当前位置: 仪器信息网 > 行业主题 > >

湿法纺丝机

仪器信息网湿法纺丝机专题为您提供2024年最新湿法纺丝机价格报价、厂家品牌的相关信息, 包括湿法纺丝机参数、型号等,不管是国产,还是进口品牌的湿法纺丝机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合湿法纺丝机相关的耗材配件、试剂标物,还有湿法纺丝机相关的最新资讯、资料,以及湿法纺丝机相关的解决方案。

湿法纺丝机相关的资讯

  • 静电纺丝-微流控芯片提高艾滋病毒检测效率
    近日,国家纳米科学中心蒋兴宇课题组在纳米技术与重大疾病早期诊断方面取得新进展,相关结果发表在最新出版的《先进材料》杂志上。   早期准确快速的诊断是发现并控制重大传染性疾病(艾滋病、禽流感、乙型肝炎等)的必要条件。预防人类免疫缺陷病毒(HIV)目前仍然没有有效的疫苗,抗病毒治疗也不能有效的将病毒从体内清除,并且现有的HIV确认试剂盒诊断所需的时间较长,价格昂贵。因此,开发有效的、高灵敏度快速准确地诊断HIV感染者的检测方法,可以有效防止病毒的继续传播。   现在对于HIV的检测其技术原理主要是基于蛋白质(抗原或抗体)之间的相互作用。微流控芯片技术具有制备简单、试剂用量少、操作方便等优点,因此在生化分析中的应用越来越受到重视。   蒋兴宇和其博士生仰大勇与中国疾病控制中心性病艾滋病中心的马丽英、邵一鸣合作,采用静电纺丝技术制备纳米纤维薄膜,应用于微流控芯片,检测HIV。与商业薄膜相比,静电纺丝纳米纤维薄膜具有更大的比表面积,对于被检测物的吸附提高了一个数量级,从而使得检测的灵敏度有很大提高,在一个小时内就能完成检测工作,使用的试剂为常规用量的几十分之一。   这是一项将纳米技术应用于疾病诊断领域的成功例子,该工作开辟了静电纺丝应用的一个新领域,同时这种结合微流控技术和静电纺丝的新芯片系统具有廉价、操作方便、便携、灵敏度高的特点,将推动重大流行疾病早期诊断的研究和产品开发。   上述工作得到了科技部、国家自然科学基金和中科院的支持。
  • 飞纳电镜与您相约第六届全国静电纺丝技术与纳米纤维学术会议
    第六届全国静电纺丝技术与纳米纤维学术会议将于2018年11月30日-12月2日在江西师范大学(中国?南昌)召开。会议时间:2018年11月30日 - 12月2日会议地点:江西师范大学会议日程安排2018 年 11 月 30 日:会议报到注册2018 年 12 月 1 日:上午开幕式及大会报告;下午大会报告 (含分会场报告)2018 年 12 月 2 日:上午大会报告 (含分会场报告);下午颁奖,闭幕式,会后交流会议主题静电纺丝新理论、新技术、新装置;静电纺有机高分子材料纳米纤维;静电纺有机/无机复合材料纳米纤维;静电纺无机材料纳米纤维;静电纺技术在军民两用技术方面的应用,如:生物医学、纳米纺织、功能服装、催化、气/液过滤、能源存储与过滤、柔性器件、3D打印、记忆材料、声波吸收与电磁波屏蔽的应用;产学研论坛(国际贸易、新技术、新产品发布、企业推介、技术合作/转让等)。静电纺丝静电纺丝技术是目前为止获取纳米纤维最简单有效的方法之一。它具有比表面积大、孔隙率高等特点,因而可广泛应用于高效过滤材料、生物材料、高精密仪器、防护材料、 纳米复合材料等领域 。影响静电纺丝纤维的因素有很多。纺丝液自身的性质例如聚合物种类、浓度、导电性、添加剂等都会影响纺丝结果。而纺丝参数设置例如,包括外加电压、喷丝头与接收板之间 的距离、纺丝速度、甚至外界环境温度、湿度等等因素都会对最终结果造成影响。为了摸清这些影响因素的作用规律,获取纺丝样品的形貌照片则显得极为重要。飞纳电镜助力静电纺丝研究飞纳电镜高效的特性特别适合检测静电纺丝此类需要“摸条件”的实验。飞纳电镜抽真空时间只需要 15 秒钟,从装样到得到照片不超过 30 秒。并且,飞纳电镜操作简单,学生经过简单培训就可以自己上手操作。飞纳电镜尺寸迷你,可以放置在任意实验桌甚至办公桌上,且采用高亮度 CeB6 灯丝或肖特基场发射电子源,使得飞纳电镜具有 “小身材,大能量” 的特点。飞纳电镜下的静电纺丝飞纳电镜-纤维统计分析测量系统飞纳电镜的纤维统计分析测量系统(FiberMetric)可以自动测量从纳米到亚微米量级的纤维,数秒之内采集数百纤维的直径信息,同时会对纤维相交产生的孔做出统计。每个数据点均经过 50 次测量取平均值。根据统计信息自动生成纤维直径分布柱状图,并导出数据文件。相对于手动测量,纤维系统软件测量精度高,速度快,效率高,操作简单,它让统计和分析大量不同直径的纤维样品成为可能。纤维系统测量界面 纤维测量图 扫描电镜原图纤维统计图飞纳电镜团队将出席本次会议,期待与参会人员进行扫描电镜在静电纺丝和纳米纤维检测方面的技术沟通。
  • 4.16亿元!天津工业大学一流学科群和高能级研发创新平台设备更新项目批复(附设备清单)
    7月4日,天津市发展和改革委员会发布了《关于天津工业大学一流学科群平台和高能级研发创新平台设备更新项目可行性研究报告的批复》。经委托天津国际工程咨询集团有限公司组织专家评审,原则同意该项目可行性研究报告,项目建设主体为天津工业大学,项目代码:2405-120000-89-03-702469。该项目位于天津市西青区宾水西道399号天津工业大学现址内。主要建设内容及规模:主要购置设备280台(套),主要为非织造智能工厂平台模拟系统等;替换原有老旧设备279台(套),主要为复合纺丝机、真空镀膜机、半导体及光学薄膜制备系统等设备(购置设备清单详见附件)。总投资金额为41587万元,通过申请中央资金和学校自筹等多种渠道解决。附件天津工业大学一流学科群平台和高能级研发创新平台设备更新项目设备清单表序号仪器设备名称数量(台/套)1柔性薄膜制备系统12天然木质素染料提取浓缩干燥专用设备13连续长丝3D成型系统14计算机基础教学与创新实验平台15图形图像实训系统设备16人工智能计算平台17人工智能实训与创新平台18纳米纤维智造平台19CAD/CAM数字化智能教学实训系统110户外功能性服装智能缝制系统111多通道超声波细胞粉碎机系统112超大隔距双针床经编机113柔性电极印刷系统114软包电池产线系统115生理参数模拟人台系统116呼吸综合模拟系统117纺织服装数智化实验教学系统118双面无缝成形针织小样机119染料-助剂-纤维界面作用与影响实验教学套装120转移印花与数码印花实验教学套装121熔喷纳微纤维水刺复合实验线122溶液喷射/微射流纳微纤维实验机123非织造成网固网系统124立式熔喷机125针织经纬编衬纱编织机126多功能全成型电脑横机127静电可调针织钩编系统128数字化小样纺纱精梳系统129环锭纺细纱自动接头机130单面高速提花无缝针织内衣机131双面全成形经编机132红外摄像机133紫外-可见-近红外分光光度计134多功能生物3D打印机135高真空电阻蒸发镀膜机136多结构复合纤维熔融纺丝实验线137动态纸页成型器138非织造智能工厂平台模拟系统139功能性纳米颗粒修饰改性微纳米纤维的制备体系140材料微纳米结构激光加工设备141超薄切片机142复合材料老化机组143纺织装备系列仿真软件144高精度视线交互系统145纺织关键工况物理模拟系统146数字工程师培训考核平台247二维材料制备系统148高真空多靶磁控溅射系统149HVPE沉积机台150服务器151电输运与磁致伸缩测量系统152布里奇曼定向凝固炉153高真空单辊旋淬及喷铸与电弧熔炼及吸铸系统154雾化气相外延沉积机台155物理气相沉积机台156晶圆表面修整抛光机157晶圆键合机158晶圆清洗湿法刻蚀机159虚拟仪器项目式实践与机器视觉平台160信号与系统综合实验平台161数据通信实验平台262软件无线电创新平台163光纤通信技术综合实验系统164大载重多功能无人机与四轴消防无人机系统165多旋翼搜救与测绘无人机群166多用途垂直起降固定翼无人机467大负载长续航物流运输无人机468智能双轴机械手缆控无人潜航器169无人机应急指挥调度平台170机载通信装备171无人系统教学仿真系统172共直流母线变频电源173电机结构虚拟化开发平台174高性能电机控制系统快速原型开发平台175现代电机系统教学实验平台176DSP教学实验平台177超声金属电极键合机178高频变压器179功率半导体器件互连烧结机180综合展示系列设备181多功能五合一绣花机182SLA系列光固化打印机183视觉成像系统184服装数字化教学系统185服装智能制造教学系统186服装综合性教学系统187微机原理实验平台188电路实验平台189电工学电子技术实验平台190电工学电工技术实验平台191实验教学数字化平台192电工电子多功能实训平台193电子类竞赛综合实训平台194数控车铣实验平台195纺织智能制造成品码垛实训平台196数字化设计与制造实训教学平台197非遗工艺创新-非金属激光加工系统198多材料金属3D成型机199激光钣焊成型系统1100数控加工智能制造生产线1101机器人创新实训平台1102传统机械加工实训平台1103精密铸造实训平台1104智能制造产线孪生教学系统1105虚拟现实元宇宙教学系统1106面向实验室安全监测的智能巡检机器人1107陶瓷粉末快速成型机1108高温连续碳纤维3D成型设备1109全彩树脂3D成型机1110高分子材料烧结快速成型机111110激光器超大SLA3D成型机1112金属激光加工系统1113教学(外语)视听设备及数据存储设备1114数字经贸融合创新教学平台1115数智化企业仿真创新教学平台1116金融科技智能融合创新教学平台1117交互式教学平台12118外语教学系统7119数字人系统8120工作站软件3121桌面工厂(设计版)4122化工原理及专业实验平台1123化工过程实训平台1124人工智能数学大模型平台11256寸半自动光刻机2126光刻预制处理实验平台1127高性能工作站11281940nm光纤激光器1129多工位有机无机蒸发镀膜系统11301910nm光纤激光器1131拉曼光纤激光器2132通用人工智能大模型训练设备4133手眼耳脑具身智能机器人集群系统1134人工智能专业课程实践平台1135医学大数据处理平台1136医工融合新工科创新育人平台1137高性能超精密航空航天金属构件复合加工平台1138高精度空天集群博弈位姿定位系统1139航空发动机燃烧室流场重构-燃烧诊断系统1140GPU服务器2141三维扫描建模系统1142惯性三维运动捕捉系统1143AIoT实验实训系统5144智能网联车实验平台1145深度学习开发平台1146智能复合机器人2147面向工业智能应用的算力租户科研服务平台1148高性能AI算力云资源管理平台1149生物制药实践教学平台1150药物制剂与新释药技术教学平台1151核心路由器2152核心交换机5153智能空间管理系统1154视觉管理设备4155视觉借还设备1156智慧管理服务平台1157AI学科馆员与咨询设备1158复合材料高压成型系统1159智能缝合系统11603D多层织物织造系统1161高性能碳纤维超薄织物织造系统1162复合材料连续纤维3D打印设备1163复合材料特种热压机1164碳碳复合材料制备系统1165磁控溅射镀膜系统(Magnetronsputteringdepositionsystem)1166飞秒激光器(Femtosecondlaser)1167台式超速离心机1168氮化物分子束外延生长系统1169紫外激光晶圆划片机1170科研通风设备1171能量转换设备8172能量转换设备20173电驱动离心式冷热高效交换机组2174大型双曲线横流自然通风水冷冷却器5175一体化高效节能冷温水传递系统18176冷冻水式高效组合空气换热处理设备机组1合计280
  • 飞纳电镜展会邀请|第八届全国静电纺丝技术与纳米纤维学术会议
    第八届全国静电纺丝技术与纳米纤维学术会议将于 2021 年 5 月 28 - 30 日在天津社会山国际会议中心召开。飞纳电镜诚挚邀请各位专家学者参加此次会议,共同推动静电纺丝科技事业创新发展。会议时间:2021 年 5 月28 日 - 30 日会议地点:天津社会山国际会议中心 飞纳电镜展位号 20 号 飞纳台式场发射扫描电镜 Phenom Pharos 台式扫描电镜表征静电纺丝 应用 静电纺丝与碳化静电纺丝 静电纺丝 碳化静电纺丝 应用 用过的滤网的 EDS 分析 应用 轻松观察纤维截面 纤维测量 + AIM 由于传统扫描电镜只能给出图片,导致研究人员只能测量少量的数据,或者通过直观的“感觉”来判断纤维的特征。为了解决这一问题,飞纳电镜推出了全自动纤维测量系统,将 SEM 的“图片”转化为“数据”,自动导出纤维直径的柱状分布图,并导出数据文件。 VSParticle - 纤维纳米负载仪 在纤维表面负载纳米粒子是获得功能性纤维材料的重要途径,而对于静电纺丝一类的材料,原位合成负载纳米粒子方式会有很大的工艺局限性。而 VSParticle 推出的纤维纳米负载仪采用先进的火花烧蚀技术产生纳米气溶胶,利用类似“口罩”过滤的原理将纳米粒子沉积在纤维表面与内部孔隙中,同时避免其它方法造成的纤维热或机械损伤。该方法可以实现多种材料的在线式负载,实现静电纺丝的功能化,已在包括环境水处理,催化,导电织物,抗菌等领域得到验证,是一种全新的纳米纤维改性技术。 静电纺丝负载 Au 纳米粒子 VSParticle 的纤维负载仪只需要你做三件事便可以获得均匀负载的样品:1. 放入目标纳米粒子对应的靶材2. 放入纤维基底3. 按下开关 三步一键,纳米粒子轻松负载 对纤维基底的要求:标准 47mm 直径,可透气可以沉积的样品种类:超过 60 中元素的金属单质、氧化物、合金以及碳材料,部分半导体材料也是可行的方法的独特优势:1. 温和沉积,不会破坏纤维基底表面2. 普世性强,尤其是合金类材料的混合3. 不需要真空环境,在常温常压下运行4. 无化学前驱体5. 气溶胶沉积技术,保障了负载的均匀性
  • 1060万!河南省科学院环境安全实验室便携式气-质联用仪等采购项目
    1、项目编号:豫财招标采购-2022-13022、项目名称:河南省科学院环境安全实验室建设项目3、采购方式:公开招标4、预算金额:10,600,000.00元最高限价:10600000元序号包号包名称包预算(元)包最高限价(元)1豫政采(2)20221983-1包1:进口设备:大气采样及预浓缩系统-气相色谱质谱联用仪、便携式气-质联用仪、便携式VOCs分析仪、纤维静电纺丝机572000057200002豫政采(2)20221983-2包2:国产设备:蛋白、核酸质谱检测系统、大气污染扩散模拟系统、织物透气性测定仪、过滤吸收器无损检测系统488000048800005、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等)5.1项目地点:郑州(采购方指定地点)5.2招标范围:河南省科学院环境安全实验室建设项目:主要包括蛋白/核酸质谱检测系统、大气采样及预浓缩系统-气相色谱质谱联用仪、便携式气-质联用仪、大气污染扩散模拟系统、便携式挥发性有机气体分析仪、过滤吸收器无损检测系统等仪器设备及配套设施的采购、安装、调试、验收及质保服务等工作。5.3标包划分:本招标项目共划分两个标包,供应商可对一个或多个标包进行投标。5.4计划供货安装周期:合同签订90天内完成供货、安装。5.5质量要求:符合国家现行验收规范和标准,满足采购人的相关要求6、合同履行期限:详见招标文件要求。7、本项目是否接受联合体投标:否8、是否接受进口产品:是9、是否专门面向中小企业:否
  • 290万!吉林农业科技学院傅里叶变换红外光谱仪等仪器采购
    1.项目概况及招标条件:本招标项目“吉林农业科技学院中药学重点学科创新平台”由吉林省财政厅政府采购管理处以采购计划编号“项目采购X[20220122]-0095号”批准,资金来源为公共财政预算资金,招标人为:吉林农业科技学院。招标代理机构:中吉禹和国际项目管理有限公司。项目已具备招标条件,采用国际公开竞争性招标方式现对该项目进行招标。现邀请合格投标人前来投标。邀请书具体内容如下:2.招标内容2.1招标编号:3694-224ZJYH202172.2项目名称:吉林农业科技学院中药学重点学科创新平台2.3项目实施地点:吉林省吉林市。2.4招标货物列表:序号货物名称数量简要技术规格备注01吉林农业科技学院中药学重点学科创新平台1批傅里叶变换红外光谱仪、热重分析仪、静电纺丝机等,具体内容详见招标文件无 注:本次招标货物共1包。投标人应至少对一个完整的包进行投标,否则其投标无效。
  • 激光粒度仪干湿法测试在涂料粒径分析中的应用
    p style=" text-indent: 2em " 涂料粒径分析主要包括粉末涂料、建筑乳液等涂料产品以及钛白粉、氧化铁、滑石粉等颜填料的粒径分布测试。粒径测试的方法主要有沉降法、激光法、筛分法、电阻法、显微图像法、电镜法、电泳法、质谱法、刮板法、透气法、超声波法等。 /p p style=" text-indent: 2em " 激光粒度仪测试法是新型粒径测试方法,应用广泛,测试速度快,测试范围广。激光粒径分析仪是根据激光在被测颗粒表面发生散射,散射光的角度和光强会因颗粒尺寸的不同而不同,根据米氏散射和弗氏衍射理论,可以进行粒径分析。激光粒度仪的测试方法可以分为干法和湿法2种。干法使用空气作为分散介质,利用紊流分散原理,能够使样品颗粒得到充分分散,被分散的样品再导入光路系统中进行测试。湿法则是把样品直接加入到水或者乙醇等分散介质中进行分散,然后再经过光路系统,计算出粒径分布。干、湿2 种测试方法由于分散介质不同,测试结果会存在差异。目前粒度仪大多数使用湿法进行测试,但是干法测试也有其优点:测试速度快,操作简单,可以测试在水中溶解的样品等。本文使用了干法和湿法分别对钛白粉、滑石粉、石墨烯等颜填料的粒度进行测试,通过分析测试结果,讨论了这2 种方法之间的差异以及测试条件、分散剂对测试结果的影响,并讨论了测试结果之间的重复性。 /p p style=" text-indent: 2em " /p p style=" text-indent: 2em " 1 实验部分 /p p style=" text-indent: 2em " 1.1 主要原料及仪器 br/ /p p style=" text-indent: 2em " 钛白粉:R-2196,中核华原钛白有限公司 滑石粉:T-777A,优托科矿产( 昆山) 有限公司;石墨烯:SE1132,常州第六元素材料科技股份有限公司。HELOS /BF 干湿二合一激光粒径分析仪:德国新帕泰克公司,镜头测试范围( R) 为R1( 0.1 ~ 35μm) 、R3( 0.5~175μm) 、R5 ( 0.5~875μm) 。 /p p style=" text-indent: 2em " 1.2 试验方法 /p p style=" text-indent: 2em " (1) 干法测试 /p p style=" text-indent: 2em " 称取一定量充分混合均匀的样品,在(105± 2) ℃的烘箱中烘15min,除去水分。选择测试模式为干法。设置分散压力、震动槽速率等参数。加样测试,遮光率控制在7%~10%。 span style=" text-indent: 2em " (2) 湿法测试 /span /p p style=" text-indent: 2em " 湿法测试的样品分为干粉样品和液态样品。干粉样品在测试前要充分混合,保证样品的均匀性。液态样品摇匀后直接加入样品槽。不易分散的样品在样品槽内加入适量的分散剂,调整泵速、超声时间、强度、搅拌速率,选择合适的镜头,开始测试。遮光率在8%~12%之间。 span style=" text-indent: 2em " 1.3 粒径分布参数 /span /p p style=" text-indent: 2em " Xb = a μm:表示粒径小于a μm 的粒径占总体积的b%;VMD: 体积平均粒径。 /p p style=" text-indent: 2em " 2 结果与讨论 /p p style=" text-indent: 2em " 2.1 钛白粉粒径分布的测试 /p p style=" text-indent: 2em " 2.1.1 干法测试 /p p style=" text-indent: 2em " 测试条件:R1镜头;分散压力0.6 MPa;震动槽速率60%;触发条件为遮光率>1%开始测试,遮光率小于1%停止。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/b84e7831-4aad-489a-a46d-0f876e2dab70.jpg" title=" 1.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图1):X1 = 0.20μm;X50 = 0.60μm;X99 = 1.80μm;VMD为0.69μm。 /p p style=" text-indent: 2em " 2.1.2 湿法测试(未加分散剂) /p p style=" text-indent: 2em " 测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/69a7988b-b531-43eb-8c0b-5bd739d289a7.jpg" title=" 2.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图2):X1=0.11μm;X50=0. 84μm;X99=2.52μm;VMD为0.90μm。 /p p style=" text-indent: 2em " 2.1.3 湿法测试(加分散剂六偏磷酸钠) /p p style=" text-indent: 2em " 测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/e2c574b9-a23f-4dd5-9d8a-183f2fd0aa7e.jpg" title=" 3.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图3):X1=0.11μm;X50=0.66μm;X99=2.08μm;VMD为0.74μm。 /p p style=" text-indent: 2em " 2.1.4 钛白粉粒径分布2种测试方法之间的差异 /p p style=" text-indent: 2em " 从钛白粉干法和湿法测试结果可以看出,2种方法的测试结果相近,干法比湿法测试结果偏小。干法与加分散剂的湿法测试相比,2种方法的X1值相差0.09 μm,X50值相差0.06μm,X99值相差0.28μm,VMD 相差0.05 μm。湿法测试中若不加分散剂,样品在分散介质中无法充分分散,样品的粒径分布图中会出现双峰(见图2) 。可见分散剂对于样品分散效果的影响较大,合适的分散剂有利于样品在分散介质中分散,保证测试的准确性。 /p p style=" text-indent: 2em " 2.2 滑石粉粒径分布的测试 /p p style=" text-indent: 2em " 2.2.1 干法测试 /p p style=" text-indent: 2em " 测试条件:R1镜头;分散压力0.3MPa;震动槽速率65%;触发条件为遮光率>1%开始测试,遮光率小于1%停止。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/445a2402-5a0b-4b2e-b1f1-58c432a88889.jpg" title=" 4.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图4):X1=0.57μm;X50=4.35μm;X99=19.19μm;VMD为5.41μm。 /p p style=" text-indent: 2em " 2.2.2 湿法测试(未加分散剂) /p p style=" text-indent: 2em " 测试条件:R1镜头;泵速40%;超声时间30 s;搅拌速率40%。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/c6a8d3ba-ab3b-4b3f-9550-7ace614e5f95.jpg" title=" 5.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图5):X1=0.61μm;X50=6.21μm;X99=22.01μm;VMD为7.03μm。 /p p style=" text-indent: 2em " 2.2.3 湿法测试(加分散剂六偏磷酸钠) /p p style=" text-indent: 2em " 测试条件:R1镜头;泵速40%;超声时间30 s;搅拌速率40%。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/b0b08e13-41c5-46e2-a71c-25e23675901d.jpg" title=" 5.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图6):X1=0.60μm;X50=5.73μm;X99=23.63μm;VMD为7.03μm。 /p p style=" text-indent: 2em " 2.2.4 滑石粉粒径分布2种测试方法之间的差异 /p p style=" text-indent: 2em " 比较滑石粉干法测试和湿法测试的粒径分布图可以看出,湿法比干法测试结果偏大。滑石粉密度较大,在干法测试的过程中,选择了0.3MPa的分散压力。湿法测试中,加入分散剂和未加分散剂的测试结果相近,可以看出添加分散剂对滑石粉的测试结果影响不大。滑石粉能够较好地分散在水中。 /p p style=" text-indent: 2em " 2.3 石墨烯粒度分布的测试 /p p style=" text-indent: 2em " 2.3.1 干法测试 /p p style=" text-indent: 2em " 测试条件:R1镜头;分散压力0.1MPa;震动槽速率65%;触发条件为遮光率>1%开始测试,遮光率小于1%停止。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/7f9ffd85-54ba-4328-b50d-4fc24a2cf80e.jpg" title=" 7.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图7):X1=0.62μm;X50=3.86μm;X99=8.10μm;VMD为3.89μm。 /p p style=" text-indent: 2em " 2.3.2 湿法测试(不加分散剂) /p p style=" text-indent: 2em " 测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/003d417d-2e04-44e5-8a14-57f411eab7d9.jpg" title=" 8.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图8):X1=1.94μm;X50=9.69μm;X99=20.37μm;VMD为10.19μm。 /p p style=" text-indent: 2em " 2.3.3 湿法测试(加分散剂) /p p style=" text-indent: 2em " 测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/2ba88413-e53a-482f-a685-1faee97cfeda.jpg" title=" 9.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图9):X1=1.34μm;X50=7.45μm;X99 = 18.04μm;VMD为7.95μm。 /p p style=" text-indent: 2em " 2.3.4 石墨烯2种测试方法之间的差异 /p p style=" text-indent: 2em " 从石墨烯2种方法的测试结果可以看出,干法的测试结果偏小,湿法的测试结果较大( 加入分散剂测试) 。这是因为石墨烯样品密度较小,会浮在分散介质上,样品的分散效果较差。2种方法X1值相差0.72μm,X50值相差3.59μm,X99值相差9.94μm,VMD相差4.06μm,说明石墨烯样品难于在水中较好地分散,干法测试更适合石墨烯。湿法测试中,添加分散剂和不加分散剂的粒径分布结果相差也较大,说明使用分散剂六偏磷酸钠可以较好地分散石墨烯。而分散剂的浓度和用量对样品分散效果的影响则需要通过另外的实验来确定。 /p p style=" text-indent: 2em " 2.4 涂料粒径分析干法和湿法之间的差异 /p p style=" text-indent: 2em " 干法和湿法虽然测试的结果比较接近,但是由于两者的分散介质的折射指数不一样,两者的测试结果之间会有一些差异。进行粒径分析,最重要的是要保证样品在各自使用的介质中的分散效果。干法的进样速率、压力等分散条件的选择要合适,在保证可以分散好样品的情况下,尽量选择较小的压力,减少对样品颗粒的冲击,避免颗粒的二次破碎。对于一些难于分散的样品,比如氧化铁,密度较大,需要选择较大的分散压力,否则无法取得好的分散效果,或者改变进样量来改变样品的分散效果。湿法进样要通过改变搅拌速率、超声时间来进行调整,同时使用合适的分散剂来对样品进行分散。对于一些较轻,可漂浮在分散介质上的样品,要延长样品的测试时间,以利于样品的充分分散。同时湿法测试应该使用超声波去除气泡,否则会在结果中形成拖尾峰。 /p p style=" text-indent: 2em " 2.5 干法和湿法测试的重复性比较 /p p style=" text-indent: 2em " 2.5.1 干法测试重复性 /p p style=" text-indent: 2em " 重复性指标是衡量粒径分布测试结果好坏的重要指标,是指同一个样品多次测量结果之间的偏差,通常用X50之间的偏差表示。粒径分布的重复性测试与样品的分散程度有较大的关系,样品分散的好,则测试的重复性也较高。选取2种常用的颜填料钛白粉和滑石粉进行干法重复性试验。结果见表1。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/ced0fa21-b433-476e-8ea8-b78efae89aad.jpg" title=" 10.webp.jpg" / /p p /p p style=" text-indent: 2em " 2.5.2 湿法测试重复性 /p p style=" text-indent: 2em " 选取乳液和钛白粉分别进行了2次湿法重复测量。测试结果见表2。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/0a260ef9-6bbc-4de2-a8b8-641cc551f187.jpg" title=" 11.webp.jpg" / /p p /p p style=" text-indent: 2em " 目前在GB /T 21782.13—2009 中规定了粉末涂料粒径测试重复性的要求为2次测试结果的任何一个粒度级分区间的偏差不大于1%。从以上样品的测试结果来看,干法测试和湿法测试的重复性均满足标准要求。 /p p style=" text-indent: 2em " 影响重复性测试的主要因素是样品的分散程度,所以测试前取样要保证样品的均匀性,对于容易团聚的样品,其重复性较差,所以无论是干法测试还是湿法测试,均要做好样品的前处理工作。干粉状样品,要注意除水干燥。对于一些在水中分散不好的干粉样品,需要在分散介质中加入分散剂,设置好仪器的超声时间、搅拌速率等辅助分散条件。湿法测试用液态样品,需要将样品搅拌均匀。乳液、水分散体样品,由于被测粒子已经在样品中分散形成了稳定体系,所以测试结果的重复性较好。湿法测试的分散介质对于样品的影响很大,容易和分散介质( 水) 发生反应,或和水的折射率相差不大的样品不宜使用湿法测试。而对于像氧化铁之类的密度较大的样品,使用干法测试分散性较差,可以使用湿法进行测试。通过加入分散剂,延长超声时间,提高搅拌速率,使样品可以充分分散,从而提高样品的测试重复性。 /p p style=" text-indent: 2em " 3 结语 /p p style=" text-indent: 2em " 讨论了激光粒度仪干法和湿法测试涂料用颜填料钛白粉、滑石粉、石墨烯以及建筑乳液的粒径分布。对激光粒度仪测试法来说,干法测试和湿法测试由于分散原理上的差异,对于同一个样品,测试结果也会存在差异。湿法测试的结果比干法测试的结果偏大。在进行密度较小的样品的测试过程中,样品会浮在分散介质上,要加入六偏磷酸钠等表面活性剂,降低分散介质的表面张力,提高样品的分散度,才能保证样品在分散介质中充分分散。 /p p style=" text-indent: 2em " 在保证准确的仪器设置条件下,激光粒度仪测试的重复性较好,钛白粉、滑石粉等粉体干法测试2次结果的偏差小于1%。湿法测试,乳液的测试重复性要好于干粉的测试重复性,湿法测试2次结果的偏差小于1%。 /p
  • “100家实验室”专题:访北京服装学院服装材料研究开发与评价实验室
    为广泛征求用户的意见和需求,了解中国科学仪器市场的实际情况和仪器应用情况,仪器信息网自2008年6月1日开始,对不同行业有代表性的“100家实验室”进行走访参观。日前,仪器信息网工作人员参观访问了本次活动的第六十九站:北京服装学院服装材料研究开发与评价实验室(以下简称:实验室),北京服装学院龚(yan)副教授热情接待了仪器信息网到访人员。 北京服装学院龚副教授   龚副教授介绍说:“服装材料研究开发与评价实验室隶属于北京服装学院材料科学与工程学院,是北京市教委与市科委于2001年认定的北京市重点实验室。该实验室由纤维材料研究室、织物设计织造室、染色整理研究室、织物风格研究室、纺织助剂研究室和纤维艺术工作室等组成,拥有从化纤纺丝到织物设计织造、纺织助剂合成分析、染色后整理加工、织物风格性能评价等一系列先进的仪器设备,形成了一套完整的从纺织品原料到服装成品、最后进入市场的研究开发手段与体系。”   目前,实验室固定资产高达6000余万元,拥有70余件大型仪器设备(10万元以上)。其中,实验室常用的分析仪器包括500MHz核磁共振波谱仪、高效液相色谱、液质联用仪、气质联用仪、显微红外拉曼光谱仪、等离子发射光谱、紫外光谱仪(带积分球)、X-荧光能谱仪、X射线衍射仪、高温凝胶色谱、扫描电镜、动态机械分析仪、材料万能试验机等。这些仪器对于纺织服装新材料研发及应用性能测试等的研究有着至关重要的作用。   另外,很多仪器也已被国际上列为检测服装中对人体有害的物质的国际标准。例如:凝胶渗透色谱仪、气质联用仪用来检测服装中对人体有害的一些偶氮染料、X-荧光光谱仪和ICP等离子发射光谱用来检测服装中对人体有害的重金属、核磁共振仪可以用来分析高分子纤维材料的性能差异。 安捷伦6890N-5973N气质联用仪 赛默飞世尔ARL QUANT'X型X-荧光光谱仪 (用来检测服装中对人体有害的一些偶氮染料) (用来检测服装中对人体有害的重金属) Polymer Labs常温凝胶渗透色谱仪GPC-50 日本岛津LC-10ATVP高效液相色谱 (分析水溶性PVA或胶原蛋白等分子量大小) (检测服装中偶氮染料、有机氯化物等有害化合物) 德国Spectro公司CIROS等离子发射光谱 尼高力Nexus 670 FT-IR显微拉曼光谱 (用于服装材料、染料中重金属元素检测) (用于服装材料、染料成分检测及鉴定) 布鲁克500MHz核磁共振波谱仪 Instron 公司万能材料实验机 (可以用来分析高分子纤维材料的性能差异 (测定纤维、织物及塑料标准试样的应力-应变曲线) 清研电子TYLAB-100A全自动液体加样仪   为了提升实验室的科研开发水平,实验室还与一些国产仪器厂家建立良好合作。例如:与北京吉天仪器有限公司合作开发纺织纤维材料重金属检测的前处理技术,与北京清研电子科技有限公司开展微量样品定量检测及自动化进样,并将清研电子的6D液体加样仪率先应用在生态纺织品重金属含量的定量检测中。6D液体加样系统是一款集稀释、滴定、分液和移液4大功能于一体的自动化液体处理系统,它能够快速完成液体处理工作,简化操作的同时可确保实验的高精准度,可广泛应用于实验室的各项液体处理工作中。生态纺织品检测中多样性、重复性、连续性的特点,6D液体加样系统还具备连续分配差量体积试剂和自动滴定的功能,满足了生态纺织品检测的特殊需要。   此外,实验室还配备了KES织物风格仪、溶液旋转流变仪、快速纺纱机系统、复合及常规纺丝机、熔喷无纺布设备、锥形量热仪、数码印花喷绘机、热转移数码印花机、电脑测色配色、真空及常压织物等离子体改性设备、数字式撕破强力仪、数字涨破测试仪、在线染色机、红外线小样染色装置、 气蒸收缩测试仪、透湿率测试仪、超临界二氧化碳染色装置、超细染料制备及染料溶解度测定装置等行业专用设备。 大荣科学精器制作所H0110/V2型静电衰减测试仪 美国SDL Atlas公司液态水份管理测试仪 (以上仪器做为纺织服装材料的功能性检测) 德国STOLL公司CMS320TC针织横机 台湾硕奇SL8900全自动梭织打样机 (以上仪器都是实际纺织品生产的仪器设备) Brabender(布拉本达)挤出流变仪 (用于测量聚合物挤出性能和加工过程中熔体的流变行为)   据了解,该实验室从学院现代服装特色的角度出发,以新型化学纤维、纺织面料、染整技术及纺织助剂为研究目标,致力于设计、加工、环保、评价多层面统合服装、纺织、纤维及染整技术,强调各学科的渗透与结合,探索从纤维材料到服装产品的综合开发模式,促进研究成果向产业的转化。目前已与中国纤维检验局、国家毛纺织产品质检所、北京市纺织纤维检验所、中石化、北京铜牛集团、光华纺织、雪莲羊绒等一大批国内外知名的企事业单位建立了广泛而密切的合作,为地方经济建设和企业的技术进步作出积极贡献。   此外,龚副教授还重点提到,北京服装学院现正重力打造服装材料领域的一个第三方检测认证机构——“生态纺织品检测与评价中心”(北京市教委重点项目)。   北京服装学院服装生态纺织品检测与评价中心可以为贸易各方提供良好的纺织品检测技术咨询服务,根据国际和国家标准,为国内外客户提供各类纺织产品、服装进行测试服务,如尺寸变化、颜色坚牢度、成分及纱线测试、布料的组织、强度及品质测试、羽绒测试、环保测试、甲醛、AZO(禁用偶氮染料)、重金属等。   最后,龚副教授表示:“目前该中心已成为国家毛纺检测中心、欧洲天祥集团、北京市理化分析测试中心、SGS通标标准技术服务有限公司的合作伙伴,非常欢迎有检测需求的企业或个人前来洽谈业务。同时,我们也正在寻求有实力的相关企业或有能力的专业人士进行合作。 参观实验室   附录:北京服装学院材料科学与工程学院http://cly.bift.edu.cn/
  • 工信部批准发布58项纺织行业测试标准
    中华人民共和国工业和信息化部公告   工科[2010]第76号   工业和信息化部批准《评定纺织品白度用白色样卡》等58项纺织行业标准(标准编号、名称、主要内容及起始实施日期见附件),现予公布。   以上行业标准由中国标准出版社出版。  二O一O年一月二十日   附件:58项纺织行业标准编号、名称、主要内容及起始实施日期 序号 标准编号 标准名称 标准主要内容 代替标准 采标情况 实施日期 1 FZ/T 01068-2009 评定纺织品白度用白色样卡 本标准规定了纺织品试验中评定白度的白色样卡及其使用方法,纱线和散纤维的白度评定可参照使用。 本标准提供了白色样卡的各等级精确白度值, 可以作为永久记录以供新制作的白色样卡,以及在储存或使用中可能发生变化的白色样卡对比之用。 FZ/T 01068-1999   2010-06-01 2 FZ/T 01026-2009 纺织品 定量化学分析 四组分纤维混合物 本标准规定了测定纺织品四组分纤维混合物的定量化学分析方法。 本标准适用于纺织品四组分纤维混合物的含量分析。 FZ/T 01026-1993   2010-06-01 3 FZ/T 12020-2009 竹浆粘胶纤维本色纱线 本标准规定了竹浆粘胶纤维(棉型短纤维)本色纱线产品分类、标识,要求,试验方法,检验规则和标志、包装。 本标准适用于鉴定环锭纺竹浆粘胶纤维(棉型短纤维,线密度≤1.67dtex)纯纺本色纱线(包括机织用纱和针织用纱)的品质。 本标准不适用于鉴定特种用途竹浆粘胶纤维本色纱的品质。     2010-06-01 4 FZ/T 13022-2009 竹浆粘胶纤维本色布 本标准规定了纯纺竹浆粘胶纤维本色布的产品分类、要求、布面疵点的评分、试验方法、检验规则和标志、包装、运输、贮存。 本标准适用于鉴定机织生产的纯纺竹浆粘胶纤维本色布的品质。 本标准不适用于鉴定混纺竹浆粘胶纤维本色布、提花类、割绒类织物及产业用布的品质。     2010-06-01 5 FZ/T 12021-2009 莫代尔纤维本色纱线 本标准规定了莫代尔纤维(棉型短纤维)纯纺及与精梳棉混纺(莫代尔混用比例在10%以上)本色纱线(包括针织用纱和机织用纱)的产品分类、标识,要求,试验方法,检验规则和标志、包装。 本标准适用于鉴定环锭纺莫代尔纤维(棉型短纤维)纯纺及与精梳棉混纺本色纱线(以下简称“莫代尔本色纱线”)的品质。 本标准不适用于鉴定特种用途莫代尔纤维本色纱线的品质。     2010-06-01 6 FZ/T 13023-2009 莫代尔纤维本色布 本标准规定了莫代尔纤维本色布的产品分类、要求、布面疵点的评分、试验方法、检验规则和标志、包装、运输、贮存。 本标准适用于鉴定机织生产的莫代尔纤维纯纺本色布的品质。本标准也适用于鉴定机织生产的莫代尔纤维与棉纤维混纺、交织本色布的品质。 本标准不适用于提花类、割绒类织物及产业用布。     2010-06-01 7 FZ/T 12022-2009 涤纶与粘纤混纺色纺纱线 本标准规定了涤纶与粘纤混纺色纺纱线(以下简称“涤粘混纺色纺纱线”)的术语和定义,产品分类、标识,要求,试验方法,检验规则和标志、包装。 本标准适用于鉴定环锭纺涤粘混纺色纺纱线(包括针织用纱和机织用纱)的品质。 本标准不适用于鉴定特种用途涤粘混纺色纺纱线的品质。     2010-06-01 8 FZ/T 14017-2009 锦纶印染布 本标准规定了锦纶印染布的术语和定义、产品分类、要求、试验检验方法、检验规则及标志和包装。 本标准适用于鉴定服饰、家纺用的锦纶漂白、染色、印花机织物的品质。     2010-06-01 9 FZ/T 64009-2009 非织造热熔粘合衬 本标准规定了非织造热熔粘合衬的产品分类、技术要求、试验方法、检验规则及包装和标志。 本标准适用于鉴定服装用的各类本色、漂白、有色非织造热熔粘合衬的品质。 FZ/T 64009-2000   2010-06-01 10 FZ/T 01085-2009 热熔粘合衬剥离强力试验方法 本标准规定了热熔粘合衬与服装面料粘合后剥离强力的试验方法。 本标准适用于各种材质的机织物、针织物和非织造布为基布的热熔粘合衬的剥离强力的测定。 FZ/T 01085-2000   2010-06-01 11 FZ/T 01084-2009 热熔粘合衬水洗后的外观及尺寸变化试验方法 本标准规定了与服装面料粘合的粘合衬,经水洗后对外观变化评定和尺寸变化测定的试验方法。 本标准适用于各种材质的的机织物、针织物和非织造布为基布的各类热熔粘合衬水洗后外观变化和尺寸变化的测定。 本标准不适用于非热熔粘合衬水洗后外观变化和尺寸变化的测定。 FZ/T 01084-2000   2010-06-01 12 FZ/T 01083-2009 热熔粘合衬干洗后的外观及尺寸变化试验方法 本标准规定了与服装面料粘合的粘合衬,经干洗后对外观变化评定和尺寸变化测定的试验方法。 本标准适用于各种材质的机织物、针织物和非织造布为基布的各类热熔粘合衬经干洗后外观变化和尺寸变化的测定。 FZ/T 01083-2000   2010-06-01 13 FZ/T 01082-2009 热熔粘合衬干热尺寸变化试验方法 本标准规定了热熔粘合衬经热处理后尺寸变化的试验方法。 本标准适用于各种材质的机织物、针织物和非织造布经热熔胶涂布制成粘合衬后与面料粘合时产生的干热尺寸变化的测定。 FZ/T 01082-2000   2010-06-01 14 FZ/T 01081-2009 热熔粘合衬热熔胶涂布量和涂布均匀性试验方法 本标准规定了热熔粘合衬热熔胶涂布量和涂布均匀性的试验方法。 本标准适用于各种材质的机织物、针织物和非织造布为基布的热熔粘合衬热熔胶的涂布量和涂布均匀性的测定。 本标准不适用于基布不耐溶剂萃取而导致显著影响试验结果的热熔粘合衬热熔胶的涂布量和涂布均匀性的测定。 FZ/T 01081-2000   2010-06-01 15 FZ/T 01080-2009 树脂整理织物交联程度试验方法 染色法 本标准规定了经树脂整理后织物采用染色法测定树脂交联程度的试验方法。 本标准适用于天然纤维纯纺及其与化学纤维混纺的树脂整理本色、漂白、色织物的树脂交联程度的测定。 本标准也适用于天然纤维纯纺及其与化学纤维混纺的树脂整理染色织物的树脂交联程度的测定。 FZ/T 01080-2000   2010-06-01 16 FZ/T 01079-2009 织物烫焦试验方法 本标准规定了织物熨烫时因残留氯而引起泛黄的试验方法。 本标准适用于各种织物的烫焦程度的测定。 FZ/T 01079-2000   2010-06-01 17 FZ/T 01078-2009 织物吸氯泛黄试验方法 本标准规定了织物因氯漂而引起泛黄的试验方法。 本标准适用于织物因氯漂后的残留氯所引起泛黄的程度测定。 FZ/T 01078-2000   2010-06-01 18 FZ/T 01077-2009 织物氯损强力试验方法 本标准规定了织物因氯漂而引起强力潜在损伤的试验方法。 本标准适用于织物经氯漂后断裂强力潜在损伤的程度测定。 FZ/T 01077-2000   2010-06-01 19 FZ/T 64014-2009 膜结构用涂层织物 本标准规定了膜结构建筑用涂层织物的技术要求、试验方法、检验规则、包装和标志等。 本标准适用于以合成纤维或玻璃纤维织物为基布,经浸渍、涂层或层压工艺在基布表面覆盖聚合物连续层,作为膜结构建筑用的涂层织物。     2010-06-01 20 FZ/T 64015-2009 机织过滤布 本标准规定了机织过滤布的分类及代号、技术要求、试验方法、检验规则、标志、包装、运输和贮存。 本标准适用于以各种纤维为原料的机织过滤布。     2010-06-01 21 FZ/T 54015-2009 造纸网用单丝 本标准规定了造纸网及工业滤网用聚酯单丝和聚酰胺单丝的产品型号、规格及技术要求、检验方法、检验规则和标志、包装、运输及贮存。 本标准适用于生产造纸网及其他工业滤网所用的聚酯、聚酰胺单丝。     2010-06-01 22 FZ/T 54016-2009 造纸毛毯用单丝 本标准规定了造纸毛毯用聚酯单丝和聚酰胺单丝的产品型号、规格及技术要求、检验方法、检验规则和标志、包装、运输及贮存。 本标准适用于生产造纸毛毯所用的聚酯、聚酰胺单丝。     2010-06-01 23 FZ/T 54017-2009 间位芳纶短纤维 本标准规定了间位芳纶短纤维的术语、产品分类、要求、试验方法、检验规则和标志、包装、运输、贮存。 本标准适用于线密度为1.11~13.32dtex的间位芳纶短纤维。     2010-06-01 24 FZ/T 54018-2009 超细涤纶低弹丝 本标准规定了超细涤纶低弹丝的定义、技术要求、试验方法、检验规则及标志、包装、运输、贮存的要求。 本标准适用于总线密度为10dtex~230dtex、单丝线密度小于0.3dtex、圆形截面、半消光涤纶低弹丝。     2010-06-01 25 FZ/T 54019-2009 聚对苯二甲酸丙二醇酯(PTT)牵伸丝 本标准规定了PTT牵伸丝的定义、技术要求、试验方法、检验规则及标志、包装、运输、贮存的要求。 本标准适用于总线密度为33dtex~340dtex、单丝线密度0.8dtex~5.6dtex的圆形截面、半消光PTT牵伸丝。     2010-06-01 26 FZ/T 54020-2009 聚对苯二甲酸丙二醇酯(PTT)弹力丝 本标准规定了PTT弹力丝的定义、技术要求、试验方法、检验规则及标志、包装、运输、贮存的要求。 本标准适用于总线密度为33dtex~340dtex、单丝线密度0.8dtex~5.6dtex的圆形截面、半消光PTT弹力丝。     2010-06-01 27 FZ/T 54021-2009 聚对苯二甲酸丙二醇酯(PTT)预取向丝 本标准规定了PTT预取向丝的定义、技术要求、试验方法、检验规则及标志、包装、运输和贮存的要求。 本标准适用于总线密度为33dtex~340dtex、单丝线密度0.8dtex~5.6dtex的圆形截面、半消光PTT预取向丝。     2010-06-01 28 FZ/T 54022-2009 有色涤纶工业长丝 本标准规定了有色涤纶工业长丝的定义、技术要求、试验方法、检验规则及标志、包装、运输、贮存的要求。 本标准适用于线密度为220dtex~4400dtex的有色涤纶工业长。     2010-06-01 29 FZ/T 54023-2009 聚酰胺66气囊用工业长丝 本标准规定了聚酰胺66气囊用工业长丝的的术语和定义、产品分类及标志、技术要求、试验方法、检验规则和标志、包装、运输、贮存的要求。 本标准适用于以聚酰胺66切片为原料经纺丝而成的聚酰胺66气囊用工业长丝。该产品主要用于汽车安全气囊等产业,其线密度范围为 200dtex~800dtex。     2010-06-01 30 FZ/T 54024-2009 锦纶6预取向丝 本标准规定了锦纶6预取向丝的产品分类、技术要求、试验方法、检验规则和标志、包装、运输、贮存的要求。 本标准适用于以聚己内酰胺为原料加工而成的预取向丝(主要用于加工弹力丝),名义线密度范围为 8~444 dtex;单丝线密度1.0~5.5 dtex ,截面形状为圆形的有光、半消光和全消光长丝的品质鉴定、验收、仲裁。     2010-06-01 31 FZ/T 54025-2009 锦纶66预取向丝 本标准规定了锦纶66预取向丝的产品分类、技术要求、试验方法、检验规则和标志、包装、运输、贮存的要求。 本标准适用于以聚己二酰己二胺为原料加工而成的预取向丝(主要用于加工弹力丝),名义线密度范围为 8~167dtex;单丝线密度 1.0~5.5dtex,截面形状为圆形的有光丝、半消光和全消光长丝的品质鉴定、验收、仲裁。     2010-06-01 32 FZ/T 54007-2009 锦纶6弹力丝 本标准规定了锦纶6弹力丝的产品分类、技术要求、试验方法、检验规则和标志、包装、运输、贮存的要求。 本标准适用于以聚己内酰胺为原料加工制成的弹力丝,线密度范围为 7~390 dtex(合股丝为合股前名义线密度);单丝线密度 1.1~5.0dtex ,截面形状为圆形的有光、半消光、全消光弹力长丝的品质鉴定、验收、仲裁等。 FZ/T 54007-1996   2010-06-01 33 FZ/T 54014-2009 锦纶66弹力丝 本标准规定了锦纶66弹力丝的产品分类、技术要求、试验方法、检验规则和标志、包装、运输、贮存的要求。 本标准适用于以聚己二酰己二胺为原料加工而成的弹力丝,名义线密度范围为7~150dtex(合股丝指合股前的名义线密度);单丝线密度 0.8~5.0dtex,截面形状为圆形的有光、半消光全消光长丝的品质鉴定、验收、仲裁等。 FZ/T 54007-1996   2010-06-01 34 FZ/T 51001-2009 粘胶纤维用浆粕 本标准规定了粘胶纤维用浆粕的技术要求、试验方法、检验规则及标志、包装、运输、贮存。 本标准主要适用于粘胶纤维棉浆粕和木浆粕。其他纤维级浆粕可参照使用。 FZ/T 51001-1998   2010-06-01 35 FZ/T 80011.1-2009 服装CAD电子数据交换格式第1部分:版样数据 本标准适用于不同服装CAD之间,以及CAD/CAPP系统之间进行二维版样数据的交换,今后制定的三维数据交换标准需与此标准相兼容。     2010-06-01 36 FZ/T 80011.2-2009 服装CAD电子数据交换格式 第2部分:排料数据 本标准描述的是一种从一个CAD排料软件系统转换到另一个或者是转换到一个CAM排料软件系统的格式。 本标准不适用于曲线插值法或项目管理的定义。所有的曲线以离散型矢量存在并且由CAD软件的分辨率决定。本部分也不适用于代表样片之间或版样之间的尺寸关系,或在二维或三维缝纫产品样片的几何体之间对应,这需要另外制定二维或三维转换标准。   ASTMD7331:2007,IDT 2010-06-01 37 FZ/T 93046-2009 棉精梳机 本标准规定了棉精梳机的分类与基本参数、要求、试验方法、检验规则、标志及包装、运输、贮存。 本标准适用于棉精梳工序的精梳机。 FZ/T 93046-1997   2010-06-01 38 FZ/T 93045-2009 条并卷机 本标准规定了条并卷机的基本参数、要求、试验方法、检验规则、标志及包装、运输、贮存。 本标准适用于棉精梳工序的条并卷机。 FZ/T 93045-1997   2010-06-01 39 FZ/T 92070-2009 棉精梳机 锡林 本标准规定了棉精梳机锡林的型式、标记、参数、要求、试验方法、检验规则、标志和包装、运输、贮存。 本标准适用于棉精梳机锡林。 FZ/T 92070-2000   2010-06-01 40 FZ/T 92071-2009 棉精梳机 分离辊 本标准规定了棉精梳机分离辊的分类、标记、参数、要求、试验方法、检验规则、标志、包装、运输和贮存。 本标准适用于棉精梳机分离辊。 FZ/T 92071-2000   2010-06-01 41 FZ/T 92077-2009 棉精梳机 顶梳 本标准规定了棉精梳机顶梳的分类、标记、参数、要求、试验方法、检验规则及标志、包装、运输和贮存。 本标准适用于棉精梳机顶梳。     2010-06-01 42 FZ/T 96008-2009 干法腈纶纺丝机 本标准规定了干法腈纶纺丝机的规格及基本参数、技术要求、试验方法、检验规则以及标志、包装、运输、贮存。 本标准适用于干法纺丝工艺纺制1.32dtex~11dtex腈纶纤维的纺丝机。 FZ/T 96008-1992   2010-06-01 43 FZ/T 93037-2009 棉打包机 本标准规定了棉打包机的型式及基本参数、技术要求、试验方法、检验规则以及标志、包装、运输、贮存。 本标准适用于将各种棉纱及其织物打成包的打包机。同时,也适用于将混纺织物以及毛毯、麻袋、毛球等打成包的打包机。 FZ/T 93037-1995   2010-06-01 44 FZ/T 94027-2009 帘子线初捻机、帘子线复捻机 本标准规定了帘子线初捻机和帘子线复捻线机的型式与基本参数、技术要求、试验方法、检验规则和标志、包装、运输、贮存。 本标准适用于复合捻线的卷装容量为1~1.5kg的捻制化纤帘子线的环锭帘子线初捻机和环锭帘子线复捻机。 FZ/T 94027-1995   2010-06-01 45 FZ/T 94026-2009 轻型初捻机、轻型复捻机 本标准规定了轻型初捻机和轻型复捻线机的型式与主要参数、技术要求、试验方法、检验规则和标志、包装、运输、贮存。 本标准适用于复合捻线的卷装容量为0.5kg(折合成化纤型复合捻线)的轻型环锭初捻机和轻型环锭复捻机。 FZ/T 94026-1995   2010-06-01 46 FZ/T 94020-2009 有梭丝织机 本标准规定了有梭丝织机的规格和主要参数、技术要求、试验方法、检验规则及标志、包装、运输、贮存等要求。 本标准适用于织造真丝、人造丝、合成纤维丝织物的有梭丝织机。 FZ/T 94020-1995   2010-06-01 47 FZ/T 90010-2009 电动机底轨尺寸 本标准规定了电动机底轨尺寸及工作图。 本标准适用于纺织机械用电动机底轨。 FZ/T 90010-1991   2010-06-01 48 FZ/T 92040-2009 钢板槽筒 本标准规定了钢板槽筒的产品代号及基本结构参数、要求、导纱试验、检验规则、标志及包装、运输、贮存。 本标准适用于GC型钢板槽筒,即普通络筒机用的钢板槽筒。 本标准不适用对外技术交流或对外贸易验收。 FZ/T 92040-1995   2010-06-01 49 FZ/T 90059-2009 纺织用电机恒定湿热试验方法 本标准规定了纺织用电机恒定湿热试验方法。 本标准适用于湿热环境使用的纺织用异步电动机。 FZ/T 90059-1994   2010-06-01 50 FZ/T 98001-2009 电容式条干均匀度仪 本标准规定了电容式条干均匀度仪(以下简称条干仪)的产品规格、技术要求、试验方法、 检验规则及标志、包装、运输和贮存的要求。 本标准适用于采用电容检测法测量纱条线密度不匀的通用条干仪。 本标准规定的产品适用于纺织工业测量棉、毛、麻、绢、化纤短纤维的混纺与纯纺纱条、生丝、化学纤维长丝等的线密度不匀及不匀的结构和特征。 FZ/T 98001-1991   2010-06-01 51 FZ/T 98003-2009 电子清纱器 本标准规定了电子清纱器的产品分类、技术要求、试验方法、检验规则、标志、包装、运输和贮存等内容。 本标准适用于与纺织机械配套使用的光电式电子清纱器和电容式电子清纱器(简称清纱器)。包括数字式清纱器。 FZ/T 98003-1994   2010-06-01 52 FZ/T 98005-2009 纱线捻度仪 本标准规定了纱线捻度仪的基本功能和要求、试验方法、检验规则及标志、包装、运输和贮存。 本标准适用于直接计数法、退捻加捻法测量纱线捻度的捻度仪。 本标准不适用于手摇纱线捻度仪。     2010-06-01 53 FZ/T 98006-2009 缕纱测长仪 本标准规定了缕纱测长仪的基本功能和参数、要求、试验方法、检验规则、标志、包装、运输和贮存。 本标准适用于采用卷绕方式测量多种纱线长度的缕纱测长仪。     2010-06-01 54 FZ/T 97021-2009 电脑织袜机 本标准规定了电脑织袜机的基本参数、要求、试验方法、检验规则以及标志、包装、运输和贮存。 本标准适用于电脑控制的平板、毛圈等单针筒、双针筒的袜机。     2010-06-01 55 FZ/T 97002-2009 针织横机 本标准规定了针织横机的基本参数、技术要求、试验方法、检验规则及产品的标志、包装、运输和贮存。 本标准适用于公称宽度不大于157cm/62的手动、电动针织横机。公称宽度大于157cm/62的针织横机及电脑控制的针织横机机械部分技术要求亦可参照采用。 FZ/T 97002-1991   2010-06-01 56 FZ/T 97022-2009 多梳栉经编机 本标准规定了多梳栉经编机的术语和定义、规格参数、要求、试验方法、检验规则及标志、包装、运输、贮存。 本标准适用于配置的梳栉数在18把以上的多梳栉拉舍尔经编机。     2010-06-01 57 FZ/T 97023-2009 缝编机 本标准规定了缝编机的术语和定义、规格参数、要求、试验方法、检验规则及标志、包装、运输、贮存。 本标准适用于纤维网型、短切毡型、双短切毡型、全副衬纬型缝编机。     2010-06-01 58 FZ/T 94055-2009 验布机 本标准规定了验布机的主要规格和基本参数、技术要求、试验方法、验收规则以及标志、包装、运输和贮存。 本标准主要适用于对棉毛、麻、丝化纤纯纺、毛纺及混纺织物检验、计长的验布机。     2010-06-01
  • 用动态粉末测试方法优化湿法造粒工艺
    湿法造粒是口服固体制剂生产经常采用的加工工艺,目标是将通常细而粘的活性成分和辅料加工成更均匀、自由流动的颗粒,方便下游加工。 具有理想特性的颗粒可以有效改善加工性能,包括提高生产量,赋予片剂所需的关键属性等。但是,这意味着湿法造粒制成的粒子通常只是半成品,而非最终产品,从而产生了一个问题,即:如何控制造粒工艺,获得最终能生产出良好片剂的粒子?在第一种情况下,有必要确定潮湿颗粒可测定的参数,以便用来量化粒子属性的差异。 本文描述了全球粉末表征技术领先企业富瑞曼科技和制药加工解决方案主要供应商GEA Group(基伊埃集团)公司双方进行的联合实验研究。本实验采用了基伊埃的ConsiGma? 1连续高剪切湿法造粒及干燥系统,用于造粒,并运用富瑞曼科技的FT4粉末流变仪?进行动态粉体测试。所获得的结果显示了如何根据动态测定潮湿颗粒的结果,来预测成品片剂的属性。研究结果突出表明,动态粉体测试作为一种有价值的工具,可用于加速优化湿法造粒工艺、改善对加工的认识和控制,并对连续加工方法的开发提供支持。湿法造粒的目的和挑战 湿法造粒通常用来改善压片混合工艺的特性,使得粒子在压片过程中拥有优化的加工属性,赋予片剂所需的优点。目的是形成均匀的颗粒,提高压片产量,并使片剂拥有所需的关键品质属性,如重量、硬度以及崩解性能等。 在湿法造粒时,配混料的活性成分、辅料组份和水混合在一起,形成均匀的颗粒。然后,这些均聚体或者粒子得到干燥、研磨、润滑等进一步加工,形成压片机所需的理想喂入材料。这些喂入材料的特性可以通过调节各种加工参数,包括水的含量、粉末喂入速度、螺杆速度等有可能产生影响的造粒等环节来进行控制。通过调节一个或者更多的变量,调节粒子属性,确保粒子在压片机中处于理想的性能状态。 但是,要生产出具有规定属性的粒子,需要认识这些关键的加工参数会对粒子产生何种影响,同时还必须认识粒子属性和最终片剂之间的关系。通过以下实验,可以看出动态粉末测试将如何帮助实现这些目标。动态粉末测试概述 动态粉末测试是对运动中的粉体而非静态粉体进行测量, 并直接测定了松体的流动特性,这有助于在非常接近真实加工环境的状态下对粉体进行表征。可以测得经混合、处于低应力状态、充气甚至呈流体状态下粉体样本的动态特性,以精确模拟加工环境,获得给定工艺条件下直接相关的数据。 当刀片沿着规定路径旋转通过粉体样本时,测量作用于刀片上的扭矩及力,以衡量动态粉末特性。当刀片向下穿过样本时,测得基本流动能(BFE)。它反映了粉体穿过挤出机或喂料机时,在受力状态下的流动特性。比能(SE)测量的则是刀片向上运动时粉体的特性,直接反映了低压环境下,如粉体在重力状态下自由流经模具时的行为特征。加工参数对湿法造粒粒子特性影响的研究 富瑞曼科技和基伊埃集团进行了一项研究,用以确定湿法造粒粒子的动态流动特性是否与片剂的硬度的特性相关。通常情况下,片剂硬度对片剂质量起关键作用。试验采用了基于ConsiGma 25连续高剪切粒子和干燥原理的实验室设备ConsiGma1。 这套系统包含具有专利的连续高剪切造粒及干燥机,可以加工几十克至五公斤、甚至更多的样本。 在该系统上进行的研究有利于促进高效的产品和工艺开发,系统停留时间少于30秒。用ConsiGma1生产的潮湿、干燥的粒子由FT4粉体流变仪进行了表征。 实验项目的第一阶段,对不同造粒条件,如不同含水率、粉体喂入速度和造粒机螺杆速度等状态下的粒子属性进行了评估测试,测试的是基于乙酰氨基酚(APAP)及磷酸氢钙(磷酸二钙)这两种粉体配方的模型。系统地改变了加工参数,并测量了所得到的潮湿粒子的BFE。图2显示的是以不同螺杆速率生产出来的APAP配方粒子的BFE随含水量变化的关系。 收集到的APAP配方数据显示,如果螺杆速度保持不变,则随着含水量增加,BFE也升高。当含水率相同时,低螺杆速度同时会产生高BFE的粒子。两种趋势都会出现,因为高含水量、低螺杆速度,造成喂料多,可能生产出更大、密度更高、粘结性更强、对刀片运动阻力相对更高的粒子。数据同样显示,当含水率为11%、 螺杆速度为600rpm时,所生产的粒子的BFE与采用螺杆速度为450rpm、含水率为8%的粒子的BFE相当。这项发现非常重要,因为它表示,具有相似特性的粒子可以采用不同加工条件获得。 图3显示,含水量和螺杆速度分别保持15%和 600rpm不变,当干燥粉末喂入造粒机的速度降低时,DCP配方制成的粒子的BFE显著增加。 其它数据表明,可以通过降低喂入速率,以更低的含水率得到相同BFE的粒子。如,含水15%、螺杆速度约为 18kg/小时的粒子的特性与含水25%、喂入速度为25kg/小时的粒子相近。结合APAP配混料的研究,结果显示,可以通过加工条件的不同组合来得到具有相同特性的特定粉体。 表1列出了,生产具有不同属性的两组粒子所采用的不同工艺参数。条件1和条件2获得的潮湿颗粒的BFE值约为2200mJ,而条件3和条件4获得的BFE值约为3200mJ。 在下列加工工艺,包括干燥、研磨、润滑等阶段的每一步都测量了粒子的BFE,以改善加工性能。本研究中所采用的流动助剂是硬脂酸镁。在所有这些阶段,不同组的相对BFE值保持不变,第3、4组的BFE值一直高于1、2。 图4模拟了加工过程每一阶段的粒子流动特性。条件3和4显示,干燥后的BFE值有所上升,因为,与条件1和2状态下的粒子相比,条件3和4状态下的粒子相对尺寸大、密度高、机械强度高。 研磨后,尽管粒子密度、形状和韧度差异依然存在,但尺寸更为接近。这也使得BFE的观察结果显得有理可据。这些差别在润滑后保持不变,状态1、2和3、4之间的差别明显。 这些结果清楚表明,可以在各种不同的加工条件下,加工出用BFE衡量的、具有特定流动特性的粒子。这些测试显示,BFE值可用于湿法造粒加工产品和工艺的开发, 但同时也会产生问题,即BFE值是否可以进一步用以预测压片机内的粒子行为,以及,更重要的是,BFE是否可以与片剂关键品质属性直接相关。在粒子动态特性与片剂质量之间建立相关性 采用相同的工艺参数,在压片机中对四批潮湿粒子进行了干燥、研磨、润滑。然后测量了片剂的硬度。图5 为片剂硬度与不同阶段粒子流动性的关系。 结果显示,BFE和片剂的硬度与湿态和干燥的粒子有关,而且与它们的变化极其有关。与潮湿粒子和润滑粒子有关是比较容易理解的。尽管两者的相关性不如它与干燥、研磨过的粒子来得明显。所观察到的润滑过的粒子之间差异性和相关性差应归因于硬脂酸镁的整体影响。 这个数据综合反映了粒子在不同加工阶段的流动性(用BFE进行表征)与最终粒子关键质量属性(此处指硬度)之间存在的直接关系。这意味着,一旦特定的BFE与更理想的片剂硬度相关,就可用于推动对湿法造粒工艺进行的优化。结果表明,假如潮湿粒子能够获得目标BFE,最终以硬度衡量的片剂质量就可得到保障。这为提高产品和工艺开发效率,并且,不管是分批还是连续造粒工艺,都能获得更好的工艺控制路径,创造了机会。面向未来今天,采用传统的批次加工方法依然占支配地位,但业内很多人预期,未来大量的产品会采用连续加工。本文中,富瑞曼科技和基伊埃集团共同为将这一理想变成现实向前迈进了一大步。文章揭示了通过采用不同的工艺条件,有望获得特定的片剂属性,并且指出,动态粉末特性如流动性与最终产品的特性直接相关。 本文最初于2014年3月刊登于《医药制造》杂志。结束 图 图1:FT4粉末流变仪?的基本工作原理。测量刀片(或叶片)在穿过样本时遭遇的阻力,量化所测量粒子或粉末松体的流动特性。图2:为APAP配方制备的粒子的BEF随着含水量的增加以及螺杆速度的下降而增加。图3:为DCP配方制备的粒子的BFE随着喂入速率的下降而显著上升。图4:在造粒的不同阶段BFE变化明显,但不同组的粒子之间会存在明显差异。Figure 5: A strong correlation is found between the BFE of the granules and final tablet hardness图5:粒子BFE和最终片剂硬度之间存在很强的关联度Table 1: Four different processing conditions used to make two distinct groups of granules表1:两组明显不同的粒子采用的4种不同加工条件
  • 热烈庆祝沈阳科晶荣获 “沈阳市科技创新百强企业”
    近年来,沈阳市民营企业规模实力逐渐增强,创新能力随之提升,转型升级不断加快。今年初,沈阳市工商联首次开展民营企业“就业百强、纳税百强、科技创新百强、规模百强”评选活动,通过对民营企业的百强排名,更进一步展示其风采和形象,发挥百强企业的领头雁作用。2019年8月5日沈阳市工商业联合会发布了2018年度沈阳市民营企业“就业百强”“纳税百强”“科技创新百强”“规模百强”名单。沈阳科晶成功入选沈阳市“科技创新百强企业”。这次评选由13个部门参与,评选委员会主任由市政府主管民营经济工作的领导担任,并明确了由市工商联牵头组织,市人社局、税务局、科技局、工信局、统计局等13个部门共同参与。委员会首先确定了“四个百强”企业的评选标准,并由人社局、税务局、科技局、工商联、统计局按照评选标准分别组织评选出120家候选企业后,向应急管理、环保、法院、税务、人社、公安、人民银行进行征信认证,然后将征信筛选出的候选名单提报评选委员会审核和综合评议,确定出“四个百强”企业入围名单,并提报市委、市政府审定,最终确定了此次评选结果。 “科技创新百强”入围企业的效益明显高于全市整体水平,100家企业营业收入总体规模为562亿元。从行业分布看,入围企业全面覆盖了国家重点支持的八大高新技术领域,其中前五名的行业是:先进制造技术41家、生物与新医药18家、新材料15家、电子信息10家、高新技术服务6家。从区域分布看,除新民市、辽中各有2家,法库有1家企业上榜外,其余95家企业均分布在市内九区,其中浑南区依然最多,有34家企业入围。这份来之不易的荣耀与每一位科晶人的努力和坚守密不可分 ,沈阳科晶将继续秉承务实、奉献、拼搏、诚信、创新、责任、奋发进取、用户至上的企业理念,与广大客户相扶相持共同成长,相信在不久的将来,沈阳科晶将会成为国际市场上专业的、杰出的材料分析设备品牌。让我们凝心聚力共奋斗,砥砺前行再起航! 产品推荐STX-202A小型金刚石线切割机SYJ-200自动精密切割机SYJ-400 CNC划片切割机 32工位高通量XRF检测仪MSK-NFES-3C台式静电纺丝机GSL-1800X-ZF4蒸发镀膜仪VTC-600-3HD三靶磁控溅射仪 PCE-6小型等离子清洗机VTC-100PA真空旋转涂膜机,匀胶机
  • 江苏某单位采购40余台仪器
    江苏某材料公司,采购以下仪器设备,进口、国产不限,具体清单及用途如下,请能做的厂商联系。序号设备名称台套数用途1气体精制装置1套用于原料气的精制纯化,除水除氧2溶剂精制装置1套用于常用溶剂的精制纯化3催化剂焙烧炉1套用于催化剂及载体焙烧活化4手套箱1台用于无水无氧环境储存5双工位手套箱1台用于无水无氧环境储存6聚合反应釜(300mL)1台用于小型精密聚合试验7聚合反应釜(1L)2台分别用于乙烯、丙烯聚合试验8固定床实验装置1套用于烃类直接催化脱氢、氧化脱氢实验研究9催化裂解实验装置1套用于原油、轻烃催化裂解实验研究10精馏实验装置1套用于精馏分离实验研究11碳捕集实验装置1套用于二氧化碳捕集实验研究12电解水制氢系统1套用于电解水制氢实验研究13重整制氢实验装置1套用于重整制氢实验研究14固定床实验装置1套用于二氧化碳加氢实验研究等15太阳光模拟器1套用于模拟太阳光照射16光伏发电系统1套用于光伏发电模拟实验研究17生物质气化实验装置1套用于生物质气化实验研究18生物质热解实验装置1套用于生物质热解实验研究19光热发电系统1套用于光热发电模拟实验研究20氢能发电系统1套用于氢燃料电池发电实验研究21生物质发电系统1套用于生物质发电实验研究22化学储能与转换系统1套用于化学储能与转化研究23热电联供系统1套用于热电联供技术研究24双螺杆挤出机1台用于测定聚合物挤出性能25造粒机1台用于测定聚合物造粒性能26熔融纺丝机1套用于测定聚合物熔融纺丝性能27掺混机1套用于测定聚合物掺混改性性能28发泡机1套用于测定聚合物发泡成型性能29差示扫描量热仪(DSC)1台用于表征聚合物熔点及结晶度30乌式粘度计1台用于测定聚合物粘均分子量(MV)31熔指仪1台用于测定聚合物的熔指(MI)32激光粒度仪1台用于测定固体催化剂粒径分布33拉伸强度测试仪1台用于表征聚合物拉伸性能34冲击强度测试仪1台用于表征聚合物冲击性能35弯曲强度测试仪1台用于表征聚合物弯曲性能36气相色谱分析仪1台用于定性分析有机液体的基团37气相色谱分析仪2台用于分析气相原料及产品的组成38气相色谱分析仪1台用于分析液相原料及产品的组成39模拟蒸馏气相色谱仪1台用于分析液相原料及产品的馏程40氢气发生器1套用于气相色谱用的氢气供应41密度测定仪1台用于分析液相原料及产品的组成42馏程测定仪1台用于分析液相原料及产品的馏程43粘度测定仪1台用于分析液相原料及产品的粘度44硫氮测定仪1台用于分析原料及产品的总硫、总氮45PH值测定仪1台用于测定样品的PH值联系方式:为避免过度打扰,请添加仪器信息网工作人员微信获取采购方联系方式:
  • 沈阳科晶参加全国高聚物分子与结构表征学术研讨会
    沈阳科晶参加全国高聚物分子与结构表征学术研讨会 全国高聚物分子与结构表征学术研讨会是由中国化学会高分子学科委员会主办的国内高分子届的盛会。会议每两年举办一次,本届会议由华中科技大学、武汉大学共同承办,于2018年10月17-19号在湖北武汉举行。 沈阳科晶有幸应邀参加此次会议并作为此次会议的赞助商,沈阳科晶一直致力于为各类材料研究事业提供优质服务,不仅有材料处理的切割、研磨、抛光设备,还有金属材料的熔炼、镀膜设备,高分子材料的薄膜生长设备等,产品种类繁多,产品质量优良。此次参会我们携带的设备有SYJ-150低速金刚石切割机、STX-202A小型金刚石线切割机、GPC-50A精确磨抛控制仪、UNIPOL-802精密研磨抛光机、PTL-MM02程控提拉涂膜机、VTC-200PV真空旋转涂膜机、VTC-600-2HD双靶磁控溅射仪、MSK-NFES-3C台式静电纺丝机、SYJ-D2000金刚石带锯切割机、PCE-6小型等离子清洗机。 此次参会,沈阳科晶派出专业技术团队为大家进行讲解,会议一开始沈阳科晶的设备展位就异常火爆,科晶的设备得到了各位专家、老师和学生的热切关注,我公司技术人员对老师和同学们所关注的设备进行了详细介绍,并对大家提出的问题一一进行了解答。大家纷纷惊叹于我公司技术人员的专业!同时对我们的设备提出了自己的意见,我们也认真聆听各位老师的意见和建议,努力对我们的设备做出更多的改进,从而满足不同材料人员的要求。 世界在进步,科学在进步,沈阳科晶也一直在努力跟上科计前进的脚步,做为科晶人,我们也在不断扩充自己的专业知识,才能跟上科学技术发展的速度。不断的开拓进取是我们一直的奋斗方向,努力让沈阳科晶品牌享誉整个材料界是我们一直的奋斗目标!
  • 719万!安徽理工大学2022年高峰学科仪器设备购置项目
    项目编号:FSKY34000120225979号 项目名称:安徽理工大学2022年高峰学科仪器设备购置项目(二) 预算金额(元):7196400 最高限价(元)(如有):1174000,860000,1250000,2412400,1500000 采购需求:本项目为安徽理工大学2022年高峰学科仪器设备购置项目(二),采购内容为科研仪器,本项目共分5个包,本次采购1-5包,采购内容为:包号包名序号设备名称单位数量最高限价(万元)1爆炸冲击波动态标定系统等设备1爆炸冲击波动态标定系统套1117.42▲炸药爆炸性能测试系统(动态参数测试设备)套13高温滴管炉套14灰熔点测定仪台12电化学工作站等设备1电化学工作站台2862▲静电纺丝机台13超纯水机台24超纯水机台25全自动微型注塑机台16真空冷冻干燥机台17四探针电导仪台18电子万能试验机台19显微镜台110显微镜台13人工冻土应力路径剪切仪等设备1▲人工冻土应力路径剪切仪台11252岩石动力学THM多场环境耦合试验装置套14带式输送机智能综合实验平台等设备1▲带式输送机智能综合实验平台套1241.242强化传热综合实验平台台13悬臂式掘进机截割部综合实验平台台14智能协作机器人系统台15电化学工作站、交流阻抗模块及增流器模块台15智能采矿测试与控制基础实验系统1▲智能采矿测试与控制基础实验系统套1150合计719.64 各货物产品的具体采购需求详见本招标文件“第三章 采购需求” 合同履约期限:包别 5,合同签订生效后90日内完成供货安装及调试并经验收合格,采购需求中各标包各设备中有特殊要求的,按要求执行 包别 3,合同签订生效后60日内完成供货安装及调试并经验收合格,采购需求中各标包各设备中有特殊要求的,按要求执行 包别 1、2、4,合同签订生效后30日内完成供货安装及调试并经验收合格,采购需求中各标包各设备中有特殊要求的,按要求执行 本项目(否)接受联合体。
  • 年产40台设备,这个半导体湿法设备制造项目将落地合肥
    8月10日,合肥经济技术开发区管理委员会网站发布关于对合肥至汇半导体应用技术有限公司半导体湿法设备制造项目(一期)环境影响评价文件拟作出审批意见的公示。△Source:合肥经开区网站截图据披露,合肥至汇半导体应用技术有限公司将在合肥经济技术开发区建设半导体湿法设备制造项目(一期),项目总投资1.8亿元,投产后可年产30台年产批次式半导体湿法清洗设备和10台单片式半导体湿法清洗设备。天眼查显示,合肥至汇半导体应用技术有限公司成立于2019年,注册资本1000万元,是上海至纯洁净系统科技股份有限公司的全资子公司,经营范围包括半导体设备、机械设备、自动化设备、计算机及辅助设备、配电开关控制设备制造、销售、维修、调试及技术服务;工业自动化科技、计算机科技、半导体科技领域内的技术研发、技术咨询、技术转让、技术服务等。△Source:天眼查截图据悉,该项目最早可追溯至2019年。2019年5月,至纯科技发布公告称,为顺应我国半导体产业的发展,拟募集资金总额不超过3.56亿元,扣除发行费用后将用于半导体湿法设备制造项目和晶圆再生基地项目,而负责半导体湿法设备制造项目的实施主体正式合肥至汇。△Source:至纯科技公告截图公告显示,半导体湿法设备制造项目建设周期为2年,建成后,主要开展批次式半导体湿法清洗设备和单片式半导体湿法清洗设备的生产制造。至纯科技当时披露,该项目已经取得了合肥经济技术开发区经贸发展局的备案,并取得了合肥市环境保护局经济技术开发区分局出具的《关于合肥至汇半导体应用技术有限公司半导体湿法设备制造项目(一期)审核意见》,认为项目可以在合肥市环境保护局经济技术开发区实施。
  • 湿法脱硫产生二次颗粒物的机理与治理方法
    p   湿法脱硫是中国燃煤烟气主要的脱硫方法,中国绝大多数的燃煤电厂,工业燃煤锅炉、采暖热水锅炉、烧结机、玻璃窑使用这种方法脱硫,每年脱除的二氧化硫高达数千万吨,大大减少了大气中的二氧化硫浓度,因而减少了酸雨和在大气中碱性物质与二氧化硫合成的硫酸盐颗粒物。 /p p   但是,近年来,各地逐渐发现,大气中硫酸盐颗粒物在PM2.5中所占的比例显著升高,经常成为非采暖季大气中PM2.5的主要成分,很可能就是采暖季大气污染的罪魁祸首。从逻辑上讲,因为燃煤烟气大规模地脱硫,使得大气中二氧化硫的浓度降低了,在大气中合成的硫酸盐会大大降低。那么大气中这么多的硫酸盐是哪里来的?莫非是什么设备把硫酸盐排到了大气中? /p p   我们在一个燃煤烟气污染治理可行性研究的调查工作中发现,湿法脱硫工艺产生了大量极细的硫酸盐,排放到大气中。而同一时期,很多专业人士也发现了这个问题。某省的一位专业环保官员告诉我,这种湿法脱硫工艺产生的烟气颗粒物,还有一个俗称,叫“钙烟”。 /p p   那么湿法脱硫工艺是如何产生极细的硫酸盐的?我下面试图用科普方式来解释。 /p p   燃煤烟气中的主要大气污染物是颗粒物、二氧化硫和氮氧化物。当然还有一些次要颗粒物,如汞等重金属。一些特殊的燃煤或固体燃料的燃烧过程如烧结机和垃圾焚烧,还会产生其它的污染物,如氟化氢、氯化氢、二恶英等,篇幅所限本文暂不涉及。 /p p   大部分燃煤烟气污染物减排的主要任务就是除尘(去除颗粒物)、脱硫(去除二氧化硫)和脱硝(去除氮氧化物)。 /p p   一般来说,在烟气污染物减排过程中脱硝是第一道工艺,因为除了低温脱硝工艺外,一般的脱硝工艺采用锅炉内(900~1100℃)的高温脱硝方法——非选择性催化还原法(SNCR),或者锅炉外(300~400℃)的中温选择性催化还原法(SCR)。这两种方法都需要加氨水或尿素水作为还原剂。氨逃逸就在此时发生,氨逃逸量与氨喷射和控制技术有关,同时也与要求氮氧化物脱除的排放上限成反比。在技术相同的情况下,要求排放的氮氧化物越少,氨的使用量就越多,逃逸量也就越多。氨逃逸会在湿法脱硫环节惹麻烦。 /p p   脱硝后,就开始进行烟气的换热降温,以回收烟气中的热量。一般先通过省煤器,将锅炉的进水加热,而后再经过空气预热器,将准备进入到锅炉里燃烧煤炭的空气加热,经过这两道节能换热过程后,烟气的温度下降到100℃左右,就开始进入第二道工序,除尘,即去除颗粒物,一般采用静电除尘或袋式除尘工艺。如果设计合理,设备质量合格,一般情况下,静电除尘器可以将烟气中的颗粒物浓度降至5毫克/立方米以下,袋式除尘器甚至可以将烟气中的颗粒物浓度降至1毫克/立方米以下。今天,除尘技术已经非常成熟。 /p p   烟气经过除尘后,就开始了第三道减排工艺,脱硫。湿法脱硫是现在中国普遍采用的脱硫方法。大部分湿法脱硫工艺是使用脱硫塔,把大量的水与石灰石(主要成分为碳酸钙)粉或生石灰粉(生石灰粉的主要成分是氧化钙,与水反应生成后的主要成分是氢氧化钙)混合,形成石灰石或熟石灰碱性乳液,从脱硫塔的上部喷洒,这些液滴向脱硫塔下滴落 在风机的作用下,含有大量二氧化硫的酸性烟气则从下向上流动,碱性乳液中的石灰石或熟石灰及其它少量的碱性元素(如镁、铝、铁和氨等)与二氧化硫的酸性烟气相遇,就生成了石膏(硫酸钙)及其它硫酸盐。由于石膏在水中的溶解率很低,因此,收集落到塔底的乳液,将其中的石膏分离出来,剩下的就是含有大量可溶性硫酸盐的污水,这些硫酸盐包括:硫酸镁、硫酸铁、硫酸铝和和硫酸铵等,需要去除这些硫酸盐后,污水才能排放或重新作为脱硫制备碱性乳液的水使用。 /p p   中间插一段儿:恰恰这些含有硫酸盐的污水的处理现在存在很大的问题。因为这些污水的处理耗资巨大,因此有很多燃煤企业或将这些污水未经处理排放到河流中,或者不经处理重新作为制备脱硫碱性乳液的水使用 前者严重地污染了水体,后者则将这些可溶盐排放到了空中(原因在下面解释)。我曾经去过一家企业考察燃煤锅炉,锅炉的运行人员告诉我们,锅炉污水零排放。一同考察的专家们讽刺到,污水中的污染物都排放到空中了。这个燃煤企业实际的做法是不对湿法脱硫产生的废水中溶解的硫酸盐做去除处理,而是将溶有大量硫酸盐的废水反复使用,还美其名曰,废水零排放。废水是零排放了,可溶性的硫酸盐倒是全都撒到天上了,每立方米的燃煤烟气中,有好几百毫克的硫酸盐,全都变成PM2.5了。还不如不做烟气脱硫处理呢!这就是经过几年的大规模燃煤烟气处理,大气中的PM2.5没有大幅度下降的原因! /p p   接下来说:并不是所有的乳液都落到了塔底。因为进入到脱硫塔里的烟气温度很高,于是将大量的乳液液滴蒸发。越到脱硫塔的底部,烟气的温度就越高,乳液液滴的蒸发量就越大。不幸的的是,越到底部,乳液液滴中所含的硫酸盐也就越多(如果反复使用未经处理的含有大量硫酸盐的废水,则硫酸盐就更多了),由于乳液液滴的蒸发速度很快,一些微小液滴中的可溶性硫酸盐来不及结晶,液滴就完全蒸发,因此析出极细的硫酸盐固体颗粒,平均粒径很小,大量的颗粒物直径在1微米以下,即所谓的PM1.0。当然乳液中最大量的固体还是硫酸钙(石膏),不过其不溶于水,硫酸钙颗粒的平均粒径比较大。 /p p   这些含有硫酸钙颗粒和可溶盐的盐乳液的蒸发量非常巨大。对应一台100万千瓦的燃煤发电机组,在烟气脱硫塔中这些盐溶液的蒸发量每小时会达到100吨左右。因此,析出的极细颗粒物数量巨大。 /p p   这些极细的颗粒物随着烟气向脱硫塔上部流动,大部分被从上部滴落的液滴再次吸收和吸附(于是这些极细的颗粒物在脱硫塔中被反复地吸收/吸附和析出),但仍有可观的残留颗粒物随着烟气从塔顶排出。需要说明的是,颗粒物的粒径越小,残留的就越多。 /p p   有人会有疑问,从塔顶喷洒的液滴密度很大,难道不能将这些极细颗粒物都洗掉?遗憾的是,不能。早先锅炉的烟气除尘就用过水膜法,即喷射水雾除尘,除尘效果很差。道理很简单,同样的颗粒物重量浓度,颗粒物的粒径越小,颗粒物的数量就越多,从水雾中逃逸的比例就越大。 /p p   烟气出了脱硫塔后,在早先的燃煤烟气处理工艺中,就算完成烟气处理工艺了,烟气经过烟囱排放到大气中,当然,那些在湿法脱硫过程中产生的大量的二次颗粒物——硫酸盐们,也随着烟气排放到大气中。其中石膏颗粒物粒径较大,于是就跌落在距烟囱不远的周围,被称为石膏雨。那些粒径较小的可溶盐,则随风飘向远方,并逐渐沉降,提高了广大地区大气中颗粒物的浓度。烟气中的颗粒物浓度常常达到几百毫克/立方米,比起脱硫前烟气中的颗粒物,增加了好几倍甚至几十倍。所以有人讽刺,湿法脱硫把黑烟(烟尘)和黄烟(二氧化硫)变成了白烟(硫酸盐)。 /p
  • 盛美上海推出新型化合物半导体系列设备加强湿法工艺产品线
    盛美半导体设备(上海)股份有限公司(以下简称盛美上海)(科创板股票代码:688082),一家为半导体前道和先进晶圆级封装(WLP)应用提供晶圆工艺解决方案的领先供应商,今推出了支持化合物半导体制造的综合设备系列。公司的150-200 毫米兼容系统将前道集成电路湿法系列产品、后道先进晶圆级封装湿法系列产品进行拓展,可支持化合物半导体领域的应用,包括砷化镓 (GaAs)、氮化镓 (GaN) 和碳化硅 (SiC) 等工艺。化合物半导体湿法工艺产品线包括涂胶设备、显影设备、光阻去胶设备、湿法蚀刻设备、清洗设备和金属电镀设备,并自动兼容平边或缺口晶圆。“随着不同市场的需求增长,化合物半导体行业正在迅猛发展。” 盛美上海董事长王晖博士表示,“通过对这个行业的调研,我们意识到,应利用现有的前道集成电路湿法和后道先进晶圆级封装湿法系列产品中重要的专业知识和技术,来提供满足化合物半导体技术要求的高性价比、高性能产品。我们认为,化合物半导体设备市场为 盛美上海提供了重要的增长机会,因为 GaAs、GaN 和 SiC 器件正成为未来电动汽车、5G 通信系统和人工智能解决方案日益不可或缺的一部分。”盛美上海的化合物半导体设备系列Ultra C 碳化硅清洗设备:盛美上海的Ultra C碳化硅清洗设备采用硫酸双氧水混合物 (SPM) 进行表面氧化,并采用氢氟酸 (HF) 去除残留物,进行碳化硅晶圆的清洗。该设备还集成盛美上海的SAPS 和 Megasonix™ 技术实现更全面更深层次的清洗。Ultra C 碳化硅清洗设备可提供行业领先的清洁度,达到每片晶圆颗粒≤10ea0.3um,金属含量< 1E10atoms/cm3水平。该设备每小时可清洗超过 70 片晶圆,将于 2022 年下半年上市。Ultra C 湿法刻蚀设备:可为砷化镓和磷化铟镓 (InGaP) 工艺提供<2% 的均匀度,< 10% 的共面度及< 3% 的重复度。Ultra C 湿法刻蚀设备可提供行业领先的化学温度控制、刻蚀均匀性。该设备将于 2022 年第三季度交付给某重要客户,并由其进行测试。Ultra ECP GIII 1309 设备:盛美上海的Ultra ECP GIII 1309 设备集成了预湿和后清洗腔,支持用于铜、镍和锡银的铜柱和焊料,以及重分布层 (RDL) 和凸点下金属化 (UBM) 工艺。设备实现了晶圆内和模内小于3%的均匀度和小于2% 的重复度。该设备已于 2021 年中交付给客户,并满足客户技术要求。Ultra ECP GIII 1108 设备:Ultra ECP GIII 1108 设备提供金凸块、薄膜和深通孔工艺,集成预湿和后清洗腔。设备采用盛美上海久经考验的栅板技术进行深孔电镀,以提高阶梯覆盖率。它可达到晶圆内和模内< 3%的均匀度和< 2% 的重复度。腔体和工艺槽体经过专门设计,可避免金电镀液的氧化,且工艺槽体具有氮气吹扫功能,可减少氧化。该设备已于去年年底交货给关键客户。Ultra C ct 涂胶设备:盛美上海的Ultra C ct 涂胶设备采用二次旋转涂胶技术,可实现均匀涂胶。设备拥有行业领先的优势,包括精确涂胶控制、自动清洗功能、冷热板模块以及每个腔体的独立过程控制功能。Ultra C dv 显影设备:在化合物半导体工艺中,盛美上海的Ultra C dv 显影设备可进行曝光后烘烤、显影和硬烤的关键步骤。设备利用盛美上海的先进技术,可按要求实现+/-0.03 LPM的流量和 +/-0.5 摄氏度的温度控制。Ultra C s刷洗设备:Ultra C s 刷洗设备以盛美上海先进的湿法清洗技术为基础,实现优秀的污染物去除效果。该设备通过氮气雾化二流体清洗或高压清洗实现高性能,以更有效地清洗小颗粒。此外,设备还可兼容盛美上海专有的兆声波清洗技术,以确保优良的颗粒去除效率(PRE),且不会损坏精细的图形结构。Ultra C pr 湿法去胶设备:盛美上海的Ultra C pr湿法去胶设备利用槽式浸泡和单片工艺,确保高效地进行化合物半导体去胶。该设备最近由一家全球领先的整合元件制造商(IDM)订购,用于去除光刻胶,这进一步验证了盛美上海的技术优势。Ultra SFP无应力抛光设备:Ultra SFP 为传统的化学机械抛光在硅通孔 (TSV) 工艺和扇出型晶圆级封装 (FOWLP)应用提供了一种环保替代方案。在 TSV 应用中,盛美上海的无应力抛光 (SFP) 系统可通过运用专有的电抛光技术去除低至 0.2µm 的铜覆盖层,再使用传统的 CMP 进一步去除剩余铜至阻挡层,并通过湿法刻蚀去除阻挡层,从而显著降低耗材成本。对于 FOWLP,相同的工艺可以克服由厚铜层应力引起的晶圆翘曲,并应用于RDL中铜覆盖层并平坦化 。
  • 第十一届中国专利奖获奖项目公示
    据国家知识产权局网站消息:根据《中国专利奖评奖办法》,中国专利奖评审委员会评选出第十一届中国专利金奖项目15项,优秀奖项目170项,现予以公示,公示期为2009年9月16日至10月16日。有异议者请于公示期间以书面形式向中国专利奖评审办公室提出。   联系电话:010—62083316 62083612   传 真:010—62086569   电子邮箱:zhuanlijiang@sipo.gov.cn   通讯地址:北京市海淀区蓟门桥西土城路6号   国家知识产权局专利管理司中国专利奖评审办公室   邮 编:100088   第十一届中国专利奖金奖项目 序号 申请号 专利名称 专利权人 发明人 1 01132074.5 肿瘤坏死因子受体可溶部分的重组基因,及其融合基因与产物 上海中信国健药业有限公司 郭亚军、王皓、马菁、徐身东 2 200510132289.3 应用于分组网络的基于H.323协议的终端接入方法 中兴通讯股份有限公司 卢忱、张亮、李广峰、禹忠、权炜 3 200610127652.7 一种用射线对液态物品进行安全检查的方法及设备 同方威视技术股份有限公司、清华大学 胡海峰、李元景、康克军、陈志强、刘以农、李玉兰、张丽、吴万龙、赵自然、罗希雷、桑斌 4 200630101181.3 轿车 中国第一汽车集团公司 王跃建、于彦颖、张旭、戴大力、孙军、郭茂林、张晓明、宋子利 5 200510064688.0 一种可控串联补偿晶闸管的电子触发系统 中国电力科学研究院 任孟干、汤广福、武守远、蓝元良、燕翚、柴斌 6 200510020003.2 提高含铜取向硅钢电磁性能和底层质量的生产方法 武汉钢铁(集团)公司 应宏、邓崎琳、毛炯辉、徐慧英、张翔、黄煊官、钟光明、曹阳、方泽民、骆忠汉、傅连春、曾武、鲁军、石生德、周涛、梁宗仁、王雄奎、裴大荣、肖敏、魏京桥 7 200510063255.3 一种产生调频网点的方法和装置 北京北大方正电子有限公司、北京大学 刘志红、陈峰、杨斌 8 200610049158.3 激光气体分析系统的标定方法 聚光科技(杭州)有限公司 顾海涛、王健、李鹰 9 00245222.7 半连续离心纺丝机每锭多离心缸及其控制结构 宜宾丝丽雅股份有限公司 冯涛、廖周荣、段太刚、谢增颖 10 02139929.8 宽带码分多址移动通信系统的功率控制方法 中兴通讯股份有限公司 柯雅珠、窦建武、续斌 11 200510034435.9 一种基于服务器端\客户端结构远程显示处理方法 广东威创视讯科技股份有限公司 卢如西、潘远雄、白宝国 12 01114785.7 可直接焊漆包线的点电焊机 杨仕桐 杨仕桐 13 02146699.8 超高分子量聚丙烯酰胺合成工艺技术中的水解方法 中国石油天然气股份有限公司 周云霞、刘福民、张跃虎、杨洪孝、秦学峰、云飞、金龙渊 14 200410049491.5 一种特大抗挠变梳型桥梁伸缩缝装置 徐斌 徐斌 15 03115270.8 毒死蜱的生产方法 浙江工业大学 徐振元、许丹倩、戴金贵 详情请见:第十一届中国专利奖获奖项目公示
  • 我国湿法冶金的开拓者陈家镛院士逝世 享年98岁
    p   北京8月26日,中国共产党党员、中国科学院院士、中国科学院过程工程研究所研究员陈家镛,因病医治无效,于2019年8月26日在北京逝世,享年98岁。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 296px " src=" https://img1.17img.cn/17img/images/201908/uepic/9c6877b3-5d83-44b6-a541-6b96ee6b83a6.jpg" title=" 622762d0f703918f4f63d3a65d587e9258eec493.png" alt=" 622762d0f703918f4f63d3a65d587e9258eec493.png" width=" 450" height=" 296" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 陈家镛院士 /strong /p p   陈家镛1922年2月17日生于四川省金堂县,1980年7月加入中国共产党。1943年毕业于国立中央大学化学工程系(重庆)并留校任教,1949和1951年先后获美国伊利诺伊大学化工系硕士和博士学位。1956年回国参与筹建中国科学院化工冶金研究所(现名过程工程研究所),曾任副所长。1980年当选中国科学院学部委员(院士)。 /p p   1939年中学毕业后,心怀科学与工业报国理想的陈家镛如愿考取了名师荟萃、专业拔尖的国立中央大学化学工程系。他在重庆遇到了杜长明、高济宇、李景晟、时钧等国内学界一流的老师。凭借学业上的过人天赋和勤奋刻苦,陈家镛赢得了老师们的称赞,毕业后得到了留校任教的机会。任化学系助教期间,在恩师高济宇的指导下,陈家镛试制成功了被国外垄断的农药滴滴涕(DDT)。 /p p   陈家镛是我国湿法冶金学科奠基人、化工学科开拓者之一。他针对国家经济建设中的重大急需,开拓了湿法冶金新工艺和新流程,并将化学工程学新原理和方法用于湿法冶金过程,为我国湿法冶金学科的建立和工程技术的发展奠定了基础。他积极倡导气液固多相反应器的反应工程学研究,并将其扩展到化工分离、生物化工、特种材料制备等新领域,取得令人瞩目的基础研究和应用成果。 /p p   陈家镛曾获1978年全国科学大会奖2项、1980年国家发明三等奖、1987年国家自然科学三等奖、1996年何梁何利基金科学与技术进步奖、2009年国家自然科学二等奖、2014年国家技术发明二等奖。 /p p   为向陈家镛的诸多贡献致敬,中以合作的首颗微重力化工实验卫星,命名为“陈家镛一号星”,于2017年2月15日在印度成功发射。 /p p br/ /p
  • 湿法脱硫:治理燃煤烟气污染却成巨大污染源
    p   在今年三月份的全国两会期间,李克强总理在陕西代表团参加审议时说:“雾霾的形成机理还需要深入研究,因为我们只有把这个机理研究透了,才能使治理措施更加有效,这是民生的当务之急。我们不惜财力也要把这件事研究透,然后大家共同治理好,一起打好蓝天保卫战。” /p p   “我在国务院常务会议几次讲过,如果有科研团队能够把雾霾的形成机理和危害性真正研究透,提出更有效的应对良策,我们愿意拿出总理预备费给予重奖!这是民生的当务之急啊。我们会不惜财力,一定要把这件事研究透!” /p p   “我相信广大人民群众急切盼望根治雾霾,看到更多蓝天。这需要全社会拧成一股绳,打好蓝天保卫战!” /p p   从2013年初算起,中国治理大气污染的大规模行动已经进行了四年多,各地政府和相关企业,为之投入了巨大的人力物力。京津冀地区,在几个重点的燃煤烟气污染领域,如钢铁冶金(重点是烧结机)、焦炭、水泥、燃煤发电厂、燃煤蒸汽和热水锅炉、玻璃行业,这几年给几乎所有的大烟囱都带了口罩——加装燃煤烟气处理系统。收效虽有,但大家总觉得与治理的深度和广度差距太大。我与某地环保局的专业工作人员聊天时,曾听到对方的困惑:几乎所有的大型燃煤设施,都已经上了烟气处理措施。在重压之下,有几个企业敢大规模偷排啊?大气中的PM2.5的浓度怎么还是这么高啊?这些颗粒物到底是从哪里来的? /p p   在中国,已经有很多科学论文介绍,中国的大气颗粒物监测中经常发现有大量的硫酸盐。北京的严重雾霾天气,硫酸盐的比例有时甚至远超50%。 /p p   曾经有专家认为大气中大量的硫酸铵颗粒物是在大气中由二氧化硫和氨气合成的。而氨气是从农业种植业和养殖业中逃逸出来的。还有中外合作的科研团队的结论是,北京及华北地区雾霾期间,硫酸盐主要是由二氧化硫和二氧化氮溶于空气中的“颗粒物结合水”,在中国北方地区特有的偏中性环境下迅速反应生成。可农业种植和养殖业的氨逃逸不是最近几年才突然增长,通过这几年的大气污染治理措施,大气中二氧化硫和二氧化氮的含量是逐渐下降的。显然,这些结论很牵强附会。篇幅所限,我就不深入分析了。 /p p   我谈谈自己的经历。 /p p   去年夏天我在某市出差,前天晚上下了一场暴雨,第二天空气“优”了一天,但第三天空气质量就跨越两个级别,达到轻度污染,第四天就是中度污染了。夏季没有散煤燃烧采暖造成的污染,而该市主要的燃煤烟气设备都有有效的颗粒物减排措施。虽然大气中的二氧化硫和氨能合成二次颗粒物,可大气中二氧化硫的浓度并不高,暴雨也能把地里的氨大部分都带走,大气中不可能有这么多的氨气,而且颗粒物的增长也不应该这么快。 /p p   我在一个企业调查时,用肉眼就清晰地发现,某大型燃煤设施经湿式镁法脱硫后的烟气中的水雾蒸发之后,仍拖着一缕长长的淡淡的蓝烟。这是烟气中的水雾在空气中蒸发之后,水雾中的硫酸镁从中析出,留在了空中。 /p p   而在另外几个企业,我则看到,用湿式钙法脱硫技术处理的烟气中的水雾蒸发后,留下一缕白色的颗粒物烟尘。其中有一次我在一个钢铁企业考察时,因为气象的原因,经湿法脱硫的烧结机燃烧烟气沉降到地面上,迅速闻到一股呛人的粉尘气味。 /p p   这种现象很多专业人士都注意到了。某省一位专业环保官员告诉我,这种湿法脱硫工艺产生的烟气颗粒物,还有一个俗称,叫“钙烟”。 /p p   2015年我的德国能源署同事在中国的调研工作中清晰地发现了这个情况,并在2016年载入了科研报告:“很多燃煤热力站的烟气净化主要在洗气塔中进行,没有在尾部安装过滤装置。由于洗气塔的净化效果有限,并且只适用于分离水溶性物质,因此,中国企业广泛采用未加装过滤装置的洗气塔的方式并不可靠”。 /p p   更糟糕的是,我们看到,很多企业为了降低不菲的烟气脱硫废水处理成本,不对湿法脱硫的废水中溶解的硫酸盐做去除处理,而是将溶有大量硫酸盐的废水反复使用,还美其名曰,废水零排放。废水是零排放了,可溶性的硫酸盐却全都撒到天上了,每立方米的燃煤烟气中,有好几百毫克的硫酸盐,全都变成PM2.5了。还不如不做烟气脱硫处理呢! /p p   今年5月17日下午,中国生物多样性保护与绿色发展基金会与国际中国环境基金会总裁何平博士联合组织了一次“燃煤烟气治理问题与对策研讨会”。我也应邀参加了这次会议。在这次会议上,大家纷纷指出了一个重要的大气污染源,燃煤烟气湿法脱硫。 /p p   其中山东大学的朱维群教授介绍了他从经湿法脱硫后的烟气里检出了大量硫酸盐的实验结果。与会的其他两个公司也介绍了类似的发现。其中一个来自东北某省会城市的公司介绍,最近两年,该市每年在供暖锅炉启动运行的第一天,就出现大气中的颗粒物含量迅速上升现象。而这些锅炉都有烟气处理工艺,从监测仪表上看,颗粒物的排放比前些年大幅下降。而二氧化硫和二氧化氮要合成二次颗粒物不会这么快。可以断定,是在烟气处理过程中的湿法脱硫工艺合成了大量的颗粒物。该公司负责人还调侃说,他曾给市环保局建议,把全市的燃煤烟气湿法脱硫停止运行试一天做个试验,肯定大气中的颗粒物浓度会大幅下降。 /p p   我也介绍了我和同事们在河北进行大气污染治理时发现的类似现象,并介绍了我们于2016年在有关报告中建议的治理方法:“基于德国的经验,建议采用(半)干法烟气净化技术取代湿法洗气塔。具体而言,我们建议采用APS (Activated Powder Spray,活性粉末喷洒)烟气处理工艺”。 /p p   十分凑巧的是,就在举办这个会议的当天晚上,华北某市的环保局局长(尊重他的意愿,我不能公开他的姓名和所在的城市)来北京出差,约我聊一聊治霾问题。一见面,他就开门见山告诉我一件令他困惑了几年并终于揭晓的谜: /p p   几年来,他一直怀疑现在的燃煤烟气处理工艺有问题,因为在这些已经采用了燃煤烟气处理工艺的烟囱附近的空气质量监测站,发现大气中颗粒物的浓度要明显高于其他地区监测站监测的结果。不久前,他所在城市的一家大型燃煤发电厂刚刚安装了超净烟气处理设施。但在超净烟气处理设施运行的当天,附近大气质量监测站检测出的大气中的颗粒物浓度比起其他地区的监测站,有了突然的大幅升高。于是他让环保检测人员到现场从烟囱里抽出烟气到实验室里检测。结果,发现有大量的冷凝水,在将这些冷凝水蒸发后,得到了大量的硫酸盐,其数量相当于在每立方米的烟气中,有100~300毫克/的以硫酸盐为主的颗粒物。而国家规定的燃煤锅炉烟气中的颗粒物排放上限(依锅炉的功率和是否新建或既有)分别为20~50毫克/立方米 燃煤电厂烟气超净排放标准的颗粒物排放上限甚至只有5~10毫克/立方米。也就是说,湿法脱硫产生的二次颗粒物造成烟气中的颗粒物浓度超过不同的国家标准上限几倍至几十倍! /p p   超净烟气中水分含量更高,带出的冷凝水和溶盐更多,烟气的温度也更低,所以在烟囱附近沉降的颗粒物更多。 /p p   既然是超净排放,烟气中怎么还会有这么多的颗粒物?烟气中的颗粒物可都是有在线监测的。难道是偷排?还真不是偷排。 /p p   原因很简单:国家的烟气检测规范规定,烟气中的颗粒物浓度是在烟气除尘之后湿法脱硫之前进行检测。这也有道理,因为在湿法脱硫工艺之后,大量的水雾被带到烟气中,这些水雾在普通的烟气检测技术方法中,往往会被视为颗粒物,造成巨大的测量误差。即便有高级仪器能区分湿烟气中的水雾和颗粒物,也很难测定水雾中的硫酸盐含量。除非能检测水雾中的盐含量。但这太困难了。即使有检测装置能够在线检测出来水雾中的硫酸盐浓度,成本也太惊人了。 /p p   燃煤烟气在经过湿法脱硫后,会含有大量的水雾,水雾中溶解有大量的硫酸盐和并含有脱硫产生的微小颗粒物,其总量总高可达几百毫克。 /p p   以上的事实,对大气中的颗粒物中有大量的硫酸盐、甚至经常有超过50%比例的硫酸盐的现象做出了合理的解释:大气中绝大部分的硫酸盐并不是二氧化硫和氨气在大气中逐渐合成的,而是在湿法脱硫装置中非常高效迅速地合成的。 /p p   也就是说,湿法脱硫虽然减少了二氧化硫——这个在大气中能与碱性物质合成二次颗粒物的污染物,但却在脱硫工艺中直接合成出大量的一次颗粒物。在已经普遍安装了燃煤烟气处理装置的地方,湿法脱硫在非采暖季已经成为大气中最大的颗粒物污染源。万万没想到,烟气治理,治理出更多的颗粒物来,甚至出现在超净烟气处理的工艺中,真是太冤了。 /p p   难怪下了这么大的力气治理燃煤烟气污染,大气中的颗粒物浓度降不下来,原因就是燃煤烟气污染治理本身,并不是燃煤的企业和环保部门的工作人员治理大气污染不积极、不认真 而是方法错了。方法错了,南辕北辙。这充分说明,铁腕治霾,一定要建立在科学的基础上。方法不科学,很可能腕越铁,霾越重。 /p p   有疑问吗?有疑问不必争辩,找人对湿法脱硫之后的燃煤烟气进行取样,拿到实验室去一检测就清楚了。实践是检验真理的唯一标准。 /p p   现在雾霾治不了,很多地方的环保部门就采用“特殊手段”。其中一种手段是用水炮。可是,一些人不知道,硫酸盐是水合盐,在湿度高时,硫酸盐分子会吸收大量的水分,增大体积,这也就是为什么很多地方在空气湿度升高后,颗粒物的浓度会突然大幅增加的原因。我有个朋友是环保专家,他告诉我,有一次,他所在的地区大气颗粒物浓度过高,他的上司要派人到监测站附近打水炮降颗粒物,他赶忙拦住:“现在湿度高,越打水炮,硫酸盐颗粒物吸水越多,颗粒物浓度越高。” /p center img alt=" asd" src=" http://img.caixin.com/2017-07-10/1499667799730726.jpg" width=" 571" height=" 395" style=" width: 571px height: 395px " / /center p   更下策的办法是给监测仪器上手段,直接对仪器作假,譬如给颗粒物探测头上缠棉纱。第一个作假被抓住并被公布的环保局官员,就是在我的家乡西安,我的心情很不平静。在这里,我不是为作假者开脱,而是为他们的无奈之举感到深深的悲哀。 /p p   湿法脱硫的技术包括钙法、双碱法、镁法、氨法。这些工艺都或多或少地在湿法脱硫过程中合成大量的硫酸盐,只是其中所含硫酸盐的种类(硫酸钠、硫酸镁、硫酸铵、硫酸钙)和比例有所不同。 /p p   我用最常用的钙法脱硫的烟气处理(超净排放需要增加脱硝的处理工序)流程图,简要地解释一下湿法脱硫产生大量的硫酸盐的过程: /p p    /p center img alt=" 2" src=" http://img.caixin.com/2017-07-10/1499668426791886.jpg" width=" 562" height=" 234" / /center p br/ /p p   湿法脱硫产生大量二次颗粒物的问题,从上世纪七八十年代起,在德国也出现过。德国发现了这个问题后,研究解决方案,选择了两条解决问题的路径: /p p   1. 在原来湿法脱硫的基础上打补丁。其具体措施是: /p p   1) 加强水处理措施,对每次脱硫后的废水去除其中颗粒物和溶解的盐 /p p   2) 加装烟气除雾装置(例如旋风分离器) /p p   3) 加装湿法静电除尘器 /p p   4) 采取了以上的方法后,烟气中仍然有可观的颗粒物。于是为了避免颗粒物在烟囱附近大量沉降,又加装了GGH烟气再热装置,将烟气加热,升到更高的高度,以扩散到更远的地方——虽然扩大了污染面积,但减轻了在烟囱附近的空气污染强度。当然烟气再加热,又要消耗大量的热能。 /p p    /p center img alt=" asd" src=" http://img.caixin.com/2017-07-10/1499667818346916.jpg" width=" 584" height=" 241" / /center p br/ /p p   但国内外都发现了GGH烟气再热装置结垢堵塞的现象,于是在发生结垢堵塞要对GGH再热装置进行清洗(结垢就是颗粒物,这也证实了湿法脱硫后的烟气中含有大量的颗粒物)时,需要有烟气旁路。而中国的环保部门为了防止偷排,关闭了旁路。所以,检修锅炉要停机,很多燃煤电厂为了防止频繁的锅炉停机,只好拆除了GGH烟气再热装置,由于烟气温度过低,因此烟气中的大量颗粒物在烟囱附近沉降,这也就是前述的某市环保局长发现的在燃煤电厂附近区域空气监测站发现大气中有较高的颗粒物含量的原因。 /p p   但这个方法只适合于大型燃煤锅炉,如燃煤电厂的大型燃煤锅炉。因为采用上述的技术措施,工艺复杂,电厂的大锅炉,由于规模大,脱硫废水和废渣的处理成本还能承受。对于小的燃煤锅炉在经济上根本承受不了,且不说还要加装价格不低的湿式静电除尘器。因此,在德国,非大型燃煤电厂的锅炉几乎都不采用这种在原湿法脱硫工艺的基础上打补丁的方法,而是采用下述的第二种方法。 /p p   2. 第二种方法就是干脆去除祸根湿法脱硫工艺,采用(半)干法烟气综合处理技术。德国比较成功的是APS (Activated Powder Spray,活性粉末喷洒)烟气处理工艺,综合脱硫、硝、重金属和二恶英。这种工艺是在上世纪末发明的,本世纪开始逐渐成熟并得到推广。其具体措施是: /p p   1) 燃煤烟气从锅炉出来用旋风分离器进行大致的除尘后,即进入到APS烟气综合处理罐,进行综合脱硫、硝、重金属和二恶英(垃圾焚烧厂和钢铁工业的烧结机排放的烟气中有大量的二恶英) /p p   2) 而后用袋式除尘器将处理用的大量脱污染物的粉末和少量的颗粒物一并过滤回收,多次循环使用(平均约100次左右)。 /p p    /p center img alt=" asd" src=" http://img.caixin.com/2017-07-10/1499667826241238.jpg" width=" 567" height=" 179" / /center p br/ /p p   德国现在普遍采用这种(半)干法综合烟气处理工艺。即便是从前采用给湿法脱硫打补丁的燃煤电厂,也逐步地改为(半)干法综合烟气处理工艺。 /p p    /p center img alt=" asd" src=" http://img.caixin.com/2017-07-10/1499667836914688.jpg" width=" 597" height=" 403" style=" width: 597px height: 403px " / /center p    /p center img alt=" asd" src=" http://img.caixin.com/2017-07-10/1499667844142957.jpg" width=" 460" height=" 496" style=" width: 460px height: 496px " / /center p   上面两张图片是在德国凯泽斯劳滕市中心的热电联供站的屋顶上拍摄的,热电联供站既有燃煤锅炉,也有燃气锅炉。其中燃煤锅炉满足基础热力负荷,而燃气锅炉提供峰值热力负荷。上面两张照片上的两个烟囱当时都在排放燃煤烟气,不过这些燃烧烟气经过了APS半干法烟气综合烟气系统的处理,颗粒物排放浓度当时只有1毫克/立方米左右,所以用肉眼根本看不到排放的烟气。2016年,凯泽斯劳滕市的年均大气PM2.5浓度为13微克/立方米。 /p p   燃煤烟气采用先进的半干法烟气综合烟气系统,完全可以达到中国燃煤烟气超净排放的标准,即:颗粒物& lt 5~10毫克/立方米烟气,SOx& lt 35毫克/立方米烟气 NOx& lt 50毫克/立方米烟气。如果烟气中有二恶英,则烟气中的二恶英浓度甚至可以降低到0.05纳克/立方米以下(在实际项目中经常可以降到0.001纳克/立方米以下),而欧盟标准的上限是0.1纳克/立方米烟气。 /p p   湿法脱硫这个新的巨大的大气污染源被发现是坏事也是好事。坏事是知道很多的钱白花了,污染却没减多少,甚至有所增加,很遗憾。好事是知道了大气污染的主要症结在哪里,知道了如何去治理 特别是知道了,大气质量会因此治理措施(在中国北方+散煤治理措施)得到根本性的改善。 /p p   这一污染并不难治,采用先进的(半)干法技术综合烟气处理技术,立马就能把这个问题解决。尽管有一些成本,但是可以接受的成本,因为这种处理技术,如果要达到同样的环保排放标准,成本比采用湿法脱硫技术的烟气处理工艺还要低。如果现在就开始治理,冬奥会之前,把京津冀地区这个主要污染源基本治理好,再加上治理好散煤污染(在下一篇中详述),让大气质量上一个大台阶,把京津冀所有市县的年均PM2.5的浓度降到35微克/立方米一下,应该不难实现。 /p p   最后我要强调的是,这个主要大气污染源的发现,并非我一个人或者我们这个中德专家团队所为,而是一批工作在治霾第一线的专家和环保官员们(当然也包括我和我们这个团队)经过精心观察发现的,并逐步得到越来越清晰的分析结果。我只不过把我们分别所做的工作用这篇文章做一个简单的综述。在此,本文作者对所有为此做出了贡献的人(很遗憾,他们之中的很多人现在不愿意公布他们的姓名和单位——也许要待到治霾成功那一天他们才愿意公布)表示衷心的敬意和感谢! /p p strong style=" color: rgb(51, 51, 51) font-family: 宋体 text-align: justify white-space: normal background-color: rgb(255, 255, 255) " 作者为中德可再生能源合作中心(中国可再生能源学会与德国能源署合办)执行主任 /strong strong style=" color: rgb(51, 51, 51) font-family: 宋体 text-align: justify white-space: normal background-color: rgb(255, 255, 255) " 陶光远 /strong /p
  • 102万!东莞理工学院离子色谱等采购项目
    项目编号:441901-2022-05151项目名称:东莞理工学院高水平理工科大学建设专项-化学工程与能源技术学院学位点建设仪器设备采购项目(二次)采购方式:公开招标预算金额:1,020,000.00元采购需求:合同包1(东莞理工学院高水平理工科大学建设专项-化学工程与能源技术学院学位点建设仪器设备采购项目):合同包预算金额:1,020,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1教学专用仪器生命周期分析评价软件1(套)详见采购文件65,000.00-1-2教学专用仪器离子色谱1(台)详见采购文件97,000.00-1-3教学专用仪器便携式烟气分析仪1(台)详见采购文件51,000.00-1-4教学专用仪器静电纺丝机1(台)详见采购文件65,000.00-1-5教学专用仪器纳滤反渗透膜分离实验装置1(台)详见采购文件57,000.00-1-6教学专用仪器元素分析仪1(台)详见采购文件550,000.00-1-7教学专用仪器旋转蒸发仪(1)2(台)详见采购文件10,600.00-1-8教学专用仪器低温冷却循环泵2(台)详见采购文件9,000.00-1-9教学专用仪器去离子纯水机1(台)详见采购文件10,800.00-1-10教学专用仪器PLC模块1(台)详见采购文件2,400.00-1-11教学专用仪器流量显示仪1(台)详见采购文件3,000.00-1-12教学专用仪器H型可换膜电解池1(套)详见采购文件1,200.00-1-13教学专用仪器移液器5(支)详见采购文件2,000.00-1-14教学专用仪器磁力搅拌器3(台)详见采购文件39,873.00-1-15教学专用仪器旋转蒸发仪(2)1(台)详见采购文件13,000.00-1-16教学专用仪器冷却水循环装置1(台)详见采购文件1,241.00-1-17教学专用仪器手提式紫外灯1(台)详见采购文件674.00-1-18教学专用仪器聚四氟乙烯模具5(版)详见采购文件3,990.00-1-19教学专用仪器平行光反应器1(台)详见采购文件23,052.00-1-20教学专用仪器手持式紫外固化灯1(台)详见采购文件2,466.00-1-21教学专用仪器6W备用紫外灯管2(支)详见采购文件474.00-1-22教学专用仪器层析缸(1)1(个)详见采购文件400.00-1-23教学专用仪器层析缸(2)1(个)详见采购文件180.00-1-24教学专用仪器玻璃制品1(批)详见采购文件10,650.00-本合同包不接受联合体投标合同履行期限:完工期:合同签订日起90个日历日内完成安装调试、运行和交付使用。质保期:一年。
  • 沈阳科晶参加中国微米纳米技术学会第二十届学术年会
    中国微米纳米技术学会第二十届学术年会暨第九届国际会议由中国微米纳米技术学会主办,郑州大学、微纳成型技术国际联合研究中心承办,机电动态控制重点实验室协办,教育部、科技部、工信部、国家自然科学基金委员会、中国科学技术协会、国家纳米科学中心、国家纳米技术与工程研究院共同支持。本届大会的主题是“微纳科技让生活更美好”。沈阳科晶自动化设备有限公司有幸应邀参加此次会议,并作为此次会议的展商和赞助商。本次会议沈阳科晶自动化设备有限公司参展的设备有SYJ-150低速金刚石切割机、STX-202A小型金刚石线切割机、GPC-80A精确磨抛控制仪、UNIPOL-802精密研磨抛光机、PTL-MM02程控提拉涂膜机、VTC-100PA真空旋转涂膜机、VTC-600-2HD双靶磁控溅射仪、MSK-NFES-3C台式静电纺丝机、PCE-6小型等离子清洗机。为让广大参会的科学家、专家、老师及材料研究人员更深入的了解沈阳科晶,了解沈阳科晶的设备,我公司派出专业技术团队参加此次会议。会议一开始沈阳科晶的设备展位就异常火爆,各位专家和老师对沈阳科晶的切割机、纳米薄膜材料制备设备、研磨抛光等设备都十分感兴趣,他们提出了很多问题,我们的专业技术人员都进行了详细的回答,并详细介绍了我公司设备的性能、功能、适用范围、操作要领等。对于带样品过来参会的老师,我公司技术人员在现场为老师制备试样,老师们对我们的设备制样能力表示惊叹,同时为我国制样设备的飞速发展表示欣喜。大家看过我公司的设备后也认真提出了自己的意见和建议,我们认真聆听大家的意见,努力对我们的设备做出更多的改进,从而满足广大材料研究人员的要求。我国的材料行业一直在不断飞速发展,沈阳科晶一直坚持脚踏实地,稳步前进,让我们的材料制备、处理、分析设备不断完善,不断改进,不断适应各种新型材料的要求。作为沈阳科晶的员工,我们也一直坚持脚踏实地做事,踏踏实实努力,在不断扩充自己的专业知识的同时为客户提供更多更优质的服务,使我们的产品打出自己响亮的品牌,享誉国内,享誉世界,这也是我们一直的奋斗目标!
  • 湿法脱硫协同除尘机理及超低排放技术路线选择
    p   随着国家三部委《全面实施燃煤电厂超低排放和节能改造工作方案》的实施,燃煤电厂烟气治理设备超低排放改造工作突飞猛进,成绩显著。在实施湿法脱硫(WFGD)超低排放方面,各环保公司纷纷开发了脱硫喷淋塔技术改造提效升级的多种新工艺,如单塔双循环技术、双托盘技术、单塔双区(三区)技术、旋汇耦合技术等,特别在脱硫塔核心部件喷淋系统上,采用增强型的喷淋系统设计(如增加喷淋层、提高覆盖率、提高液气比等)。脱硫效率从以前平均在95%左右提高到99%甚至更高。特别引人关注的是,在超低排放脱硫系统脱硫效率大幅提高的同时,其协同除尘效果也显著提高,一批改造后脱硫系统的协同除尘效率(净效率,已包含脱硫系统逃逸浆液滴的含固量)达到了70%,甚至有更高的报道。 p & nbsp & nbsp & nbsp & nbsp 面对这样的事实,与之相关的问题亟需得到解答与澄清: p & nbsp & nbsp & nbsp & nbsp (1)超低排放湿法脱硫协同除尘的核心机理是什么? p & nbsp & nbsp & nbsp & nbsp (2)湿法脱硫协同除尘技术是否有局限性?应用中应注意哪些问题? p & nbsp & nbsp & nbsp & nbsp (3)超低排放技术路线选择中如何把握好湿法脱硫协同除尘与湿式电除尘器的关系? p & nbsp & nbsp & nbsp & nbsp 本文旨在追根溯源,一方面回顾总结过去在这方面的研究 一方面从机理出发,研究喷淋系统(及除雾器)对颗粒物脱除的作用。并采用理论模型计算与实际工程案例比较的方法,论证湿法脱硫喷淋系统是协同除尘的主要贡献部件,同时分析湿法脱硫协同除尘的局限性及与湿式电除尘器的关系,为超低排放技术路线选择提供有益的参考意见。 p & nbsp & nbsp & nbsp & nbsp 湿法脱硫协同除尘的研究简要回顾 p & nbsp & nbsp & nbsp & nbsp 清华大学热能系对脱硫塔除尘机理的研究较多,脱硫塔内单液滴捕集飞灰颗粒物的相关研究,主要建立了综合考虑惯性、拦截、布朗扩散、热泳和扩散泳作用的单液滴捕集颗粒物模型并进行了数值模拟计算,分析了温度、液滴直径和颗粒粒径对单液滴捕集过程及效率的影响规律。清华大学王晖等通过测试执行GB13223-2011标准WFGD进出口颗粒物的分级浓度的研究表明,WFGD可有效捕集大颗粒,但对PM2.5的捕集效率较低,且分级脱除效率随粒径减小而明显下降。华电电力科学研究院魏宏鸽等于2011~2013年对39台锅炉(机组容量为25~1000MW)的执行GB13223-2011标准WFGD开展了除尘效率测试试验,结果显示,不同试验机组WFGD的协同除尘效率为18~68%,平均协同除尘效率为49%。国电环保研究院王东歌等通过对我国4座电厂5台不同容量的执行GB13223-2011标准WFGD进出口烟气总颗粒物浓度进行了测试,结果表明,WFGD对烟气中总颗粒物的去除效率介于46.00%~61.70%之间,平均达到55.50%。夏立伟等对某电厂超低排放改造前的WFGD进行了协同除尘效果测试,结果显示,WFGD协同除尘效率为53%。 p & nbsp & nbsp & nbsp & nbsp 上述研究结果一致表明:WFGD具备协同除尘能力 执行GB13223-2011标准WFGD平均协同除尘效率大致在50%左右 湿法脱硫协同除尘的主要机理是喷淋液滴对颗粒物的捕获机理。这种认识在WFGD实施超低排放之前是行业内比较公认的。 p & nbsp & nbsp & nbsp & nbsp 湿法脱硫喷淋液滴协同除尘机理 p & nbsp & nbsp & nbsp & nbsp 1、湿法脱硫喷淋液滴捕集颗粒物的机理与模型喷淋塔除尘机理与湿法除尘设备中重力喷雾洗涤器相似。一定粒径(范围)的喷淋液滴自喷嘴喷出,与自下而上的含尘烟气逆流接触,粉尘颗粒被液(雾)滴捕集,捕集机理主要有重力、惯性碰撞、截留、布朗扩散、静电沉降、凝聚和沉降等。烟气中尘粒细微而又无外界电场的作用,可忽略重力和静电沉降,主要依靠惯性碰撞、截留和布朗扩散3种机理。前人的研究结果表明,Devenport提出的孤立液滴惯性碰撞效率模型、马大广的拦截效率模型、嵆敬文的布郎扩散捕集效率模型与实验结果吻合较好,因此我们根据上述相关模型计算单个液滴的综合颗粒分级捕集效率,然后结合实际工程参数参考岳焕玲提出的液滴群和多层喷淋层中不同粒径液滴的颗粒分级捕集效率模型进行了的计算,相关计算模型见表1所示。 center img alt=" " src=" http://img01.bjx.com.cn/news/UploadFile/201707/2017070609230061.jpg" width=" 500" height=" 465" / /center center img alt=" " src=" http://img01.bjx.com.cn/news/UploadFile/201707/2017070609230934.jpg" width=" 500" height=" 478" / /center center img alt=" " src=" http://img01.bjx.com.cn/news/UploadFile/201707/2017070609231751.jpg" width=" 500" height=" 186" / /center p /p p /p p & nbsp /p p   2、湿法脱硫喷淋层对颗粒物捕集效率影响因素 p & nbsp & nbsp & nbsp & nbsp (1)颗粒物粒径及分级浓度分布对喷淋层协同粉尘脱除效率的影响 p & nbsp & nbsp & nbsp & nbsp 选用单向双头空心喷嘴(液滴体积平均粒径1795μm),液气比L/G=14.283L/m3时,不同粒径范围(900~5000μm)液滴群对颗粒物分级脱除效果曲线如图1所示。 p & nbsp & nbsp & nbsp & nbsp 随着颗粒物分级粒径的增大,脱除效率明显增加,900μm粒径液滴群对1μm颗粒物的脱除效率不到5%,而对10μm颗粒物的脱除效率可达70%以上,因此,烟尘颗粒的分级浓度特性对喷淋层的协同除尘效率影响很大,小颗粒(& lt 2.5μm)比重越大,脱硫塔的协同除尘效率越低。随着液滴粒径增大,因其数量占比大幅减小,发生惯性碰撞、拦截和扩散效应的概率随之降低,对同一粒径颗粒物分级脱除效率随之降低。 center img alt=" " src=" http://img01.bjx.com.cn/news/UploadFile/201707/2017070609233040.jpg" width=" 416" height=" 343" / /center p & nbsp & nbsp & nbsp & nbsp (2)液气比对颗粒物协同脱除效率的影响 /p p & nbsp & nbsp & nbsp & nbsp 选用单向双头空心喷嘴(液滴体积平均粒径1795μm),液气比选为8、12、16、20L/m3,不同液气比条件下不同粒径范围(900~5000μm)喷淋雾滴群对2.5μm颗粒物脱除效果曲线如图2所示。 /p p style=" TEXT-ALIGN: center" img alt=" " src=" http://img01.bjx.com.cn/news/UploadFile/201707/2017070609240974.jpg" width=" 402" height=" 337" / /p p & nbsp & nbsp & nbsp & nbsp 上述计算结果表明,随着液气比的增大,吸收塔单位截面上喷淋浆液量越大,喷淋液滴数目增加,表面积增加,与颗粒物接触机会增加,脱除效率明显增大。对于900μm左右粒径的液滴,液气比从8L/m3增加到16L/m3,对2.5μm颗粒分级脱除效率从14.35%增加到26.64%,脱除率增加了84%。因此增大液气比有助于提高湿法脱硫对粉尘和细颗粒(PM2.5)的协同脱除作用。 /p p & nbsp & nbsp & nbsp & nbsp 3、超低排放WFGD与执行GB13223-2011标准WFGD协同除尘效率的比较 /p p & nbsp & nbsp & nbsp & nbsp 为了分析问题,我们假定有一个脱硫工程需要做超低排放改造,设定进口SO2浓度为2450mg/Nm3,进口粉尘浓度20mg/Nm3,出口SO2浓度在超低排放改造前后分别设定为200mg/Nm和35mg/Nm3,选用双头空心喷嘴(液滴体积平均粒径1795μm),脱硫塔进口飞灰颗粒物浓度分布参考清华大学对某个实际工程的颗粒物质量累积分布测试结果。 /p p & nbsp & nbsp & nbsp & nbsp 根据上述假定,我们计算了超低排放WFGD与执行GB13223-2011标准WFGD喷淋层的协同除尘效率、喷淋层对PM2.5的脱除效率,同时把除雾器出口液滴中的含固量考虑在内,测算了超低排放WFGD与执行13223-2011标准WFGD的协同除尘效率,结果如表2所示。 /p center img alt=" " src=" http://img01.bjx.com.cn/news/UploadFile/201707/2017070609242531.jpg" width=" 600" height=" 340" / /center center img alt=" " src=" http://img01.bjx.com.cn/news/UploadFile/201707/2017070609243491.jpg" width=" 600" height=" 322" / /center p & nbsp & nbsp & nbsp & nbsp 表2计算可以给我们以下几点认识: /p p & nbsp & nbsp & nbsp & nbsp (1)WFGD对飞灰颗粒物协同脱除的主要贡献是喷淋层。根据前述WFGD喷淋雾滴捕集颗粒物的机理分析与模型计算,喷淋层对较大粒径颗粒的脱除效率是较高的,而这一部分颗粒占重量浓度的大部分,所以计算结果显示,对执行GB13223-2011标准WFGD,喷淋层协同除尘效率74.95%,超低排放WFGD喷淋层协同除尘效率83.30% /p p & nbsp & nbsp & nbsp & nbsp (2)WFGD的整体协同除尘效率需要考虑WFGD逃逸液滴中的石灰石、石膏等固体颗粒物分量。在进口粉尘浓度条件不变的情况下,由于超低排放WFGD改造安装了高效除雾器,超低排放WFGD协同除尘效率可保持在72.05%,而执行GB13223-2011标准WFGD由于我们假设的原除雾器设计效率较低,出口液滴排放浓度较高,其协同除尘效率降到了37.45%。为了保障WFGD整体的协同除尘效率和较低的颗粒物总排放浓度,需要应用高效除雾器把WFGD出口液滴排放浓度降到足够低。 /p p & nbsp & nbsp & nbsp & nbsp (3)对于我们特别关注的细颗粒物(PM2.5),执行GB13223-2011标准WFGD喷淋层的协同脱除效率为42.74%,超低排放WFGD喷淋层的协同脱除效率为61.83%,提效44.67%,分析超低排放WFGD喷淋层脱除细颗粒物效率较高的主要原因,在于大幅增加了WFGD的液气比,使得喷淋雾滴总的表面积增加,与细颗粒接触的概率增加,从而明显提高了颗粒物特别是PM2.5的协同脱除效率。 /p p /p p /p p   表3是我国部分超低排放WFGD工程的协同除尘效果,其中A为华能南通电厂4号机组(350MW)B为华能国际电力股份有限公司玉环电厂1期1000MW机组,C为首阳山公司二期300MW机组。实际WFGD工程的协同除尘测试效率与理论计算结果存在一定的差别,但是趋势是一致的,部分案例数据还比较接近。 center img alt=" " src=" http://img01.bjx.com.cn/news/UploadFile/201707/2017070609250410.jpg" width=" 600" height=" 157" / /center p & nbsp & nbsp & nbsp & nbsp 超低排放WFGD与执行GB13223-2011标准WFGD比较,无论是通过理论计算比较,还是通过工程实际测试结果来比较,证明超低排放WFGD对执行GB13223-2011标准WFGD提高协同除尘效率的大致幅度是一致的。这也间接地证明了喷淋层是WFGD协同除尘作用的主力军。 /p p & nbsp & nbsp & nbsp & nbsp 湿法脱硫用机械类除雾器协同除尘机理 /p p & nbsp & nbsp & nbsp & nbsp 1、除雾器的工作机理及主要作用除雾器是WFGD的重要设备,安装于脱硫塔顶部,常采用机械除雾器,用以去除烟气携带的小液滴,保护下游设备免遭腐蚀和结垢。 /p p & nbsp & nbsp & nbsp & nbsp 除雾器对协同除尘的主要作用在于捕集逃逸液滴的同时捕集了液滴中颗粒物(石灰石、石膏及被液滴包裹的烟尘等)。SO2与颗粒物的超低排放对WFGD的除雾器组件提出了更高要求,一方面,通过增加液气比与喷淋层数、提高喷淋覆盖率等措施实现高效脱硫,但在另一方面一定程度上增加了进入除雾区的液滴总量,使其负荷增加。同时为了保证WFGD出口烟气的颗粒物达到超低排放浓度要求,实际超低排放WFGD工程一般会应用多级或组合型(管式、屋脊式、水平烟道式)高效除雾器以保证WFGD出口液滴浓度处在较低水平,以尽量减少逃逸液滴中的颗粒物对排放的贡献。 /p p & nbsp & nbsp & nbsp & nbsp 2、WFGD除雾器协同除尘的贡献讨论当今高效除雾器能将WFGD出口液滴排放浓度控制得比较低已得到工程实际的验证。但有人可能要问,这一类的除雾器对喷淋层出口的飞灰颗粒物是否有较高的直接脱除作用呢?我们认为,应该说会有一定作用。但是,从本文对喷淋层协同除尘效果分析可以看出,未被喷淋层捕集的飞灰颗粒物的平均粒径非常小。在现实燃煤电厂超低排放治理条件下,脱硫前的除尘器出口飞灰颗粒物浓度一般控制在20mg/m3左右,平均粒径约是3.02μm,经过脱硫塔喷淋层协同除尘作用后,喷淋层出口的飞灰颗粒物平均粒径& lt 1μm。从分析可知,机械除雾器对液滴的临界分离粒径在20~30μm左右,可以推断,机械除雾器对喷淋层出口的飞灰颗粒物直接脱除(液滴包裹的除外)作用很有限,不太可能成为协同除尘的主要贡献者。 /p p & nbsp & nbsp & nbsp & nbsp 超低排放技术路线的选择 /p p & nbsp & nbsp & nbsp & nbsp 1、WFGD的主要功能定位与协同除尘的局限性WFGD的主要功能定位是脱硫,工程项目设计时要确定设计输入与输出条件,在设计煤种上会选含硫量较高的煤种进行设计,根据要求的出口SO2浓度设计脱硫效率,从而设计整个脱硫系统(包括喷淋层系统和运行参数),对除尘作用基本上是协同的概念。从我们前述计算与测试数据来源,大多数是以全负荷运行状态而言。实际上,WFGD运行是与煤的含硫量、发电负荷紧密联系的,根据WFGD实际进口SO2浓度进行控制,调节循环泵开启的个数,控制喷淋量与浆液pH。这样可能导致协同除尘效率不是很稳定,运行中二者难以兼顾。当采用WFGD后没有配置湿式电除尘器的超低排放治理技术路线工程中,WFGD就是除尘的终端把关设备,在某种特定应用煤种情况下(如低硫煤、高灰分、高比电阻粉尘),WFGD进口比较低的SO2浓度与较高的飞灰颗粒物浓度同时出现,WFGD的运行将难以兼顾,不大可能为了维持较高的除尘效率将喷淋层全负荷投运,这就是WFGD协同除尘的局限性。WFGD的主要功能定位就是脱硫,除尘仅仅是协同作用,不可把除尘的终端把关全部责任交给WFGD。 /p p & nbsp & nbsp & nbsp & nbsp 2、湿式电除尘器对超低排放与多污染物协同控制的重要作用湿式电除尘器(WESP)安装于WFGD下游,WESP除尘原理与干式电除尘收尘原理相同,都是依靠高压电晕放电使得粉尘颗粒荷电,荷电粉尘颗粒在电场力的作用下到达收尘极。在工作的烟气环境和清灰方式上两者有较大区别,干式电除尘器主要处理含水很低的干气体,WESP主要处理含水较高乃至饱和的湿气体 干式电除尘器一般采用机械振打或声波清灰等方式清除电极上的积灰,而WESP则通过喷淋系统连续喷雾在收尘极表面形成完整的水膜将粉尘冲刷去除。由于WESP进口烟气温度低且处于饱和湿态,水雾与粉尘结合后比电阻大幅下降,使得WESP对粉尘适应能力强,同时不存在二次扬尘,因此无论前部条件是否波动,WESP对细颗粒和WFGD除雾器逃逸液滴均具备较高的脱除效率,WESP还能有效捕集其它烟气治理设备捕集效率较低的污染物(如PM2.5、SO3酸雾和Hg等),可作为烟气多污染物治理终端把关设备。实际工程中WESP应用较广,除尘效果显著,甚至可达到更低排放要求,例如河北国华定洲发电有限责任公司1号机组(600MW)配套WESP出口粉尘排放浓度低于1mg/m3。 /p p & nbsp & nbsp & nbsp & nbsp 3、是否配置湿式电除尘器是超低排放技术路线选择中的一个重要问题根据我们的经验可以列出以下几点作为考虑是否需要配置WESP的主要因素: /p p & nbsp & nbsp & nbsp & nbsp (1)脱硫前除尘器的除尘效率是否有较大余量?如有较大余量,就可以在不利条件下启用除尘器余量,不用过分依赖WFGD的协同除尘作用 /p p & nbsp & nbsp & nbsp & nbsp (2)煤种的条件:实际供应的煤种含硫量是否波动较小?含硫量波动小,意味着协同除尘效率比较稳定,依靠度较高 /p p & nbsp & nbsp & nbsp & nbsp (3)影响除尘器除尘效率的煤种条件和飞灰条件是否相对稳定?如果经常可能使用影响除尘性能的困难煤种,那脱硫系统的协同除尘负担就重。 /p p & nbsp & nbsp & nbsp & nbsp (4)是否考虑未来对SO3等其他污染物的控制要求? /p p & nbsp & nbsp & nbsp & nbsp 如果有以上(1)~(3)的不利条件,同时考虑到未来对SO3等可凝结颗粒物和其他污染物的控制要求,那么论证配置WESP的必要性是应该的。 /p p & nbsp & nbsp & nbsp & nbsp 目前,关于超低排放技术路线的选择有很多探讨,实际工程上的问题和条件是很复杂的,除了技术条件,还有现场场地条件、煤种来源稳定性、负荷波动状况等等其他因素需要考虑。所以我们认为超低排放技术路线选择的核心就是具体问题具体分析。 /p p & nbsp & nbsp & nbsp & nbsp 超低排放技术路线中的关键问题是多污染物协同控制,在各主要治理设备中理清主要功能和协同功能非常重要,一定要考虑当主要功能与协同功能有矛盾时如何处理,还是要保留有应对措施。比如,在煤种多变的条件下,保留一个适当规格的WESP作为终端把关,是一个较符合实际的选择。 /p p /p p /p p   4、湿法脱硫协同除尘与湿式电除尘器在除尘中相互关系计算举例 p & nbsp & nbsp & nbsp & nbsp 为了说明WFGD与湿式电除尘器在除尘中的相互关系,我们举了个计算例子,按第3节“湿法脱硫喷淋液滴协同除尘机理”的关于超低排放脱硫系统的基本假设,取超低排放WFGD出口烟气液滴浓度为15mg/m3(含固量15wt%),计算液气比分别为10、12.5、15、17.5和20L/m3的WFGD进出口粉尘浓度关系曲线(注:这里是简化计算,实际应考虑塔内其他部件对烟尘的捕集作用),结果见图3所示。 p & nbsp & nbsp & nbsp & nbsp WFGD的液气比越大,喷淋层协同除尘效率越高,越容易达到超低排放。对于特定液气比条件下的WFGD,WFGD进出口粉尘浓度呈线性关系,当其进口粉尘浓度在一定范围以内(较低)时,对应的出口粉尘浓度处于图中垂直网格区域,此时由高效除雾器配合即可满足WFGD出口粉尘浓度达到超低排放要求 但是在斜线网格区域时就不能满足WFGD出口粉尘浓度≤5mg/m3。 /p p style=" TEXT-ALIGN: center" img alt=" " src=" http://img01.bjx.com.cn/news/UploadFile/201707/2017070609254032.jpg" width=" 413" height=" 301" / /p p & nbsp & nbsp & nbsp & nbsp 这个结果可以供设计参考,考虑实际用煤的含硫量(特别要注意低含硫量煤种)可以估算实际应用的液气比,考虑最差煤种可以估算进口粉尘浓度最高值,这样可以帮助判断是否需要配置WESP作为除尘终端把关设备。上述结果也可以供实际运行控制时参考,在正常的煤种条件下,充分发挥WFGD的协同除尘作用,同时控制好WESP的运行参数 在低硫煤、飞灰条件对除尘器不利条件下,用好WESP起到终端把关作用实现超低排放(≤5mg/m3)。 /p p & nbsp & nbsp & nbsp & nbsp 通过以上分析,我们得出如下结论: /p p & nbsp & nbsp & nbsp & nbsp (1)WFGD协同除尘的主要贡献是喷淋层,其除尘的核心机理是雾化液滴对飞灰颗粒物的惯性碰撞、拦截和扩散效应。通过理论计算和工程案例数据比较可看出,由于超低排放WFGD喷淋层应用了高液气比、多层喷淋层、高覆盖率等措施以及高效除雾器的配合,协同除尘效率可达到70%左右。 /p p & nbsp & nbsp & nbsp & nbsp (2)湿法脱硫装置的主要功能定位是脱硫,除尘是协同功能。当燃用低硫煤煤种、对除尘器不利飞灰两种情况同时出现时,WFGD的脱硫与协同除尘较难兼顾,所以在粉尘超低排放技术方案选择时,不应过度依赖WFGD的协同除尘作用(设计上直接应用70%协同除尘效率是有风险的)。 /p p & nbsp & nbsp & nbsp & nbsp (3)机械除雾器主要通过高效脱除来自喷淋层的雾滴抑制WFGD出口液滴中固体含量对排放粉尘的贡献,其液滴的临界分离粒径在20~30μm左右,对粒径更小的喷淋层出口飞灰颗粒物(≤10μm)的脱除作用很有限,起到辅助除尘作用。 /p p & nbsp & nbsp & nbsp & nbsp (4)湿式电除尘器对颗粒物、雾滴及其他(SO3等)污染物具有高效捕集能力,在超低排放中作为终端把关设备可以应对煤种、工况变化的复杂情况。 /p p & nbsp & nbsp & nbsp & nbsp (5)超低排放技术路线选择的核心是具体问题具体分析,在各主要治理设备中理清主要功能和协同功能非常重要,在中国煤种普遍波动较大的现实条件下,更要仔细认清协同控制中协同功能的局限性,不能简单地套用一些国外经验。 /p /p /p /p /p /p /p /p /p /p /p /p /p /p /p /p /p /p /p
  • 湿法冶金生产技术国家工程实验室成立
    由国家发展和改革委员会批准组建的湿法冶金清洁生产技术国家工程实验室成立暨首届理事会第一次会议近日在京举行。会议选举中科院副院长李静海院士为首届理事会理事长,中科院过程工程研究所张懿院士和常务副所长张锁江研究员为副理事长,聘任中科院过程工程研究所研究员齐涛为实验室主任。来自产业界和科技界16个理事单位60余位代表参加了会议。   李静海表示,实验室的成立对研究所来说是一件大事,对解决成果产业化提供了很好的机遇,研究所要发挥学科积累优势满足国家的重大需求,理顺与企业的合作机制,促进科研成果的产业化。他指出,来自企业的代表提出了很多中肯的意见,金融危机对企业影响很大,科研机构要依靠科学技术为企业排忧解难。衡量科研机构对企业贡献的标准是看有没有成果在企业发挥效益。他强调,无论是实验室建设,还是研究所发展,都要解放思想、更新理念。   该实验室以中科院过程工程研究所为依托单位,中国科学院为主管单位。建设目标与任务是:围绕我国金属矿产资源的高效、清洁、综合利用与行业节能减排的需要,以铬、铝等难冶两性金属资源为重点研究对象,开展以亚熔盐非常规介质为主的高效反应系统、多组分分离技术与设备、冶金固体废弃物综合利用与污染控制等研究,并进行大规模工程化技术转移,促进有色金属行业清洁生产,成为我国有色金属行业清洁生产技术研究和工程化的重要平台。建设期为3年。
  • 20.3亿元!天津市7所高校设备更新项目批复盘点(附设备清单)
    自国家发改委与教育部联合颁布并实施《教育领域重大设备更新实施方案》以来,各省各高校、科研机构及职业院校积极响应,相继公示了各自的设备更新计划。7月4日,天津市发展和改革委员会发布了天津工业大学高端分析测试平台设备更新项目、天津工业大学一流学科群平台和高能级研发创新平台设备更新项目、天津科技大学轻工特色学科建设先进设备更新项目等8个设备更新项目批复通知,明确了各项目的建设内容及规模、总投资金额、建设地点、购置设备清单等详细信息。鉴于此,仪器信息网特整理并汇总了上述8个设备更新项目批复详情,以飨读者。天津市设备更新项目批复详情(按投资金额排序)序号项目名称主要建设内容及规模投资金额(万元)建设地点购置设备清单1天津工业大学一流学科群平台和高能级研发创新平台设备更新项目购置设备280台(套),主要为非织造智能工厂平台模拟系统等,替换原有老旧设备279台(套),主要为复合纺丝机、真空镀膜机、半导体及光学薄膜制备系统等设备41587天津市西青区宾水西道399号天津工业大学现址内附件12天津工业大学高端分析测试平台设备更新项目购置设备238台(套),主要为基于USRP的大规模MIMO试验系统平台、低温强磁场扫描探针显微镜、纤维纳米红外光谱仪等设备,替换原有老旧设备132台(套),主要为低压透射电镜、真彩色共聚焦显微镜、冷场发射扫描电镜等设备36675天津市西青区宾水西道399号天津工业大学现址内附件23天津科技大学轻工特色学科建设先进设备更新项目购置设备361台(套),主要为凝胶渗透色谱仪、空气滤材过率性能测试平台等设备;替换原有设备263台(套),主要为蛋白分离纯化仪、液相色谱仪等老旧设备32300天津市滨海新区经济技术开发区第十三大街9号天津科技大学现址内附件34天津理工大学重大科研仪器设备购置项目购置科研设备共152台(套),主要为人形机器人开发平台、智能制造与机器人工艺平台等设备;替换原有设备9台(套),主要为激光跟踪仪、柔性制造系统等老旧设备30000天津市西青区宾水西道391号天津理工大学现址内附件45天津职业技术师范大学建设全国职业技术师范教育标杆学科科研教学设备更新项目购置设备319台(套),替换原有老旧设备60台(套)。其中,学科科研项目购置高性能大模型智能机器人平台等设备65台(套)。新工科建设项目购置五轴加工中心等设备254台(套),替换原有成型磨床、轮廓测量仪、低压压电作动器等设备60台(套)20000天津市河西区大沽南路1310号天津职业技术师范大学现址内附件56天津医科大学医学表观遗传学教育部省部共建协同创新中心科研创新平台建设项目购置设备33台(套),主要为冷冻透射电子显微镜、蛋白液相分析仪、纳米流式分析仪、单细胞原位空间蛋白组表型分析仪等设备;替换原有设备6台(套),主要为激光显微切割仪、分选型流式细胞仪、共聚焦显微镜、大容量电转仪等老旧设备14979天津市和平区气象台路22号天津医科大学现址内以及静海区团泊大道1号新校区内附件67天津医科大学血液与健康全国重点实验室创新研发平台项目购置设备96台(套),主要为透射电子显微镜、高通量生物分子相互作用仪、超高频高分辨率小动物超声成像仪、X-射线生物辐照仪等设备;替换原有设备6台(套),主要为小动物超声成像仪、X-射线生物辐照仪、冰冻切片机、自动临界点干燥仪等老旧设备14817天津市和平区气象台路22号天津医科大学现址内以及静海区团泊大道1号新校区内附件78天津外国语大学网络空间一体化建设设备更新项目购置设备89台(套),主要为多语种智能同传和口译系统、多语种智能语料建设系统、应急语言服务及多语沟通能力实训平台、AI算力中心、超融合虚拟化应用系统等设备;替换原有设备59台(套),主要为同传和口译系统、省级实验教学示范中心等老旧设备12293.64天津市河西区马场道117号、天津市滨海新区大港学府路60号,天津外国语大学校园内附件8附件1:天津工业大学一流学科群平台和高能级研发创新平台设备更新项目设备清单表.docx附件2:天津工业大学高端分析测试平台设备更新项目设备清单表.docx附件3:天津科技大学轻工特色学科建设先进设备更新项目设备清单表.docx附件4:天津理工大学重大科研仪器设备购置项目设备清单表.docx附件5:天津职业技术师范大学建设全国职业技术师范教育标杆学科科研教学设备更新项目设备清单表.docx附件6:天津医科大学医学表观遗传学教育部省部共建协同创新中心科研创新平台建设项目设备清单表.docx附件7:天津医科大学血液与健康全国重点实验室创新研发平台项目设备清单表.docx附件8:天津外国语大学网络空间一体化建设设备更新项目设备清单表.docx
  • 日本ATAGO(爱宕)折光仪、浓度计在纺织、化纤行业被成功应用
    中国是世界最大的化纤生产国,作为纺织工业的重要组成部分,化学纤维已占纺织纤维加工总量近三分之二,化纤工业的发展直接影响到我国纺织工业发展的整体水平和竞争能力。 而当前的各类化纤生产工艺中,形成了各具特点的工艺路线。这些工艺路线的共同点是:采用溶液(湿法和干法)纺丝方法,有相应的溶剂回收处理等。这些工艺路线的不同点是:不同的共聚物组成;不同的聚合(非均相沉淀聚合或均相聚合)方法;不同的纺丝溶剂(可采用二甲基甲酰胺,二甲基乙酰胺,二甲基亚砜,碳酸乙烯酯,硫氰酸钠,硝酸,氯化锌等):不同的纺丝方法(湿法或干法纺丝,湿法中采用不同凝固浴);不同的牵伸、后处理工艺;不同的溶剂回收工艺。各种工艺中,最主要的因素是溶剂,不同的溶剂决定了纺丝液的制备条件、纺丝条件、溶剂回收方法和废水处理方法等一系列工艺特点,也影响到防火、防毒及设备选材等许多方面。 例如在碳纤维生产工艺的纺丝溶剂选择中,二甲基亚砜(DMSO)以其独特的优势成为当前的首选,日本ATAGO(爱宕)生产的折光仪、浓度计在纺织、化纤行业的已经有了比较广泛的应用。如PAL-1手持折射仪、PR-40DMF手持浓度计、RX-5000a全自动折光仪、PRM-100a在线浓度计等,用于测量纺丝溶液浓度、凝固浴浓度,保证原丝品质。 现在溢达纺织、拓展纤维、常州纺织等纺织、化纤用户都有在使用日本ATAGO(爱宕)的在线折光仪和RX-5000a的台式折光仪,手持式浓度计的使用就更多了。
  • 中国电科45所湿法设备进入国内主流8英寸芯片产线
    近日,中国电科45所(以下简称45所)研制的双8英寸全线自动化湿法整线设备进入国内主流FAB厂。该整线设备满足8英寸90nm~130nm工艺节点,适用于8~12英寸BCD芯片工艺中的湿化学制程。晶圆尺寸与工艺线宽代表湿法设备的工艺水准,45所研制的整线设备具备了8寸主流FAB厂湿法设备运行标准,自动化程度高,系统集成度高,覆盖了8英寸BCD芯片工艺中的湿化学工艺制程,实现了全自动湿法去胶、湿法腐蚀、湿法金属刻蚀、RCA清洗、Marangoni干燥等工艺。设备是半导体产业的基石,据SEMI统计,2021年全球半导体制造设备销售额创历史新高,达到1026亿美元,同比增长了44%。在全球芯片扩产潮的推动下,晶圆厂的设备支出将继续提升,预计全球市场2022年将达到1175亿美元,2023年将增至1208亿美元。旺盛的市场需求,为本土半导体设备企业带来了发展契机。中电科电子装备集团有限公司董事长、党委书记景璀表示,基于半导体设备行业“技术密集、人才密集、资金密集,回报周期长”的特点,国内先进的设备企业已经形成“研发先行,产业跟进,金融支撑”的发展模式,并具备以下三个特点:一是半导体设备行业集中度高。据中国电子专用设备工业协会统计,国内前十家半导体设备公司销售收入占国产设备企业销售收入总额的80%。设备龙头企业与制造领军企业在工艺与设备开发方面深度合作,不断强化龙头企业地位。二是国产半导体设备细分品种不断丰富,逐步步入产业化替代阶段。例如,北京烁科中科信公司目前已实现中束流、大束流、高能及第三代半导体等特种应用全系列离子注入机自主创新发展,工艺段覆盖至28nm。三是资本市场对半导体设备科技创新和产业化的支撑力度日益增强。2019年以来,多家企业借助科创板迅速实现IPO上市,募集资金,加速科研投入,产业化进一步提速。
  • 累计出货超300台!盛美半导体湿法设备2000腔顺利交付
    “盛美半导体设备”官方公众号消息,10月18日盛美半导体湿法设备2000腔顺利交付!累计出货超过300台设备。资料显示,盛美是国内集成电路湿法设备龙头企业。在清洗机和电镀机等领域,该公司形成了集成电路专用清洗系列设备(包括单片、槽式、单片槽式组合清洗、背面清洗、刷洗等)、前道铜互连及先进封装电镀设备、先进封装湿法设备和立式炉管设备等产品线,覆盖了集成电路前道、先进封装和晶圆制造领域。盛美董事长王晖表示,近几年,盛美半导体在清洗、镀铜和炉管等多个领域不断取得重大突破,并跻身全球半导体设备供应商前列。今天很高兴与大家共同见证盛美湿法设备2000腔成功交付这一重要时刻,这标志着盛美在行业细分市场树立了新标杆 ,同时在半导体设备领域跨越新征程、开启新篇章。
  • 德图隆重推出湿法脱硫出口SO2采样探针
    冲破技术难关 湿法脱硫出口SO2采样探针 ——全新Testo专利特殊低SO2采样探针 拥有50多年历史的德图公司,是世界上最大的便携式仪器制造商。在享有“测量专家”美誉的同时,德图公司始终根据市场和客户的需求,不断积极研发最新产品。近两年间,我们发现,湿法脱硫后SO2的测量是近两年来烟气测量中的典型问题。其原因为,湿法脱硫后气体湿度高(达到饱和湿度),温度低以及低SO2。这些因素是SO2气体测量中急需解决的难题。为了有效地解决测量中的这些问题,德图隆重推出了适用于湿法脱硫出口的全新测量解决方案,即“全新专利特殊低SO2采样探针”。正如其名,该采样探针已经在中国市场成功申请专利技术。 全新革命性测量方案 德图本着致力于未来的口号以及为用户提供最佳测量方案的原则,历经1年的研发,终于在2010年8月隆重推出了“全新专利特殊低SO2采样探针”,该技术的推出极大地简化了高湿低硫环境下SO2气体的测量。只需一个外观与普通采样探针极为相似的“全新专利特殊低SO2采样探针”,便可随时随地对高湿低硫环境下的SO2进行快速、便捷而精准的测量。该探针长700mm,其标准探针长度及重量与普通探针基本一致。配备标准2.2m耐硫采样管,最高耐温+200℃。整个测量系统无需使用交流电供电,测量便捷,响应快,并且能够保证测量精度。 全新测量方案的升级优势 在2009年6月德图即对高湿低硫环境下的SO2测量做出过解答:全加热型testo 350 Pro/XL,即标准testo 350 Pro/XL主机加全加热采样系统,其中含热采样管(加热温度+180℃)、加热手柄(加热温度+180℃),以及全加热采样软管(最高至+200 ℃,符合HJ/T397-2007标准)。这种全加热的测量方案在于对输气管路中的被测气体进行加热保温,随后进行过滤、除湿和气液分离的预处理,以防止采样气体中水分在连接管和仪器中冷凝干扰测定。 首先在价格方面,新系统省去了庞大的加热采样部分,也无需提供交流电,在节能的同时更为经济实惠。同时,新的测量测量系统的采样环节无需加热且响应快,大大节省了时间。在重量方面,也极为轻巧,便于携带。值得一提的是,新的测量系统经过多次比对试验,测量效果与全加热系统完全一致。 配备全新专利特殊低SO2采样探针的testo 350 Pro于德国Niederaussem 电厂湿法脱硫喷淋后端进行测量。 实验结果是:testo 350Pro配全新专利特殊低SO2采样探针,短时间测量可完全不使用交流电源,并且读数与在线或参比级光学仪器比对误差可达到±2 ppm。同时,测试结果还标明,即使在耐硫管的长度(10米)以及测量时长(22小时连续测量)的情况下,精度也不受影响。 随后,testo 350Pro再次转战至浙江两家电厂进行同样的测试,与此两家电厂的光学在线连续监测系统比对误差同样在±2 ppm。使用全新专利特殊低SO2采样探针可实现快速、精确并可靠的测量。 可见全新高湿低硫环境下SO2测量解决方案,不仅满足了特殊环境下的烟气测量分析,且改善了原有测量系统中的不足,为客户提供了有效、便捷、可靠的测量,堪称测量系统的一大革命。因为德图始终秉持着以客户的需求为本,不断追求创新与完善,与客户一起致力于未来。
  • 品类先锋用户心声|莱伯泰科-湿法消解新体验
    在科学仪器行业竞争日益激烈的现状下,为帮助仪器用户快速找出单品类仪器中的千里马or领头羊企业及产品,仪器信息网从2017年开始推出【品类先锋】服务,以“为用户推荐值得信赖的品牌及仪器”为核心宗旨,持续地挖掘、推荐细分领域的优质企业及仪器。今日分享的是电热消解仪品类先锋——莱伯泰科的用户心声,以下内容摘自“北京诺红诺德医药科技有限公司”艾敬亭老师分享的使用心得:莱伯泰科-湿法消解新体验我们实验中心一直用的是湿法消解的方式,即在样品处理的过程中,实验员需要用不同酸/混合酸/过氧化氢/其他氧化剂的混合液,在加热状态下将含有大量有机物的样品中的待测组分转化为可测定形态。我们之前用的是电炉子,电热板,后来由于样品太多,工作效率跟不上才重新买了新仪器,没想到这台仪器直接代替了2个实验员的工作。我们是于2020年4月买的D-MASTER,到现在近二年多的时间做了2万多样品,消解了近390批样品,每批60个样,通过大量的试验,证明了该仪器的优越性。今年8月份刚刚买了第二台这个仪器,已经安装开始使用了。D-master这个仪器,是在常压状态下消解样品,用户只需向消解管中称量所测样品,仪器按照软件指令完成自动添加试剂、摇匀样品、程序升温、赶酸、提升冷却、定容等一系列操作,软件操作简单,样品经D-master 处理后可直接进行AAS、ICP、ICP-MS等分析。从我的使用经验来看,它的优越性主要体现在以下4个方面:1、仪器采用创新的人工智能设计,让实验随时随地自主运行,是我的智能眼睛(1)无线控制,我无需守在实验室酸气弥漫的通风橱前控制仪器。(2)多端同时控制查看,手机、电脑、Pad可同时控制查看仪器状态,便于我在不同时间段监控实验。(3)预约开机功能,可以提前预置方法,让仪器在指定时间自主运行,真正实现让仪器替我加班。(4)视频监控系统,高清视频实时监看仪器运行状态,出现问题可立即停止仪器,修改方法,让我安心在家看仪器自己实验。2、仪器室全自动化样品处理过程,是我的智能手臂,让实验更简单(1)仪器可以自动添加试剂、自动混匀样品、自动升降、自动梯度升温、自动赶酸、自动定容,中途补酸可自动提升冷却,让繁琐的操作变成自动化操作。(2)方法运行结束可自动生成实验报告,有效提高实验人员工作效率。3、仪器采用创新的结构设计,杜绝酸气腐蚀,仪器运行更稳定,是我的长期实验室助理(1)仪器采用360°旋转机械臂,全密闭式结构设计,直接杜绝酸气和冷凝酸液对传动部位的腐蚀,保证仪器连续加液的稳定性。(2)仪器标配通风系统,不占用实验室通风橱空间,仪器电器件与通风系统隔离设计,确保仪器电器件不会被高温影响、不会被酸气腐蚀,仪器使用寿命更长。4、全方位的安全预警系统,保障实验过程顺利,是我安心实验的底气(1)语音提示系统,方法运行结束后语音提示,避免由于远程控制而忽略时间造成样品被余热蒸干的实验情况。(2)试剂余量实时监控,低于设定值则立即报警提示,补充试剂后报警消除。经过我大量的实验操作,和长期使用后仪器的表明,D-MASTER能满足我们做食品和药品的实验要求,建议有与我们样品相似的实验室可以用D-MASTER来试一下,的确是能够明显提高工作效率,降低我们实验员的工作强度,是湿法消解新体验。今天的分享就到这里结束啦。欢迎大家投稿,分享更多品类先锋仪器使用心得。投稿邮箱:wuqs@instrument.com.cn,一经采用,投稿人将获得仪器信息网提供的50—200元京东卡作为奖励,投稿人需备注姓名、所在单位。投稿要求:1、 所投文章必须完整且条理清晰,文中至少包含1张仪器图片(人与仪器合照更佳),且字数不少于500字。分享的心得需是仪器信息网品类先锋的仪器心得。(详情见附表)2、 内容至少包含以下文稿提纲中的任意三点,每个网友投稿数量不限。• 仪器发展简介• 仪器产品介绍、实际应用中解决了什么问题• 仪器推荐附:2022-2023年度品类先锋名录(排名不分先后)品类名客户名称紫外、紫外分光光度计、紫外可见分光光度计上海元析仪器有限公司上海美谱达仪器有限公司北京普析通用仪器有限责任公司原子荧光光谱仪(AFS)北京海光仪器有限公司原子吸收光谱(AAS)北京普析通用仪器有限责任公司液质联用(LC-MS)赛默飞色谱与质谱SCIEX中国液相色谱(LC)上海伍丰科学仪器有限公司华谱科仪(北京)科技有限公司热解析仪、热解吸仪、热脱附仪奥普乐科技集团(成都)有限公司北京中仪宇盛科技有限公司过程质谱/在线质谱上海舜宇恒平科学仪器有限公司气相色谱仪(GC)浙江福立分析仪器股份有限公司流动分析仪/流动注射分析仪(FIA SFA CFA)北京宝德仪器有限公司离子色谱(IC)青岛盛瀚色谱技术有限公司激光拉曼光谱(RAMAN)HORIBA 科学仪器事业部红外光谱(IR、傅立叶)赛默飞世尔科技分子光谱北京北分瑞利分析仪器(集团)有限责任公司核磁共振(NMR)布鲁克(北京)科技有限公司分子荧光光谱HORIBA 科学仪器事业部定氮仪、凯氏定氮仪、Dumas定氮仪艾力蒙塔贸易(上海)有限公司顶空进样器奥普乐科技集团(成都)有限公司吹扫捕集仪北京聚芯追风科技有限公司北京莱伯泰科仪器股份有限公司奥普乐科技集团(成都)有限公司PH计、酸度计上海仪电科学仪器股份有限公司(原上海精科雷磁)ICP-MS电感耦合等离子体质谱安捷伦科技(中国)有限公司ICP-AES/ICP-OES安捷伦科技(中国)有限公司自动电位滴定仪上海禾工科学仪器有限公司卡氏水分测定仪上海禾工科学仪器有限公司真空泵凯恩孚科技(上海)有限公司移液器、移液枪大龙兴创实验仪器(北京)股份公司研磨机、研磨仪、粉碎机、球磨机北京飞驰科学仪器有限公司北京格瑞德曼仪器设备有限公司蚂蚁源科学仪器(北京)有限公司旋转蒸发仪艾卡(广州)仪器设备有限公司(IKA 中国)洗瓶机/清洗机天津语瓶仪器技术有限公司美诺中国 Miele China微波消解仪培安有限公司上海屹尧仪器科技发展有限公司安东帕(上海)商贸有限公司北京莱伯泰科仪器股份有限公司天平德国赛多利斯集团平行真空蒸发仪天津市恒奥科技发展有限公司生物质谱广州禾信仪器股份有限公司离心机、实验室离心机湖南湘仪实验室仪器开发有限公司搅拌器、磁力搅拌器、电动搅拌器大龙兴创实验仪器(北京)股份公司废气/废水处理机四川优浦达科技有限公司电热消解仪、消化炉北京莱伯泰科仪器股份有限公司氮气发生器毕克气体仪器贸易(上海)有限公司氢气发生器毕克气体仪器贸易(上海)有限公司纯水器、超纯水器、纯水机、超纯水机上海乐枫生物科技有限公司高锰酸盐指数测定仪(CODMn)上海北裕分析仪器股份有限公司TOC分析仪/总有机碳分析仪艾力蒙塔贸易(上海)有限公司上海元析仪器有限公司COD测定仪/COD快速测定仪连华科技BOD测定仪/BOD快速测定仪连华科技总磷测定仪/总氮测定仪/总磷总氮测定仪连华科技水质分析仪/多参数水质分析仪连华科技氨氮测定仪/氨氮分析仪连华科技甲烷/非甲烷烃检测仪青岛明华电子仪器有限公司激光粒度仪HORIBA 科学仪器事业部丹东百特仪器有限公司珠海欧美克仪器有限公司比表面及孔径分析仪理化联科(北京)仪器科技有限公司贝士德仪器科技(北京)有限公司扫描探针显微镜SPM(原子力显微镜AFM、扫描隧道显微镜STM)Park帕克原子力显微镜高内涵细胞成像分析系统美谷分子仪器(上海)有限公司酶标仪/微孔板读板机美谷分子仪器(上海)有限公司生物安全柜力康集团
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制