当前位置: 仪器信息网 > 行业主题 > >

无液氦低温系统

仪器信息网无液氦低温系统专题为您提供2024年最新无液氦低温系统价格报价、厂家品牌的相关信息, 包括无液氦低温系统参数、型号等,不管是国产,还是进口品牌的无液氦低温系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合无液氦低温系统相关的耗材配件、试剂标物,还有无液氦低温系统相关的最新资讯、资料,以及无液氦低温系统相关的解决方案。

无液氦低温系统相关的仪器

  • MontanaInstruments超精细多功能无液氦低温光学系统MontanaInstruments推出了全新超精细多功能无液氦低温光学系统——CryoAdvanceTM,该系列产品是采用新的性能标准和架构而生产的新一代标准化产品,可使用通用型的光学桌面进行固定,使用方便。采用减震技术和特殊温度稳定技术,在不牺牲任何便捷性的同时,为实验提供的温度稳定性和超低震动环境。如今CryoAdvance系列产品具有多种型号、配置、选件与配件可选,能够满足每个研究人员的特需求。应用领域金刚石色心、NV色心、量子计算、量子光学、腔量子电动力学、自旋电子学、磁光克尔效应、单光子发射......基本特点★低温度波动和纳米的震动可为各种测量提供稳定的实验环境。★超大温区(3.2K-350K)与超快的变温速度可提高实验效率。★全干式系统,无需消耗氦气或液氦,可大降低实验成本。实用性优势★直观的用户界面和全自动控制系统提高了实验效率。★电学和光学通道以及样品安装都大地提高了实验灵活性。★完全集成、交钥匙设计方案,让您快速启动和实现研究计划。★桌面式设计方案,方便移动,无缝衔接现有的室温实验方案。设备介绍制冷系统系统采用制冷机闭循环制冷方式,只有少量氦气密封在系统内部,日常运行无需消耗液氦或氦气①★降低成本:日常运行不消耗氦气可在很大程度上降低试验成本。★操作简单:省去了更换氦气瓶和监测氦气量等繁琐的实验工作。系统采用变频制冷技术,大大的改善了实验的能耗和性
    留言咨询
  • 美国RHK无液氦低温STM/qPlusAFM系统美国RHK Technology公司突破了制冷机与STM结合时,存在强震动噪音的技术壁垒,推出了款无液氦UHV LT STM/ AFM-qPlus系统。在制冷机运行的状态下(9K),轻松获得原子分辨率的扫描隧道显微图像。简单易用的机械和软件设计,不需要掌握复杂的STM技术和低温制冷方法,轻松开展材料科学和表面物理前沿科学研究,让低温STM真正走进您的实验室。 应用领域:● 二维材料,纳米科学,表面物理化学等● STM:导电样品形貌、电学性能(电导、电子态密度、能带、轨道)、磁学性能(近藤效应、自旋反转)、化学键振动表征,原子或分子操纵,纳米结构的建造● AFM:导电或不导电样品形貌表征,力学性能,电荷分布(局部接触势) 基本参数:- 温度范围:9K-400K- XY方向漂移:0.2?/hour,Z方向漂移: 0.2?/day- XYZ方向粗位移范围:5x5x8mm@RT- 大扫描范围:8x8x1.5um@RT;2x2x0.5um@10K- 垂直样品方向5T磁场或垂直- 平行样品方向5T-1T矢量磁场产品特点:- 无需任何液氦,样品和探针始终处于相同温度;- 全温区范围实现STM原子分辨图像;在制冷机运行状态下,噪音水平低于1pm;- 工作模式有STM和AFM-qPlus,具有强大的谱图采集和分析能力;自带PLL和Lock-in,实现I-V,dI/dV以及dI2/dV2谱线采集和谱图成像;- 样品架灵活配置:样品尺寸10x10mm,可外接4个电路;- 仅需日常用电,运行和维护成本低。彻底摆脱低温STM实验受液氦供应制约的烦恼。不再需要掌握复杂的液氦操作和安全知识,连续不间断地进行低温STM实验研究。- 适用于与UFO腔体/MBE/PLD/LEED/APERS等仪器实现真空联用。 In掺杂Bi2Se3原子分辨STM图像@15KSi(111)表面原子分辨STM图像@15KSi(111)表面dI/dV(微分电导) mapping同时测量的Si(111)样品STM/qPlus-AFM原子图像应用案例:案例1:Oregon University的George Nazin教授利用扫描隧道显微(STM)和扫描隧道谱学(STS)技术研究了吸附在Au(111)表面上的烷基取代噻吩低聚物的构象和电子结构,发现Au(111)表面反应活性的局部变化可以导致分子轨道能的明显变化(下图,DOI: 10.1021/acsami.5b03516)。这些结果表明,界面分子的构象和电子结构可能与基于块状噻吩晶体的能带结构而预期的性能有很大的不同。 案例2:荷兰Leiden University的Marc T. M. Koper教授通过原子分辨的STM图像发现了两条由水分子组成的平行线沿Pt(111)台阶边缘排布(下图,DOI: 10.1103/PhysRevLett.116.136101),并验证了Pt(111)的模板作用,确认形成了双链水的结构。这些结果突出表明了Pt表面电子波纹对吸附在其表面的水结构的巨大影响。
    留言咨询
  • 美国RHK无液氦低温STM/qPlusAFM系统美国RHK Technology公司突破了制冷机与STM结合时,存在强震动噪音的技术壁垒,推出了款无液氦UHV LT STM/ AFM-qPlus系统。在制冷机运行的状态下(9K),轻松获得原子分辨率的扫描隧道显微图像。简单易用的机械和软件设计,不需要掌握复杂的STM技术和低温制冷方法,轻松开展材料科学和表面物理前沿科学研究,让低温STM真正走进您的实验室。 应用领域:● 二维材料,纳米科学,表面物理化学等● STM:导电样品形貌、电学性能(电导、电子态密度、能带、轨道)、磁学性能(近藤效应、自旋反转)、化学键振动表征,原子或分子操纵,纳米结构的建造● AFM:导电或不导电样品形貌表征,力学性能,电荷分布(局部接触势) 基本参数:- 温度范围:9K-400K- XY方向漂移:0.2?/hour,Z方向漂移: 0.2?/day- XYZ方向粗位移范围:5x5x8mm@RT- 大扫描范围:8x8x1.5um@RT;2x2x0.5um@10K- 垂直样品方向5T磁场或垂直- 平行样品方向5T-1T矢量磁场产品特点:- 无需任何液氦,样品和探针始终处于相同温度;- 全温区范围实现STM原子分辨图像;在制冷机运行状态下,噪音水平低于1pm;- 工作模式有STM和AFM-qPlus,具有强大的谱图采集和分析能力;自带PLL和Lock-in,实现I-V,dI/dV以及dI2/dV2谱线采集和谱图成像;- 样品架灵活配置:样品尺寸10x10mm,可外接4个电路;- 仅需日常用电,运行和维护成本低。彻底摆脱低温STM实验受液氦供应制约的烦恼。不再需要掌握复杂的液氦操作和安全知识,连续不间断地进行低温STM实验研究。- 适用于与UFO腔体/MBE/PLD/LEED/APERS等仪器实现真空联用。In掺杂Bi2Se3原子分辨STM图像@15KSi(111)表面原子分辨STM图像@15KSi(111)表面dI/dV(微分电导) mapping同时测量的Si(111)样品STM/qPlus-AFM原子图像应用案例:案例1:Oregon University的George Nazin教授利用扫描隧道显微(STM)和扫描隧道谱学(STS)技术研究了吸附在Au(111)表面上的烷基取代噻吩低聚物的构象和电子结构,发现Au(111)表面反应活性的局部变化可以导致分子轨道能的明显变化(下图,DOI: 10.1021/acsami.5b03516)。这些结果表明,界面分子的构象和电子结构可能与基于块状噻吩晶体的能带结构而预期的性能有很大的不同。案例2:荷兰Leiden University的Marc T. M. Koper教授通过原子分辨的STM图像发现了两条由水分子组成的平行线沿Pt(111)台阶边缘排布(下图,DOI: 10.1103/PhysRevLett.116.136101),并验证了Pt(111)的模板作用,确认形成了双链水的结构。这些结果突出表明了Pt表面电子波纹对吸附在其表面的水结构的巨大影响。发表文章:1. Lee E. Korshoj et al. Nature comm. 8:14231, 2017.2. Benjamen N. Taber et al. ACS Appl. Mater. Interfaces 2015, 7, 15138?15142.3. Dmitry A. Kislitsyn et al.J. Phys. Chem. C 2015, 119, 26959?26967.4. Christian F. Gervasi et al.Nanoscale, 2015, 7, 19732–19742.5. Manuel J. Kolb et al.PRL 116, 136101 (2016).6. J. Derouin et al.Surface Science 641 (2015) L1–L4.7. Jason D. Hackley et al.REVIEW OF SCIENTIFIC INSTRUMENTS 85, 103704 (2014).8. Dmitry A. Kislitsyn et al.J. Phys. Chem. Lett. 2016, 7,1047?1054.9. D. A. Kislitsyn et al.Phys. Chem. Chem. Phys., 2016, 18, 4842--4849.10. Dmitry A. Kislitsyn et al.J. Phys. Chem. Lett. 2014, 5, 3701?3707.11. Jonathan Derouin et al.ACS Catal. 2016, 6, 4640?4646.12. Dmitry A. Kislitsyn et al.J. Phys. Chem. Lett. 2014, 5, 3138?3143. 部分用户列表(排名不分先后)RHK公司PanScan Freedom产品以其技术创性和稳定性、高的精度和良好的用户体验得到了国内外众多科学家的认可和青睐,在全球范围内已有超过了20位用户。RHK公司的产品在国内也得到了表面科学、低温、真空等研究领域著名科学家和研究组的欢迎......复旦大学中科院物理研究所天津大学香港理工大学Harvard UniversityStandard Linear Accelerator Center (SLAC), USAPrinceton University, USAUniversity of Oregonpasting,USALeiden University, Nertherland ......
    留言咨询
  • TeslatronPT无液氦磁体低温系统提供顶部插杆式样品更换机制和低温恒温以及强磁场环境,最高磁场可达18T,变温范围1.5K到300K;具有50mm直径的样品空间,使用户有更大的实验操作空间,增加了实验的自由度;有多种选件可供后续升级,如可达300mK的He3插杆Heliox、可达25mK的kelvinoxJT等。集成了无液氦超导磁体和变温插件(VTI)的低温系统。设备特点:结构紧凑,标准配置的最高磁场强度为:14 T集成的变温插杆可提供的样品温度范围为:1.5 K-300 K配备高度调节和角度旋转选件的多种高性能样品杆选配不同的插件可获得更低的温度:HelioxVT选件可获得 300 mK的最低温,KelvinoxJT选件可获得 25 mK的最低温低振动 — 适用于多种敏感测试分立式密封样品腔,可快速简单地更换样品,且无堵塞系统冷却回路的风险低功耗 — 使用单脉冲管制冷机敏感样品周围无气体流动:系统采用静态交换气冷却样品,避免制冷气流引起的脆弱样品或者测量样品杆的振动通过顶部样品杆可实现快速更换样品。可在系统处于低温状态时更换样品,无需复杂的负载锁定机制来重新装载变温插件系统使用内部冷阱来过滤污染物,无需使用液氮
    留言咨询
  • 超精细多功能无液氦低温光学恒温器XP系列由Montana Instruments 公司新推出的高跨越系列(crossover premium-XP)光学恒温器在原有3.2K系列恒温器基础上温度可以进一步降低到1.7K。该恒温器兼具了全干式恒温器无需液氦和液氦恒温器更低温度的优点,传承了原有恒温器的可靠、灵活、实用的理念。此外,该系统为实验要求较为复杂的用户提供交钥匙解决方案,必将成为2K以下恒温器中用户体验的里程碑。技术优点● 1.7K-350K温区范围内平稳控温与变温● 大限度兼容已有的室温光路,易于实现直接的自由光路高数值孔径方案。● 简单流畅的设备操作过程,一键降温、控温● 较高的制冷功率(20mW),在不牺牲低温度的情况下允许更复杂的实验装置和热负载。应用方向● 量子信息科学● 单光子源研究● 单分子光谱● 微腔相关实验● 量子点光谱设备特点介绍制冷单元:● 系统具有低成本运行和操作简单的特点。系统采用制冷机闭环制冷,内置密封氦气,避免了任何液氦的消耗。● 采用变频压缩机,只需220V单相电即可运行,无需水冷,根据系统需求实时调整工作频率,避免额外能源消耗,并且大的延长了冷头使用寿命。● 制冷单元具有全自动的控制系统,实验人员无需低温经验即可使用。设备结构:● 样品腔可直接放在任何光学平台上,角度灵活,大程度上保证了对原有实验方案的兼容性,使室温试验可以平移到低温实验。● 一体化设计的主机集成了制冷、氦气、真空泵、系统控制单元。设备的结构更加合理,自动化程度更高,系统的避震等特性为高精度实验需求进行了优化。● 隔离式的优化设计使样品腔与制冷系统的温度和真空立控制,使得更换样品更为方便。系统控制:● 触屏控制,系统所有的状态参数和控制可以在系统的触摸面板上完成,使得系统的控制更为简单。● 软件控制,完备的系统控制程序。接口支持其他三方控制程序。(例如用户自己可以用Python, MATLAB, LabVIEW, C开发程序)样品环境:● 样品腔可以非常方便的打开进行样品更换和实验装置的调整。● 灵活的电路连接方案,超过20根电学通道供用户使用。● 多种拓展面板可选,RF、光纤、特殊气体等多种成熟方案供选择。● 多个光学窗口,接受定制化设计,让光路设计更灵活。● 近工作距离方案满足高数值孔径的需求。● 窗口材料有多种选择满足各种波长需求。性能表现:● 全新一代的氦循环技术确保了系统的超高制冷效率。● 热沉设计、微量液氦制冷样品台、双层屏蔽三大关键技术确保系统的低温性能。● 的震动阻尼技术将冷头震动进行隔离并牢固的固定样品台,从而实现纳米的震动稳定性。● 系统在制冷样品台的同时智能控制微量氦气的液化,将多余冷量进行存储,避免冷量的浪费。● 在实验热负载较大时系统具有较大的短时间冷量补偿能力。 技术参数产品型号Cryostation xp100备注基础系统包括: 2 RF接口、25 DC直流接口、3光学窗口性能指标温度范围1.7 K - 350 K温度稳定性2 mK 200 mK 50 mK在1.7K时峰-峰波动值 1.7K - 15K 15K - 350K震动稳定性20 nm峰-峰值 (样品底座水平方向测量值)低温时制冷功率20 mW基础配置制冷功率样品降温时间~12 小时使用温度隔离式换样方案样品升温时间~2 hrs真空度5.5 x 10-8 torr低温下测量光学特性光学窗口3 个窗口2 侧面 + 1部(可升4侧面方案)光路张角30° 80° 120°样品位于腔体中间样品位于冷窗附近样品位于热窗附近接口面板电学接口25 已经连接至样品底座周围环形电路板侧面板1个同轴面板 3个盲板方形RF接口面板 (包含2 RF接口, 可升到4个) 用于升其他类型接口热沉6个热沉接点在屏蔽罩底部温度计2 个 Cernox™ 温度计分别用于测量样品台底座和样品温度系统尺寸样品空间(直径 x高度)Φ92 mm x 92 mm内层屏蔽罩尺寸光路高度147 mm侧窗中心距光学桌面高度低温底座Φ1" 低温底座用于安装不同形状样品台系统选件样品台接受用户定制带电等多种类型样品座可选样品移动可集成纳米位移器位移器可安装在低温底座上
    留言咨询
  • 无液氦低温强磁场共聚焦显微镜 - attoCFM系统经过多年的发展,德国attocube公司生产的低温强磁场共聚焦显微镜attoCFM系统,成为了在纳米尺度研究量子点、量子器件光学性质的标准设备。为提高图像质量,共聚焦显微镜需要在低温环境中工作,从而达到提高图像高分辨率、清晰光学谱图、锐化谱线和降低噪音的目的。同时,低温下散射和非辐射效应的减少,以及量子效率的提高,都有助于提高光学信号的强度,使得的研究发射能量与其他因素的关系成为可能。attoCFM配备了全新的attoDRY系列无液氦的恒温器和磁场,以及全新扫描头attoCFM-MC。它简单易用,其模块化的设计满足了光学实验开放性与灵活性的要求。由于attoCFM可提供“温度、磁场、电场、光学与样品位置”各个实验参数的广泛变化范围,因此在科学实验领域的应用范围十分广泛。可以测量的样品种类包括量子点、一维纳米线、石墨烯、二维晶体材料等各种材料。应用领域涵盖量子、二维材料磁学、光学光致发光光谱、电致发光光谱、Raman光谱、光电流、电学输运性质研究等等范围。产品特点 无液氦,闭路可循环系统 超低振动,优异稳定性,可进行长时间实验测量 温度范围:1.8K-300K 磁场:7T, 9T,12T, 矢量磁体可选 工作真空:1×10-6mBar ~ 1大气压 共聚焦光学测量:光致发光/电致发光/光电流/拉曼 低温物镜: NA值0.82,低温消色差 光学分辨率:~550 nm 样品粗定位范围:5×5×5 mm3 扫描精细范围:30×30 μm2@4K 可升:AFM/MFM/PFM/KPFM/ct-AFM/cryoRamanattoCFM I主要技术特点+ 显微镜光路:多三个光路(1个激发光路/1个探测光路/可选光路),每个光路中的光学部件可自由快速更换+ 应用范围广泛,涵盖了从典型的CFM实验,到拉曼光谱测量等+ 可升到AFM/MFM/PFM/KPFM/ct-AFM/cryoRaman功能+ 粗位移范围:5mm x 5mm x 5mm,4K+ 精细扫描范围:30×30μm2 @4K,50×50μm2 @300K+ 变温范围:1.8K-300K(取决于恒温器)+ 兼容磁场,0-12T(取决于磁体)+ 工作真空:1X10-6mbar - 1atm + 兼容1"和2"孔径的恒温器和磁体,包括Quantum Design-PPMS+ 低温物镜:NA=0.82,WD=0.7mm,confocal分辨率~550nm(@635nm激光)+ 外置CCD,用于在低温下观测样品位置,视野范围75μm+ 样品定位步长:0.05-3μm @ 300K 10-500nm @ 4K+ 变温范围:mK - 300K(取决于恒温器配置)■ 强的拓展性、灵活性和稳定性光学头可配置双通道光路,简单易用,模块化的设计满足了光学实验开放性与灵活性的要求 。左图:光学头配置1. 准直器2. FC/APC光纤接口3. 分束器4. 过滤器空位5. 分束器可选立方块或者平板6. 偏振分束器7. 非偏振分束器8. 过滤器空位9. 反射镜右图:共聚焦显微镜工作示意图,光学头多可配置三路光学通道。 1. FC/APC光纤接口2. 准直器3. 反射镜4. 过滤器空位5. 分束器6. LED 灯7. CCD相机8. 分束器9. 反射镜10. 低温物镜11. 样品12. XYZ位移台 与 XY扫描器■ attoCFM无液氦低温强磁场共聚焦显微镜面包板定制面包板与attocube公司的低温恒温器attoDRY1000/2100结合,保证了光学实验的高度稳定性。因此,用户可以基于面包板搭建自由光路进行低温光学实验。■ 无液氦低温强磁场适用光学插杆除了购买完整的CFM共聚焦显微镜,德国attocube公司也提供了光学插杆来方便专家学者自行搭建低温光学实验。光学插杆包含:-设计-配置36 个电学接线-部具有光学窗口(25mm直径)-提供温度传感器与加热器-位移器底座-低温物镜固定架■ 特殊设计的低温消色差物镜市场上通用的常温物镜在低温环境下会发生光轴变化,色差等等问题。德国attocube公司次推出了可在低温磁场下使用的消色差物镜。特殊设计的低温物镜具有高数值孔径,收光效率高,优化光路后激光光斑直径小于1微米等特点。左:高NA,消色差低温物镜;中:长工作距离,消色差低温物镜;右:非消色差低温物镜■ attoCFM I 的两种配置:Faraday与Voigt Geometry低温强磁场共聚焦显微镜的研究中,一般有磁场方向与样品表面垂直与平行两种实验架构。德国attocube公司的attoCFM I新设计的样品托与低温物镜结合可以有Faraday与Voigt Geometry两种配置(如下图)来实现磁场方向与样品表面垂直或者平行两种实验架构,以挖掘更多的样品性质。上图:图左为Faraday Geometry(磁场方向与样品表面垂直),右图为Voigt Geometry(磁场方向与样品表面平行)上图: Faraday Geometry与Voigt Geometry两种配置的光路图与样品托用户单位attocube公司产品以其稳定的性能、高的精度和良好的用户体验得到了国内外众多科学家的认可和肯定,在全球范围内有超过了130多位低温强磁场显微镜用户。attocube公司的产品在国内也得到了低温、超导、真空等研究领域著名科学家和研究组的欢迎......国内部分用户:北京大学中国科技大学中科院物理所中科院武汉数学物理所中科院上海应用技术物理研究所复旦大学清华大学南京大学中科院半导体所上海同步辐射中心北京理工大学哈尔滨工业大学中国科学院苏州纳米技术与纳米仿生研究所… … 国外部分用户:
    留言咨询
  • CRX-4K是Lake Shore公司推出的一款多功能、高性能设计的无液氦闭循环低温探针台。该系统兼顾了无液氦操作的便利性和Lake Shore产品卓越的测量性能。它使用独立的闭循环制冷机,开机后可在无人协助的情况下冷却至低温。CRX-4K多样的选件和配置可使研究者完成精确的、富有挑战性的测量。此款探针台可提供的最低温度为4.5K,探针台内多个温度计的安装可确保准确和重复的测量。双级闭循环制冷机允许样品在冷却过程中保持在较高温度,降低了样品冷凝的可能性,这是测量有机材料的关键要求。CRX-4K 可定制容纳直径达102 毫米(4 英寸)的晶圆片,并有直径 51 毫米(2 英寸)的探测区域。主要特征: √ 温度范围4.5 K~350 K√ 可选高温至675 K√ 无液氦低温操作√ 降温中尽可能减少样品冷凝√ 标准2英寸(51 mm)样品,4英寸(102mm)可选√ 环形磁场选件最大0.19T设备参数:温度范围安装2个探针臂基础温度4.5 K,控制范围5 K ~ 350 K安装4个探针臂基础温度5.5 K,控制范围6 K ~ 350 K安装6个探针臂基础温度6.0 K,控制范围6.5 K ~ 350 K安装PS-HTSTAGE选件(与样品背面偏压不兼容)基础温度20 K,控制范围20 K ~ 675 K温度稳定性基础温度 (无加热控制)未说明10 K±50 mK10 K ~ 100 K±10 mK101 K ~ 250 K±10 mK251 K ~ 350 K±20 mK351 K ~ 675 K±50 mK真空以TPS-FRG分子泵组为标准抽真空时间30 min (1×10-3 Torr)室温5 × 10-4 Torr基础温度1 × 10-5 Torr最高温度1 × 10-5 Torr循环时间总循环4 h抽真空0.5 h探针台冷却2 h探针台升温1.5 h样品最大尺寸51 mm(2英寸)样品背光接口不可选样品旋转不可选样品振动<1 μm探针配置最大探针数6探针臂温度计用于监视探针臂的温度冷却探针支架<20 K(样品在基础温度下)探针支架连接样品台热沉探针臂支架连接防辐射屏热沉DC/RF探针电绝缘100GΩ用于低漏电流测量微波探针频率范围从DC到67GHz光纤探针可用于电光测量落针范围所有探针均可在直径为 25.4 毫米(1 英寸)的圆内落针
    留言咨询
  • 主要特点 / MAIN FEATURE● 业界首创的闭循环无液氦制冷方式,样品温度低于4K,运行成本低,降温速度快● 高刚性SPM探头,极低振动水平与高的温度稳定性媲美液氦杜瓦型系统● 兼容qPlus AFM● 支持五电极样品托,可实现变温的电学运输测试● 可选光学通道,适用于光学实验● 可SPM腔内原位沉积● 可直接使用制冷剂(液氮/液氦)降温,实现快速降温及宽工作温区● 易于安装,可将基于液氦杜瓦的湿式低温STM系统升级为闭循环无液氦制冷方式STM系统性能测试数据 / STM TEST DATA技术参数 / TECHNICAL DATASPM探头兼容qPlus AFM工作温度4~300 K室温降至最低温时间约7 hX/Y/Z粗移动范围≥2×2×5 mmX/Y/Z扫描范围≥4×4×1 μm@±220 V RT≥1.5×1.5×0.4 μm@±220 V LT分辨率亚纳米级分辨率温度漂移Z方向热漂移:≤20 pm/h@4KXY方向热漂移:≤100 pm/h@4K温度稳定性±1 mk@恒温实验室环境振动水平<2 pm最小扫图电流<2 pA(外置前置放大器)样品台运动方式三维运动、轴向旋转、样品面内旋转温度范围-150℃~室温(LN2冷却);室温~1000℃(E-Beam加热)蒸发源DN40CF 5个、DN63CF 1个(其他需求可按需定制)可选项光学通道,适用于光学实验反射式高能电子衍射仪低能电子衍射仪
    留言咨询
  • μDrift 超稳无液氦低温光学恒温器是ARS基于其30多年低温设备生产经验推出的全新一代低温测试平台。μDrift 有着无与伦比的性能,可应用于各种低温测试项目。ARS-μdrift 超稳无液氦低温恒温器,让您的实验更加简单。超大样品腔方便样品放置及排布,水平及垂直多窗口方便光学信号采集。全温区范围内超低漂移,超低振动,超高温度稳定性,方便进行各种光谱、显微测试,磁场兼容,可进行各种磁光、磁电测试。其他优点:方便取样,方便搭建光路、方便纳米位移台接入、多种电学接口、可光纤引入、可气体引入、定制化样品托等。 产品特性:• 4-500K温度• 超低振动• 超低漂移• 超高真空兼容• 选配纳米平移台• 更大4英寸低温冷台• 顶部及侧边窗口• 低噪音测试引线• 高频及直流测试• 整体式结构,更方便安装 技术参数• 温度范围:4K-500K防热辐射屏安装有冷窗,更好的保证最低温时的温度稳定。• 振动:3-5nm 峰-峰振动 @2.4Hz 1nm 更高频率• 漂移:• Z轴: 0.015um/K (4K-50K) 0.1 um/K (50K-350K)• 全温区漂移 0.15um (4K-50K)• 全温区漂移 20um (50-350 K)• XY 平面:全温区漂移 0.015 um (4-50 K)全温区漂移 2 um (50-350 K)
    留言咨询
  • 德国Attocube Systems AG公司成立于2002年,作为纳米科学领域年轻的仪器供应商,Attocube Systems AG以其掌握的纳米精度定位成果和强大的技术实力,在短短的几年中研制开发了低震动无液氦磁体与恒温器、多种低温磁场下工作的扫描探针显微镜、端环境应用纳米精度位移器、皮米精度位移激光干涉器等系列产品,深受用户赞誉。自成立以来,Attocube Systems AG已经获得了许多荣誉,包括Finalist for the 27th Innovation Award of the German Ecomomy 2007和 00 Innovation Award 2013 等。 无液氦低温强磁场扫描探针显微镜德国attocube公司推出的attoDRY Lab系列无液氦低温强磁场扫描探针显微镜系统基于attoDRY系列无液氦强磁场超低震动恒温器和多种扫描探针显微镜插件,特别适应于低温光学实验、扫描探针显微镜等应用,产品优异的稳定性为超高分辨率的表面表征研究奠定了坚实的基础。不止于此,产品还早集成了简单易用的触摸屏控制系统以方便自由控制温度大小与磁场强度的商业化恒温器。扫描探针显微镜插件包括:attoAFM/MFM/cAFM/PRFM原子力、磁力、导电力、压电力显微镜;attoCFM共聚焦显微镜;Raman与光致发光谱;atto3DR双轴旋转平台等。参数与技术特点: + 无液氦,闭路可循环系统+ 特设计,超低震动(0.12 nm RMS)+ 温度范围:1.5 K...300 K 或 4 K...300 K+ 磁场强度:高可达15T + 多功能测量平台:AFM/MFM/ct-AFM/PRFM/CFM/RAMAN+ 超高温度稳定性+ 全自动控制,触摸屏控制 + 快速冷却:1-2小时样品冷却相关阅读:1、无液氦低温强磁场共聚焦显微镜 - attoCFM2、低温强磁场原子力/磁力/扫描霍尔显微镜 - attoAFM/attoMFM/attoSHPM3、磁共振显微镜/低温强磁场磁共振显微镜 - attoCSFM4、低震动无液氦磁体与恒温器 - attoDRY系列5、atto3DR低温双轴旋转台部分发表文献:1. Chaoyang Lu et.al, Coherently driving a single quantum two-level system with dichromatic laser pulses, Nature Physics, 15,941-945,(2019)2. Chaoyang Lu et.al, Towards optimal single-photon sources from polarized microcavities. Nature Photonics, 13, 770–775 (2019)3. Yuanbo Zhang et. Al, “Signatures of tunable superconductivity in a trilayer graphene moiré superlattice”Nature, 572, 215-219 (2019)4. P. Maletinsky et. Al, Probing magnetism in 2D materials at the nanoscale with single-spin microscopy, Science, 364, 973 (2019)5. Haomin WANG et al, “Isolating hydrogen in hexagonal boron nitride bubbles by a plasma treatment”.Nature communications, 10, 2815 (2019)6. Mingyuan Huang et.al, Magnetic Order-Induced Polarization Anomaly of Raman Scattering in 2D Magnet CrI3, Nano Letters, 2020,20,1, 729-7347. Alexander H?gele et. al, Cavity-control of interlayer excitons in van der Waals heterostructures, Nature communications, 2019,10:3697.8. Hanxuan Lin, et al. Unexpected Intermediate State Photoinduced in the Metal-Insulator Transition of Submicrometer Phase-Separated Manganites. Phys. Rev. Lett. 120, 267202(2018)9. Chaoyang Lu et.al, High-efficiency multiphoton boson sampling. Nature Photonics, 11, 361-365, (2017)10. K. Yasuda, et al. Quantized chiral edge conduction on domain walls of a magnetic topological insulator. Science 2017, 358, 1311-131411. Zhu, Y. et al. Chemical ordering suppresses large-scale electronic phase separation in doped manganites. Nature communications, 2016,7:11260.12. Yang, W. et al. Electrically Tunable Valley-Light Emitting Diode (vLED) Based on CVD-Grown Monolayer WS2. Nano Letters 2016, 16, 1560-1567.13. Surajit Saha et al. Long-range magnetic coupling across a polar insulating layer, Nature communications, 2016,7:11015.14. He, Y. M. et al. Single quantum emitters in monolayer semiconductors. Nature Nanotechnology 2015, 10, 497-502.15. Nazin, G. et al. Visualization of charge transport through Landau levels in graphene. Nature Physics 2010, 6, 870-874.16. Proton magnetic resonance imaging using a nitrogen–vacancy spin sensor. Nature Nanotechnology, 2015,10,120-124.17. Nanoscale nuclear magnetic imaging with chemical contrast. Nature Nanotechnology, 2015, 10, 125-128.18. Observation of biexcitons in monolayer WSe2. Nature Physics, 2015, 11, 477-481.19. Visualization of a ferromagnetic metallic edge state in manganite strips. Nature Communications, 2015, 6:6179.20. Observation of Excitonic Fine Structure in a 2D Transition-Metal Dichalcogenide Semiconductor. ACS Nano, 2015, 9, 647-655.21. Energy losses of nanomechanical resonators induced by atomic force microscopy-controlled mechanical impedance mismatching. Nature Communications, 2014, 5:3345.22. Deterministic and electrically tunable bright single-photon source. Nature Communications, 2014, 5:3240.23. Dynamic Visualization of Nanoscale Vortex Orbits. ACS Nano, 2014, 8, 2782-2787.24. Transition from slow Abrikosov to fast moving Josephson vortices in iron pnictide superconductors. Nature Materials, 2013, 12, 134-138.25. Stray-field imaging of magnetic vortices with a single diamond spin. Nature Communications, 2013, 4:2279.26. Realization of pristine and locally tunable one-dimensional electron systems in carbon nanotubes. Nature Nanotechnology, 2013, 8, 569-574.27. Strong magnetophonon resonance induced triple G-mode splitting in graphene on graphite probed by micromagneto Raman spectroscopy. Physical Review B, 2013, 88, 165407.28. Origin of negative magnetoresistance of GaAs/(Ga,Mn)As core-shell nanowires. Physical Review B, 2013, 87, 245303.29. Magnetic Imaging on the Nanometer Scale Using Low-Temperature Scanning Probe Techniques. Microscopy Today, 2011, 19, 34-38.30. Visualization of charge transport through Landau levels in graphene. Nature Physics, 2010, 6, 870-874.部分用户列表 attocube公司产品以其稳定的性能、高的精度和良好的用户体验得到了国内外众多科学家的认可和肯定。attocube公司的产品在国内也得到了低温、超导、真空等研究领域著名科学家和研究组的欢迎......北京大学清华大学中国科技大学南京大学中科院物理所中科院半导体所中科院武汉数学物理所上海同步辐射中心中科院上海应用技术物理研究所北京理工大学复旦大学哈尔滨工业大学中国科学院苏州纳米技术与纳米仿生研究所… …
    留言咨询
  • 德国Attocube Systems AG公司成立于2002年,作为纳米科学领域年轻的仪器供应商,Attocube Systems AG以其掌握的纳米精度定位成果和强大的技术实力,在短短的几年中研制开发了低震动无液氦磁体与恒温器、多种低温磁场下工作的扫描探针显微镜、端环境应用纳米精度位移器、皮米精度位移激光干涉器等系列产品,深受用户赞誉。自成立以来,Attocube Systems AG已经获得了许多荣誉,包括Finalist for the 27th Innovation Award of the German Ecomomy 2007和 00 Innovation Award 2013 等。 无液氦低温强磁场扫描探针显微镜德国attocube公司推出的attoDRY Lab系列无液氦低温强磁场扫描探针显微镜系统基于attoDRY系列无液氦强磁场超低震动恒温器和多种扫描探针显微镜插件,特别适应于低温光学实验、扫描探针显微镜等应用,产品优异的稳定性为超高分辨率的表面表征研究奠定了坚实的基础。不止于此,产品还早集成了简单易用的触摸屏控制系统以方便自由控制温度大小与磁场强度的商业化恒温器。扫描探针显微镜插件包括:attoAFM/MFM/cAFM/PRFM原子力、磁力、导电力、压电力显微镜;attoCFM共聚焦显微镜;Raman与光致发光谱;atto3DR双轴旋转平台等。参数与技术特点: + 无液氦,闭路可循环系统+ 特设计,超低震动(0.12 nm RMS)+ 温度范围:1.5 K...300 K 或 4 K...300 K+ 磁场强度:高可达15T + 多功能测量平台:AFM/MFM/ct-AFM/PRFM/CFM/RAMAN+ 超高温度稳定性+ 全自动控制,触摸屏控制 + 快速冷却:1-2小时样品冷却相关阅读:1、无液氦低温强磁场共聚焦显微镜 - attoCFM2、低温强磁场原子力/磁力/扫描霍尔显微镜 - attoAFM/attoMFM/attoSHPM3、磁共振显微镜/低温强磁场磁共振显微镜 - attoCSFM 4、低震动无液氦磁体与恒温器 - attoDRY系列5、atto3DR低温双轴旋转台部分发表文献:1. Chaoyang Lu et.al, Coherently driving a single quantum two-level system with dichromatic laser pulses, Nature Physics, 15,941-945,(2019)2. Chaoyang Lu et.al, Towards optimal single-photon sources from polarized microcavities. Nature Photonics, 13, 770–775 (2019)3. Yuanbo Zhang et. Al, “Signatures of tunable superconductivity in a trilayer graphene moiré superlattice”Nature, 572, 215-219 (2019)4. P. Maletinsky et. Al, Probing magnetism in 2D materials at the nanoscale with single-spin microscopy, Science, 364, 973 (2019)5. Haomin WANG et al, “Isolating hydrogen in hexagonal boron nitride bubbles by a plasma treatment”.Nature communications, 10, 2815 (2019)6. Mingyuan Huang et.al, Magnetic Order-Induced Polarization Anomaly of Raman Scattering in 2D Magnet CrI3, Nano Letters, 2020,20,1, 729-7347. Alexander H?gele et. al, Cavity-control of interlayer excitons in van der Waals heterostructures, Nature communications, 2019,10:3697.8. Hanxuan Lin, et al. Unexpected Intermediate State Photoinduced in the Metal-Insulator Transition of Submicrometer Phase-Separated Manganites. Phys. Rev. Lett. 120, 267202(2018)9. Chaoyang Lu et.al, High-efficiency multiphoton boson sampling. Nature Photonics, 11, 361-365, (2017)10. K. Yasuda, et al. Quantized chiral edge conduction on domain walls of a magnetic topological insulator. Science 2017, 358, 1311-131411. Zhu, Y. et al. Chemical ordering suppresses large-scale electronic phase separation in doped manganites. Nature communications, 2016,7:11260. 12. Yang, W. et al. Electrically Tunable Valley-Light Emitting Diode (vLED) Based on CVD-Grown Monolayer WS2. Nano Letters 2016, 16, 1560-1567.13. Surajit Saha et al. Long-range magnetic coupling across a polar insulating layer, Nature communications, 2016,7:11015.14. He, Y. M. et al. Single quantum emitters in monolayer semiconductors. Nature Nanotechnology 2015, 10, 497-502.15. Nazin, G. et al. Visualization of charge transport through Landau levels in graphene. Nature Physics 2010, 6, 870-874. 16. Proton magnetic resonance imaging using a nitrogen–vacancy spin sensor. Nature Nanotechnology, 2015,10,120-124.17. Nanoscale nuclear magnetic imaging with chemical contrast. Nature Nanotechnology, 2015, 10, 125-128.18. Observation of biexcitons in monolayer WSe2. Nature Physics, 2015, 11, 477-481.19. Visualization of a ferromagnetic metallic edge state in manganite strips. Nature Communications, 2015, 6:6179.20. Observation of Excitonic Fine Structure in a 2D Transition-Metal Dichalcogenide Semiconductor. ACS Nano, 2015, 9, 647-655.21. Energy losses of nanomechanical resonators induced by atomic force microscopy-controlled mechanical impedance mismatching. Nature Communications, 2014, 5:3345.22. Deterministic and electrically tunable bright single-photon source. Nature Communications, 2014, 5:3240.23. Dynamic Visualization of Nanoscale Vortex Orbits. ACS Nano, 2014, 8, 2782-2787.24. Transition from slow Abrikosov to fast moving Josephson vortices in iron pnictide superconductors. Nature Materials, 2013, 12, 134-138.25. Stray-field imaging of magnetic vortices with a single diamond spin. Nature Communications, 2013, 4:2279.26. Realization of pristine and locally tunable one-dimensional electron systems in carbon nanotubes. Nature Nanotechnology, 2013, 8, 569-574.27. Strong magnetophonon resonance induced triple G-mode splitting in graphene on graphite probed by micromagneto Raman spectroscopy. Physical Review B, 2013, 88, 165407.28. Origin of negative magnetoresistance of GaAs/(Ga,Mn)As core-shell nanowires. Physical Review B, 2013, 87, 245303. 29. Magnetic Imaging on the Nanometer Scale Using Low-Temperature Scanning Probe Techniques. Microscopy Today, 2011, 19, 34-38.30. Visualization of charge transport through Landau levels in graphene. Nature Physics, 2010, 6, 870-874.部分用户列表 attocube公司产品以其稳定的性能、高的精度和良好的用户体验得到了国内外众多科学家的认可和肯定。attocube公司的产品在国内也得到了低温、超导、真空等研究领域著名科学家和研究组的欢迎......北京大学清华大学中国科技大学南京大学中科院物理所中科院半导体所中科院武汉数学物理所上海同步辐射中心中科院上海应用技术物理研究所北京理工大学复旦大学哈尔滨工业大学中国科学院苏州纳米技术与纳米仿生研究所……
    留言咨询
  • 无液氦低温强磁场共聚焦显微镜 - attoCFM系统经过多年的发展,德国attocube公司生产的低温强磁场共聚焦显微镜attoCFM系统,成为了在纳米尺度研究量子点、量子器件光学性质的标准设备。为提高图像质量,共聚焦显微镜需要在低温环境中工作,从而达到提高图像高分辨率、清晰光学谱图、锐化谱线和降低噪音的目的。同时,低温下散射和非辐射效应的减少,以及量子效率的提高,都有助于提高光学信号的强度,使得的研究发射能量与其他因素的关系成为可能。attoCFM配备了全新的attoDRY系列无液氦的恒温器和磁场,以及全新扫描头attoCFM-MC。它简单易用,其模块化的设计满足了光学实验开放性与灵活性的要求。由于attoCFM可提供“温度、磁场、电场、光学与样品位置”各个实验参数的广泛变化范围,因此在科学实验领域的应用范围十分广泛。可以测量的样品种类包括量子点、一维纳米线、石墨烯、二维晶体材料等各种材料。应用领域涵盖量子、二维材料磁学、光学光致发光光谱、电致发光光谱、Raman光谱、光电流、电学输运性质研究等等范围。产品特点 无液氦,闭路可循环系统 超低振动,优异稳定性,可进行长时间实验测量 温度范围:1.8K-300K 磁场:7T, 9T,12T, 矢量磁体可选 工作真空:1×10-6mBar ~ 1大气压 共聚焦光学测量:光致发光/电致发光/光电流/拉曼 低温物镜: NA值0.82,低温消色差 光学分辨率:~550 nm 样品粗定位范围:5×5×5 mm3 扫描精细范围:30×30 μm2@4K 可升:AFM/MFM/PFM/KPFM/ct-AFM/cryoRamanattoCFM I主要技术特点 + 显微镜光路:多三个光路(1个激发光路/1个探测光路/可选光路),每个光路中的光学部件可自由快速更换+ 应用范围广泛,涵盖了从典型的CFM实验,到拉曼光谱测量等+ 可升到AFM/MFM/PFM/KPFM/ct-AFM/cryoRaman功能+ 粗位移范围:5mm x 5mm x 5mm,4K+ 精细扫描范围:30×30μm2 @4K,50×50μm2 @300K+ 变温范围:1.8K-300K(取决于恒温器)+ 兼容磁场,0-12T(取决于磁体)+ 工作真空:1X10-6mbar - 1atm + 兼容1"和2"孔径的恒温器和磁体,包括Quantum Design-PPMS+ 低温物镜:NA=0.82,WD=0.7mm,confocal分辨率~550nm(@635nm激光)+ 外置CCD,用于在低温下观测样品位置,视野范围75μm+ 样品定位步长:0.05-3μm @ 300K 10-500nm @ 4K+ 变温范围:mK - 300K(取决于恒温器配置)■ 强的拓展性、灵活性和稳定性光学头可配置双通道光路,简单易用,模块化的设计满足了光学实验开放性与灵活性的要求 。 左图:光学头配置1. 准直器2. FC/APC光纤接口3. 分束器4. 过滤器空位5. 分束器可选立方块或者平板6. 偏振分束器7. 非偏振分束器8. 过滤器空位9. 反射镜右图:共聚焦显微镜工作示意图,光学头多可配置三路光学通道。 1. FC/APC光纤接口2. 准直器3. 反射镜4. 过滤器空位5. 分束器6. LED 灯7. CCD相机8. 分束器9. 反射镜10. 低温物镜11. 样品12. XYZ位移台 与 XY扫描器■ attoCFM无液氦低温强磁场共聚焦显微镜面包板定制面包板与attocube公司的低温恒温器attoDRY1000/2100结合,保证了光学实验的高度稳定性。因此,用户可以基于面包板搭建自由光路进行低温光学实验。 ■ 无液氦低温强磁场适用光学插杆除了购买完整的CFM共聚焦显微镜,德国attocube公司也提供了光学插杆来方便专家学者自行搭建低温光学实验。光学插杆包含:-设计-配置36 个电学接线-部具有光学窗口(25mm直径)-提供温度传感器与加热器-位移器底座 -低温物镜固定架■ 特殊设计的低温消色差物镜市场上通用的常温物镜在低温环境下会发生光轴变化,色差等等问题。德国attocube公司次推出了可在低温磁场下使用的消色差物镜。特殊设计的低温物镜具有高数值孔径,收光效率高,优化光路后激光光斑直径小于1微米等特点。 左:高NA,消色差低温物镜;中:长工作距离,消色差低温物镜;右:非消色差低温物镜■ attoCFM I 的两种配置:Faraday与Voigt Geometry 低温强磁场共聚焦显微镜的研究中,一般有磁场方向与样品表面垂直与平行两种实验架构。德国attocube公司的attoCFM I新设计的样品托与低温物镜结合可以有Faraday与Voigt Geometry两种配置(如下图)来实现磁场方向与样品表面垂直或者平行两种实验架构,以挖掘更多的样品性质。上图:图左为Faraday Geometry(磁场方向与样品表面垂直),右图为Voigt Geometry(磁场方向与样品表面平行) 上图: Faraday Geometry与Voigt Geometry两种配置的光路图与样品托用户单位attocube公司产品以其稳定的性能、高的精度和良好的用户体验得到了国内外众多科学家的认可和肯定,在全球范围内有超过了130多位低温强磁场显微镜用户。attocube公司的产品在国内也得到了低温、超导、真空等研究领域著名科学家和研究组的欢迎......国内部分用户:北京大学中国科技大学中科院物理所中科院武汉数学物理所中科院上海应用技术物理研究所复旦大学清华大学南京大学中科院半导体所上海同步辐射中心北京理工大学哈尔滨工业大学中国科学院苏州纳米技术与纳米仿生研究所……
    留言咨询
  • 设备简介PS1DP-Cryo低温超导磁场探针台使用4K级GM制冷机作为冷源,通过柔性导冷链冷却待测样品和超导磁体,无需消耗液氦。样品温度最低可至4K,最大尺寸高达51mm,垂直磁场强度最高可达士3T。通过布置温度传感器、加热器和温控仪可实现样品温度的高精度控制。在样品和磁体外围布置有防热辐射屏,最外侧是真空罩,有效减少室温向样品的热辐射。使用PS1DP-Cryo低温超导磁场探针台磁电阻、霍尔系数、伏安特性、交流磁化率、磁滞回线等直流和微波测试。技术参数变温范围:4K-300 K磁场:超导磁体,垂直方向,土3T探针臂数量:4,最大6测量范围:DC-67 GHZ探针行程:X:50mm,Y:25 mm,Z:25 mm最大样品尺寸:直径51mm(2inch)样品振动:1 um设备特点PS1DP-Cryo低温超导磁场探针台采用GM制冷机作为冷源,无液氦消耗高精度温控仪和温度传感器精准控温综合运用多种减震方式降低样品震动集成化、智能化的控制和操作系统能够开展直流和微波测试
    留言咨询
  • CRX-6.5K兼顾了无液氦操作的便利性和Lake Shore产品的可靠性,为用户提供了一种低成本、通用的解决方案。它使用独立的闭循环制冷机,开机后可在无人协助的情况下冷却至低温。它的多功能性和经济性使CRX-6.5K成为世界各地许多研究人员的首选工具。 I-V、C-V和微波测量在CRX-6.5K上是标准的。双级闭循环制冷机允许样品在冷却过程中保持在较高温度,降低了样品冷凝的可能性,这是测量有机材料的关键要求。 CRX-6.5K可在8 K至350 K的温度范围内工作,并可选择扩展20 K至675 K的高温范围。该系统可容纳直径高达51 mm(2 in)的完整晶圆片和部分晶圆片。探针、测试电缆、样品座和选件的广泛选择使其能够满足多种特定的测量应用。设备参数:温度范围安装2个探针臂基础温度8 K,控制范围8.5 K ~ 350 K安装4个探针臂基础温度9 K,控制范围9.5 K ~ 350 K安装6个探针臂基础温度10 K,控制范围10.5 K ~ 350 K安装PS-HTSTAGE选件(与样品背面偏压不兼容)基础温度20 K,控制范围20 K ~ 675 K温度稳定性基础温度 (无加热控制)未说明10 K±25 mK11 K ~ 350 K±10 mK351 K ~ 675 K±50 mK真空室温5×10-4 Torr基础温度1×10-5 Torr最高温度5×10-5 Torr循环时间总循环6.25 h抽真空0.5 h探针台冷却3.5 h探针台升温2.25 h样品最大尺寸51 mm(2英寸)样品背光接口不可选样品旋转不可选样品振动<2 μm探针配置最大探针数6探针臂温度计用于监视探针臂的温度冷却探针支架<20 K(样品在基础温度下)探针支架连接样品台热沉探针臂支架连接防辐射屏热沉DC/RF探针电绝缘100GΩ用于低漏电流测量微波探针频率范围从DC到67GHz光纤探针可用于电光测量落针范围所有探针均可在直径为25.4 毫米(1 英寸)的圆内落针
    留言咨询
  • 设备简介使用4 K级GM制冷机作为冷源,通过柔性导冷链冷却待测样品无需消耗液氦。样品温度最低可至8K,最大尺寸25mm。外置电磁体线圈,磁场强度可达士0.65T。通过布置温度传感器、加热器和温控仪可实现样品温度的高精度控制。在样品和磁体外围布置有防热辐射屏,最外侧是真空罩,有效减少室温向样品的热辐射。使用该探针台可开展IV、RH等直流测试和ST-FMR、Spin-pumping等微波测试。配置低温旋转台,可实现样品士180°旋转,测量随角度变化的各向异性特性。技术参数变温范围:8K-420K磁场:电磁体,面内方向,士0.65T探针臂数量:4测量范围:DC-67 GHZ探针行程:X:50mm,Y:25mm,Z:25 mm最大样品尺寸:直径25 mm(1inch)样品振动:1 um设备特点采用GM制冷机作为冷源,无液氦消耗高精度温控仪和温度传感器精准控温综合运用多种减震方式降低样品震动集成化、智能化的控制和操作系统能够开展直流和微波测试
    留言咨询
  • Lake Shore的CRX-EM-HF是一款无液氦闭循环制冷的探针台,它增加了一个±0.6 T水平方向磁场的电磁铁,所有标准的C-V、I-V、微波和电光探测,加上面内水平场电磁测量,都可以在CRX-EM-HF多功能探针台上进行。研究人员可以使用CRX-EM-HF来测试磁输运参数,ST-FMR等。它是Lake Shore众多探针台中可用于矢量相关磁输运测量的无液氦低温探针台。为了最大限度地提高样品的磁场,CRX-EM-HF的探针配置为30°倾角,用于探测直径达25mm(1英寸)的晶圆片。 CRX-EM-HF使用独立的闭循环制冷机,开机后可在无人协助的情况下冷却至低温。360°旋转样品台选项允许测量角度相关和各向异性的磁输运特性。主要特征: √ 温度范围8 K~400 K√ 水平磁场±0.6 T√ 最大1英寸(25.4 mm)样品√ 无需系统降温即可施加磁场√ 样品360°旋转磁各向异性测试设备参数:磁场磁体类型电磁铁磁场方向水平方向(平行于样品面)磁场控制霍尔探头安装在探针台内用于磁场闭环控制磁场大小最大±6 kOe (±0.6 T)磁场均匀性0.6% 10 mm直径;2.6% 25 mm直径探针针尖移动5μm 整个磁场范围内温度范围最多安装4个探针臂基础温度8 K,控制温度范围10 K~400 K温度稳定性基础温度 (无加热控制)未说明10 K±50 mK10 K ~ 350 K±20 mK351 K ~ 400 K±50 mK真空以TPS-FRG分子泵为标准抽真空时间30 min (1 × 10-3 Torr)室温下5 × 10-4 Torr基础温度下1 × 10-5 Torr最高温度下5 × 10-4 Torr循环时间总循环4.5 h抽真空0.5 h探针台冷却2.25 h探针台升温1.75 h样品最大尺寸51 mm(2英寸)样品背光接口不可选样品旋转360°样品旋转选件(PS-360-EMPX)样品振动<1 μm探针配置最大探针数4探针臂温度计用于监视探针臂的温度冷却探针支架<20 K(样品在基础温度下)探针支架连接样品台热沉探针臂支架连接防辐射屏热沉DC/RF探针电绝缘100GΩ用于低漏电流测量微波探针频率范围从DC到67GHz光纤探针可用于电光测量落针范围所有探针均可在直径为 25.4 毫米(1 英寸)的圆内落针
    留言咨询
  • CRX-4K是Lake Shore公司推出的一款多功能、高性能设计的无液氦闭循环低温探针台。该系统兼顾了无液氦操作的便利性和Lake Shore产品卓越的测量性能。它使用独立的闭循环制冷机,开机后可在无人协助的情况下冷却至低温。CRX-4K多样的选件和配置可使研究者完成精确的、富有挑战性的测量。此款探针台可提供的最低温度为4.5K,探针台内多个温度计的安装可确保准确和重复的测量。双级闭循环制冷机允许样品在冷却过程中保持在较高温度,降低了样品冷凝的可能性,这是测量有机材料的关键要求。CRX-4K 可定制容纳直径达102 毫米(4 英寸)的晶圆片,并有直径 51 毫米(2 英寸)的探测区域。主要特征: √ 温度范围4.5 K~350 K√ 可选高温至675 K√ 无液氦低温操作√ 降温中尽可能减少样品冷凝√ 标准2英寸(51 mm)样品,4英寸(102mm)可选√ 环形磁场选件最大0.19T设备参数:温度范围安装2个探针臂基础温度4.5 K,控制范围5 K ~ 350 K安装4个探针臂基础温度5.5 K,控制范围6 K ~ 350 K安装6个探针臂基础温度6.0 K,控制范围6.5 K ~ 350 K安装PS-HTSTAGE选件(与样品背面偏压不兼容)基础温度20 K,控制范围20 K ~ 675 K温度稳定性基础温度 (无加热控制)未说明10 K±50 mK10 K ~ 100 K±10 mK101 K ~ 250 K±10 mK251 K ~ 350 K±20 mK351 K ~ 675 K±50 mK真空以TPS-FRG分子泵组为标准抽真空时间30 min (1×10-3 Torr)室温5 × 10-4 Torr基础温度1 × 10-5 Torr最高温度1 × 10-5 Torr循环时间总循环4 h抽真空0.5 h探针台冷却2 h探针台升温1.5 h样品最大尺寸51 mm(2英寸)样品背光接口不可选样品旋转不可选样品振动<1 μm探针配置最大探针数6探针臂温度计用于监视探针臂的温度冷却探针支架<20 K(样品在基础温度下)探针支架连接样品台热沉探针臂支架连接防辐射屏热沉DC/RF探针电绝缘100GΩ用于低漏电流测量微波探针频率范围从DC到67GHz光纤探针可用于电光测量落针范围所有探针均可在直径为 25.4 毫米(1 英寸)的圆内落针
    留言咨询
  • 无液氦干式超导磁体 400-860-5168转3481
    无液氦干式超导磁体 CSD超导磁体系统磁场范围最大可达5T, 可为用户提供非标设计。磁场的方向可以是垂直的或水平的。可以是室温孔径的,也可以是变温样品室带顶端装样方式的变温插件。超导磁体系统可采用G-M制冷机或脉冲管制冷机进行冷却。有标准样机, 为用户提供现场测试和参观。 主要特征: 可选择定制磁场 磁场范围:≤5T 室温超导磁体孔径最大400mm 磁场均匀性:+0.5%/1 cm DSV 操作电流:100 A VTI变温范围:1.6K~400K 失超保护功能 干式系统,操作完全不需要制冷剂(液氦)硬件组成: 超导磁体 压缩机 可拆除的室温孔径或变温插件 低温制冷机(G-M制冷机或脉冲管制冷机) 超导磁体电源 集成的能量吸收器 温度传感器 高温超导电流引线应用范围: 强磁低温环境下的各类材料性能测试 磁场退火炉、X-ray、中子散射 工业矿石分离 超导污水处理 NMR、EPR、MRI、STM应用
    留言咨询
  • Janis DryMag超导磁体在不使用液氦的情况下提供强磁场和低温环境。样品在整个温度范围内由静态氦气热交换气体冷却,可将固体、粉末、液体和形状不规则的样品均匀冷却至1.5 K。铜样品腔和样品座上的加热器和温度计与双通道控温仪一起使用,用于快速和精确的样品温度控制。 DryMag超导磁体可以配备电学测试接头和布线,非常适合用于研究材料的电子特性。输运测量包集成了Lake Shore MeasureLINK软件、M81-SSM同步源测量系统和M91 FastHall控制器,用于交钥匙自动化磁电测量。主要特征:☛ 温度范围:1.5 K ~ 300 K(420 K可选)☛ 垂直磁场最大12 T,水平磁场最大7 T☛ Top-Loading插杆,样品处于静态氦气中☛ 适用于液体、粉末及不规则形状样品的均匀冷却☛ 光学窗口可选☛ 可选配完整测量选件,M81同步源电输运测试、M91快速霍尔测试等DryMag磁体系统基本参数运行温度范围<1.5 K ~ 300 K (高温420 K可选)初始降温时间~24小时温度稳定性±50 mK样品更换时间90 min制冷机建议维护时间10000 h(GM)或20000 h(脉管)磁体选项最大磁场7 T 劈裂式(光学或水平磁场), 7 T, 9 T 或 12 T 螺线管最高温度选项300 K标准420 K双通道都满足(在非光学磁体中)420 K只有样品位置处满足(在光学磁体中)光学窗口选项底部光学窗口兼容螺线管磁体水平光学窗口兼容7 T劈裂式磁体系统选件单轴旋转样品杆垂直轴标准双轴旋转样品杆允许样品沿着垂直轴和水平轴旋转样品真空测试选件He3插件300 mK
    留言咨询
  • SpectromagPT无液氦超导磁光系统提供了集成的磁光电测量平台。设备特点:集成的变温插杆可提供1.6 K-300 K的样品温度范围平行和垂直磁场方向都有优良的光学通路结构紧凑,磁场强度达7 T可在系统处于低温状态时更换样品,无需复杂的负载锁定机制。样品周围无气体流动:系统采用静态交换气冷却样品,避免制冷气流引起的敏感样品或者测量样品杆的振动采用闭循环制冷方式,无气路堵塞问题,无样品交换气污染风险,极大地提高系统连续运行的周期可选配具有±15 mm轴向调节范围和绕垂直轴360度旋转的样品杆平行和垂直磁场方向优良的光学通路使用市面上最高规格的超导线材制作磁体1年标准质保期设备优点:灵活性高:多种实验插件可满足多种应用及研究需求快速换样:通过顶部装载样品杆实现快速换样光学优势:优良的光学通路使用简单:可实现样品全角度旋转测量技术参数:温度范围:1.6 K – 300 K标准样品杆的温度稳定性:±0.1 K系统冷却时间:从室温到4 K约40小时标准样品杆冷却时间:从室温到 2 K所需时间 90 min(在变温插件处在低温的状态下装样品杆时所需的冷却时间)系统连续运行时间:通常大于4周时间升至最大磁场所需时间:≤ 60 min变温插件样品腔空间:直径30 mm
    留言咨询
  • The above picture shows the sample space of the probe stationThe above picture shows a custom sample holder and 4 DC probes. 美国ARS 公司的PS-L型液氦/液氮型低温探针台用于样品的非破坏性检测,测试灵活,广泛应用于直流(DC),射频(RF),MEMS, 纳米电子,超导性,纳米电路的光电特性,量子点和量子线,非破坏性测试等。 液氦/液氮型和闭循环低温探针台核心部件是相同的,可共用相同的桌面、真空腔和探针臂。如果您先购买了液氦/液氮型的探针台,那么可以在之后的任何时间内升级成一个闭循环(无任何制冷剂)的系统。 该类型探针台使用了ARS液氦/液氮型低温恒温器,样品温度因制冷剂不同可达~4K(液氦)或 ~77K(液氮)。 该系统旨在提供一个大的、干净的样本环境。真空室由焊接不锈钢制成,辐射防护罩由镀有镍的HC铜制成。镍镀层的低发射率和铜的高导电性使得样品空间的辐射屏蔽更冷,净制冷量更大。高质量的真空元件是至关重要的,因为它允许更深层的真空水平和更清洁的样品具有更好的电接触。 ARS既生产冷头又生产探针台的一站式生产确保了系统的稳定性能,也利于系统的诊断和售后服务。 应用案例:l 电磁特性l 微波特性 l 低频,高频特性l MEMSl 纳米电子学l 超导特性l 纳米器件光电性能l 量子点及纳米线l 单电子l 低电流物理特性 典型结构l 液氦/液氮型低温恒温器l 传输管线-标准6英尺(8英尺或者10英尺)l 流量计l 10英寸的不锈钢真空腔带6个微操作探头端口和2个备用的NW80附件端口,安装在经阳极化处理的铝台面上,由铝制支撑架支撑l 8 英寸的镀镍无氧铜防热辐射屏l 2.25英寸的无氧铜接地样品座l DC, 微波或光纤探针l 4个温度计和2个加热器用于温度控制和监视l LS336四通道温度控制器带与恒温器连接电缆l 7:1变焦显微镜,分辨率小于2 微米,同轴或者环形光。包括一个高分辨的24寸的宽屏液晶显示器和显微镜光源 特点备注8英寸镀镍无氧铜防热辐射屏2.25英寸镀金无氧铜样品台可升级4英寸样品台高纯石英观察窗蓝宝石防热辐射屏冷窗多至8个三维微操作探针臂可选直流DC/高频RF/微波/光纤探针探针臂控温系统:高精度4通道控温仪、用于测量样品温度的校准行硅二极管温度计(±12mK)、加热器温度计安装位置:1、冷头温度计,用于诊断2、样品台温度计及加热器,用于控制样品台温度,实现精确控温3、样品温度计,用于精确测量样品温度4、冷屏温度计及加热器,用于控制加热冷屏温度,实现快速换样三级减振系统样品台综合振动1微米样品台振动100nm7:1显微观测系统,3微米分辨率,环形光源可升级16:1显微观察系统规格及技术参数制冷方式开环恒温器,液氦/液氮温度范围液氦~4K - 400K(可选500K,800K)液氮~77K - 400K(可选500K,800K)温度稳定性优于50mK泵抽真空时间机械泵约45分钟分子泵约10分钟降温时间约30到45分钟降温到5K真空腔不锈钢真空腔直径10英寸上盖安装高纯石英窗口防热辐射屏镀镍无氧铜防热辐射屏直径8英寸上盖蓝宝石冷窗热连接至1级冷头样品台镀金无氧铜样品台2.25英寸直径样品台连接接地(标准)绝缘(可选)偏压,通过同轴电缆至外部BNC接头(可选)偏压到Guard,通过同轴或三同轴电缆连接到外部三同轴接头(可选)探针臂位移台手动驱动不锈钢焊接波纹管连接X方向(轴向)2英寸行程Y方向(横向)1英寸行程(标准) 2英寸行程(可选)Z方向(垂直方向)0.5英寸行程刻度10微米灵敏度5微米振动三级减振,样品台综合振动优于1微米温度计安装4个温度计,2套加热器4个温度计位置:1个DT-670B-SD温度计安装于防热辐射屏用于防热辐射屏的快速升温1个DT-670B-SD安装于样品台底部用于控温1个DT-670B-SD安装于冷头位置用于诊断1个校准型DT-670-CU-4M温度计安装在样品台顶部样品附近,用于精确测温 2套加热器位置:1套50W筒状加热器安装在样品台底部用于控温1套100W加热器安装在防热辐射屏上用于系统快速升温显微观测系统标准7:1显微镜4.2毫米-0.61毫米视野工作距离:89毫米数值孔径:0.024-0.08光源:环形光源分辨率:3微米安装手动三维位移台高分辨率24英寸显示器 可选16:1显微镜12.8毫米-0.8毫米视野工作距离:89毫米数值孔径:0.0090-0.15光源:环形光源分辨率:2微米安装手动三维位移台高分辨率24英寸显示器探针臂直流/低频探针臂微型同轴电缆接头:SMA或BNC频率:0-100兆赫兹阻抗:50欧姆包含接地屏蔽接头 三同轴电缆接头:三同轴接头频率:0-100兆赫兹阻抗:50欧姆卡尔文探针电缆:同轴或三同轴接头:SMA/BNC/三同轴频率:0-100兆赫兹 针尖材料:钨针(标准)镀金钨针(可选)铍铜镀金(可选) 针尖半径:0.5微米(其他半径可选)GSG高频探针臂0-40GHz接头:K型接头电缆:半刚性同轴电缆针尖:钨针或铍铜针尖0-50GHz接头:2.4电缆:半刚性同轴电缆针尖:钨针或铍铜针尖0-67GHz接头:1.85电缆:半刚性同轴电缆针尖:钨针或铍铜针尖光纤探针臂紫外/可见 或 可见/红外接头:SMA905公头光纤样品端:抛光裸头尺寸:100微米-400微米 典型案例PS-L Continuous flow probe station with leastomeric vibration isolators. This design features manual and motorized capabilities.
    留言咨询
  • TritonTM无液氦稀释制冷机在温度低于10 mK的量子技术和凝聚态物理领域有着非常广泛的应用。该系统可配置多种高场超导磁体(最高磁场14 T)、独特的顶部和底部换样机制、信号引线和光学窗口选件,使其适用于任意极低温测量。其主要特点包括:性能可靠的稀释制冷单元技术,已在多达1000套已安装的湿式和干式稀释制冷机上证实可集成牛津仪器原厂超导磁体3年标准质保期,涵盖该系统的所有组件由英国、德国、美国、中国、日本和印度的区域服务团队提供原厂服务支持Triton是一个功能强大的低振动实验平台,可根据实验需求配置不同的系统选件,主要包括:可集成多种螺线管和矢量磁体,最高磁场强度高达14 T先进的顶部和底部换样机制低振动—使用柔性编织铜线和波纹管与脉管制冷机进行软连接配备充足空间容纳多股半刚射频线的,配备有优化衰减器,以实现尽可能低的电子温度可选配的光学通路:光纤或光学窗口先进的软件控制,包括远程命令界面和安全互锁系统3年标准质保期,涵盖所有第三方提供的组件,例如脉冲管制冷机、泵和电子仪表我们的新款Triton将继续提供更加强大的性能和可靠性更高的制冷功率:12 μW@20 mK,450 μW@100mK更大的样品空间:直径达290 mm,高度240mm,可扩展至440mm改进的支撑结构,使更换样品更加简单,同时提供更低的振动水平改进的使用性:可单人完成所有屏蔽件和磁体及电流导线(无需焊接)的组装Triton的设计目的是为了更大限度地延长使用时间并减少阻塞风险:洁净的干式泵组系统,由罗茨泵和隔膜泵来配合分子泵无需使用涡旋泵,避免涡旋泵极易产生粉尘堵塞气路的风险由高质量气动阀门组成的全焊接气体处理系统可靠而易于拆卸的快插部件,简化在污染情况下的维护操作流程标准系统配置包括:混合室冷盘传感器,原厂标定温度计泵放置于较远处的专用泵机架上,从而减少振动和噪声刚性的低温恒温器落地支架,以减少来自于实验室的振动低温恒温器与所有连接的气路、泵和落地支架之间实现电路隔离Triton 500最低温度: 10 mK20 mK时制冷功率: 12 μW100 mK时制冷功率: 450 μW温度控制范围:全磁场范围下10 mK-30 K系统冷却时间: 24 hrs样品空间:直径290 mm ′ 高度240 mm,可扩展至440mm3 个50 mm和1 个 65 mm直通孔从顶部连接至混合室冷盘,用于布置半刚性同轴线1-2 W脉管制冷机18 L 3He气体Triton 300最低温度: 10 mK20 mK时制冷功率: 6 μW100 mK时制冷功率: 250 μW温度控制范围:全磁场范围下10 mK-30 K系统冷却时间: 24 hrs样品空间:直径290 mm ′ 高度240 mm,可扩展至440mm3 个 50 mm和1个65 mm直通孔从顶部连接至混合室冷盘,用于布置半刚性同轴线1-2 W脉管制冷机11 L 3He气体
    留言咨询
  • Side profile of a UHV Cryogenic Probe StationHigh Conductance 8” Vacuum Pump Out Port 美国ARS公司的 PS-L-UHV探针台是专为样品的非破坏检测和最~大的真空洁净而设计,测试灵活,广泛应用于直流(DC),射频(RF),MEMS, 纳米电子,超导性,纳米电路的光电特性,量子点和量子线,非破坏性测试等。 液氦/液氮型和闭循环低温探针台核心部件是相同的,可共用相同的桌面、真空腔和探针臂。如果您先购买了液氦/液氮型的探针台,那么可以在之后的任何时间内升级成一个闭循环(无任何制冷剂)的系统。 该类探针台使用了ARS液氦/液氮型低温恒温器,样品温度因制冷剂不同可达~4K(液氦)或 ~77K(液氮)。 Sample space of the UHV probe station.Close-up view of the Load-lock sample holder and 4 DC probes 该系统旨在提供一个大型的,可烘烤的超高真空样品环境。真空腔由不锈钢焊接而成,防热辐射屏由裸无氧铜制成。铜的高导热性使得样品空间处有更冷的防热辐射和更大的净制冷量。高质量的焊接刀口法兰和巨大的泵出端口是至关重要的,因为这样可以实现真正的10-11 Torr的超高真空环境,并最~大程度保证了样品的洁净度。 ARS既生产冷头又生产探针台的一站式生产确保了系统的稳定性能,也利于系统的诊断和售后服务。 应用案例:l 电磁特性l 微波特性 l 低频,高频特性l MEMSl 纳米电子学l 超导特性l 纳米器件光电性能l 量子点及纳米线l 单电子l 低电流物理特性 典型结构l 液氦/液氮型低温恒温器l 传输管线-标准6英尺(8英尺或者10英尺)l 流量计l 10英寸的不锈钢真空腔带5个微操作探头端口和2个备用的NW80附件端口,安装在经阳极化处理的铝台面上,由铝制支撑架支撑l 8 英寸的镀镍无氧铜防热辐射屏l 2.25英寸的无氧铜接地样品座l DC, 微波或光纤探针l 4个温度计和2个加热器用于温度控制和监视l 涡轮分子真空泵l 四通道温度控制器及与恒温器连接电缆l 7:1变焦显微镜,分辨率小于2 微米,同轴或者环形光。包括一个高分辨的24寸的宽屏液晶显示器和显微镜光源 特点备注8英寸镀镍无氧铜防热辐射屏2.25英寸镀金无氧铜样品台可升级4英寸样品台高纯石英观察窗蓝宝石防热辐射屏冷窗标配4个三维微操作探针臂,可选6-8个可选直流DC/高频RF/微波/光纤探针探针臂控温系统:高精度4通道控温仪、用于测量样品温度的校准行硅二极管温度计(±12mK)、加热器温度计安装位置:1、冷头温度计,用于诊断2、样品台温度计及加热器,用于控制样品台温度,实现精确控温3、样品温度计,用于精确测量样品温度4、冷屏温度计及加热器,用于控制加热冷屏温度,实现快速换样样品台综合振动 1微米样品台振动 100nm7:1显微观测系统,3微米分辨率,环形光源可升级16:1显微观察系统规格及技术参数制冷方式开环恒温器,液氦/液氮温度范围液氦~3.5K - 400K(最大流量)(可选500K,800K)液氮~77K - 400K(可选500K,800K)温度稳定性优于50mK泵抽真空时间机械泵约45分钟分子泵约10分钟降温时间约30到45分钟降温到4.5K真空腔焊接法兰,不锈钢真空腔直径11.97英寸(304mm)上盖安装高纯石英窗口防热辐射屏镀镍无氧铜防热辐射屏直径8英寸上盖蓝宝石冷窗样品台镀金无氧铜样品台2.25英寸直径样品台连接接地(标准)绝缘(可选)偏压,通过同轴电缆至外部BNC接头(可选)偏压到Guard,通过同轴或三同轴电缆连接到外部三同轴接头(可选)探针臂位移台手动驱动焊接刀口法兰的不锈钢焊接波纹管连接X方向(轴向)2英寸行程Y方向(横向)1英寸行程(标准) 2英寸行程(可选)Z方向(垂直方向)0.5英寸行程刻度10微米灵敏度5微米振动样品台综合振动优于1微米温度计安装4个温度计,2套加热器 4个温度计位置:1个DT-670B-SD温度计安装于防热辐射屏用于防热辐射屏的快速升温1个DT-670B-SD安装于样品台底部用于控温1个DT-670B-SD安装于冷头位置用于诊断1个校准型DT-670-CU-4M温度计安装在样品台顶部样品附近,用于精确测温 2套加热器位置:1套50W筒状加热器安装在样品台底部用于控温1套100W加热器安装在防热辐射屏上用于系统快速升温显微观测系统标准7:1显微镜4.2毫米-0.61毫米视野工作距离:89毫米数值孔径:0.024-0.08光源:环形光源分辨率:3微米安装手动三维位移台高分辨率24英寸显示器可选16:1显微镜12.8毫米-0.8毫米视野工作距离:89毫米数值孔径:0.0090-0.15光源:环形光源分辨率:2微米安装手动三维位移台高分辨率24英寸显示器探针臂直流/低频探针臂微型同轴电缆接头:SMA或BNC频率:0-100兆赫兹阻抗:50欧姆包含接地屏蔽接头 三同轴电缆接头:三同轴接头频率:0-100兆赫兹阻抗:50欧姆 卡尔文探针电缆:同轴或三同轴接头:SMA/BNC/三同轴频率:0-100兆赫兹针尖材料:钨针(标准)镀金钨针(可选)铍铜镀金(可选) 针尖半径:0.5微米(其他半径可选)GSG高频探针臂0-40GHz接头:K型接头电缆:半刚性同轴电缆针尖:钨针或铍铜针尖 0-50GHz接头:2.4电缆:半刚性同轴电缆针尖:钨针或铍铜针尖 0-67GHz接头:1.85电缆:半刚性同轴电缆针尖:钨针或铍铜针尖光纤探针臂紫外/可见 或 可见/红外接头:SMA905公头光纤样品端:抛光裸头尺寸:100微米-400微米
    留言咨询
  • Janis提供无液氦闭循环制冷的低温冷阱,这些冷阱主要用于吸附稀有气体,包括氦气、氖气、氩气、氪气和氙气。低温冷阱有助于从火山温泉收集的地质材料中提取此类气体,以深入了解地球的行星演化。低温冷阱也可用来吸附陨石、极地冰盖和海岛橄榄石中的各种氧同位素。用户可以根据应用情况来定制冷阱,比如包括具有独立温度控制、配一个或两个冷头的双冷阱、流通设计和脱水器等。也可以定制特殊的冰芯收集器来冷却样品管。这些冷阱主要设计用于捕获和分离稀有气体,但也可能适用于其他气体,联系我们了解更多信息。主要特征: ♢ 无液氦制冷♢ 温度范围8 K ~ 325 K或9 K ~ 500 K♢ 样品处于真空中♢ 吸附惰性气体、氧同位素等主要参数:CCS-TRAPCCS-TRAP-H制冷类型闭循环制冷温度范围8 K ~ 325 K9 K ~ 500 K典型温度稳定性±50 mK样品环境真空降温时间1 h ~ 1.5 h冷头位置底部高度(近似值)91.4 cm96.5 cm重量 (近似值)19.1 kg制冷机建议维护时间13,000 h
    留言咨询
  • Janis DryMag超导磁体在不使用液氦的情况下提供强磁场和低温环境。样品在整个温度范围内由静态氦气热交换气体冷却,可将固体、粉末、液体和形状不规则的样品均匀冷却至1.5 K。铜样品腔和样品座上的加热器和温度计与双通道控温仪一起使用,用于快速和精确的样品温度控制。 DryMag超导磁体可以配备电学测试接头和布线,非常适合用于研究材料的电子特性。输运测量包集成了Lake Shore MeasureLINK软件、M81-SSM同步源测量系统和M91 FastHall控制器,用于交钥匙自动化磁电测量。主要特征:☛ 温度范围:1.5 K ~ 300 K(420 K可选) ☛ 垂直磁场最大12 T,水平磁场最大7 T☛ Top-Loading插杆,样品处于静态氦气中☛ 适用于液体、粉末及不规则形状样品的均匀冷却☛ 光学窗口可选☛ 可选配完整测量选件,M81同步源电输运测试、M91快速霍尔测试等DryMag磁体系统基本参数 运行温度范围<1.5 K ~ 300 K (高温420 K可选)初始降温时间~24小时温度稳定性±50 mK样品更换时间90 min制冷机建议维护时间10000 h(GM)或20000 h(脉管)磁体选项最大磁场7 T 劈裂式(光学或水平磁场), 7 T, 9 T 或 12 T 螺线管最高温度选项300 K标准420 K双通道都满足(在非光学磁体中)420 K只有样品位置处满足(在光学磁体中)光学窗口选项底部光学窗口兼容螺线管磁体水平光学窗口兼容7 T劈裂式磁体系统选件单轴旋转样品杆垂直轴标准双轴旋转样品杆允许样品沿着垂直轴和水平轴旋转样品真空测试选件He3插件 300 mK
    留言咨询
  • 基于液氦的低温恒温器的液氦使用中需要考虑高昂价格、繁重后勤、安全防护等各个方面。无液氦闭循环低温恒温器变得越来越受到各个低温测量领域的专家与学者们的青睐。 德国attocube推出的attoDRY系列低温恒温器具备无液氦、超低振动、超高温度稳定性的优异性能,给低温实验物理领域的科学家提供了一个强有力的实验工具。主要特征:1. 无需液氦,具有压缩机制冷。2. 超低震动,特殊减震设计,Z方向振动可优于0.15nm3. 样品空间大:2英寸(49.7mm)直径,以及75mm直径圆柱空间4. 温度稳定性高:温度稳定性优于10mK特征参数:attoDRY800attoDRY1000attoDRY1100attoDRY2100变温范围3.8 - 320K4 - 300K4 - 300K1.5 - 300K兼容磁场否是是是光学接口是是是是触屏控温是手动是是超低震动是是是是兼容显微镜的类型CFM/RAMANCPSCFM/RAMANAFM/SNOM/SHPM/CPSatto3DRCFM/RAMANAFM/SNOM/SHPM/CPSatto3DRCFM/RAMANAFM/SNOM/SHPM/CPSatto3DRattoDRY800桌面式光学低温恒温器attoDRY800专门为量子光学,低温光学领域实验设计。可实现3.8-320K变温环境,全自动操控,触摸屏设定温度;具有75mm直径大样品空间;超低震动:Z方向振幅优于5纳米;温度稳定性:15mK;多种真空罩设计,真空罩内可配置低温物镜(数值孔径大于0.8),多组低温位移台。主要特点:+ 冷头与光学平台高度集成+ 定制真空罩+ 低温消色差物镜,NA=0.81+ 自由光学空间,无遮挡+ 维护成本低(无需液氦)+ 兼容低温位移器,扫描器,旋转器与倾角器主要技术参数:+ 超低振动: 5nm 峰峰值+ 全自动控温:3.8-320K+ 温度稳定性:15mK+ 样品空间:75mm (直径)+ 冷却间:约4-5hr to 4 K+ 样品区域的制冷功率:100mW @4.2K+ 可集成电学输运测量attoDRY1000 - 低震动无液氦磁体attoDRY1000本底温度4K;可配置9T,12T以及矢量磁体;部进样设计,快速换样;样品空间:49.7mm直径圆柱空间;温度稳定性: ±10mK。兼容attoCFM低温共聚焦显微镜,attoAFM-MFM低温原子力磁力显微镜。超低振动:Z方向振幅优于0.15纳米;适于量子光学研究与扫描探针研究。主要特点:+ 无液氦系统,采用pulse-tube技术;+ 低震动水平。在样品区域,峰峰震动幅度小于1.2nm-1;+ 3.5K降温时间小于1小时;+ 磁场强度高到9T;+ 兼容CFM、AFM、MFM、CPS等多种扫描探针显微镜;主要技术参数:+ 变温范围:4 - 300K+ 降温时间(有插杆):~1hr+ 降温时间(无磁场):~5hr+ 降温时间(9T磁场):~10hr+ 温度稳定性: +/- 5mK+ 样品区域的制冷功率:5mW @5K+ 额定制冷功率@4.2K 1000mW+ 超导磁场强度:0- 9T+ 兼容SPM类型:CFM、RAMAN、AFM、MFM、SHPM、CPS、atto3DRattoDRY1100 - 全自动低震动无液氦磁体attoDRY1100本底温度4K;全自动控温,触屏屏幕控制温度与磁体;可配置9T,12T以及矢量磁体;部进样设计,快速换样;样品空间:49.7mm直径圆柱空间;温度稳定性: ±10mK。兼容attoCFM低温共聚焦显微镜,attoAFM-MFM低温原子力磁力显微镜。超低振动:Z方向振幅优于0.15纳米;适于量子光学研究与扫描探针研究。主要特点:+ 无液氦系统,采用pulse-tube技术;+ 低震动水平。在样品区域,峰峰震动幅度小于1.2nm-1;+ 3.5K降温时间小于1小时;+ 磁场强度高到9T;+ 兼容CFM、AFM、MFM、CPS等多种扫描探针显微镜;attoDRY2100全自动低震动无液氦磁体attoDRY2100本底温度1.8K;全自动控温,触屏屏幕控制温度与磁体;可配置9T,12T以及矢量磁体;部进样设计,可快速换样;样品空间:49.7mm直径圆柱空间;温度稳定性高: ±5mK。兼容attoCFM低温共聚焦显微镜,attoAFM-MFM低温原子力磁力显微镜,atto3DR低温双轴旋转台。超低振动:Z方向振幅优于0.15纳米;适于量子光学,电学输运与扫描探针显微研究。主要特点: + 无液氦系统,采用pulse-tube技术;+ 低震动水平。在样品区域,峰峰震动幅度小于1.2nm; + 样品降温时间小于10小时;+ 磁场强度高到9T;+ 兼容CFM、AFM、MFM、CPS等多种扫描探针显微镜;发表文献:1. Shengwei JIANG, et al. Electric-field switching of two-dimensional van der Waals magnets, Nature Materials 17, 406–410 (2018)2. Stefan Strauf, et al. Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities. Nature Nanotechnology 13, 1137–1142 (2018)3. Zefang WANG, et al. Strongly Interaction-Enhanced Valley Magnetic Response in Monolay-er WSe2, Phys. Rev. Lett. 120, 066402 (2018)4. Xiulai XU, et al. Two-Photon Rabi Splitting in a Coupled System of a Nanocavity and Exci-ton Complexes, Phys. Rev. Lett.120, 213901 (2018)5. Chaoyang Lu et.al, High-efficiency multiphoton boson sampling. Nature Photonics, 11, 361–365 (2017)6. Alexander H?gele, et al. Opto-valleytronic imaging of atomically thin semiconductors, Nature Nanotechnology 12, 329–334 (2017)7. Stefan Strauf, et al. Purcell-enhanced quantum yield from carbon nanotube excitons cou-pled to plasmonic nanocavities, Nature Communications 8, 1413 (2017)8. G.WANG, et al. In-Plane Propagation of Light in Transition Metal Dichalcogenide Monolay-ers: Optical Selection Rules, Phys. Rev. Lett. 119, 047401 (2017)9. Surajit Saha, et al. Long-range magnetic coupling across a polar insulating layer, Nature communications, 7:11015, (2016).10. W. YANG, et al. Electrically Tunable Valley-Light Emitting Diode (vLED) Based on CVD-Grown Monolayer WS2. Nano Letters 16, 1560-1567, (2016).11. He, Y. M. et al. Single quantum emitters in monolayer semiconductors. Nature Nanotech-nology 10, 497-502,(2015).12. Shang J. et al. Observation of Excitonic Fine Structure in a 2D Transition-Metal Dichalcogenide Semiconductor. ACS Nano, 9, 647-655, (2015)13. Nazin, G. et al. Visualization of charge transport through Landau levels in graphene. Na-ture Physics 6, 870-874, (2010). 用户单位:attocube公司产品以其稳定的性能、高的精度和良好的用户体验得到了国内外众多科学家的认可和肯定,在全球范围内有超过了130多位低温强磁场显微镜用户。attocube公司的产品在国内也得到了低温、超导、真空等研究领域著名科学家和研究组的欢迎......国内部分用户:北京大学中国科技大学中科院物理所中科院武汉数学物理所中科院上海应用技术物理研究所复旦大学清华大学南京大学中科院半导体所上海同步辐射中心北京理工大学哈尔滨工业大学中国科学院苏州纳米技术与纳米仿生研究所… … 国外部分用户:
    留言咨询
  • 我司在北京师范大学顺利完成美国ARS公司LT3液氦/液氮型低温恒温器验收工作近日我司在北京师范大学顺利完成美国ARS公司(ADVANCED RESEARCH SYSTEMS)LT3液氦/液氮型低温恒温器验收工作,搭配布鲁克Bruker VERTEX 80V光谱仪;该款恒温器采用同轴液氦冷却低温传输管线,液氦消耗率同类产品最低0.7LL/hr@4.2K.降温时间只有20分钟。
    留言咨询
  • 全新一代氦液化回收系统 - NexGenQuantum Design的氦液化器和液氦回收系统可以帮助您回收低温设备中正常蒸发和传输液氦时损失的的氦气并将其液化重复使用。这些氦液化器和回收系统适用于科研及医疗用液氦消耗设备,如液氦型超导磁体、PPMS、MPMS、液氦型低恒温器、STM、NMR、MEG 等。拥有它可以帮助您避免了购买液氦繁琐的流程以及节省了大量的购买液氦的费用,同时您也将为保护一种对科学研究和医疗至关重要的宝贵自然资源尽一份力量。Quantum Design 的氦液化器专为普通用户开发,具有友好的触摸屏用户界面,可以通过互联网进行远程访问。全自动操作允许你把更多的时间花在工作上而不是冷剂维护。与工业型氦液化器不同的是,它小巧轻便的体积便于通过门口和斜坡,其转移过程与从当前的储存杜瓦瓶中转移一样容易,可以大程度的减少多次传输液氦造成的损失。所有这些特性使得液氦的回收和转移比以往任何时候都更加方便。无论你有一个大实验室或小实验室,一个或多个使用液氦的设备,Quantum Design 总有一款氦回收方案适合你。氦气回收系统可单配置,以适应各种规模和类型的实验室。所有回收系统都有完全集成的组件,大多数功能都是自动化的或非常容易操作的。回收系统可以用于各种类型的低温设备。定制配件和连接装置可用于各种仪器,以便无缝集成到您的实验室或低温设备上。我们的回收系统的每一个阶段都有防故障保护装置,这样在发生事故时,回收系统的其余部分和低温仪器就不会受到损坏或污染。氦液化器主要特征:◎ 易于使用,全自动操作;◎ 便于移动传输液氦;◎ 新的250 升容量允许更大的液氦传输;◎ 高液化速率及能源效率;◎ 1PSIg 压力液化使得您可以随时使用液氦;◎ 可选的变频 “Smart Energy” 压缩机;◎ 自动清洁,无间断运行;◎ 模块化设计:您的系统可以随着您的氦需求增加而方便扩展。规格参数:NexGen 160(NEW!!)◎ 液化率:25+L / 天*( 典型)◎ 杜瓦容量:160 L◎ 系统尺寸 ( L x W x H ):104 x 71 x 152 cm ( 液化器主机不含压缩机)◎ 压缩机类型:水冷型( 变频型可选)◎ 典型功率和电压范围:6.5 - 7.5 kW;380V 或110V 均可◎ 氦气纯度要求:99.999%NexGen 250(NEW!!)◎ 液化率:25+L / 天*( 典型)◎ 杜瓦容量:250 L◎ 系统尺寸 ( L x W x H ):114 x 81 x 160 cm ( 液化器主机不含压缩机)◎ 压缩机类型:水冷型( 变频型可选)◎ 典型功率和电压范围:6.5 - 7.5 kW;380V 或110V 均可◎ 氦气纯度要求:99.999%ATL 160XL◎ 液化率:35+L / 天*( 典型)◎ 杜瓦容量:160 L◎ 系统尺寸 ( L x W x H ):104 x 76 x 151 cm ( 液化器主机不含压缩机)◎ 压缩机类型:水冷型( 变频型可选)◎ 典型功率和电压范围:6.5 - 7.5 kW;380V 或110V 均可◎ 氦气纯度要求:99.999%ATP30◎ 纯化30 升氦气每分钟**( typical ),纯化氦气至 99.9995%再生时间:5 小时 ( 无需更换过滤器或滤芯)**◎ 系统尺寸( L x W x H ):60 x 69 x 148 cm ( 纯化器主机不含压缩机)◎ 压缩机类型:水冷型( 变频型可选)◎ 典型功率和电压范围:◎ 6.5 - 7.5 kW 380V 或110V 均可液氦回收解决方案1: 直接回收配合ATL80或ATL160,直接回收是用户回收液氦简单的方案。任何一款QD的智能氦液化器都能轻松将用户低温系统的日常液氦蒸发进行回收和液化。 所需组件:X:用户的低温系统A:ATL80(或ATL160主机)B:ATL160的压缩机(ATL80的压缩机集成在主机上)C:背压控制器 Back Pressure ControllerD:ATL160的配电箱(ATL80不需要)2: 中压存储回收中压存储回收方案,适合于同时需要对1-2台低温系统的日常液氦蒸发和液氦传输时的蒸发全部回收的用户。所需组件:X:用户的低温系统A:ATL80(或ATL160主机)B:ATL160的压缩机(ATL80的压缩机集成在主机上)C:氦气冷阱E:中压储气罐(1000升)F:背压控制器G:ATL160的配电箱(ATL80不需要)H:增压泵3:高压存储回收高压存储回收方案,适合于同时需要对3台以上低温系统或者为分别安放在不同实验室的多套低温系统的日常液氦蒸发和液氦传输时的蒸发全部回收的用户。所需组件:X:用户的低温系统A:ATL80(或ATL160主机)B:ATL160的压缩机(ATL80的压缩机集成在主机上)C:ATP30氦纯化器D:ATP30的压缩机E:氦气储气袋F:背压控制器G:ATL160的配电箱(ATL80不需要)H:高压回收压缩机I:回收系统主控制器应用案例乔治亚大学化学系 高压回收方案 在有机化学领域与NMR联用,通过高压回收方案将多台NMR液氦蒸发进行集中回收。该实验室有6台NMR设备,其中包含一台大型900MHz的核磁设备,目前该回收系统已经为用户回收了大量液氦,大程度节省了用户液氦开销。 中科院生物物理所 高压回收方案 在生物医学方面,中科院生物物理所同样于2014年初安装了高压回收方案用于回收其2套MRI核磁成像系统、1套MEG脑磁成像系统的液氦。目前设备已经运转近一年时间,用户对液氦回收系统的工作效率和智能化设计感到非常满意。 加州大学戴维斯分校 中压回收方案 在低温物理方面,加州大学戴维斯分校采用了较为先进的全密封中压回收方案用于回收其NMR固体核磁系统以及低温物性测量系统。中压回收方案具有占地面积小、管路整体气密性高等特点,因此在气体纯度方面相对于高压回收系统具有一定优势。南京大学 直接回收方案 直接回收系统相对于中高压回收系统来说是为简单的液氦回收方案,南京大学闻海虎老师课题组采用直接回收方案利用ATL80同时回收MPMS以及PPMS液氦,该方案占地面积较小同时能够回收用户日常使用消耗的大部分液氦,是一种廉价简便的解决方案。 上海高压先进科研中心 中压回收方案 上海高压先进科研中心是国内套ATL160中压回收系统,该系统用于MPMS、PPMS以及光学恒温器等多套设备的液氦回收,具有占地面积小、低噪声以及低维护成本等特点。用户单位
    留言咨询
  • LTR专为X波段EPR和ESR测量而设计。 通过石英比色皿内的液氦射流冷却样品。 我们提供符合Bruker、Varian和JEOL腔体的玻璃器皿。LTR保持了ARS制造的LT3低温恒温器以及所有其他连续流低温恒温器的优异特性,包括使用同轴液氦传输传输线和阻流针阀。特点• 玻璃器皿适合Bruker腔• Bruker腔体腔适配器• Bruker磁铁的安装布置• 液氦连续流• 液氦屏蔽层传输管线• 4.2K液氦操作• 4.2 K液氦消耗量为0.75LL / hr• 精确流量控制• 完全可定制典型结构• 液氦屏蔽层液氦传输管线• 不锈钢仪表裙• 杜瓦适配器• 用于氦气流量控制和优化的流量计面板• Bruker腔sdapter• 玻璃器皿适合Bruker腔• 温度测量和控制仪表:• 10针Feedthrough• 36欧姆的薄膜加热器• Gold Chromel热电偶用于温度控制• Gold Chromel热电偶可实现精确测量• 温度控制器选件与升级• 提供定制玻璃器皿• 高流量液氦传输管线• 定制温度传感器配置• 定制接线配置 整个系统电磁铁前部LTR顶部电磁铁后部
    留言咨询
  • 我司在中国科学院物理研究所顺利完成美国ARS公司LT3液氦/液氮型低温恒温器验收工作 近日我司在中国科学院物理研究所顺利完成美国ARS公司(ADVANCED RESEARCH SYSTEMS)LT3液氦/液氮型低温恒温器验收工作,该款恒温器与傅立叶变换光谱仪(布鲁克Bruker 80v)配合使用,采用同轴液氦冷却低温传输管线,液氦消耗率同类产品最低0.7LL/hr@4.2K.降温时间只有20分钟。 LT3管状连续流低温恒温器应用十分广泛,拥有很多独特特点,如热交换型液氦传输管线可以提高制冷效率而且极大的消除振动。 LT3恒温器拥有不锈钢仪表群,独特的双O圈设计使它易于安装,校准,移除真空外罩。 根据使用条件不同有很多不同设计,如: LT3K可与Newport Kappa测角器集成 LT3G可与Huber 5012.12集成,而且LT3G的小径向间隙使得其应用非常广泛 LT3B是真正的UHV冷头(10-11 Torr) ,该款恒温器都用焊接接头和金属密封取代了橡胶O圈密封 LT3M可定制冷指长度到1200mm,非常适合需要长冷指的表面物理实验。 典型应用• 光学显微镜• 显微拉曼• 光致发光• 显微光致发光• 光电• 光磁
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制