当前位置: 仪器信息网 > 行业主题 > >

物理吸附分析仪

仪器信息网物理吸附分析仪专题为您提供2024年最新物理吸附分析仪价格报价、厂家品牌的相关信息, 包括物理吸附分析仪参数、型号等,不管是国产,还是进口品牌的物理吸附分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合物理吸附分析仪相关的耗材配件、试剂标物,还有物理吸附分析仪相关的最新资讯、资料,以及物理吸附分析仪相关的解决方案。

物理吸附分析仪相关的论坛

  • 蒸汽吸附分析仪在气溶胶吸湿性研究中的应用

    [font=arial, helvetica, sans-serif][color=#000000]大气气溶胶是指悬浮在大气中的固体和液体颗粒共同组成的多相体系。人们所处的大气环境实际就是由不同相态的颗粒物均匀分散在空气中形成的一个气溶胶体系。常见的大气气溶胶包括直接排放至大气的沙尘、道路扬尘和黑炭等一次颗粒物,以及通过化学反应形成的二次颗粒物,例如二氧化硫和氮氧化物通过大气氧化形成的硫酸盐和硝酸盐等。由于大气气溶胶的环境、气候及健康效应,在过去几十年里,对它的理化性质的研究正日益受到包括化学家、环境学家等科学家等的重视。[/color][/font][font=arial, helvetica, sans-serif][color=#000000]吸湿性是气溶胶最重要的物理化学性质之一(Tang et al., 2019a)。例如对于研究大气化学来说,吸湿性会影响实际环境条件下大气颗粒物的含水量,从而会影响颗粒物的大气化学反应活性;从大气能见度和直接辐射强迫的角度来看,在实际大气环境中,颗粒物吸水会导致其粒径增大,从而影响颗粒物的光学性质,继而影响气溶胶的消光系数、对能见度的影响以及对直接辐射强迫的影响;另外,气溶胶的吸湿性也与气溶胶颗粒物的云凝结核活性和冰核活性密切相关。[/color][/font][font=arial, helvetica, sans-serif][color=#0070c0]1. 已有吸湿性测量技术的局限性[/color][/font][font=arial, helvetica, sans-serif][color=#000000]现有研究中常用的吸湿性测量技术主要有吸湿性分级差分迁移率分析仪(H-TDMA)、电动力天平、显微镜以及红外光谱等(Tang et al., 2019a)。目前最常用的吸湿性测量技术为H-TDMA,该仪器是通过测定不同相对湿度下气溶胶的电迁移率直径来研究其吸湿性。使用该仪器对气溶胶的吸湿性进行表征时,必须假设气溶胶为球形,但某些颗粒物的形貌并不规则,例如花粉、烟炱以及矿质颗粒物等。另外,H-TDMA的测量精度较为有限,仅可测定颗粒物大于1%的直径变化。[/color][/font][font=arial, helvetica, sans-serif][color=#000000]电动力天平是通过测量单个颗粒物的质量变化来研究其吸湿性,虽然它对颗粒物的形貌没有要求,但该仪器的灵敏度同样比较有限,一般只能测量大于1%的质量变化。此外,显微镜也常用于测量颗粒物的吸湿性,它可以通过测量颗粒物的形貌变化来直接观察颗粒物粒径的大小变化从而研究其吸湿性。然而该技术同样基于球形颗粒物的假设,且灵敏度有限。另外,红外光谱是一个非常灵敏的吸湿性测量方法,该方法通过测量颗粒物中水的红外光谱来研究吸湿性,但把颗粒物中水的红外吸收光谱定量转换为颗粒物的含水量时存在一定的限制。[/color][/font][font=arial, helvetica, sans-serif][color=#0070c0]2. 蒸汽吸附分析仪[/color][/font][font=arial, helvetica, sans-serif][color=#000000]虽然目前用于颗粒物吸湿性的测量手段较为丰富,但准确测定非球形的或者吸湿性较弱的颗粒物的吸湿性仍然是一个很大的挑战。本课题组自主开发和建立了使用蒸汽吸附分析仪测量大气颗粒物吸湿性的新方法,相关研究成果由Atmospheric Measurement Techniques发表(Gu et al., 2017a)。该方法通过测定不同相对湿度下颗粒物的质量变化来研究其吸湿性,其原理如图1所示。[/color][/font][align=center][img=图片1.png]https://img1.17img.cn/17img/images/202104/uepic/616e1c5d-0f0c-45d0-8af1-47ca370a87e5.jpg[/img][/align][align=left]更多详见:[url]https://www.instrument.com.cn/news/20210420/578041.shtml[/url][/align]

  • 物理吸附表征内容及用途

    物理吸附表征内容及用途

    [img=物理吸附分析仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241453158294_7217_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附分析仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241453167774_606_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附分析仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241453176504_5804_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附分析仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241453187644_1453_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附分析仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241453197634_9209_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附分析仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241453207914_2001_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附分析仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241453213382_5685_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附分析仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241453223122_7380_3904283_3.jpg!w690x517.jpg[/img]

  • 吸附分离技术

    吸附分离技术一、吸附分离技术概论1.吸附:是指物质从气体或液体浓缩到固体表面从而达到分离的过程。 2.吸附的机理3.吸附的分类物理吸附l 分子间力(范德华力)引起l 没有选择性l 吸附速度快、解吸容易 化学吸附l 化学反应,形成牢固的化学键l 有选择性l 吸附慢、不易解吸 4.吸附分离技术的特点n 操作简便、设备简单、价廉、安全;n 常用于从大体积料液(稀溶液)中提取含量较少的目的物;n 不用或少用有机溶剂,吸附和洗脱过程中pH变化小,较少引起生物活性物质的变性失活; n 选择性较差,收率低(人工合成的大孔网状聚合物吸附剂性能有很大改进)。5.吸附分离技术的应用方式n 如果需要的组分较易(或较牢固地)被吸附,可在吸附后除去不吸附或较不易吸附的杂质,然后再将样品洗脱; 二、吸附剂1.传统吸附剂(1)活性炭n 活化:使用前应加热烘干,以除去大部分气体。对于一般的活性炭可在160℃加热干燥4~5小时;锦纶活性炭受热易变形,可于100℃干燥4~5小时。(2)硅胶n 适用对象: 可用于萜类、固醇类、生物碱、酸性化合物、磷脂类、脂肪类、氨基酸类等的吸附分离。n 活化: 硅胶一般于105~110℃加热干燥1~2小时后使用。活化后的硅胶应马上使用,如当时不用,则要贮存在干燥器或密闭的瓶中,但时间不宜过长。(3)氧化铝n 适用对象:特别适用于亲脂性成分的分离,广泛应用在醇、酚、生物碱、染料、苷类、氨基酸、蛋白质以及维生素、抗生素等物质的分离。 n 种类:n 活化:在使用前150℃下加热干燥2小时,除去水分以使其活化。 2.大孔吸附树脂 大孔吸附树脂是一种具有多孔立体结构人工合成的聚合物吸附剂,是在离子交换剂和其它吸附剂应用基础上发展起来的一类新型吸附剂,是依靠它和被吸附的分子(吸附质)之间的范德华引力,通过它巨大的比表面进行物理吸附而工作的。在实际应用中对一些与其骨架结构相近的分子具很强的吸附能力。 (1)大孔吸附树脂的特点n 选择性好,解吸容易,机械强度好,可反复使用和流体阻力小;n 其孔隙大小、骨架结构和极性,可按照需要,选择不同的原料和合成条件而改变,因此可适用于各种有机化合物;n 使用时无需考虑盐类的存在。 (2)大孔吸附树脂的类型n 非极性大孔吸附树脂 XAD-1?? XAD-5n 中等极性大孔吸附树脂 XAD-6?? XAD-7n 极性大孔吸附树脂 XAD-9~ XAD-12和XE(3)大孔吸附树脂的选择n 吸附物的极性 非极性吸附剂易吸附非极性物质(从极性溶剂如水中);极性吸附剂易吸附极性物质(从非极性溶剂中);中等极性的吸附剂则对上述两种情况都具有吸附能力 三、影响吸附的因素1.吸附剂的性质 (1)比表面积:与吸附容量有关(2)孔径:与吸附速度有关(3)极性大小:与吸附力的强弱有关 表面具含氧官能团如-COOH、-OH等,有助于对极性分子的吸附。 2.吸附质的性质(1)溶质从较易溶解的溶剂中被吸附时,吸附量较少。所以极性物质适宜在非极性溶剂中被吸附,非极性物质适宜在极性溶剂中被吸附。 3.操作条件的影响作业1.常用的吸附剂有哪些?使用前如何活化?2.如何选用活性炭?3.大孔吸附树脂和传统的吸附剂比有何优越性?4.选择大孔吸附树脂应考虑哪些因素?

  • 材料表征之物理吸附

    材料表征之物理吸附

    [img=材料表征之物理吸附,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241040543064_4373_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241041301720_2977_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附分析仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241043459714_5656_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241044185308_7597_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241044444424_9357_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附表征,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241045065334_3428_3904283_3.jpg!w690x517.jpg[/img][img=材料表征之物理吸附,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241045557845_1528_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241045552293_6474_3904283_3.jpg!w690x517.jpg[/img]

  • 【分享】重量分析技术在吸附研究中的应用

    英国Hiden公司设计的智能重量法吸附分析仪IGA是目前重量分析仪中功能最全的商业化仪器。在全世界的吸附研究领域有着广泛的用户。他们利用IGA对自己的研究实验进行分析表征,取得了辉煌成绩。在Nature和Science上均有多偏文章发表.ps :重量分析技术是新东西吗?什么时候出来的,期待回答!!

  • 【原创】大昌华嘉“吸附仪在新材料上的应用”全国巡讲

    2011年3月22日大昌华嘉商业(中国)有限公司在广州中山大学举办了“吸附仪在新材料上的应用”研讨会。来自高校和科研院所的专家和技术人员100余人出席研讨会。此次研讨会主讲人是日本拜尔BEL公司Keita Tsuji博士。 在研讨会之前,王磊经理首先向大家介绍了大昌华嘉公司的历史及发展现状。大昌华嘉是一家具有200年历史的瑞士国际集团,作为BEL比表面分析仪,Kruss接触角测量仪,Microtrac激光粒度产品在中国总代理,负责其所有产品、技术的推广销售和服务。 日本BEL公司专业研究生产容量法气体吸附分析仪的专业制造厂商,推出一批又一批吸附领域的前沿技术。多站式蒸汽吸附仪系统和多站式化学吸附仪系统,将仪器测定的高效率和高精度完美结合起来。   http://bimg.instrument.com.cn/lib/editor/UploadFile/20114/20114185116423.jpg 会上Tsuji博士介绍了国际上第一双站微孔吸附仪在2006年面试,唯一一个使用0.1Torr压力传感器系统,多站式蒸汽吸附仪系统和多站式化学吸附仪系统,将仪器测定的高效率和高精度完美结合起来。固体电解质膜水分吸附和质子传导分析仪,燃料电池综合评价装置等,极大地丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。 物理吸附同步连接XRD、GC、磁悬浮天平 化学吸附仪链接质谱、红外、低温脉冲和TPR 高压吸附仪在储氢材料的应用   http://bimg.instrument.com.cn/lib/editor/UploadFile/20114/20114185116575.jpg

  • 【我们不一YOUNG】气味风味分析---- 热脱附分析

    [align=center]【我们不一YOUNG】气味风味分析---- 热脱附分析[/align][font='times new roman'][size=13px]热脱附实际上是一种[/size][/font][font='times new roman'][size=13px]GC[/size][/font][font='times new roman'][size=13px]进样技术或样品引入方式。热脱附是利用加热方式,将样品中的挥发性有机化合物及半挥发性有机物形式被释放。我们知道标准[/size][/font][font='times new roman'][size=13px]GC[/size][/font][font='times new roman'][size=13px]进样[/size][/font][font='times new roman'][size=13px] ([/size][/font][font='times new roman'][size=13px]液体或顶空[/size][/font][font='times new roman'][size=13px]) [/size][/font][font='times new roman'][size=13px]进样时间在几毫秒到几秒之间瞬间完成,固相微萃取[/size][/font][font='times new roman'][size=13px]SPME[/size][/font][font='times new roman'][size=13px]也是比较快的,样品组分很快进入[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱。而热脱附的样品热脱附则需要更长时间,化合物传输在几分钟的时间内,这样如果样品直接进入柱子的时间会比较长,会造成色谱峰拖长,峰形会很差。所有必须有冷阱进行二次冷聚焦后再传送到色谱柱,以获得理想的色谱峰。[/size][/font][font='times new roman'][size=13px]热脱附是一种简单,快速的分析方法,无须复杂的样品前处理方式。[/size][/font][font='times new roman'][size=13px]热脱附可以采用不同的样品导入方式,例如样品直接热脱附(液体,固体,粉末,半固体等),吸附剂吸附材料吸附(吸附管,[/size][/font][font='times new roman'][size=13px]搅拌棒吸附萃取([/size][/font][font='times new roman'][size=13px]SBSE[/size][/font][font='times new roman'][size=13px])[/size][/font][font='times new roman'][size=13px],薄膜固相微萃取[/size][/font][font='times new roman'][size=13px]TF-SPME[/size][/font][font='times new roman'][size=13px])等。[/size][/font][font='times new roman'][size=13px]由于热脱附在香气香味物质测定具有非常大的优势,广泛用于挥发性成分的测定,省事省力,效率高,灵敏度高。给香气香味样品或其它样品的前处理带来极大方便。[/size][/font][font='times new roman'][size=13px]下面为咸味香精直接热脱附分析。[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2024/07/202407171616250070_2959_1615838_3.jpeg[/img][align=center][font='times new roman'][size=13px]图[/size][/font][font='times new roman'][size=13px] [/size][/font][font='times new roman'][size=13px]某些含油脂咸味香精样品热脱附解析的总[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]图([/size][/font][font='times new roman'][size=13px]TIC[/size][/font][font='times new roman'][size=13px])[/size][/font][/align][align=center][/align]

  • 晒晒多功能吸附仪

    晒晒多功能吸附仪

    大家有什么意见或者建议,随时提出来。http://ng1.17img.cn/bbsfiles/images/2013/03/201303071043_428965_788_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/03/201303071043_428966_788_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/03/201303071044_428967_788_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/03/201303071044_428968_788_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/03/201303071044_428969_788_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/03/201303071045_428970_788_3.jpg产品简介MFA-140多功能吸附仪是一款可应用于微孔领域的高性能、多功能物理吸附分析仪;拥有先进的技术、卓越的品质、更全面的理论模型及优良的测试精度,满足科研、学术探讨等多方面应用需求;从功能方面MFA-140可进行比表面积\孔径\孔容\孔分布\气体吸附量等性能测试,具备独立并行的4个分析站,拥有液氮液位高度显示及液氮添加功能,意外断电分析点储存和测试恢复功能,采用10寸触摸控制和内置工控机;从技术方面该产品引入死体积高度校准技术,以替代“等温夹”技术;独有集成气路,减少仪器内部90%的气路管使用,大大提高了仪器整体的真空度、抽速,并有效解决了传统仪器漏气率高,污染难维护的问题;应用I-PID动态可调技术,实现真空抽速恒定,防止样品倒吸污染气路,提高真空系统效率;高品质集成电路,采用纯铜镀金制板工艺,配以高品质进口元器件,处理速度快,耐腐蚀使用寿命长;引入死体积双向定位技术,解决液氮添加死体积校准问题

  • 全自动六站化学吸附仪ChemiSorb HTP

    全自动六站化学吸附仪ChemiSorb HTP优化设计和高效利用催化剂需要彻底了解催化材料表面结构和表面化学特性。在设计生产阶段,以及后期使用阶段,化学吸附分析提供大量所需的信息来评估催化剂材料。ChemiSorb HTP是一个完全自动化高测试量化学吸附分析仪,可测定催化剂材料的金属分散度、活性金属表面积、活性粒子,表面酸度。仪器包含六个独立经营分析站。可同时运行,也可单独运行,节省时间以及实验室空间。分析测试量大,带有六个独立分析站最多可同时进行六个化学分析每个分析站带有独立的加热炉,设定范围:10℃到700℃石英样品反应器带溢流道设计,可用于各种尺寸的颗粒和粉体全自动分析无需人看守即可得到高分辨率吸附等温线分析站可同时运行,也可独立运行最多可同时连接多达12种不同的气体 Windows®操作界面

  • 【原创大赛】官人代发:“诡异”的物理吸附等温线

    【原创大赛】官人代发:“诡异”的物理吸附等温线

    [b]作者:[/b]丁延伟,[color=#2d374b]中国科学技术大学理化科学实验中心副主任。[/color]通过物理吸附技术可以得到固体材料的比表面积、孔径分布、孔隙度、表面性质等结构信息,其在物理、化学、材料、生物、环境等学科中得到日益广泛的应用。实验上,利用专业的商品化的物理吸附仪或化学吸附仪,先将吸附剂在一定温度下以真空或吹扫气的形式对其进行彻底脱气,再在恒定温度下,控制吸附质与载气的分压,使吸附体系逐步达到平衡。这种通过控制吸附质分压与相应的平衡吸附量的关系所得到的实验曲线即为吸附等温线。[b]习惯上,将由实验得到的吸附和脱附过程得到的等温线统称为吸附等温线。[/b]多年来,许多研究者对各类吸附等温线提出了许多吸附相互作用理论,并推导出了等温吸附公式,如Henry吸附式、Freundlich吸附式、Langmuir理论、BET吸附理论等,并依托于这些理论表征吸附剂的结构与成分,如比表面积、孔容积、孔径分布等信息。实验上,用于测量材料的物理吸附性质的仪器主要有容量法和重量法两种,其中以容量法更为常用。容量法测量物理吸附的仪器又分为流动法和静态法两种。静态容量法由于待测样品是在固定容积的样品管中,吸附质相对动态法不流动。该方法测量是在等温(通常用液氮)条件下,向样品管内通入一定量的吸附质气体(通常为N[sub]2[/sub]),通过控制样品管中的平衡压力直接测得吸附分压,由气体状态方程(通常为理想气体状态方程)得到该分压点的吸附量。测量过程中逐渐增加吸附质气体使吸附平衡压力逐渐变大,最终得到吸附等温线。通过逐渐吸附质气体被抽走来降低吸附平衡压力,得到脱附等温线(如图2)。由于气体在固体表面的吸附状态多种多样,由此所得到的吸附等温线也不是一成不变的。2015年8月,国际化学领域最权威的国际纯粹与应用化学联合会(IUPAC)公布了最新的比表面积和孔参数分析的气体吸附分析规范。图1为物理吸附等温线的最新分类方法,实际由实验得到的各种吸附等温线大多是这六类等温线的不同组合。[align=center][img=,348,510]https://ng1.17img.cn/bbsfiles/images/2019/10/201910170935179761_1197_3224499_3.jpg!w348x510.jpg[/img] [/align][align=center]图1物理吸附等温线的最新分类[/align][align=center][img=,340,280]https://ng1.17img.cn/bbsfiles/images/2019/10/201910170935287586_8445_3224499_3.jpg!w340x280.jpg[/img][/align][align=center]图2 典型氮气吸脱附等温线[/align]理论上,通过实验得到的等温线为累积吸附量。也就是说,在吸附过程中,随着压力的持续增加,吸附量应保持不变(即在该压力下没有发生吸附)或持续增加(即在该压力下发生了吸附)。而在脱附过程中,随着压力的持续减小,在相应的压力下吸附的气体分子逐渐脱离样品的表面。理论上,如果不考虑表面张力的作用,吸附曲线与脱附曲线应保持重合(图3)。由于表面张力作用的存在,导致在某一压力下吸附的分子不能在该压力下发生脱附。随着压力的进一步下降,这部分吸附的分子会进一步发生脱附,由此得到的吸附线与脱附线之间并不重合,形成了如图2所示的滞后环。在0.4~0.95之间的滞后环通常被看作介孔材料的典型特征。[align=center][img=,452,367]https://ng1.17img.cn/bbsfiles/images/2019/10/201910170935450026_3092_3224499_3.jpg!w452x367.jpg[/img][/align][align=center]图3[/align]然而,在实际上通过物理吸附实验得到的等温线与图1中IUPAC提出的分类方法并不一致,本文结合实验中得到的一些“诡异”的等温线谈一下这些引起这些诡异的等温线的原因,并给出相应的解决方案。概括来说,常见的异常等温线主要分为以下几类:[b]1 吸附支正常,脱附支逐渐与吸附支交叉并处于吸附等温线的下方[/b]这种类型的等温线如图4所示,图中红色曲线对应于吸附过程,紫色曲线则对应于脱附过程。由图可见,在脱附过程中,随着相对压力的减小,脱附支逐渐下降,在相对压力P/P[sub]0[/sub]=0.65处与吸附支相交,并保持持续降低。在相对压力低于0.65的压力范围内的吸附量始终低于吸附支所对应的数值。[align=center][img=,480,405]https://ng1.17img.cn/bbsfiles/images/2019/10/201910170935588561_2093_3224499_3.jpg!w480x405.jpg[/img][/align][align=center]图4[/align]图4中的这种现象主要是由于在实验过程中液氮液面的逐渐下降,导致样品所处的等温环境发生的变化,温度逐渐升高引起的。图4中的等温线多见于吸附量较大的多孔材料。对于这类材料除了应选择合适的样品量之外(不宜加入过多的样品量,由此会导致实验时间延长),还应注意根据实验所使用的杜瓦瓶的容积来及时添加液氮,使样品始终处于等温的环境下。[b]2. 吸附支基本正常,脱附支在实验过程中始终处于吸附支的下方[/b]如图5所示,所得到的等温线的吸附支基本正常,但等温线的脱附支始终处于吸附支的下方。与第一种情形类似,如果实验在较短的时间内完成(排除液氮液面的下降因素),此时应考虑样品量和脱气条件等因素。较少的样品量会引起测量的吸附量的绝对值降低,造成测量数据的准确性下降。另外如果脱气温度设置不当,也会产生类似的现象。过低的脱气温度会引起在表面或者孔道中存在的溶剂或水分子无法有效地去除而造成堵塞现象,过高的脱气温度则会造成孔道或者表面的塌缩,从而引起吸附量的下降。避免这种现象的有效方法是选择更多的样品量或者设定合适的脱气条件。[align=center][img=,560,467]https://ng1.17img.cn/bbsfiles/images/2019/10/201910170936126460_5937_3224499_3.jpg!w560x467.jpg[/img][/align][align=center]图5[/align][b]3. 等温线的吸附支和脱附支在较高的相对压力下的吸附量随压力的升高而下降[/b]这种异常的等温线的吸附支和脱附支在较高的相对压力下的吸附量随压力的升高而下降,如图6和图7所示。如前所述,通过实验得到的等温线为累积吸附量。也就是说,在吸附过程中,随着压力的持续增加,吸附量应保持不变(即在该压力下没有发生吸附)或持续增加(即在该压力下发生了吸附)。由于脱附支曲线所对应的吸附量应大于等于吸附支所对应的吸附量,因此这类等温线得到的数据为异常数据,由等温线计算得到的孔径分布曲线、比表面积、孔容积等数据均是异常的数据。这种现象是由于在实验过程中使用了较少的样品量和不合适的脱气条件造成的,应选择更多的样品量或者设定合适的脱气条件。[align=center][img=,412,344]https://ng1.17img.cn/bbsfiles/images/2019/10/201910170936274501_1625_3224499_3.jpg!w412x344.jpg[/img][/align][align=center]图6[/align][align=center][img=,436,374]https://ng1.17img.cn/bbsfiles/images/2019/10/201910170936394117_5512_3224499_3.jpg!w436x374.jpg[/img][/align][align=center]图7[/align][b]4. 等温线的吸附支和脱附支之间出现了两个交点,呈8字形[/b]这种类型的等温线的吸附量随着相对压力的升高整体保持增加的趋势,但在脱附过程中的脱附支曲线与吸附支有出现了两个交点,呈8字形,如图8所示。由于这种类型的等温线有一段(图8中P/P0在0.5-0.8之间)出现了脱附支所对应的吸附量位于吸附支曲线所对应的吸附量的现象,因此为异常曲线。这种类型的等温线通常是由于在实验过程中使用了较少的样品量和不合适的脱气条件造成的,应选择更多的样品量或者设定合适的脱气条件。[align=center][img=,560,467]https://ng1.17img.cn/bbsfiles/images/2019/10/201910170936549772_8663_3224499_3.jpg!w560x467.jpg[/img][/align][align=center]图8[/align][b]5 等温线的吸附支和脱附支不闭合[/b]如图9和图10所示,等温线的吸附支和脱附支之间并没有发生了闭合现象,这种现象与图1 中的IUPAC所描述的几种类型的等温线出现了偏离。文献中对于这种类型的等温线也给出了不同的解释。理论上,出现这种不闭合的现象是由于发生了不可逆吸附造成的。在实际的数据分析过程中,应首先排除样品量和脱气条件的影响,如果这些条件都没有问题的话应结合样品的性质对于这种现象给出合理的解释。通常可以通过调整样品量和脱气条件来改善这种现象。对于不可逆吸附过程而言,可以通过不更换样品管原位多次重复吸附来证实。[align=center][b][/b][/align][align=center][img=,400,345]https://ng1.17img.cn/bbsfiles/images/2019/10/201910170937072894_6250_3224499_3.jpg!w400x345.jpg[/img][/align][align=center]图9[/align][align=center][img=,420,378]https://ng1.17img.cn/bbsfiles/images/2019/10/201910170937199101_3189_3224499_3.jpg!w420x378.jpg[/img][/align][align=center]图10[/align]

  • AOX TE可吸附有机卤素分析仪

    现在国家对AOX 也就是可吸附有机卤素的检测又将提上日程,前一段时间的全国造纸业年会,陕西科技大学的张安龙教授对AOX检测非常重视,在大会上特意就AOX检测做了报告。AOX, 就是可吸附有机卤素,环境中的有机卤化物,不包括氟化物,只包含氯化物、溴化物和碘化物。大多数的有机和无机卤化物对生物生存起到了十分重要的作用。但是目前广泛使用的有机卤化物是人工合唱的产物,这些有机卤化物除了具有优异的使用性能以外,同事也是对环境危害较大的物质。为什么要使用AOX 分析仪?有机卤化物经常被使用于工业产品的生产过程中 (例如制药、精细化工、纸浆及造纸行业和纺织品)有机卤化物作为生产过程中人工合成的产物, 存在于环境中的水、污泥及固体废物中自然降解过程非常漫长且困难。AOX的分析原理使用柱吸附法或震荡吸附法使用活性炭对水中的有机卤素进行吸附。然后经高温燃烧,再进入滴定池,微库仑法滴定。 TE Instruments分析器可用于各种类型的液体和固体样品的快速精确地分析,是实验室有机卤素分析的理想仪器,完全符合国标 GBT 15959-1995 水质可吸附有机卤素(AOX)的测定的检测标准 尤其适合需要连续一整天分析检测的实验室。 AOX,EOX和POX模块之间的转换操作非常简单。在AOX手动模式下,只需要一个样品杯或石英载体即可得到实验的结果。TE(Trace Elemental)公司在痕量检测方面的发展和专研已经有70余年的历史。于2009年从Thermo Fisher中独立后,我们将一如既往的将专业的经验提供给全球客户。我们提供可靠,高效,革新的环境监测仪器。使用户不仅仅使用TE的仪器,更使我们成为合作发展的伙伴。中国标准:GBT 15959-1995 水质可吸附有机卤素(AOX)的测定 微库仑法 GB 8978 1996 中华人民共和国国家标准污水综合排放标准一级1mg/L,二级 5mg/L,三级 8mg/LGB3544-2008 制浆造纸工业水污染物排放标准 - 重点地区8mg/L,新建12mg/L,现有15mg/L

  • 【原创大赛】如何测量比表面及孔径?一文带你了解气体吸附仪

    测量比表面和孔径分析的方法包括:气体吸附法、压汞法、电子显微镜法(SEM 或 TEM)、小角 X 光散射(SAXS)和小角中子散射(SANS)、电声电振法、核磁共振法、图像法大孔分析技术等。其中气体吸附法是常见的分析方法。气体吸附法孔径测量范围从 0.35nm~ 100nm 以上,涵盖了全部微孔和介孔,甚至延伸到大孔。另外,气体吸附技术相对于其它方法,容易操作,成本较低。如果气体吸附法结合压汞法,则孔径分析范围就可以覆盖从大约 0.35nm到1mm 的范围。气体吸附法也是测量所有表面的最佳方法(不规则的表面和开孔内部的面积)。使用气体吸附法进行分析的仪器常用来测定物质的比表面及孔径特征,也可以直接测量物质的吸附特性,因此也常统称为吸附仪。从实际用途来看,主要包含:比表面及孔径分析仪、多组分气体吸附仪、高压吸附仪、蒸汽吸附仪、真密度仪、化学吸附仪等。气体吸附法原理:当固体表面的原子所处的环境与体相原子不同,它受到一个不平衡的力的作用;因此,当气体与清洁固体表面接触时,将与固体表面发生相互作用;气体在固体表面上出现累积,其浓度高于[url=https://insevent.instrument.com.cn/t/Mp]气相[/url],这种现象称为吸附现象。吸附气体的固体物质成为吸附剂,被吸附的气体成为吸附质。依据吸附剂和吸附质之间的不同作用力,气体吸附分为物理吸附仪和化学吸附仪。物理吸附也称范德华吸附,它是由吸附质和吸附剂分子间作用力(范德华力)所引起,吸附于固体表面的气体分子,不与固体产生化学反应,这种吸附称为物理吸附;利用物理吸附原理测量的仪器被称为物理吸附仪。由于范德华力存在于任何两分子间,所以物理吸附可以发生在任何固体表面上。吸附剂表面的分子由于作用力没有平衡而保留有自由的力场来吸引吸附质,由于它是分子间的吸力所引起的吸附,所以结合力较弱,吸附热较小,吸附和解吸速度也都较快。被吸附物质也较容易解吸出来,所以物理吸附在一定程度上是可逆的。如:活性炭对许多气体的吸附,被吸附的气体很容易解脱出来而不发生性质上的变化。物理吸附的特点是:吸附热小,吸附速度快,无选择性,可逆,通常是发生在接近气体液化点的温度,一般是多层吸附。物理吸附仪可以测定物质的比表面积、平均孔径和孔径分布等,此外也可以直接测试物质吸附性能。化学吸附是吸附质分子与固体表面原子(或分子)发生电子的转移、交换或共有,形成吸附化学键的吸附,利用化学吸附原理进行测量的仪器被称为化学吸附仪。由于固体表面存在不均匀力场,表面上的原子往往还有剩余的成键能力,当气体分子碰撞到固体表面上时便与表面原子间发生电子的交换、转移或共有,形成吸附化学键的吸附作用。与物理吸附相比化学吸附具有吸附力强、对吸附气体有选择性、单层吸附、通常不可逆,样品不可回收再利用等特点,常用于测定催化剂酸碱活性位、活性金属表面积、金属分散度等。

  • 热脱附分析voc

    热脱附分析voc,作液体加标曲线时,voc低沸点物质响应值小,尤其是苯,不知什么原因?

  • 【求助】三台同样的物理吸附仪,结果差距大

    有三台麦克2420物理吸附仪器。实验条件设置完全相同。做麦克自带的标样都合格。但是做我们自己的样品,比表面能差30。这样的误差实在难以接受。再用2020C,标样仍然合格,做我们自己的样品,比2420中比表面最高的那台结果还要高15左右。更难以接受了。 请问您能帮我分析一下原因吗?多谢了!

  • 请问氮气物理吸附怎么取点?

    请问氮气物理吸附怎么取点?

    我要测分子筛的的氮气物理吸附-脱附曲线,样品既有微孔也有介孔,但微孔较多,请问怎么取点呢?取多少点?还有,我现在的数据分析,发现BET算出的C值在所有范围内都是负的,这跟我做氮气吸附的取点有没有关系?怎么避免这个问题?还有一点,t-plot怎么取点比较合理呢?多谢大神指点!http://ng1.17img.cn/bbsfiles/images/2016/09/201609281555_612465_2991446_3.jpg

  • 材料中物理吸附

    在工作中,我们经常会遇到比表面积这个概念。比表面积的测定对粉体材料和多孔材料有着极为重要的意义,它可能会影响材料很多方面的性能。例如催化剂的比表面积是影响其性能的主要指标;药物的溶解速度与比表面积大小有直接关系;物理吸附储氢材料多为比表面积较大的多孔材料,土壤的比表面积会影响其湿陷性和涨缩性。影响材料比表面积的因素主要有颗粒大小、颗粒形状以及含孔情况,其中孔的类型和分布对比表面积影响是最大的。常规测定材料比表面积和孔径的方法有气体吸附法、压汞法、扫描电镜以及小角X光散射等等,其中气体吸附法是最普遍也是最佳的测试方法,尤其是针对具有不规则表面和复杂的孔径分布的材料。气体吸附有物理吸附和化学吸附两类,由分子间作用力(范德华力)而产生的吸附为物理吸附,化学吸附则是分子间形成了化学键。物理吸附一般情况下是多层吸附,而化学吸附是单层吸附。在物理吸附中,发生吸附的固体材料我们称之为吸附剂,被吸附的气体分子为吸附质,处于流动相中的与吸附质组成相同的物质称为吸附物质。根据材料的孔径,材料可分为微孔材料(孔径小于2nm)、介孔材料(孔径在2nm到50nm)以及大孔材料(孔径大于50nm)。在吸附过程中,随着压力从高真空状态逐渐增加,气体分子总是先填充最小的孔,再填充较大的孔,然后是更大一点的孔,以此类推。 以即含有微孔又含有介孔的样品为例,在极低压力下首先发生微孔填充,低压下的吸附行为主要是单层吸附,中压下发生多层吸附,当相对压力大于0.4时,可能会出现毛细管凝聚现象,直到最后达到吸附饱和状态。多孔材料的表面包括不规则表面和孔的内部表面,它们的面积无法从颗粒大小等信息中得到,但是可以通过在吸附某种不活动的或惰性气体来确定。我们用已知截面积的气体分子作为探针,创造适当的条件,使气体分子覆盖于被测样品的整个表面,通过被吸附的分子数目乘以分子截面积即认为是样品的比表面积。因此比表面积值不是测出来的,而是计算得到的。物理吸附仪测试吸附量主要通过以下几种方式:静态体积法(测定吸附前后的压力变化),流动法(使用混合气体通过热导池测定热导系数的变化)以及重量法(测定吸附前后的质量变化)。其中静态体积法应用最为广泛。

  • 物理吸附测试实例

    物理吸附测试实例

    [img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241433173704_7895_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241433182045_860_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241433187522_4094_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241433195792_6136_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241433206002_3229_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241433220399_1739_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241433228560_6868_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241433234592_7032_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241435023422_4656_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241435037251_8321_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241435047702_4459_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241435057153_6344_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241435064532_3577_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241435072882_3559_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241435085602_3528_3904283_3.jpg!w690x517.jpg[/img][img=物理吸附测试仪,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002241435095062_2431_3904283_3.jpg!w690x517.jpg[/img]

  • 氮气物理吸附

    做氮气物理吸附,样品是含有积炭的分子筛,吸附值出现负值,什么原因?

  • 【分享】气体分析仪的各种分析原理

    测量气体成分的流程分析仪表。在很多生产过程中,特别是在存在化学反应的生产过程中,仅仅根据温度、压力、流量等物理参数进行自动控制常常是不够的。例如,在合成氨生产中,仅控制合成塔的温度、压力、流量并不能保证最高的合成率,必须同时分析进气的化学成分,控制氢气和氮气的最佳比例,才能获得较高的生产率。又如在锅炉的燃烧控制中除需控制燃料与助燃空气的比例外,还必须在线分析烟道的化学成分,据此改变助燃空气的供给量,使炉子获得最高的热效率。此外,在排出有害气体的工厂中,也必须采用气体分析仪对有害气体进行连续监视,以防止危害工人健康或污染环境或引起爆炸等恶性事故。由于被分析气体的千差万别和分析原理的多种多样,气体分析仪的种类繁多。常用的有热导式气体分析仪、电化学式气体分析仪和红外线吸收式分析仪等。1、热导式气体分析仪  一种物理类的气体分析仪表。它根据不同气体具有不同热传导能力的原理,通过测定混合气体导热系数来推算其中某些组分的含量。这种分析仪表简单可靠,适用的气体种类较多,是一种基本的分析仪表。但直接测量气体的导热系数比较困难,所以实际上常把气体导热系数的变化转换为电阻的变化,再用电桥来测定。热导式气体分析仪的热敏元件主要有半导体敏感元件和金属电阻丝两类。半导体敏感元件体积小、热惯性小,电阻温度系数大,所以灵敏度高,时间滞后小。在铂线圈上烧结珠形金属氧化物作为敏感元件,再在内电阻、发热量均相等的同样铂线圈上绕结对气体无反应的材料作为补偿用元件(图1)。这两种元件作为两臂构成电桥电路,即是测量回路。半导体金属氧化物敏感元件吸附被测气体时,电导率和热导率即发生变化,元件的散热状态也随之变化。元件温度变化使铂线圈的电阻变化,电桥遂有一不平衡电压输出,据此可检测气体的浓度。热导式气体分析仪的应用范围很广,除通常用来分析氢气、氨气、二氧化碳、二氧化硫和低浓度可燃性气体含量外,还可作为色谱分析仪中的检测器用以分析其他成分。

  • 【分享】装修污染 可以使用竹炭吸附吗?

    竹碳是一种以生长5年以上的高山毛竹为原料,经过高达1000℃以上高温烧制而成的一种炭。竹碳具有超强的吸附能力,特别是利用竹碳的吸附分解能力和释放负离子所产生的效果,对室内空气的净化达到消臭、防湿、消除有害异味,并能产生负离子及远红外线,起到净化空气的作用,使用的效果不错。竹碳以及活性炭都可以吸附有害气体,但是只能够短时间起到一定的作用,如果长时间使用,效果就会有所下降。 原因一是这种吸附属于物理方法,只能够吸附在空气当中的有害气体,对存留在装修材料当中的有害物质无法进行吸附,比较被动。还有就是只能够吸附在自己周围的有害气体,对距离较远处的有害气体无法很好吸附,只有多放几个点。第二个原因就是,当竹炭或活性炭吸附达到饱和以后,不但无法继续吸附,反而会向空气当中散发有害气体,产生二次污染。

  • 有关莫瑞提克物理吸附

    物理吸附产品应用:分子筛、药品、陶瓷、活性炭、炭黑、催化剂、油漆与涂料、推进染料、储氢材料、燃料电池等领域内当代材料科学的尖端研究。它可测表面积与进行微孔分析,来用于探测孔隙结构和表面能量特性的精微细节。

  • 国产物理/化学吸附仪被蔑视了

    物理吸附仪是用于研究颗粒类材料的比表面积和孔结构数值的重要测试仪器,在对煤的结构研究中,为了更好的对比不同的煤的结构参数,需要较高的测量精度和测量真实性。进口物理吸附仪相比于国产,精密度和智能化程度更高,通过对原始信息的数字处理,更好地排除了外部干扰对信息影响,提高了产品的耐环境性、测量的真实性和精确性。进口仪器加热炉和控制器能够控制温度至450℃,国产仪器相应温度只能达到350℃,不利于高温实验的进行。因此需要采购进口的物理吸附仪。  化学吸附仪可进行程序升温还原( TPR )、程序升温脱附( TPD )、程序升温氧化( TPO )、程序升温表面反应( TPSR )以及脉冲滴定等实验,用于材料对于物质的吸、脱附性能研究。还可对材料的酸性、表面金属分散度、金属与载体的相互作用等进行研究。除了常规(常压)的 COx 、 NOx 、 NH 3 、 H 2 、 O2 等的吸脱附实验外,还可进行吡啶、苯、甲醛等有机物的吸脱附实验,具有真空、加压、负温等多种可选配的实验条件。根据我们的调研,目前国产设备不能满足使用要求。因此需采购进口化学吸附仪用于科研工作。

  • 比表面积分析仪之关键部件

    比表面积分析仪所采用的压力传感器的品质。http://www.bjbuilder.com/zcuploadfile/20120315091633847.jpg压力传感器是静态法仪器的核心检测部件,其性能决定分析仪器的精确度,目前国内物理吸附仪的供应商一般会用到国产传感器、美国精量、美国西特、德国莱宝、德国普发、德国英福康等品牌,这些传感器从几百元到一万多元不等,传感器的选型很大程度上决定仪器的成本。并非所有进口产品都拥有优良的性能和高高的售价,现在市面上就有一款低品质的美国进口压力传感器,仅仅不到千元,其性能很难保证仪器的测试精度。而美国西特、德国莱宝、德国普发、德国英福康等品牌已经在物理吸附仪行业得到了良好应用。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制