三苄基吡喃甘

仪器信息网三苄基吡喃甘专题为您提供2024年最新三苄基吡喃甘价格报价、厂家品牌的相关信息, 包括三苄基吡喃甘参数、型号等,不管是国产,还是进口品牌的三苄基吡喃甘您都可以在这里找到。 除此之外,仪器信息网还免费为您整合三苄基吡喃甘相关的耗材配件、试剂标物,还有三苄基吡喃甘相关的最新资讯、资料,以及三苄基吡喃甘相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

三苄基吡喃甘相关的资料

三苄基吡喃甘相关的论坛

  • 甲撑苯并吡喃的问题?

    我气相打出来的“甲撑苯并吡喃”的峰有三个?因为没接触过这个原料,不知道是不是原料坏掉了,请问知道这个原料的大神科普下,谢谢!

  • ZetasizerNano软件报告模板的编辑和保存

    ZetasizerNano软件报告模板的编辑和保存

    [align=center][size=20px]Zetasizer[/size][size=20px] [/size][size=20px]N[/size][size=20px]ano[/size][size=20px]软件报告[/size][size=20px]模板[/size][size=20px]的[/size][size=20px]编辑[/size][size=20px]和保存[/size][/align][align=center][/align][align=right][size=16px]作者:[/size][size=16px]MP[/size][size=16px]_Sherry[/size][/align][align=right][/align][align=left]马尔文帕纳科(原马尔文)Zetasizer Nano系列是非常受欢迎的纳米粒度电位仪,面世二十余年有广大的使用群体。该系列是利用动态光散射技术和电泳光散射技术高精度测量纳米级颗粒粒度及其Zeta电位的先进分析仪器。广泛应用于生命科学、生物制药、纳米材料、油漆、油墨和涂料、食品和饮料、给药系统及科学研究等需要分析颗粒或分子大小以及Zeta电位的应用领域。[/align][align=left]软件为客户设计了通用的报告模板,在日常分析过程中,可以根据实际的需要,方便地运用Nano软件来创建个性化的分析报告。下面将详细介绍如何编辑并且保存报告模板:[/align]1. 打开软件报告编辑器,选择主菜单上Tools-Report Designer[img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211291546077634_9209_3895212_3.png[/img]2. 打开一个现有的报告模板,点击Open图标,跳出模板选择对话框,我们的模板文件必须保存在Malvern Instruments-Zetasizer Software下的Pages文件夹(具体的位置请在电脑中搜索此文件夹),按照所需的模板进行选择,以下为最常用的光强分布粒径报告模板Intensity PSD(M)为例。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211291546083257_2654_3895212_3.png[/img][/align][align=center][/align][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211291546081556_6199_3895212_3.png[/img][align=left]3. 在现有模板上进行修改。同一个模板有两种显示模式,Screen layout屏幕布局和Page Layout页面布局,前者是软件上该模板的显示内容,后者是打印报告时的显示内容,需要在哪个布局上显示修改,就在切换到哪个布局上进行编辑。[img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211291546087381_7474_3895212_3.png[/img][/align][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211291546083872_5570_3895212_3.png[/img]对报告模板的修改通常是添加新的参数或者文本。[img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211291546089815_3306_3895212_3.png[/img]4. 注意,修改完成后,将模板另存为新的模板文件,不要直接点击Save保存,标准模板是不允许直接修改保存的。保存时有两个地方需要输入新的模板名字,一是报告编辑器左上角文本框内;另一个是File-Save As另存为。 两个地方输入的名字要是相同的。[img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211291546087198_1436_3895212_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211291546088350_9775_3895212_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211291546089573_9036_3895212_3.png[/img]5. 新模板的选择:将报告编辑器和Nano软件关闭,重新打开Nano软件,在Configure中Report Pages找到新存的模板名称,选中画勾,就能在Nano软件的报告选项卡上显示了。[img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211291546095194_2033_3895212_3.png[/img]需要看该报告的结果或者打印该页报告,就将选中的记录切换到该报告卡后查看或者打印。

三苄基吡喃甘相关的方案

三苄基吡喃甘相关的资讯

  • NgAgo最新成果:可抑制乙肝病毒复制 但非“基因编辑”
    p   2016年5月2日,河北科技大学副教授韩春雨课题组在Nature Biotechnology上发表了关于NgAgo基因编辑技术的论文,引发了科学界的强烈关注。然而,从一开始被认为是颠覆性的技术,到不久后大批科学家表示无法重复这一研究成果,现在,NgAgo是否具有“基因编辑”功能还是个大大的问号。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/a76bae8c-3d73-47f3-80d8-0eee2c4a4cfa.jpg" title=" 1.png" / /p p style=" text-align: center " 图片来源:Nature Biotechnology /p p   关于这一事件的最新动向还停留在今年5月。5月9日,Nature Biotechnology(NBT)发布了一则“编辑部关切”。文中称,NBT的编辑注意到了读者们对有关NgAgo论文重复性的担忧。此前NBT杂志也发布了韩国、德国、美国三个小组的研究结果(http://dx.doi.org/10.1038/nbt.3753)。他们试图重复原始论文中关键的Figure 4中的结果。然而,没有一个小组在任何位点或任何条件下观察到任何由NgAgo诱导的突变。此外,另一个不同研究小组也在Protein & amp Cell杂志上报道了相似的结果(doi:10.1007/s13238-016-0343-9)。 /p p   NBT编辑部称,他们已经与原始论文的作者们进行联系。作者们正在调查研究结果缺乏重复性的潜在原因,并已被通知NBT会发表这则声明。一旦相关调查完成,NBT将会更新最新的进展。 /p p   同月20日,央视CCTV13《新闻调查》栏目用43分钟的长视频对截止到当时的事件发展过程和最新进展进行了报道。之后的两个月,鲜有关于这一事件的最新报道。 /p p    strong 最新成果:NgAgo可抑制乙肝病毒复制 /strong /p p   近日,小编注意到,一个中国研究团队发表了一项关于NgAgo的新成果。首先需要强调的是,该研究也未证实NgAgo的基因编辑功能。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/bbafb9e8-b2b1-4908-9f3b-c160e1c6b44f.jpg" title=" 2.png" / /p p style=" text-align: center " 图片来源:Antiviral Research /p p   具体来说,7月11日,发表在Antiviral Research杂志上题为“NgAgo-gDNA system efficiently suppresses hepatitis B virus replication through accelerating decay of pregenomic RNA”的论文中,来自山东大学等机构的研究人员证实,NgAgo-gDNA系统能够通过促进pgRNA(pregenomic RNA)的降解有效抑制乙肝病毒的复制。 /p p   该研究在结论中称,这一研究结果首次证明了NgAgo/gDNA在抑制乙肝病毒复制方面的潜力。研究发现,抑制效果明显与gDNA靶向区域(gDNA targeting region)有关。此外,尽管HBsAg(hepatitis B surface antigen,乙肝表面抗原)、HBeAg(hepatitis B e-antigen,乙型肝炎E抗原)和pgRNA的水平明显下降,但作者们未能检测到NgAgo的任何DNA编辑能力。最后,作者们证明,NgAgo/gDNA显著缩短了乙肝病毒pgRNA的半衰期。他们认为,这些结果为将NgAgo/gDNA系统用于控制病毒感染提供有趣的线索。 /p p    strong 前情回顾:基因敲低、切割RNA,反正就不是基因编辑 /strong /p p br/ /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/f9d1f115-4be5-4e50-bb36-67cfea0da86b.jpg" title=" 3_副本.jpg" / /p p style=" text-align: center " 图片来源:Cell Research /p p   事实上,关于NgAgo的“非基因编辑”功能,去年Cell Research 杂志上的一篇论文也有报道。在这篇题为 NgAgo-based fabp11a gene knockdown causes eye developmental defects in zebrafish 的文章中,南通大学神经再生重点实验室副教授刘东团队观察到,NgAgo 确实可以改变斑马鱼的表型,但这并非是通过基因编辑实现的。团队通过实验得出结论,NgAgo 系统可以在不改变目标基因序列的情况下,对基因表达实现 knockdown(即下调其目标 mRNA 表达水平),且这可能与 NgAgo 的基因剪切活性没有关系。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/c4f7edbf-20ab-4b59-a321-46f80c6d3b88.jpg" title=" 4.png" / /p p style=" text-align: center " 图片来源:BioRxiv /p p   此外,今年1月,在生命科学预印本网站BioRxiv上,来自韩国的一个研究小组发表的题为“DNA-dependent RNA cleavage by the Natronobacterium gregoryi Argonaute”的成果指出,NgAgo能作为一种DNA引导的核酸内切酶切割RNA,而不是DNA。这意味着NgAgo或许可以作为“RNA干扰”的一种工具发挥作用。 /p
  • “基因编辑婴儿”案贺建奎已释放,曾获刑三年
    “基因编辑婴儿”案被告人、南方科技大学原副教授贺建奎近期已刑满释放。4月7日,健康时报接通了贺建奎的电话,对方确认为本人接听,但表示不方便通话。贺建奎曾入选《Nature》年度十大科学人物2018年11月26日,贺建奎因“基因编辑婴儿”事件引发轩然大波。业内专家对实验的动机和必要性、实验过程的合规性、实验影响的不可控性都提出质疑。2019年1月21日,南方科技大学研究决定解除与贺建奎的劳动合同关系,终止其在校内一切教学科研活动。2019年12月30日,“基因编辑婴儿”案在深圳市南山区人民法院一审公开宣判。贺建奎等3名被告人因共同非法实施以生殖为目的的人类胚胎基因编辑和生殖医疗活动,构成非法行医罪,分别被依法追究刑事责任。法院依法判处被告人贺建奎有期徒刑三年,并处罚金人民币三百万元。贺建奎简介贺建奎,男,原南方科技大学副教授,主要研究实验室用物理,统计和信息学的交叉技术来研究复杂的生物系统。研究集中于免疫组库测序,个体化医疗,生物信息学和系统生物学。贺建奎拥有多学科交叉的背景,并在基因测序仪研究, CRISPR基因编辑,生物信息学等多个领域取得研究突破。他的实验室将高通量测序应用到免疫细胞受体库的多样性研究。2018年11月26日,贺建奎“基因编辑婴儿”事件引发轩然大波。业内专家对实验的动机和必要性、实验过程的合规性、实验影响的不可控性提出质疑。2018年12月19日,贺建奎入选《Nature》年度十大科学人物。2019年1月21日,从广东省“基因编辑婴儿事件”调查组获悉,现已初步查明,该事件系南方科技大学副教授贺建奎为追逐个人名利,自筹资金,蓄意逃避监管,私自组织有关人员,实施国家明令禁止的以生殖为目的的人类胚胎基因编辑活动。2019年1月21日,南方科技大学研究决定解除与贺建奎的劳动合同关系,终止其在校内一切教学科研活动。 2月12日,斯坦福大学正在按照程序,对校内与贺建奎有关的研究人员进行审查。 [4] 2019年2月,开展基因编辑婴儿实验的原南方科技大学副教授贺建奎的一篇研究论文被撤稿。 2019年4月18日,上榜美国《时代》杂志(Time)2019年度全球百位最具影响力人物榜单。 2019年12月30日,“基因编辑婴儿”案在深圳市南山区人民法院一审公开宣判,贺建奎被依法判处有期徒刑三年,并处罚金人民币三百万元。
  • 热电公司LTQ Orbitrap荣获PITTCON 2006“编辑推荐金奖”(图文)
    沃尔瑟姆市,麻省(2006年3月24日)-在北美最大的实验室设备和科学仪器展览会PITTCON® 2006上,作为世界领先的分析仪器研发和制造公司-热电公司(Thermo Electron Corporation,NYSE:TMO)荣获了”编辑推荐金奖”(Gold Editor’s Award)。在超过1000个参展商中,热电公司的LTQ™ Orbitrap™ 多级线性离子阱和静电场轨道阱串联组合高分辨质谱仪获得最佳新产品奖。 LTQ Orbitrap多级串联组合高分辨质谱仪凭借其更出众的质量分辨率、质量精密度和动态检测范围等性能,完全超越了现有的飞行时间(TOF)质谱系统。并广泛应用于小分子研究、蛋白质组学、代谢组学和药物开发等领域。 “在离子阱技术发明20年来,获得专利技术的LTQ Orbitrap,无疑是质谱界内最重大的技术革新。这些技术上的进步,使得LTQ Orbitrap的检测速度更快,并具有更高的精度和可靠性。”热电公司高级副总裁Marc N. Casper先生在评价LTQ Orbitrap时,表示:“事实上,与我们的客户一样, LTQ Orbitrap的出品及其在全球各个实验室,参与进行各种前沿领域研究的卓越表现都令人兴奋异常。 在过去的几年中,热电公司一直致力于研发世界上最具潜力的组合型质谱系统。早在三年前PITTCON上,FinniganTM LTQ FT,就已获得了编辑推荐银奖。 另外,在PITTCON 2006上,除了明星产品“LTQ Orbitrap“,热电公司还展示其完整的试验室解决方案:从样品制备到分析检测,又从数据解析到数据存储、管理。同时,隆重推出了最新的“实验室-生产线”解决方案――过程分析技术(PAT)和应对欧盟限制有害物质指令(RoHS)的完整方案。 在获得PITTCON编辑推荐金奖前,仪器市场展望(Instrument Business Outlook,IBO)已授予热电公司“2005年度公司”这一殊荣。该奖项确认了热电公司在分析和科学仪器市场中的领导地位;同时,也是对其强劲的财政和运营表现以及在分析仪器领域作出的杰出技术贡献的又一次肯定。登陆http://www.thermo.com获取完整的IBO报告。关于热电公司 热电公司是世界领先的分析仪器研发和制造公司。该公司为客户提供仪器解决方案使整个世界更健康、更干净、更安全。热电生命和实验室科学部分为生命科学、新药开发、临床医学、环境和工业实验室提供分析仪器、科学设备、服务和软件方案。热电测量与控制部分致力于将分析仪器应用于各种生产制造过程及安全和国防领域。欲获取更多信息,请浏览该公司网站:http://www.thermo.com。

三苄基吡喃甘相关的仪器

  • 全新 Agilent 7010C 三重四极杆气质联用系统是安捷伦 GC/TQ 产品系列中十分灵敏的仪器。对于灵敏度要求极高的应用,如分析二恶英和呋喃,配备高效离子源 (HES) 的 7010C GC/TQ 正是理想之选,检测限低至阿克级。创新的先进 GC/TQ 智能功能包括 SWARM 自动调谐(完成速度是前几代产品的两倍)、新的数据采集模式(如触发式 MRM (tMRM)、同步动态 MRM 和扫描 (dMRM/scan)),以及可大幅缩短仪器停机时间的诊断工具。使用适用于气相色谱三重四极杆的 MassHunter Optimizer 可以实现完全自动化,并轻松完成方法开发以及从 Agilent 5975 或 5977 GC/MSD 进行的方法迁移。 即使对于复杂基质样品,高效离子源 (HES) 也可提供可靠的超痕量分析,并且 Agilent JetClean 智氢洁离子源可减少甚至避免手动清洁离子源安捷伦参比化合物进样阀可轻松分析环境中的二恶英,同时满足 EPA 批准的替代检测程序的要求和严格的方法检测限数据采集模式(如数据依赖型 tMRM 以及同步 dMRM 和扫描模式)可实现靶向筛查,并在单次运行中对数百种分析物进行可靠定量包含诊断功能的 SWARM 自动调谐速度是原来的两倍,结合 8890 和 Intuvo GC 的内置智能功能,通过集成触摸屏和浏览器界面改进了系统诊断并简化了多功能操作可加热镀金四极杆、三轴 HED-EM 检测器和快速排气功能可降低中性噪音并缩短仪器冷却时间,从而提高质谱仪的性能Agilent MassHunter 软件不仅能简化工作流程,还能全面控制从调谐到数据分析和报告生成的整个过程MassHunter Optimizer 软件可轻松将 GC/MSD 方法转移至 GC/TQ,并使用保留时间锁定软件可重现地在气相色谱系统之间转移方法内置技术控制功能与程序控制相结合可确保数据安全并控制访问,帮助您遵循 US FDA 21 CFR Part 11、欧盟附录 11 及类似的国家电子记录法规的要求安捷伦农药与环境污染物 4.0 数据库包含 1100 多种化合物,其中包括每种化合物的多个离子对以及 7500 多个基质优化的 MRM 离子对,有助于分析人员建立基质干扰更低的采集方法为了做出更明智、更具发展持续性的选择,安捷伦与 My Green Lab 合作,对 7010C GC/TQ 进行独立审计,确保满足归责性、一致性和透明度 (ACT) 标签的要求
    留言咨询
  • Thermo ScientificTM Orbitrap FusionTM 是赛默飞最高端的四极杆-静电场轨道阱-线性离子阱三合一组合式质谱。Fusion使用的Orbitrap为超高场Orbitrap质量分析器,相比于赛默飞其他Orbitrap系列产品,Fusion具有超高分辨、高灵敏度、多级质谱能力,并且配备多种裂解模式(CID、HCD及可升级的ETD),非常适合蛋白质组学中复杂体系的高通量蛋白检测。1) 离子源 Orbitrap Fusion配置的是赛默飞新一代的Easy Max NG离子源,具有加热型HESI源和APCI源一体化设计,只需要更换喷针即可实现ESI源和APCI源的切换。Easy Max NG源的另一个特点是集成式气路电路设计,安装Easy Max NG源时即可自动完成气路和电路的连接,不需要进行额外的操作。同时质谱系统还可自动识别源的类型,真正实现了智能化操作。对于蛋白质组学研究客户,除了标配的Easy Max NG离子源之外,有Nanospray Flex Ion Source NG和Easy-Spray nano-Electrospray Ion Source NG两种nanoESI源可供选择。 2) 离子传输部件 离子传输部件采用了S-lens设计,S-lens的离子传输效率是传统的tube lens的数倍,除了S-lens透镜组外,离子传输部件还采用了弯曲的方形离子传输四极杆,质谱离子化时会产生一些中性粒子,这些中性粒子很容易惯性飞行到检测器,被检测器检测到从而产生中心噪音。弯曲的离子传输四极杆可以有效阻挡样品离子中的中性粒子,降低噪音,提高灵敏度。 3) 四极杆质量分析器 主四极杆是Q Exactive上使用的赛默飞专利的同类双曲面四极杆,可以对离子进行过滤筛选,母离子选择窗口可调,可以根据自己实验的要求选择不同质荷比范围的离子通过四极杆进入到后方静电场轨道阱检测,既可进行数据依赖的二级或多级子离子扫描,也可进行非数据依赖的二级子离子扫描。 4) C-trap和离子传输多极杆 C-trap将离子冷却聚焦,传输到Orbitrap进行高分辨扫描。离子传输多极杆是Fusion的核心部件之一,离子进入到离子传输多极杆后可以做两个方向传输,第一就是传输到离子阱,进行快速的碎裂和子离子扫描,第二是经过C-trap进入Orbitrap,进行高分辨扫描。除此之外,离子传输多极杆同时又是一个高能裂解碰撞池,可对母离子进行HCD裂解。离子传输多极杆既可以将离子进行正向和反向传输,又可对离子进行HCD裂解,从而使得Fusion可以在任意阶段选择任意质量分析器进行任意裂解模式的碎裂和扫描。 5) Orbitrap超高静电场轨道阱 Orbitrap Fusion为新一代超高场Orbitrap技术,相比上一代Orbitrap产品,超高场Orbitrap阱的体积缩小,电压提高,从而使分辨率获得提高。同时超高场Orbitrap采用了独特的FT信号处理系统、新型离子传输透镜,从而改善进入Orbitrap质量分析器的离子光学传输。 (Orbitrap 原理:静电场轨道阱Orbitrap是1999年,由俄国科学家MAKAROV发明的一种新型的质谱仪,其质量分析器形状似纺锤体,由纺锤形的中心内电极和左右2个外纺锤半电极组成。Orbitrap对离子的操作步骤分为离子捕获,旋转运动,轴向振动和镜像电流检测。仪器工作时,在中心电极上逐渐加上直流高压,在Orbitrap内产生特殊几何结构的静电场。当离子进入到Orbitrap室内后,受到中心电场的引力,开始围绕中心电极做圆周轨道运动,m/z高的离子有较大的轨道半径。同时离子受到垂直方向的离心力和水平方向的推力,而沿中心内电极作水平和垂直方向的震荡。外电极除限制离子的运行轨道范围,同时检测由离子振荡产生的感应电势,其中水平振荡的频率和分子离子的m/z关系可有公式来描述,由方程可见轴向频率ω与离子的初始状态无关,这造就了Orbitrap的高分辨率和高质量精确度,频率由傅里叶转换成频域谱,再转换成质谱。此外和其他质谱仪不同,Orbitrap既是质量分析器又是检测器,是无损的不需要定期更换。) 6) 双压线性离子阱 Fusion的离子阱设计为高压阱和低压阱两个部分,离子阱技术采用氦气冷却打碎离子,高压氦气有利于离子的捕获、冷却和解离,低压氦气有利于离子的扫描。双压线性离子阱采用高压和低压两个离子阱,高压单元的离子捕获能力提高,离子碎裂时间缩短,低压单元扫描速度加快,质谱分辨率提高,这一双阱优化设计使得离子检测的各过程在最佳的氦气压力下进行,实现了最快的扫描速度,更多的扫描,更高的分辨率。CID裂解在离子阱中进行。 7) ETD(选配) ETD为电子转移裂解(Electron Transfer Dissociation)的简写。ETD裂解的原理是利用阴离子自由基向带正电荷的肽阳离子转移电子,在此过程中产生的化学能量将肽段碎裂。相较于传统的CID裂解和HCD裂解,ETD裂解能够使蛋白质或肽段离子在肽骨架上发生碎裂,即使不依赖蛋白质酶解技术都能够获得很好的肽段碎片信息,并且不会破坏蛋白质或肽段上带有的翻译后修饰基团,因此十分有利于翻译后修饰蛋白质组学和Top-down蛋白质组学研究。Fusion的ETD是不同于以往产品的全新设计,采用汤森德放点原理产生电子,用于和荧蒽反应产生ETD阴离子反应气,调谐更为简单,产生的阴离子反应气流十分稳定,使ETD操作更为简便。
    留言咨询
  • 1国产品牌滤芯均为我司生产的替代原厂品牌滤芯,其过滤滤材采用德国原装进口HV公司产品,注册商标为“佳洁”牌。本公司涉及的其它品牌均无品牌意义,只是作为产品型号参照和客户选型对照使用。进口滤芯和过滤器为原装进口,有防伪标志。我司长期为国内各大企业贴牌生产各种款式的压缩空气精密过滤器滤芯 公司供应;避难硐室用三级过滤器空气净化系统,硐室压风三级过滤装置,避难硐室三级过滤器,三级过滤器, 本系统利用硐室前预埋的压风管路作为气源,经过阀门后先进入过渡舱内设置的水、灰尘、油的三级过滤,然后经过预先设置的减压器、管路进入气体输出端,采用C、T、A三级过滤,达0.01μm粒径的杂质及油滴滤除,使经过滤的空气达到医疗用气的水准,从而转到每人手中的呼吸面罩中,为避难所内避险人员提供更加新鲜、舒适的空气。我公司专做避难硐室用压风供氧系统专用配置,整套压风系统由压风供氧装置、三级过滤器、减压器、消声器、流量计、控制阀、接头、弯头等组成,主要技术参数 人均供风量≥0.3m3/min; 避难所内氧气浓度18.5~22.0%; 减压器入口压力≥0.8MPa、出口压力0~0.6MPa(可调节)、输出流量不小于36m3/min; 1.控制在连续噪音不大于70dB(A),使用声级计在发生噪声源距离1m点进行测试, 2.三级过滤器 采用T/A/H三级精密过滤,使小达0.01μm粒径的杂质及油滴滤除,使经过滤的空气达到医疗用气的水准。 入口压力:0.7~0.8Mpa,出口压力:0.2~0.3Mpa。 选用大流量调压阀对压风进行减压,压风流量达到0.3m3/人分钟。 选用大流量空气过滤器,压风流量达到0.3m3/人分钟 (二)压缩氧氧供气系统 本系统可对避难硐室的氧气供应实现手动或自动控制,当打开防爆电磁阀时开始向管路通充氧,实现供氧要求。 主要功能 当地面压风系统在井下的管路会遭到严重破坏时仍能有效地供氧。并根据实际情况调节控制压缩氧气的供应量,人体正常生存呼吸。 工作原理: 该装置是利用储存在钢瓶中的医用压缩氧气,通过供氧控制装置为避险人员输出规定数值的氧气。在生存硐室内放置的钢瓶,出口经高压管路并联后集中后一次通过防爆电磁阀、气压表、减压阀和气体流量计,将来自于氧气瓶中的医用压缩氧气压力输入到每个人手中的呼吸面罩中。 供氧量:0.5升/分钟/人 含氧量:氧气浓度维持在18.5%~23%之间 救生舱压风过滤系统 1. 解决方案 采用三级空气过滤器,可滤除强压风中的0.01微米和更大的固态与液态颗粒;残 留油份含量0.01ppm w/w 采用大流量气体减压器,可将压风压力从0.8MPa调压到0.1-0.3MPa 末端安装品质,可将压风噪音降到70dB一下 提供向气幕及喷淋供气的管路接口及控制阀 可连接空气制冷管,利用压风产生制冷效果 2. 技术参数 选用的空气过滤器,流量符合每人每分钟0.3m3的压风供气要求 选用的气体减压器,满足每人每分钟0.3m3的流量要求,可调压力0.1-0.3MPa 选用的,可将压风噪音将至70dB一下 压风管道管径,满足供气量要求 整体通过0.9MPa的氮气试压,符合气密性试验要求,采用1.75MPa水压试验,符合整体管路的强度要求
    留言咨询

三苄基吡喃甘相关的耗材

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制