种分析气体成分的方法,过去主要采用传统的分析方法,如化学分析法、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法;其缺点是必须对烟气进行人工取样,在实验室进行分析,其中操作者的操作技能对分析的精度有很大影响;而且传统方法只能单一成分地逐个进行检测分析,不具备多重输入和信号处理功能;分析费时,响应速度慢,效率低,难以实现在线监测。而现在主要采用最新光学技术,在不影响被测气体本身状态时于烟道上进行实时的直接测量。该方法具有以下特点:利用SO2对一定波长紫外光的强吸收特性消除其他成分影响;可测范围大。但采用此类检测方式的仪表价格很高,关键部件往往需要进口。而另一种红外线式较适合水泥厂的应用,它基于非分光红外吸收测量法的原理,具有理想的抗干扰能力;其性能指标优越,重复性好,性价比较高。三、测量粉尘浓度国家环保总局颁布的《水泥工业大气污染物排放标准》中规定水泥厂几大污染环节都必须进行粉尘浓度的在线监测。因为新标准对粉尘浓度这一指标要求较高,所以对于连续监测系统(CEMS)的准确度要求也就更高。目前国外主要采用光透射原理——当可控光源穿过带有微小颗粒的气体时,一个高灵敏的传感器可检测出被微小颗粒吸收的光能,并将其与参比光进行比较,从而确定透射值或浊度值,再进一步得出粉尘浓度值。国内在该领域的技术也比较成熟,国产化程度较高。此类仪表具有以下特点:以光学技术为基础,自动完成测量、控制、线性测试以及污染物检测功能,反应速度快、无采样处理过程;带有反吹装置,防止光学镜头面不受污染;具备快速切断阀,可在吹扫装置失效后自动保护仪器;安装简便,发射与检测单元可通过法兰安装在烟管两侧。四、水泥厂安装监测系统的建议监测系统设计应考虑开放性、低成本、高可靠性和良好的扩充性。因此,针对不同测量对象特征,采用最适用的自动测量仪表,在通讯解决方案上有多种方式可选:无线通讯方案有其优点,如易解决通讯问题,可降低成本,可简化安装,采用大功率天线可增加通讯距离等,但利小于弊,一是水泥厂现场环境恶劣,大量房屋和炉窑等设施会阻塞或影响调频信号的传输;二是电气、电力设施多会产生复杂多样的电磁干扰,受约束因素多。因此在通讯方面还要进行不断改进,以便更好地进行监控。随着光学技术、计算机技术与自动检测等新技术的发展,许多以前难以检测的非电量(如实现水泥厂炉窑、塔罐烟气排放点的自动采样与预处理,粉尘与SO2等主要污染因子和烟气流量的在线监测)均得以解决,这将有利于促使岗位作业人员及时调整与监控脱硫、除尘等环保设施的运行状态,加强达标排放管理,这对于水泥厂排放点的有效监测与管理有着积极而重要的意义。

  • 【分享】我国火电厂烟气脱硫产业化现状及有关建议

    近年来,我国通过自主研发和引进、消化吸收、再创新,烟气脱硫产业化取得了重大进展,国产化能力基本可以满足“十一五”时期减排二氧化硫的需要。一、火电厂烟气脱硫产业化取得重大进展 2005年底,我国建成投产的烟气脱硫机组容量由2000年的500万千瓦上升到了5300万千瓦,增长了近10倍,约占火电装机容量的14%,正在建设的烟气脱硫机组容量超过1亿千瓦。目前,已有石灰石-石膏湿法、烟气循环流化床、海水脱硫法、脱硫除尘一体化、半干法、旋转喷雾干燥法、炉内喷钙尾部烟气增湿活化法、活性焦吸附法、电子束法等十多种烟气脱硫工艺技术得到应用。与国外情况一样,在诸多脱硫工艺技术中,石灰石-石膏湿法烟气脱硫仍是主流工艺技术。据统计,投运、在建和已经签订合同的火电厂烟气脱硫工艺技术中,石灰石-石膏湿法占90%以上。总体看,我国烟气脱硫产业已具备了年承担近亿千瓦装机脱硫工程设计、设备制造及总承包能力。 (一)脱硫设备国产化率已达90%以上。石灰石-石膏湿法烟气脱硫工艺中的关键设备,如浆液循环泵、真空皮带脱水机、增压风机、气气换热器、烟气挡板等,国内已具备研发和生产加工能力。如石家庄泵业有限公司生产的系列脱硫浆液循环泵已应用于96个脱硫工程;成都电力机械厂生产的脱硫增压风机已应用于100个脱硫工程;上海锅炉厂生产的气气换热器已应用于60个脱硫工程。从设备采购费用看,石灰石-石膏湿法脱硫工艺技术设备、材料国产化率达到90%左右,部分烟气脱硫工程国产化率超过了95%,其它工艺技术的设备国产化率大于90%。 (二)烟气脱硫主流工艺技术拥有自主知识产权。通过自主研发和引进、消化吸收再创新,我国已拥有了30万千瓦级火电机组自主知识产权的烟气脱硫主流工艺技术,并经过了一年以上的工程实践检验。如苏源环保工程股份有限公司研发的具有自主知识产权的石灰石-石膏湿法烟气脱硫技术,已成功应用于太仓港环保发电有限公司二期2×300MW烟气脱硫工程;北京国电龙源环保工程有限公司在引进德国技术基础上消化、吸收和再创新,拥有了自主知识产权的石灰石-石膏湿法烟气脱硫技术,并成功应用于江阴苏龙发电有限公司三期2×330MW烟气脱硫工程。以上两个工程项目经过一年多的实际运行检验,并通过了工程后评估,专家认为两公司拥有自主知识产权的烟气脱硫工艺技术都具有成熟、可靠、适用性强的特点,达到了国际先进水平。其它工艺技术我国大多也拥有自主知识产权,只是应用于机组容量20万千瓦及以下火电机组,有些刚刚投运或正在施工建设,有待实践检验。 (三)具备烟气脱硫工程总承包能力。截止2005年底,具备一定技术、资金、人员实力,且拥有10万千瓦及以上机组烟气脱硫工程总承包业绩的公司近50家;其中,合同容量超过200万千瓦装机的公司有17家,超过1000万千瓦装机的公司有7家。北京国电龙源环保工程有限公司总承包合同容量达到了2471万千瓦。 (四)脱硫工程造价大幅度降低。由于烟气脱硫设备国产化率大幅度提高及市场竞争等因素,烟气脱硫工程造价大幅降低,如30万千瓦及以上新建火电机组的烟气脱硫工程每千瓦造价已由最初的1000多元(人民币,下同)降到目前的200元左右。20万千瓦及以下现有火电机组的烟气脱硫工程每千瓦造价也降至250元以下。二、存在的主要问题 (一)烟气脱硫技术自主创新能力仍较低。截止目前,我国只有少数脱硫公司拥有30万千瓦及以上机组自主知识产权的烟气脱硫技术,大多数脱硫公司仍需采用国外技术,而且消化吸收、再创新能力较弱。采用国外技术,要向国外公司支付技术引进费和技术使用费。据初步测算,已向国外公司支付技术引进费约3.2亿元,技术使用费约3亿元。 (二)脱硫市场监管急需加强。近几年,由于脱硫市场急剧扩大,一批从事脱硫的环保公司如雨后春笋般诞生。但行业准入缺乏监管,对脱硫公司资质、人才、业绩、融资能力等方面无明确规定,脱硫公司良莠不齐,一些脱硫公司承建的烟气脱硫工程质量不过关。另外,对烟气脱硫工程招投标的监管不到位或监管不力,部分工程招投标存在走过场现象。 (三)部分脱硫设施难以高效稳定运行。据业内人士反映,目前已建成投产的烟气脱硫设施实际投运率不足60%,减排二氧化硫的作用没有完全发挥。主要原因:一是有些脱硫公司对国外技术和设备依赖度较高,没有完全掌握工艺技术,系统设计先天不足,个别设备出现故障后难以及时修复;二是部分老电厂的脱硫电价政策没及时到位;三是环保执法不严,对脱硫设施日常运行缺乏严格监管

  • SDS干法脱硫及SCR中低温脱硝技术在焦炉烟气处理的应用

    前言  随着环保排放要求越来越严格,企业治理污染的力度也不断加大,焦炉烟气治理也越来越受到重视。焦炉生产过程中会产生含粉尘、SO2、NOx 等有害物质的废气,对环境造成污染。为减少焦炉烟气中SO2 和NOx 等有害物质排放量,使其满足环保要求,同时更好地改善大气环境质量,很多先进的方法已被应用于实际项目。卢昊等[1] 研究发现,SCR 脱硝技术在低温环境中具有很好的抗硫性能,烟气脱硝率达到85% 以上。金辉等[2] 将SCR 技术实际应用于江苏沂州煤焦化有限公司某项目,攻克了焦炉烟气无法在低温下处理的难题。王岩等[3] 认为焦炉烟气处理应有效融合源头控制、低氮燃烧、末端净化三方面,并对其引起重视。  通过脱硫脱硝除尘工艺净化后,焦炉烟气排放浓度达到SO2 ≤ 30 mg/m3,NOx ≤ 150 mg/m3,粉尘浓度≤ 15 mg/m3,满足GB 16171—2012《炼焦化学工业污染物排放标准》中的特别排放限值要求,并能够达到超低排放标准要求。  1 焦炉烟气脱硫脱硝工艺  1.1 工艺流程  焦炉烟气分别由地下机侧和焦侧烟道引出,经旁路烟气管道阀门和新增入口管道阀门切换并汇合后进入烟气总管。同时高效的脱硫剂(颗粒粒径为20~25 μm)通过SDS 干法脱酸喷射及均布装置喷入总烟道并在烟道内被加热激活,其比表面积迅速增大,与焦炉烟气充分接触后发生物理、化学反应,烟气中的SO2 等酸性物质被吸收净化,经吸收并干燥的含粉料烟气进入布袋除尘器进行进一步脱硫反应及烟尘净化。脱硫除尘后的烟气在SCR 脱硝反应器内进行脱硝净化,烟气中的NOx 与喷氨格栅喷出的NH3在静态混合器内充分混合,并在SCR 反应器内在中低温催化剂的作用下与NH3 发生化学反应,生成N2和H2O,从而达到去除烟气中NOx 的目的,净烟气由增压风机抽引,经出口烟道至原焦炉烟囱排入大气。  回原焦炉烟囱的烟气温度满足焦炉热备温度要求,可保证事故状态下焦炉烟囱热拔力依然保持正常。  1.2 副产物综合利用  SDS 干法脱硫的脱硫剂选用高效复合脱硫剂。由于SDS 工艺过喷量很小,因此与其他脱硫方法相比,该方案脱硫副产物很少。副产物中Na2SO4 所占比例  很高,便于综合利用。副产物为干态粉状料,其中,Na2SO4 质量约占总质量的80%~90%,Na2CO3 质量约占总质量的10%~20%。  焦炉脱硫副产物可作为矿山尾矿固化剂的生产原料以外,也可应用在以下领域:掺入水泥中,使水化产物硫铝酸钙更快地生成,加快水泥的水化硬化速度;在玻璃工业用以代替纯碱;在造纸工业中用于制造硫酸盐纸浆时的蒸煮剂;在化学工业中用作制造硫化钠、硅酸钠和其他化工产品的原料;在纺织工业中用于调配维尼纶纺丝凝固剂;还可用于有色冶金、皮革等方面。该脱硝系统更新后的废催化剂,由催化剂厂家回收。  2 工艺技术的选择比较  常用的焦炉烟气脱硫脱硝方法主要有SDS 干法脱硫+ 中低温SCR 脱硝,SDA(Na) 半干法脱硫+ 中低温SCR 脱硝,SDA(Ca) 半干法脱硫+GGH -中低温SCR 脱硝以及活性炭干法脱硫脱硝工艺等。  2.1 SDS干法脱硫工艺  高效脱硫剂(粒径为20~25 μm)通过SDS 干法脱酸喷射及均布装置被喷入烟道并在烟道内被加热激活,其比表面积迅速增大并与烟气充分接触后发生物理、化学反应,烟气中的SO2 等酸性物质被吸收净化。该技术的开发背景是垃圾焚烧行业开发的HCl脱除干法系统,其副产物的主要成分为NaCl,可被回收作为原料再用于生产纯碱。之后SDS 干法脱酸技术在欧洲得到迅速发展,其配套的喷射系统、研磨系统相继被开发。目前在欧洲市场该工艺主要用于垃圾焚烧炉尾气脱酸,但该技术在其他行业包括焦化、玻璃制造、燃煤电厂、危险废物焚烧炉、柴油发电、生物质发电、水泥等都取得了很好的应用效果。  SDS 干法脱硫+ 中低温SCR 脱硝工艺的优点是脱硫、脱硝效率高,无温降,无水操作,投资省,占面积小,副产物少,低电耗,无腐蚀,设备简单,操作维护,脱硫副产物产生量小,硫酸钠含量高等;缺点是会产生少量的脱硫副产物,需要对其进行综合利用。  2.2 SDA半干法脱硫工艺(包括Na法和Ca法)  旋转喷雾干燥(SDA)脱硫技术于二十世纪七十年代早期由丹麦[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]o 公司研制开发。其脱硫过程是将CaO 或Na2CO3 加水配置成固含量为20%~25% 的Ca(OH)2 浆液或Na2CO3 溶液,通过雾化器高速旋将溶液雾化成30~80μm 的雾滴喷入吸收塔内,塔内的Ca(OH)2 浆液或Na2CO3 溶液雾滴(吸收剂)迅速吸收烟气中的SO2,达到脱除SO2 及其他酸性介张庆文,等:SDS干法脱硫及SCR中低温脱硝技术在焦炉烟气处理中的应用质的目的。同时,焦炉烟气热量瞬间干燥喷入塔内的液滴,使其成为粉状干固体,由袋式除尘器捕集。脱硫工艺流程简单,吸收塔为空塔结构。  SDA(Na) 半干法脱硫+ 中低温SCR 脱硝的优点是脱硫效率高、无废水产生、低水耗、低电耗、无腐蚀;缺点是脱硫剂易结晶、维护困难、副产物难回收利用。SDA(Ca) 半干法脱硫+GGH -中低温SCR 脱硝工艺的优点是脱硫效率中、无废水产生、低水耗、低电耗、无腐蚀;缺点是占地面积大、烟气温度先降低后升高,能耗高、副产物难以利用。  2.3 活性炭干法脱硫脱硝工艺  以物理 -化学吸附原理为基础,活性炭吸附烟气中的SO2、H2O 和O2 后催化反应生成硫酸,然后将其迁移到微孔中储存,而烟气中的NOx 在活性炭催化作用下,和喷入烟气中的氨水发生还原反应,生成N2 和H2O。活性炭通过再生系统释放活性吸附位继续吸附SO2,再生系统排放的含SO2 烟气进入副产物回收系统,SO2 可被加工成多种硫化工产品。  活性炭在再生过程中会产生磨损及化学消耗,因此需要定期补充新的活性炭,磨损的活性炭粉则可返回配煤工段进行再利用。  活性炭干法脱硫脱硝工艺即采用活性炭的吸附作用吸附烟气中的SO2、颗粒物和NOx,从而实现同时脱硫、脱硝和除尘的目的。缺点是烟气温度需降低到150 ℃以下;脱硫副产物中包含硫酸的同时产生污染废水,一次性投资大,运行成本高。  综上所述,无论从工艺技术的先进性(脱硫、脱硝效率),还是从工艺技术的实用性,占地面积,投资成本,废水,副产物利用等方面进行综合分析比较,SDS 干法脱硫及中低温SCR 脱硝工艺是最适合焦炉烟气净化的最佳工艺技术,其配置合理,控制水平达到国际先进水平,可确保脱硫脱硝系统长期、安全、稳定、连续地运行。  3 工艺原理  3.1 SDS工艺原理  SDS 干法脱酸喷射技术是将高效脱硫剂(粒径为20~25 μm)均匀喷射在管道内,脱硫剂在管道内被加热激活,比表面积迅速增大,与酸性烟气充分接触发生物理、化学反应,烟气中的SO2 等酸性物质被吸收净化。  其主要化学反应为:  2NaHCO3 +SO2+1/2O2 → Na2SO4 +2CO2+H2O  2NaHCO3 +SO3 → Na2SO4 +2CO2+H2O  其与其他酸性物质(如SO3 等)的主要反应为:  NaHCO3 +HCl → NaCl +CO2+H2O  NaHCO3 +HF → NaF +CO2+H2O  3.2 SCR脱硝工艺原理  选择性催化还原法(SCR)即在装有催化剂的反应器内用氨作为还原剂来脱除氮氧化物,如图1 所示。  烟气中的NOx 一般由体积浓度约为95% 的NO 和5%的NO2 组成。NOx 经脱硝反应转化成分子态的氮气和水蒸气。SCR 主要反应方程式为:  4NH3+4NO+O2 → 4N2+6H2O  4NH3+2NO2+O2 → 3N2+6H2O31.jpg  4 工艺特点  4.1 SDS脱硫工艺技术特点  SDS 脱硫工艺具有良好的调节特性,脱硫装置运行及停运不影响焦炉的连续运行状态,脱硫系统的负荷范围与焦炉负荷范围相协调,保证脱硫系统可靠稳定地连续运行。该工艺技术特点如下:  (1)系统简单,操作维护方便 ;  (2)一次性投资少,占地面积小;  (3)运行成本低;  (4)全干系统,无需用水;  (5)脱硫效率高;  (6)合理的脱硫剂均布装置;  (7)灵活性很高,可以随时根据排放指标要求调整;  (8)对酸性物质具有较好的脱除效果;  (9)对焦炉工况适应性强;  (10)副产物量少,硫酸钠纯度高,便于回收利用;  (11)系统设置事故通道快速切换装置,一旦出现故障也不影响焦炉的正常生产。  4.2 SCR中低温脱硝工艺特点  焦炉烟道烟气脱硫后采用中低温脱硝催化剂进行脱硝,该催化剂具有催化反应温度窗口宽、SO2 转化率和NH3 逃逸率低、抗硫性好、脱除效率高、比表面积大、结构强度高、寿命长等特点。  脱硝系统运行一定时间后,为了使催化剂活性保持稳定(防止催化剂表面沉积较多黏稠状硫酸氢铵),采用原位再生热解析系统对催化剂进行再生。当催化剂寿命周期届满时,可将SCR 中低温脱硝催化剂进行返厂再生,有效解决了催化剂危废处理问题,同时降低了后期更换催化剂的成本。  5 脱硫脱硝工艺系统组成  焦炉烟气脱硫、脱硝系统由以下几个部分组成:  (1)SDS 脱硫剂投加及均布装置( 关键设备考虑备用) ;  (2)除尘设备及附属设备;  (3)脱硝反应器系统及附属设备;  (4)脱硫脱硝系统公辅设备,包括氮气供应系统、循环水供应等;  (5)仪表、通信、供配电、在线监测、消防与控制系统等。  6 脱硫系统实施后的效果  以鞍钢集团鞍钢炼焦总厂二炼焦7# 焦炉作为SDS+SCR 焦炉烟气脱脱硝试验项目进行实施,该项目基本情况如下。  6.1 焦炉烟气参数  焦炉烟气参数可见表1。32.jpg  该项目焦炉烟气采用SDS 法脱硫、SCR 脱硝及除尘净化工艺处理,设计时除了考虑将来焦炉泄漏率为5% 时的烟气处理净化能力外,还考虑了今后更严格的超低排放标准要求,为脱硫脱硝装置留有富裕的净化能力。  6.2 脱硫脱硝净化效果  该装置对烟气脱硫脱硝后的效果如下:SO2 排放浓度≤ 30 mg/m3,NOx 排放浓度≤ 150 mg/m3,颗粒物排放浓度≤ 15 mg/m3。  今后环保排放标准会更加严苛,即要求颗粒物限值为10 mg/m3,二氧化硫限值为15 mg/m3,氮氧化物限值为50 mg/m3。设计时充分考虑了余量,保证烟气能够达到超低排放标准要求。  6.3 现场应用情况  鞍钢二炼焦7# 焦炉于2017 年10 月10 日开始施工,2018 年2 月2 日该系统开始进行热负荷联动试车。通过对脱硫脱硝入口及烟囱外排口处进行在线监测发现,脱硫脱硝效果明显且系统设备运行稳定。  当入口处SO2、NOx 浓度及颗粒物浓度分别为35.49、447.22、26.51 mg/m3 时,脱硫脱硝后烟囱在线监测显示SO2 浓度、NOx 浓度及颗粒物浓度分别为3.45、70、4.62 mg/m3。在处理过程中无论入口如何变化,出口指标都能稳定控制在标准范围内,并能达到特排标准。经过一个月的功能考核及168 考核验收,鞍钢首套焦炉烟气脱硫脱硝装置正式投入使用,烟气满足现有焦化企业污染物排放标准,并达到特排要求,预计每年可减排SO2 146 t、NOx 263 t、颗粒物112 t。  图3~ 图5 所示为脱硫脱硝入口及烟囱外排口处烟气各成分的在线检测对比曲线。33.jpg34.jpg  从烟气进出口对比曲线可以看出出口处烟气SO2浓度、NOx 浓度及颗粒物浓度能够分别有效控制在30、150、15 mg/m3 以下,满足合同功能考核指标要求,同时通过严格控制可以满足特排指标要求。  7 结论  (1)SDS+SCR 工艺具有操作方便、易于维护、运行成本低等优点,且在实际运行中效果较好。  (2)经过SDS+SCR 工艺处理后,烟气能够达到特排标准,即SO2 排放浓度≤ 15 mg/m3,NOx 排放浓度≤ 50 mg/m3,颗粒物排放≤ 10 mg/m3。  (3)经过一个月的功能考核及168 考核验收,鞍钢首套焦炉烟气脱硫脱硝装置正式投入使用,预计每年可减排SO2 146 t、NOx 263 t、颗粒物112 t。  (4)项目投运后所产生的废弃物主要成分为Na2SO4,该副产物可以回收利用作为水泥添加料。  (5)该工程投产后具有较好的环境效益和社会效益,明显改善了该地区的大气环境,有效减少了酸雨的形成。  (6)该技术成功应用后,已被迅速推广到其他项目中, 目前鞍钢集团内的18 座焦炉均采用该技术进行烟气脱硫脱硝,该技术具有广泛的应用前景和推广价值。

  • 电除尘在焦炉烟气净化中的运用

    1 焦炉尾气处理工艺流程  某焦化厂是一个集炼焦、发电为一体的焦化企业,在运行的过程中不仅会生产出焦炭,而且还能够充分利用炼焦炉烟气的热量,通过余热回收系统进行发电。焦化炉尾气处理的工艺流程如下所示:焦化炉生产出的高温烟气在温度达到600℃的时候,高温烟气会进入到余热回收系统中,经过余热回收系统的汽水分离处理能够将高温蒸汽送入到汽轮机中,带动发单机的发电。焦化炉尾气处理工艺流程具体如图1所示。焦化炉尾气处理操作涉及到的各类参数信息如下所示:①锅炉型号为Q96/750-27-2.5型号的焦炉煤气余热回收系统;②锅炉的额定蒸发量是每小时20吨;③锅炉的烟气量是每小时310000m3;④锅炉的最高温度是300℃;⑤烟气的含尘量是1g/Nm3;⑥锅炉的运行压力是2~-6Kpa之间。59.jpg  2 电除尘器概述  2.1 内涵  电除尘是一种利用强电场使气体电离,即产生电晕放电,进而使粉尘荷电,并在电场力的作用下,将粉尘从气体中分离出来的除尘装置。  2.2 电除尘器的特点  烟气大多来自焦化炉,在焦化炉使用的过程中虽然经历了余热回收系统的热交换,进入除尘器的烟气温度达到250~260℃,最高情况下能够达到300℃,因而和一般的煤粉炉烟[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]比,电除尘器的使用效率基本上高出了一倍左右。另外,受焦化炉使用不稳定的影响,在焦炉的烟气温度不超过500℃的时候,焦炉中的烟气焦油含量也会相应增多,对电除尘器的除灰工作带来了难度。电除尘器的设计要点具体表现在以下几个方面:第一,气体流动速度不能较高,受粉尘颗粒直径较小、重量较轻的影响,在风速较高的情况下,进入到电场中粉尘往往会被气流带出电场,达不到收尘的目的,同时,在风速较大的情况下还会将收集到的粉尘重新带入到电场中,出现生产加工的二次粉尘飞扬,因此,在烟气量一定的情况下需要确保除尘器断面的强大;第二,收尘极板的合理选择,收尘极一方面要具备良好的电性能,另一个方面还需要确保振打加速度分布的均匀,从而减少粉尘的二次飞扬,从电除尘器的收尘极板应用来看,这类极板的电流密度分布比较均匀,型号是C480极板,在使用过程中板中间还会出现几个波形,由此在无形中增大了板子的刚度;第三,在出口位置上设置槽板装置,受低比电阻粉尘的跳跃影响,一些重返电磁场的粉尘会被气流带离电场,加上电场振打操作中出现的二次扬尘,如果没有对这些扬尘进行及时收集就会导致空气中的粉尘增多,降低除尘效率,为此,需要在除尘器的出口垂直位置上安排两层槽形板,在槽型板的作用下捕捉额外出现的粉尘,提升粉尘除尘效率。  2.3 电晕极和收尘极的选择  电场是静电除尘器的重要零部件,电场的运行在某种程度上决定了电除尘的除尘效果和除尘效率,正确选择收尘极和电晕极是有效利用除尘器的重要关键。在使用静电除尘器的时候,除尘器的阳极板适合应用综合性能良好的C480极板,材质为不锈钢。阴极线应用不锈钢芒刺线,受芒刺线起晕电压低特点的影响可以充分吸收尘埃。  2.4 低耗水量  除尘器在使用的过程中配套灰水处理自动循环系统,经过的喷嘴循环水流量不会随着机组的负荷变化而发生变化,电除尘器在应用的过程中用水量基本保持了一种不变的使用状态。循环水的补水量和烟气中的含尘量呈现出一种线性关系。  2.5 无运动部件  除尘器在使用的过程中大大降低了运行维护成本费用。除尘器的放电极应用了特殊形状的设计方式和安装方式,在使用过程中不会因为震动、腐蚀而出现损坏的现象。同时,在先进技术的支持下还实现了对喷淋系统喷嘴形式和尘埃汇集板型号的优化,使得除尘器的设计不具备额外的运动部件,在无形中降低了除尘器的工作量。  3 电除尘在焦化炉烟气净化运行中出现的问题及整改措施  3.1 振打制度设置不合理问题和整改措施  电除尘在焦化炉烟气净化运行中应用的时候虽然电流电压数值正常,但是烟囱的使用出现了比较明显的黑色烟气,除尘效果不理想。在经过一段时间的观察发现,烟尘的灰量在一定程度上减少,可以每间隔四到五天排放一次。60.jpg61.jpg  3.2 阴极吊挂设计  考虑到烟气温度较高且粉尘比电阻低、容易爬电的特点,在阴极吊挂设计的时候应用了一种耐高温能力强、不容易累积灰尘、爬距大的95瓷制作穿墙套管,具体如图2所示。设计好的阴极吊挂在经过一段时间的试用之后发现效果不理想,几处穿墙套管在电场内部,在受到击打会出现炸裂的现象,炸裂之后的零碎品会掉落到灰斗的内部,使得焦化炉的使用出现了不同程度的损坏。针对这个问题,在改进设计中相关人员替换掉了穿墙套管,将穿墙套管替换为一种耐高温的石英套管,并在大梁上使用的时候在外部额外添加防尘套,改进之后的阴极吊挂绝缘套管如图3所示。改进之后的阴极吊挂绝缘套管能够将粉尘到达瓷套的量有效降低,减少爬电现象的发生。  3.3 阴极大小框架热膨胀量  阴极振打轴跟着向下的位移量要比常规的大,在对阳极设计的时候由于振打轴和挡灰板之间的缝隙较小,由此导致振打轴在向下移动的时候会使挡灰板出现挤压变形问题。针对这个问题,可将挡灰板上的孔改变为椭圆形,这样便能够有效防止挡灰板出现挤压变形的问题。  4 结束语  综上所述,本文结合焦化炉尾气处理工艺流程和除尘器的工作原理、特点,分析了电除尘在焦化炉烟气净化运行中出现的问题及整改措施,在经过一段时间的應用之后发现,工厂的烟气量被有效控制在每小时289000m?,烟气的流动速度被控制在每秒11.96m,空气的过剩系数为2.3,尘埃的含湿量为253℃,出口含尘的浓度为48.5mg/Nm3,由此证明除尘器在焦化炉尾气处理中的良好应用效果具有广泛的应用前景,需引起相关人员的重视。

  • 【讨论】烟气分析仪

    烟气分析仪一般都是哪些部门用?我刚开始做烟气分析仪的销售,除了环保部门?还有哪些部门会用?请各位指教。

  • 崂应3012h烟气校准问题

    做3012H烟气校准的时候,把皮托管置于空气之中,然后进行烟气校准,但是氧气传感器的显示值为0.0%,这是氧气传感器坏了吗?

  • 教你如何选购烟气分析仪————————————————

    教你如何选购烟气分析仪————————————————

    目前越来越多的实验室和研究单位,需要采购烟气分析仪。但是鉴于烟气分析仪的品牌较多,性能各异,大家往往无从选择,最后往往只看重价格,结果不能买到最合适自己使用的烟气分析仪。本文从以下几个方面,简单介绍一下如何选购烟气分析仪:1、传感器: 现在主流的烟气分析仪所涉及的测量单元,主要包括两种传感器:1)电化学传感器: 优点: a 体积小:所以手持式的机型,一般采用电化学的。 b 便宜:价格较为便宜,如果预算比较低的话,可以选购电化学传感器的烟气分析仪。 缺点: a 准确度稍差:一般误差在读数的±5%,单符合环保国家标准要求。 b 交叉干扰:电化学传感器容易受到其他气体的干扰,使测量结果误差增大。 c 寿命短:寿命一般都是2-3年,所以总是得考虑更换的问题。2)非分散红外传感器: 优点: a 测量准确:一般测试结果不会超过满量程的±2%,可以作为分析精密仪器使用。 b 不存在交叉干扰:由于测量原理的原因,其他气体不会对红外传感器产生测试干扰。 c 寿命长:红外传感器一般没有寿命的概念,使用时间非常长,一般都在10年以上,日常也不需要特别的维护,目前正渐渐的成为主流传感器。 缺点: a 价格稍贵:价格一般是电化学传感器的几倍至十几倍。 2、采样系统: 烟气分析仪的采样系统分为常规采样系统和加热采样系统。 1)常规采样系统:一般采用耐酸碱,耐高温的塑料管,保证对气体无吸附。 适用情况:含水量较低样气的短时间测试; 不含酸性气体的样气的短时间测试。 2)加热采样系统:就是在常规采样系统的基础上,融入加热的功能,保证在采样过程中样气温度在120℃以上,从而能保证采样过程中没有水份的凝结。 适用情况:含水量较高的样气测试; 长时间连续在线测试; 酸性气体(如NO2,SO2)含量的测试;3、样气处理系统: 1)汽水分离器:除去液态的水分,主要是手持机型采用这种除水处理系统。 适用情况:不含酸性气体(如SO2,NO2)的测试; 环保部门实地监察的抽检测试; 锅炉燃烧效率测试。 2)帕尔贴电子制冷器:瞬间将样气温度降低到5℃,瞬间脱去样气水分,保证进入测试单元的样气是标准温度且含水量低的,这样传感器才能测试的准确。 适用情况:样气中含有酸性气体(如SO2,NO2)的测试; 样气中含有水分的气体的测试; 较高温度气体成分的测试; 高校研究所相关的脱硫脱销实验; 长时间的联系在线测试; 必须选用红外传感器测试的实验项目; 锅炉燃烧实验 ; 新能源开发与利用相关的实验项目。4、自动零点校准功能: 有的烟气分析仪具有自动零点校准功能,适合无人监守长期的在线连续测试。这种功能可以保证测试过程中传感器的零点不漂移,从而确保测试结果准确。 如果没有此项功能,那仪器只能通过人工校准,仪器不能实现长时间的连续测试。5、考虑测试的样气特点: 样气的特点就是指:烟气的温度,样气的含水量,烟气中所含气体的种类及酸碱性,特殊气体条件等。 举例:如在高湿环境中测二氧化硫的浓度,就必须选用加热采样系统和帕尔贴电子制冷器,这样才能测得较准确的结果。 如气体种还有高浓度的氢气,要测试其中其他气体的成分的话,必须选用红外传感器的仪器,因为高浓度的氢气对电化学传感器具有很大的干扰作用。6、维修,产地和口碑: 维修:就是看是否有较完善的维修部门,这样可以保证售后服务的质量。 产地:产地较为重要,这主要体现在产品质量和可靠性上。 最好的品牌当然是德国品牌;其次是美国,英国的品牌;最后是其他国家和国产品牌。 http://ng1.17img.cn/bbsfiles/images/2012/02/201202071625_348165_1668260_3.jpg 土豆:欢迎分享资料,但论坛不提倡放联系方式。

  • 特种设备延期校验,市场监管总局回复

    尊敬的总局大人您好:我想请问一下关于特种设备延期校验的相关问题,就是压力容器和压力管道能不能延期校验,什么情况下可以延期,可以延期几次,一次可以延期多长时间?特种设备的安全附件(安全阀)同样是不是可以延期,可以延期几次,一次可以延期多长时间?谢谢总局大人,期待总局大人的回复。[align=center][img]https://xgzlyhd.samr.gov.cn/gjjly/img/fd-a-avator.png[/img][/align][b]回复部门: 特种设备安全监察局[/b][color=#999999][back=transparent]时间:2024-01-09[/back][/color]《固定式压力容器安全技术监察规程》(TSG 21-2016)中8.1.7.3(2)已明确规定,因特殊情况不能按期进行定期检验的压力容器,由使用单位提出书面申请报告说明情况,经使用单位主要负责人批准,征得上次承担定期检验或者承担基于风险的检验(RBI)的检验机构同意(首次检验的延期除外),向使用登记机关备案后,可以延期检验。安全阀校验周期可以适当延长,延长期限按照相应安全技术规范的规定,如固定式压力容器上使用的安全阀,其校验周期可查阅《固定式压力容器安全技术监察规程》(TSG 21-2016)7.2.3.1.3、《安全阀安全技术监察规程》(TSG ZF001-2006)B6.3相关要求。

  • 谈红外、紫外差分光学烟气分析仪,如何高效、准确的进行污染源烟气现场监测与分析!

    形势分析:目前在线烟气连续监测系统(CEMS)一般都采用红外、紫外原理等高精度的分析系统,做比对测试的便携式烟气分析仪基本采用定电位电解原理,测量精度比较低,低精度便携仪器比对高精度系统,无法给出令人信服的数据。 近几年我国火电厂上了大量的脱硫和脱硝工程,但还有一些电厂没有建脱硫脱硝工程,做为环保监测仪器,应能适应高浓度和低浓度气体测量要求,需要测量仪器具有双量程,能够做到高低量程切换,两个量程都能达到高精度;这对于传统定电位电解原理的仪器是很难实现的,但是红外、紫外差分烟气分析仪就可以同时满足高、低浓度双量程精确测试。 所以非分散红外分析技术(NDIR)和紫外差分技术(DOAS)在污染源烟气成分测试中的应用解决了测试不准和量程受限的问题,崂应3023紫外差分、3026红外型-烟气综合分析仪正是基于此形势下,经过多次验证试验分析和现场工况测试,测量数据与在线的仪器比对数据相吻合,深受广大客户好评,希望了解这类仪器的小伙伴们参与讨论。 或者您觉得目前光学烟气分析仪与传统电化学烟气分析仪相比是否有优势?您更喜欢哪种类型的烟气分析仪?或您正使用的是哪一款仪器?也可以推荐更成熟的先进烟气分析技术供大家讨论。

  • 关于采烟气的几个问题

    采烟气 老的这个表格里列举的 连接管 没有聚四氟乙烯?还有我们采样枪加热把进去的水分去掉以免影响所测的气体 后面气体再经采样管进入仪器 没记错是进去仪器的温度不能超过40吧 不然仪器会坏,我觉得后面这段都可以不设置降温了吧 经过采样管一小段应该自然而然降了[img]https://ng1.17img.cn/bbsfiles/images/2022/07/202207242131020584_8225_4202697_3.png[/img]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制