当前位置: 仪器信息网 > 行业主题 > >

温控探针台气密

仪器信息网温控探针台气密专题为您提供2024年最新温控探针台气密价格报价、厂家品牌的相关信息, 包括温控探针台气密参数、型号等,不管是国产,还是进口品牌的温控探针台气密您都可以在这里找到。 除此之外,仪器信息网还免费为您整合温控探针台气密相关的耗材配件、试剂标物,还有温控探针台气密相关的最新资讯、资料,以及温控探针台气密相关的解决方案。

温控探针台气密相关的资讯

  • 进口率超九成,美日仪器垄断市场——全国共享探针台盘点
    探针台是一种很专业的仪器,它主要的功能就是针对半导体元件进行检测,这里面说的半导体元件指的是集成电路,分立器件,光电器件,传感器等元件以及封装的测试。通过探针台配合测量仪器可完成集成电路的电压,电流,电阻和电容电压特性曲线等参数检测。可以适用于对芯片进行科研分析,抽查检测等;可以保证这些半导体元件的质量,缩短研发时间和器件制作工艺的成本,所以,它的存在对于制造半导体的企业来说是非常重要的。随着半导体市场的逐步开放和增长,作为半导体检测的必备仪器—探针台的市场也在逐年增长和扩大中,不论是海外品牌还是国产品牌,近几年在半导体检测仪器市场中的规模都在逐年扩大。由于高校的管理模式及制度,探针台大多养在“深闺”,大量科研资源潜能没有得到充分发挥。为解决这个问题并加速释放科技创新的动能,中央及各级政府在近几年来制订颁布了关于科学仪器、科研数据等科技资源的共享与平台建设文件。2021年1月22日,科技部和财政部联合发布《科技部 财政部关于开展2021年度国家科技基础条件资源调查工作的通知(国科发基〔2020〕342号)》,全国众多高校和科研院所将各种科学仪器上传共享。其中,对探针台的统计分析或可一定程度反映科研领域相关仪器的市场信息(注:本文搜集信息来源于重大科研基础设施和大型科研仪器国家网络管理平台,部分仪器品牌信息不全则根据型号等信息补全,不完全统计分析仅供读者参考)。不同地区(省/市)仪器分布情况本次统计,共涉及探针台的总数量为235台,涉及20省(直辖市/自治区),84家单位。其中,上海市共享磁测量仪器数量最多达63台,占比29%,涉及17所高校、研究院所和企事业单位等,上海如此高的占比主要是由于其集成电路等半导体产业发达。上海市探针台主要来自于上海华岭集成电路技术股份有限公司,共有25台,占上海市总共享探针台的11%。仪器所属学科领域分布从仪器所属学科领域分布可以看出,探针台主要用于电子与通信技术、物理学和材料科学研究,占比分别为32%、17%和14%。不过,信息科学与系统科学和信息与系统科学相关工程与技术两个学科重合度较高,合计占比达16%,比材料科学略高。需要注意的是,以上统计存在交叉分布的情况,即该仪器同时属于多类学科领域。仪器所属单位性质分布那么这些仪器主要分布在哪些单位呢?统计结果表明,共享探针台主要分布于高校中,占比达60%,这一结果主要是因为共享仪器平台的仪器由高校上传所致,统计结果并不能体现出此类仪器的市场分布。不过共享仪器最多的确实企业中的上海华岭集成电路。而高校和科研院所共享数量TOP5分别为清华大学、苏州大学、中国科学院上海微系统与信息技术研究所、东南大学、北京大学,这些高校院所都具有集成电路研发的基础。探针台主要品牌分布探针台品牌所属地区分布这些探针台主要品牌为美国Cascade、美国Lake Shore和日本东京精密,占比分别为28%、23%和16%。Cascade是全球领先的的探测系统、探针、探测器等产品的设计生产商,公司成立于1983年,总部设在美国俄勒冈州西北部城镇,为全球晶圆级测试的销售、服务和应用而存在,自主拥有150多项专利技术。Lake Shore公司成立于1968年,位于美国俄亥俄州哥伦布市,是低温与磁场科研设备的国际领导者。主要产品包括:振动样品磁强计、低温真空探针台、霍尔效应测量系统、低温控温仪、低温传感器、高斯计、磁通计等。可以看出,目前我国高校院所的探针台仍以进口为主,大部分市场被美日产品垄断,进口产品占比超过90%。此外,在统计过程中,笔者发现探针台常与半导体参数测量仪搭配联用,而搭配的半导体参数测量仪主要是美国Keithley的4200-SCS型号的产品。这是美国泰克旗下的吉时利品牌的一款产品。不过目前该型号已下架,最新款是4200A-SCS型号,4200A-SCS 参数分析仪支持许多手动和半自动晶片探测器和低温控制器,包括 MPI、Cascade MicroTech、Lucas Labs/Signatone、MicroManipulator、Wentworth Laboratories、LakeShore Model 336 低温控制器。Keithley 4200A-SCS 参数分析仪本次共享探针台仪器盘点,涉及等Cascade、Lake Shore、东京精密、MPI、Janis、SUSS、东京电子、奕叶、Signatone、ARS、FORMFACTOR、MPI等三十多家厂商,呈现出三超多强局面。探针台高校院所市场将爆发随着集成电路产业的爆发式发展,2018 年开始,将集成电路设置成一级学科的提案开始出现。2018 年中国科学院院士王阳元在新时期中国集成电路产业论坛中提议,微电子学科提升为一级学科。学术界和产业界对集成电路成为一级学科异常关注。2019 年 10 月 8 日,工信部官网发布《关于政协十三届全国委员会第二次会议第 2282 号(公交邮电类 256 号)提案答复的函》中表示,工信部与教育部等部门将进一步加强人才队伍建设,推进设立集成电路一级学科,进一步做实做强示范性微电子学院。去年12月30日,国务院学位委员会、教育部正式下发关于设置“集成电路科学与工程”一级学科的通知。过去一年来,北京航空航天大学、安徽大学、广东工业大学、中山大学、清华大学等国内多所高校均成立集成电路相关学院。随着集成电路学院的纷纷成立,高校院所对半导体相关仪器设备需求将剧增,探针台作为半导体检测的重要仪器,相关市场将爆发。
  • 我国引进首台纳米离子探针通过验收
    我国引进的第一台NanoSIMS 50L型纳米离子探针验收会于近日在中国科学院地质于地球物理研究所召开。中国科学院地质于地球物理研究所副所长吴福元研究员为组长的专家组认真听取了法国CAMECA公司纳米离子探针设计师、Franç ois Hillion博士所作的验收报告。专家组对仪器的验收指标有关问题进行了提问,一致认为该仪器的技术参数不仅全部达到合同要求,大部分还优于合同要求的验收指标。 纳米离子探针   纳米离子探针具有极高的空间分辨率(Cs+源束斑小于 50nm,O-源束斑小于200nm),与我所已有的CAMECA ims 1280高精度离子探针互补,构成国际上非常先进的的离子探针分析平台。新引进的NanoSIMS 50L型纳米离子探针配置了7个信号检测器(每个配置法拉第杯和电子倍增器),可以同时测量7个同位素(或元素),分析精度好于千分之一。该仪器可以分析除稀有气体以外,元素周期表中从H至U的全部同位素(元素),并能获取同位素分布的高分辨图像。纳米离子探针的引进,为我国比较行星学、地球科学、材料科学、以及生命科学等领域提供了新的大型实验分析平台。
  • 朱幸俊研究员团队:镧系发光纳米温度探针及光学测温技术
    镧系发光纳米温度探针及光学测温技术胡倩1 朱幸俊11上海科技大学物质科学与技术学院生物体温度监测在医学诊断和治疗方面有着重要意义。传统的生物体测温方式依赖于侵入式探头或者局限于体表检测的热成像设备。对于体内深层组织的无损温度探测仍然是一项挑战。光学测温技术基于温度敏感的发光材料和器件,以光信号作为输出实现温度检测。在发光材料中,镧系发光纳米材料(LLNs)具有光稳定性好、发射谱带丰富、低自发荧光干扰等独特优点,在体内成像检测和疾病诊断方面具有广泛应用。目前已报道了一系列LLNs的发光信号的强度、寿命等光学性质与温度相关,因此可以作为温度检测探针。与此同时,LLNs本身的纳米级尺寸有别于传统温度检测的宏观设备,因此可以胜任亚细胞级别的微观热效应检测以及热传递过程研究,提升测温的空间精度,借助LLNs的近红外发光,能进一步提高光信号在组织中穿透深度,更好的实现深组织、非侵入性温度检测。(一)LLNs温度探针的测温策略温度可以改变LLNs的发光强度比、带宽、光谱偏移、寿命等方式影响LLNs的发光特性[1]-[3]。其中,发光强度比和发光寿命这两种策略受生理环境的干扰更小,从而具有更高的测温准确性[4]-[5]。基于发光强度比率构建温度探针电子在两个相邻激发能级(能级差一般小于1000 cm-1)中的分布与温度有关,满足Boltzmann分布,因此具有热依赖性的两个能级发光强度比与温度之间的关系可描述为, [6]-[7],其中I2/I1为两个能级的发射强度比;ΔE是两个能级能量差,C是由发光基质材料确定的常数,T为温度,kB为玻耳兹曼常数。因此,通过在不同温度下检测两条发射峰的比值,可得到温度以发射强度比值的关系,作为温度检测的校正曲线。基于发光寿命构建温度探针在LLNs体系中,温度敏感的能量转移也会导致激发态寿命的变化,从而可以测量在脉冲激发下特定能级跃迁的寿命与温度的依赖关系,通过发光衰减曲线推断温度信息[8]-[9]。(二)LLNs测温技术与设备基于发光强度比率的测温技术较为直观,相关设备的设置与光谱检测系统类似,主要特点是恒温控制系统的附加。其装置如图1所示,由半导体激光器、样品台、控温器、滤光片、光谱检测器和计算机组成,其中激光器、样品台、滤光片、光谱检测器用于发光材料的光信号激发与收集,控温器件用于样品的恒温与变温进而得到不同温度的光谱。类似的基于发光强度比率的成像检测设备的光谱检测器被替换为CCD相机,通过滤光片系统采集不同波段的发射带,通过光强度成像图的计算得到温度分布结果。光强比率测温技术的设备较为简单,但这项测温方法易受生物环境引起的光散射或吸收的干扰[4],需在组织或模拟组织的假体中对温度曲线进行校正来减小误差[10];基于发光比率的温度检测其优点是检测速度较快,对于快速变化的温度具有更好的实时跟踪能力。发光寿命作为荧光团固有特性,受环境干扰较小,因此可以提高测量准确性[11]-[12],而且LLNs的发光寿命相对小分子荧光探针更长,对于基于成像的寿命检测系统的构建相对短寿命检测难度较低。具体的设备构建如图2所示,将常规的荧光成像代替为时间门控荧光成像系统,配合波形发生器、斩波器等,对相机的分辨率要求高,并且由于寿命衰减曲线的测试需要借助时间门控单元,对光信号进行多次采集,因此获取完整衰减曲线的图像时间较长,不利于检测快速变化的温度信号[8]。两种发光温度检测技术各有优势,目前研究工作中所报道的比率型温度检测技术较为成熟,寿命检测的测温技术仍然处于优化阶段,主要难点是长波长近红外发射的寿命检测技术尚不成熟。图1. 基于发光强度比率温度计的实验设备图2. 基于发光寿命温度计的实验设备[8](三)LLNs温度探针的生物应用LLNs体内无创温度监测的特性促使了一些新兴的生物医学领域应用,尤其在疾病诊断和指导治疗方面[4],[13]-[16]。我们最近总结了基于镧系发光纳米复合材料的温度检测技术及其生物学应用的研究工作,并梳理了不同测温技术在生物应用上的特点(Chem. Eur. J., 2022, 28, e202104237),希望和大家一起探讨光学测温技术的应用空间以及相关设备的研制。基于LLNs的生物体温度检测,近年来我们开展了一系列的应用。例如我们曾经报道了一种以上转换发光材料为核心(NaLuF4:Yb,Er@NaLuF4),以光热材料(碳)作为外壳的LLNs,其中上转换发光材料的Er3+发光中心特征的525与545 nm发射强度的比值与温度呈现相关性,因此可作为光学温度探针。通过检测光热过程中的微观温度变化,进一步发现光热效应下纳米颗粒的升温幅度和速率大于常规的外部加热方式。利用这一特性,可以实现温和宏观温度下的微观高温,进而在保证光热治疗剂标记的恶性细胞被有效杀伤的同时,减少不必要的热扩散而损伤病灶周边的正常组织,提升治疗的精度(如图3a)[17]。寿命检测技术上,复旦大学李富友课题组利用PAA-PEG包裹的NaNdF4:Yb@CaF2纳米颗粒,此种材料的Yb3+离子能够发射980 nm光信号,由于Nd3+与Yb3+在不同温度下的能量传递效率不同,Yb3+的980 nm发光寿命随着温度发生线性变化。在活体动物光学成像仪上进行了时间门控系统的附加,利用脉冲激光器对材料进行照射,然后采集材料的发光衰减,最终获得温度-寿命曲线,进一步在活体动物的血管部位进行光信号的采集,考察血管内血液温度与血流相关性,为心血管疾病的诊断和疗效评估提供了重要途径(如图3b)[8]。图3. (a)基于强度比率的Er3+掺杂上转换光热LLNs用于光热治疗过程微观温度监测[17]。(b) 基于寿命的Yb3+-Nd3+共掺杂的LLNs温度计用于心血管疾病[8]。(四)LLNs温度探针的展望合成可调控的LLNs温度探针的发展加速了其作为体内潜在温度传感工具的应用,但为了使其具有更准确的读数结果,还需进一步优化。其中,减少外部干扰和校准通过组织的发光衰减是亟待解决的重要问题。同时进一步探索波长更长的光谱区域,可实现更深层次的组织传感,促进LLNs在体内疾病诊断和治疗方面的生物应用。参考文献1. C. D. S. Brites, S. Balabhadra, L. D. Carlos, Adv. Opt. Mater., 2019, 7, 1801239. 2. A. Bednarkiewicz, J. Drabik, K. Trejgis, D. Jaque, E. Ximendes, L. Marciniak, Appl. Phys. Rev., 2021, 8, 011317.3. H. Suo, X. Zhao, Z. Zhang, Y. Wang, J. Sun, M. Jin, C. Guo, Laser Photon. Rev. 2021, 15, 2000319.4. N. Kong, Q. Hu, Y. Wu and X. Zhu, Chem. Eur. J., 2022, 28, e202104237.5. M. Jia, Z. Sun, M. Zhang, H. Xu, Z. Fu, Nanoscale., 2020, 12, 20776-20785.6. J. Zhou, B. Del Rosal, D. Jaque, S. Uchiyama, D. Jin, Nat. Methods., 2020, 17, 967-980.7. A. Bednarkiewicz, L. Marciniak, L. D. Carlos, D. Jaque, Nanoscale., 2020, 12, 14405-14421.8. M. Kong, Y. Gu, Y. Chai, J. Ke, Y. Liu, X. Xu, Z. Li, W. Feng, F. Li, Sci. China Chem. 2021, 64, 974-984.9. L. Marciniak, K. Trejgis, J. Mater. Chem. C., 2018, 6, 7092-7100. 10. L. Labrador-Páez, M. Pedroni, A. Speghini, J. Garcí a-Solé , P. Haro-Gonzá lez, D. Jaque, Nanoscale., 2018, 10, 22319-22328.11. M. Tan, F. Li, N. Cao, H. Li, X. Wang, C. Zhang, D. Jaque, G. Chen, Small., 2020, 16, 2004118. 12. K. Maciejewska, A. Bednarkiewicz, L. Marciniak, Nanoscale Adv., 2021, 3, 4918-4925.13. M. Quintanilla, M. Henriksen-Lacey, C. Renero-Lecuna and L. M.Liz-Marzán, Chem. Soc. Rev., 2022.14. Z. Yi, Z. Luo,X. Qin, Q. Chen, X. Liu, Acc. Chem. Res., 2020, 53, 2692-2704.15. B. del Rosal, E. Ximendes, U. Rocha, D. Jaque, Adv. Opt. Mater., 2017, 5, 1600508.16. M. Tan, F. Li, N. Cao, H. Li, X. Wang, C. Zhang, D. Jaque, G. Chen, Small., 2020, 16, 2004118.17. X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, F. Li, Nat. Commun. 2016, 7, 10437.【作者简介】胡倩 博士研究生2020年毕业于湖南师范大学,获化学专业学士学位。目前是上海科技大学物质科学与技术学院博士研究生,师从朱幸俊教授,主要从事近红外发射镧系纳米复合材料的温度传感和生物成像应用的研究。朱幸俊 研究员上海科技大学物质科学与技术学院研究员、博士生导师。2017年博士毕业于复旦大学生物研究院(导师李富友教授),2017-2019年在美国斯坦福大学材料科学与工程系作为博士后学者从事生物医学成像以及神经调控材料与器件的研发工作。目前已在Nature Communications, Chemical Society Reviews, Nano Letters, ACS Nano, PNAS, Biomaterials等国际著名期刊上发表研究论文30余篇,他引3500余次(H因子26),并持有多项专利。多项研究成果入选科睿唯安ESI化学和材料领域前1%高被引论文(Highly Cited Paper)。研究项目获国家自然科学基金、上海市浦江人才计划资助。课题组致力于发展适用于生物医学的新型纳米材料和技术,通过构建纳米复合材料,利用其光、热、磁、声等性质,实现高选择性、低侵入性的生物成像、疾病治疗和生理功能调控。欢迎感兴趣的同学报考上海科技大学研究生,课题组长期招聘化学、材料学以及生物学相关专业博士后。具体可邮件沟通咨询,zhuxj1@shanghaitech.edu.cn(本文编辑:刘立东)专家约稿招募中若您有生命科学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎自荐或引荐投稿联系人:刘编辑邮箱:liuld@instrument.com.cn微信/电话:13683372576扫码关注【3i生仪社】,解锁生命科学行业资讯!
  • 苏州工业园区纳米产业技术研究院有限公司300.00万元采购探针台
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 CP测试机(含探针台) - 国际招标公告(2) 江苏省-苏州市 状态:公告 更新时间: 2022-05-22 招标文件: 附件1 江苏海外集团国际工程咨询有限公司受招标人委托对下列产品及服务进行国际公开竞争性招标,于2022-05-20在中国国际招标网公告。本次招标采用传统招标方式,现邀请合格投标人参加投标。1、招标条件项目概况:CP测试机(含探针台)资金到位或资金来源落实情况:已落实项目已具备招标条件的说明:已具备2、招标内容招标项目编号:0675-224JOC108013招标项目名称:CP测试机(含探针台)项目实施地点:中国江苏省招标产品列表(主要设备):3、投标人资格要求投标人应具备的资格或业绩:1)投标人应为符合《中华人民共和国招标投标法》规定的独立法人或其他组织(境内投标人应提供营业执照,境外投标人应提供在当地的注册文件);2)投标人及投标货物的制造商近三年内在经营活动中没有重大违法记录,无利用不正当竞争手段骗取中标,无重大经济刑事案件,未因自身的任何违约、违法或违反商业道德的行为而导致合同解除或作为被告败诉(提供书面声明);3)投标货物可以是全新设备或翻新设备,投标人必须在其投标文件中对投标货物作明确说明 4)投标货物须为成熟产品,在近三年内无重大运行事故,无重大质量投诉(提供书面声明);5)投标人应具有履行合同所必须的设备和专业技术能力(提供具有专业设备和技术能力的介绍);6)本项目不接受转包;7)投标人或投标货物制造商应在中国境内有直属办事处机构和仓库,并且有资深的设备维护团队(包括:设备、工艺工程师),以便用户能及时获得相应的技术和商务支持(提供备件库的地址、备件库的租赁合同或房产证)是否接受联合体投标:不接受未领购招标文件是否可以参加投标:不可以4、招标文件的获取招标文件领购开始时间:2022-05-20招标文件领购结束时间:2022-05-27是否在线售卖标书:否获取招标文件方式:现场领购招标文件领购地点:苏州市邓尉路107号永新大厦1幢9楼招标文件售价:¥700/$100其他说明:招标文件售后不退5、投标文件的递交投标截止时间(开标时间):2022-06-10 10:00投标文件送达地点:苏州市邓尉路107号永新大厦1幢9楼开标室开标地点:苏州市邓尉路107号永新大厦1幢9楼开标室6、投标人在投标前应在____()或机电产品招标投标电子交易平台()完成注册及信息核验。评标结果将在____和中国国际招标网公示。7、联系方式招标人:苏州工业园区纳米产业技术研究院有限公司地址:苏州工业区金鸡湖大道99号苏州纳米城西北区19幢(WN-19)联系人:单盼盼联系方式:0512-67990672招标代理机构:江苏海外集团国际工程咨询有限公司地址:苏州市邓尉路107号永新大厦1幢9楼联系人:何磊联系方式:0512-651606598、汇款方式:招标代理机构开户银行(人民币):交通银行南京分行新街口支行招标代理机构开户银行(美元):交通银行南京分行新街口支行账号(人民币):320006607010141124109账号(美元):320006607146300004415其他:注:如电汇,务请注明招标编号和用途。9、其他补充说明其他补充说明:招标项目预算/最高限价:人民币300万元 附件1:招标商品信息表模板.xls × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:探针台 开标时间:2022-06-10 10:00 预算金额:300.00万元 采购单位:苏州工业园区纳米产业技术研究院有限公司 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:江苏海外集团国际工程咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息CP测试机(含探针台) - 国际招标公告(2) 江苏省-苏州市 状态:公告 更新时间: 2022-05-22 招标文件: 附件1 江苏海外集团国际工程咨询有限公司受招标人委托对下列产品及服务进行国际公开竞争性招标,于2022-05-20在中国国际招标网公告。本次招标采用传统招标方式,现邀请合格投标人参加投标。1、招标条件项目概况:CP测试机(含探针台)资金到位或资金来源落实情况:已落实项目已具备招标条件的说明:已具备2、招标内容招标项目编号:0675-224JOC108013招标项目名称:CP测试机(含探针台)项目实施地点:中国江苏省招标产品列表(主要设备):3、投标人资格要求投标人应具备的资格或业绩:1)投标人应为符合《中华人民共和国招标投标法》规定的独立法人或其他组织(境内投标人应提供营业执照,境外投标人应提供在当地的注册文件);2)投标人及投标货物的制造商近三年内在经营活动中没有重大违法记录,无利用不正当竞争手段骗取中标,无重大经济刑事案件,未因自身的任何违约、违法或违反商业道德的行为而导致合同解除或作为被告败诉(提供书面声明);3)投标货物可以是全新设备或翻新设备,投标人必须在其投标文件中对投标货物作明确说明 4)投标货物须为成熟产品,在近三年内无重大运行事故,无重大质量投诉(提供书面声明);5)投标人应具有履行合同所必须的设备和专业技术能力(提供具有专业设备和技术能力的介绍);6)本项目不接受转包;7)投标人或投标货物制造商应在中国境内有直属办事处机构和仓库,并且有资深的设备维护团队(包括:设备、工艺工程师),以便用户能及时获得相应的技术和商务支持(提供备件库的地址、备件库的租赁合同或房产证)是否接受联合体投标:不接受未领购招标文件是否可以参加投标:不可以4、招标文件的获取招标文件领购开始时间:2022-05-20招标文件领购结束时间:2022-05-27是否在线售卖标书:否获取招标文件方式:现场领购招标文件领购地点:苏州市邓尉路107号永新大厦1幢9楼招标文件售价:¥700/$100其他说明:招标文件售后不退5、投标文件的递交投标截止时间(开标时间):2022-06-10 10:00投标文件送达地点:苏州市邓尉路107号永新大厦1幢9楼开标室开标地点:苏州市邓尉路107号永新大厦1幢9楼开标室6、投标人在投标前应在____()或机电产品招标投标电子交易平台()完成注册及信息核验。评标结果将在____和中国国际招标网公示。7、联系方式招标人:苏州工业园区纳米产业技术研究院有限公司地址:苏州工业区金鸡湖大道99号苏州纳米城西北区19幢(WN-19)联系人:单盼盼联系方式:0512-67990672招标代理机构:江苏海外集团国际工程咨询有限公司地址:苏州市邓尉路107号永新大厦1幢9楼联系人:何磊联系方式:0512-651606598、汇款方式:招标代理机构开户银行(人民币):交通银行南京分行新街口支行招标代理机构开户银行(美元):交通银行南京分行新街口支行账号(人民币):320006607010141124109账号(美元):320006607146300004415其他:注:如电汇,务请注明招标编号和用途。9、其他补充说明其他补充说明:招标项目预算/最高限价:人民币300万元 附件1:招标商品信息表模板.xls
  • 国内最大探针台企业矽电股份IPO成功过会
    历经近10个月的审核,矽电半导体设备(深圳)股份有限公司(下称“矽电股份”)终于即将在4月13日迎来创业板上市委的关键裁决。作为半导体设备供应商,矽电股份聚焦应用于半导体制造晶圆检测环节的探针测试技术。此番IPO,矽电股份拟发行不超过0.10亿股、募集5.56亿元,投向“探针台研发及产业基地建设”、“分选机技术研发”,“营销服务网络升级建设”以及补充流动资金。矽电股份的报告期业绩一直处于高增长态势——2020年至2022年,营业收入分别为1.88亿元、3.99亿元4.42亿元,同期归母净利润分别为0.34亿元、0.97亿元和1.16亿元。这离不开第一大客户三安光电(600703.SH)的“支持”。三安光电对矽电股份的采购额自2020年的0.57亿元一跃提升至2022年的2.29亿元,期间增长了301.75%,占比更是从30.33%提升至51.85%。三安光电董事长林志强也正是在2020年入股矽电股份,并以2.40%的持股比例成为其第13大股东。若二者合作出现变化,矽电股份的业绩能否维系或是重要的待估风险。在上市前夕,矽电股份此番还吸引了明星资本的突击加盟,华为旗下的深圳哈勃科技投资合伙企业(有限合伙)于矽电股份申报IPO 6个月前的2021年12月,从矽电股份实控人何沁修等人手中以0.80亿元价格受让了4%的股权,按照这一价格估算,华为入股时矽电股份的市值约为20亿元。技术“代差”之争矽电股份应用于晶圆检测环节的探针测试技术,一直是衡量芯片性能与缺陷的关键。据SEMI和CSA Research数据统计,截至2019年底,矽电股份在境内探针设备市场中的份额已达13%,位列中国大陆设备厂商第一名,同期占全球市场份额为3%,位列第五名。矽电股份的核心产品“探针台”按照检测对象可分为晶圆、晶粒两大类。晶圆探针台主要是对未切割晶圆上的器件进行故障检测,尺寸涵盖4英寸至12英寸,2022年创收1.13亿元,贡献了近四分之一的收入。虽然矽电股份是首家实现12英寸晶圆探针台量产的境内企业,不过该环节的收入在2022年占比仍不足2成。值得一提的是,目前A股市场尚无主营业务为检测探针台的企业,矽电股份一旦上市成功则有望成为“半导体探针台第一股。”不过深交所仍要求矽电股份说明核心技术的壁垒及相对优势。“请说明发行人核心技术技术壁垒的具体体现,结合同行业现有技术水平、衡量核心技术先进性的关键指标等,进一步分析核心技术先进性的具体表征及与境内外同行业竞争对手相比的优劣势。”深交所指出。从境外厂商的数据来看,矽电股份与全球龙头东京电子、东京精密等企业确实存在一定的差距,例如定位精度上目前东京电子可达到±0.8um,而矽电股份只有±1.3um。“因为探针台的作用就是对要检测的晶圆进行定位,让晶圆上的器件等可以和探针接触并进行逐个测试,所以精度越高就越不容易出错。如果探针这个环节没有排除出来故障的话,下一个环节成本更高。”北京一位半导体行业人士指出。矽电股份也承认其与国际大厂之间存在较大的差距。“目前,日本厂商探针台综合定位精度已达到±0.80 um水平,占据了12英寸晶圆探针台市场的主要份额。发行人在综合定位精度和12英寸高端市场份额与日本厂商存在一定差距。”矽电股份表示。但矽电股份认为和境内厂商相比,其技术仍处于领先水平。矽电股份将中电科四十五所和长川科技(300604.SZ)披露为境内竞争对手,并指出这两家公司的综合定位精度分别仅为±5um和±1.5um,自身技术相比之下仍具有领先优势。“基于发行人持续的研发投入及形成的核心技术成果,发行人在综合定位精度、机台自动化水平及多种半导体器件适配方面已领先于中国台湾和中国大陆其他厂商。”矽电股份表示。但矽电股份的这番陈述或许并不是目前半导体探针环节的全部事实。信风(ID:TradeWind01)注意到,国内厂商已在半导体探针台领域逐渐发力。早在2020年,中科院长春光机所旗下长春光华微电子设备工程中心有限公司就推出国内首台商用12英寸全自动晶圆探针台;2022年11月,深圳市森美协尔科技有限公司(下称“森美协尔”)推出了可兼容处理12英寸与8英寸标准的全自动晶圆探针台(下称“A12”)。接近森美协尔的相关人士向信风(ID:TradeWind01)确认,A12的定位精度已达到±1um的水平。若这一数据属实,则意味着该数据不仅高于矽电股份,也在接近国际龙头的技术水平。而矽电股份对于境内竞争对手的披露是否完整,或许有待其做出更多解释。大客户助力下暴增矽电股份的报告期业绩可谓“突飞猛进”。2021年,矽电股份的营业收入和归母净利润分别为3.99亿元、0.97亿元,同比增长了112.29%、189.11%。“主要系因下游行业景气度提升、客户资本性支出上升以及公司市场开拓情况良好所致。”矽电股份表示。更为关键的助力或指向了作为矽电股份前五大客户之一的三安光电。三安光电2019年对矽电股份的采购额还只有0.07亿元,但次年却突然提高了采购额——2020年至2022年,三安光电向矽电股份采购晶粒探针台的金额分别为0.57亿元、1亿元和2.29亿元。这意味着,报告期内矽电股份超5成的晶粒探针台主要销往了三安光电,后者成为了主要的收入来源。矽电股份解释称,晶粒探针台主要的应用场景是检测LED芯片,而该市场主要被三安光电所占据。据CSA Research、LEDinside等机构的数据显示,2020年、2021年三安光电在行业总产能中的比例分别为28.29%、31.68%。事实上,二者在2020年达成合作关系还有一个更重要的转折。正是在这一年,三安光电的董事长林志强成为了矽电股份的股东。2020年9月,林志强以0.28亿元认购了矽电股份的股份。截至申报前,其以2.40%的持股比例位居第12大股东,较华为入股时矽电股份20亿元的估值,林志强所持股份市值已增长了74.37%。入股后的当年12月,矽电股份对三安光电实现0.57亿元的销售收入,占当年对后者的销售额比例达到99.69%。对于入股前后猛增的订单金额,矽电股份并不愿意承认这其中可能存在的“股权换订单”交易。“林志强基于对发行人及其所处行业的看好入股发行人,入股后发行人与三安光电的交易规模快速增长是相关客户对发行人设备认可及其自身需求增长的反映。”矽电股份指出,“林志强入股发行人不存在用订单换取股权的情形。”相似情形还发生在另一大客户兆驰股份(002429.SZ)身上。2020年9月,兆驰股份前实控人顾伟之女顾乡参股矽电股份,截至申报前,其持股比例为1.74%,位居第15大股东之列。入股当年,兆驰股份就一跃成为矽电股份第二大客户,贡献了0.27亿元的收入,占比为14.23%;2022年,兆驰股份带给矽电股份0.37亿元的收入。若扣除三安光电、兆驰股份所贡献的收入,矽电股份2020年至2022年的收入分别为1.04亿元、2.97亿元和1.76亿元。以此测算,矽电股份这一期间的营业收入复合增长率仅为30.09%,较未扣除前的复合增长率低了23.23个百分点。身患“大客户依赖症”的矽电股份是否有望顺利过会,其又该如何解释这其中所存在的业绩可持续性问题似乎有待上市委的裁决。
  • 南京航空航天大学500.00万元采购探针台
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 南京航空航天大学高频半自动探针台采购项目(第二次)公开招标公告 江苏省-南京市-雨花台区 状态:公告 更新时间: 2024-08-21 项目概况 高频半自动探针台采购项目 招标项目的潜在投标人应在南京市雨花台区证大喜玛拉雅中心C座3楼306室或中招联合招标采购平台(网址:www.365trade.com.cn)获取招标文件,并于2024年09月11日 09点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:FGC202400002/TC249JA47 项目名称:高频半自动探针台采购项目 预算金额:500.000000 万元(人民币) 最高限价(如有):500.000000 万元(人民币) 采购需求: (1)采购内容: 序号 产品清单 数量 数量单位 组成部件名称 备注 1 高频半自动探针台 1 套 主功能单元 主件 2 配件设备 1 套 包括高低温系统,射频探针和支架,直流探针和支架,射频差分探针和支架,在片校准片,以及场务条件设备。 附件 (2)用途:用于验证理论模型和优化设计,提高测试效率。在教学过程中,通过对探针台的原理和操作学习,增强学生的动手能力,增加半导体芯片测试经验。 合同履行期限:自合同签订之日起 4 个月内到货并安装调试合格。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: / 3.本项目的特定资格要求:3.1具有独立承担民事责任的能力,需提供法人或其他组织的营业执照等证明文件,复印件加盖公章;3.2具有良好的商业信誉和健全的财务会计制度,须提供会计师事务所出具的上一年度财务审计报告复印件加盖公章,或银行出具的证明文件复印件加盖公章(距开标时间六个月内开具),或距开标时间六个月内任一月份投标人出具的财务状况报告复印件加盖公章(至少包括资产负债表和利润表),法人或者其他组织成立未满三个月的需提供承诺具有良好的商业信誉和健全的财务会计制度的承诺书(格式自拟);3.3具有履行合同所必需的设备和专业技术能力,需提供承诺函原件(格式自拟);3.4有依法缴纳税收和社会保障资金的良好记录,提供距开标时间六个月内任一月份的纳税证明文件复印件加盖公章(依法免税的应提供相应文件说明)和距开标时间六个月内任一月份的依法缴纳社会保障资金的证明材料复印件加盖公章(证明材料可以是能体现所缴社保类别的缴费银行单据、专用收据、社会保险缴纳清单或者所在社保机构开具的证明等,自行编写无效,依法不需要缴纳社会保障资金的应提供相应文件说明);3.5参加本项目采购活动前三年内(成立时间不足三年的、自成立时间起),在经营活动中没有重大违法记录,提供声明函原件(格式自拟,重大违法记录是指投标人因违法经营受到刑事处罚或责令停产停业、吊销许可证或者执照、较大数额罚款等行政处罚。);3.6本次招标不接受联合体投标;3.7限制性条款:投标人须满足下述条款要求(需提供承诺函原件)(1)不存在单位负责人为同一人同时参与本项目投标的情况;(2)不存在直接控股、管理关系的不同投标人同时参与本项目投标的情况;(3)与采购人、采购代理机构不存在可能影响采购公正性的利益关系。3.8投标人不得有被列入失信被执行人、税收违法黑名单、政府采购严重违法失信行为记录(采购代理机构将通过“信用中国”网站(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)查询投标人的信用记录并保存)。3.9特定资格条件:本项目接受进口产品投标(注:本文件所称进口产品是指通过中国海关报关验放进入中国境内且产自关境外的产品,若投标人为代理商须提供制造厂家的授权书)。 三、获取招标文件 时间:2024年08月21日 至 2024年08月28日,每天上午9:00至11:30,下午13:30至17:00。(北京时间,法定节假日除外) 地点:南京市雨花台区证大喜玛拉雅中心C座3楼306室或中招联合招标采购平台(网址:www.365trade.com.cn) 方式:供应商需在招标文件发售截止时间前登录中招联合电子招标采购平台( http://www.365trade.com.cn)完成注册(可免费注册)、下单、结算操作,否则将无法获取招标文件。下单时需按平台附件要求提供领购文件的登记材料。中招联合电子招标采购平台操作过中如需帮助,可联系平台客服热线获取支持。 售价:¥400.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2024年09月11日 09点30分(北京时间) 开标时间:2024年09月11日 09点30分(北京时间) 地点:南京市雨花台区喜玛拉雅中心C座305室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.逾期送达或未按招标文件要求密封的投标文件恕不接收。 2.本项目采用综合评分法。 3.本项目公告信息在中国政府采购网、中国招标投标网、南京航空航天大学校园网发布。 4.凡对本次招标提出询问,请按照招标文件的规定方式与中招国际招标有限公司联系。 5.采购项目需要落实的政府采购政策:节能、环保、促进中小企业发展、支持监狱企业发展、政府采购信用担保、三部门联合发布关于促进残疾人就业政府采购政策的通知。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:南京航空航天大学 地址:南京市御道街29号 联系方式:张老师 025-84892405 2.采购代理机构信息 名 称:中招国际招标有限公司 地 址:北京市海淀区学院南路62号中关村资本大厦 联系方式:丁皓然、顾新、牛建东 13914760421、18136485896、025-86986998 3.项目联系方式 项目联系人:丁皓然、顾新 电 话: 13914760421、18136485896、025-86986998 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:探针台 开标时间:2024-09-11 09:30 预算金额:500.00万元 采购单位:南京航空航天大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:中招国际招标有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 南京航空航天大学高频半自动探针台采购项目(第二次)公开招标公告 江苏省-南京市-雨花台区 状态:公告 更新时间:2024-08-21 项目概况 高频半自动探针台采购项目 招标项目的潜在投标人应在南京市雨花台区证大喜玛拉雅中心C座3楼306室或中招联合招标采购平台(网址:www.365trade.com.cn)获取招标文件,并于2024年09月11日 09点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:FGC202400002/TC249JA47 项目名称:高频半自动探针台采购项目 预算金额:500.000000 万元(人民币) 最高限价(如有):500.000000 万元(人民币) 采购需求: (1)采购内容: 序号 产品清单 数量 数量单位 组成部件名称 备注 1 高频半自动探针台 1 套 主功能单元 主件 2 配件设备 1 套 包括高低温系统,射频探针和支架,直流探针和支架,射频差分探针和支架,在片校准片,以及场务条件设备。 附件 (2)用途:用于验证理论模型和优化设计,提高测试效率。在教学过程中,通过对探针台的原理和操作学习,增强学生的动手能力,增加半导体芯片测试经验。 合同履行期限:自合同签订之日起 4 个月内到货并安装调试合格。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: / 3.本项目的特定资格要求:3.1具有独立承担民事责任的能力,需提供法人或其他组织的营业执照等证明文件,复印件加盖公章;3.2具有良好的商业信誉和健全的财务会计制度,须提供会计师事务所出具的上一年度财务审计报告复印件加盖公章,或银行出具的证明文件复印件加盖公章(距开标时间六个月内开具),或距开标时间六个月内任一月份投标人出具的财务状况报告复印件加盖公章(至少包括资产负债表和利润表),法人或者其他组织成立未满三个月的需提供承诺具有良好的商业信誉和健全的财务会计制度的承诺书(格式自拟);3.3具有履行合同所必需的设备和专业技术能力,需提供承诺函原件(格式自拟);3.4有依法缴纳税收和社会保障资金的良好记录,提供距开标时间六个月内任一月份的纳税证明文件复印件加盖公章(依法免税的应提供相应文件说明)和距开标时间六个月内任一月份的依法缴纳社会保障资金的证明材料复印件加盖公章(证明材料可以是能体现所缴社保类别的缴费银行单据、专用收据、社会保险缴纳清单或者所在社保机构开具的证明等,自行编写无效,依法不需要缴纳社会保障资金的应提供相应文件说明);3.5参加本项目采购活动前三年内(成立时间不足三年的、自成立时间起),在经营活动中没有重大违法记录,提供声明函原件(格式自拟,重大违法记录是指投标人因违法经营受到刑事处罚或责令停产停业、吊销许可证或者执照、较大数额罚款等行政处罚。);3.6本次招标不接受联合体投标;3.7限制性条款:投标人须满足下述条款要求(需提供承诺函原件)(1)不存在单位负责人为同一人同时参与本项目投标的情况;(2)不存在直接控股、管理关系的不同投标人同时参与本项目投标的情况;(3)与采购人、采购代理机构不存在可能影响采购公正性的利益关系。3.8投标人不得有被列入失信被执行人、税收违法黑名单、政府采购严重违法失信行为记录(采购代理机构将通过“信用中国”网站(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)查询投标人的信用记录并保存)。3.9特定资格条件:本项目接受进口产品投标(注:本文件所称进口产品是指通过中国海关报关验放进入中国境内且产自关境外的产品,若投标人为代理商须提供制造厂家的授权书)。 三、获取招标文件 时间:2024年08月21日 至 2024年08月28日,每天上午9:00至11:30,下午13:30至17:00。(北京时间,法定节假日除外) 地点:南京市雨花台区证大喜玛拉雅中心C座3楼306室或中招联合招标采购平台(网址:www.365trade.com.cn) 方式:供应商需在招标文件发售截止时间前登录中招联合电子招标采购平台( http://www.365trade.com.cn)完成注册(可免费注册)、下单、结算操作,否则将无法获取招标文件。下单时需按平台附件要求提供领购文件的登记材料。中招联合电子招标采购平台操作过中如需帮助,可联系平台客服热线获取支持。 售价:¥400.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2024年09月11日 09点30分(北京时间) 开标时间:2024年09月11日 09点30分(北京时间) 地点:南京市雨花台区喜玛拉雅中心C座305室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.逾期送达或未按招标文件要求密封的投标文件恕不接收。 2.本项目采用综合评分法。 3.本项目公告信息在中国政府采购网、中国招标投标网、南京航空航天大学校园网发布。 4.凡对本次招标提出询问,请按照招标文件的规定方式与中招国际招标有限公司联系。 5.采购项目需要落实的政府采购政策:节能、环保、促进中小企业发展、支持监狱企业发展、政府采购信用担保、三部门联合发布关于促进残疾人就业政府采购政策的通知。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:南京航空航天大学 地址:南京市御道街29号 联系方式:张老师 025-84892405 2.采购代理机构信息 名 称:中招国际招标有限公司 地 址:北京市海淀区学院南路62号中关村资本大厦 联系方式:丁皓然、顾新、牛建东 13914760421、18136485896、025-86986998 3.项目联系方式 项目联系人:丁皓然、顾新 电 话: 13914760421、18136485896、025-86986998
  • 上海药物所光致变色荧光糖探针光控识别细胞内靶物质研究获进展
    style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style p   近日,中国科学院上海药物研究所和华东理工大学合作研究,以“光致变色荧光糖探针光控识别细胞内靶物质”为题的论文,在线发表在《自然-通讯》上,该研究为细胞的靶向、精准功能标记研究提供了新的光可控化学探针工具。 /p p   可靶向、精准探测不同细胞生命和疾病过程的荧光探针技术,对生命科学的发展和疾病早期诊断具有重要意义。传统荧光探针易受生物背景光干扰,且通常只能通过被动扩散进入细胞产生待测物识别信号,造成了探测的低精确性。为解决这一关键问题,研究人员通过将螺吡喃光致变色分子、1,8–萘酰亚胺荧光团与具备膜受体主动靶向功能的半乳糖分子共价连接,创制了可通过远程光控实现细胞精准定位及靶标识别的光致变色荧光探针。初步研究发现,通过紫外/可见光的循环照射可实现对探针螺吡喃/部花青结构的可逆调控,进而实现探针萘酰亚胺荧光发射的循环“开/关”控制。此外,探针的螺吡喃态与细胞内广泛存在的硫化物不发生相互作用,而当远程光激活其部花青态时,探针可迅速与亚硫酸根阴离子发生化学反应,从而阻断探针的光致变色活性,使荧光处于恒定的“开启”状态。 /p p   基于其独特的光学性质,研究人员进一步应用所构建探针实现了细胞精准荧光标记及光控靶标识别:首先,探针可在水相中形成双亲性胶束,从而通过糖簇与一种膜受体的高亲和力识别实现主动细胞定位。随后,通过紫外/可见光的循环调控,探针可在细胞内执行多次可重复的“荧光闪烁”现象,从而提升了荧光探针在复杂细胞内环境中的定位精准度。最终,探针可通过远程光激活策略(即螺吡喃向部花青结构的光调变)实现细胞内源性亚硫酸根阴离子的灵敏探测与定量。 /p p   研究工作得到国家重点基础研究发展计划(973计划)、国家自然科学基金重点项目、国家自然科学基金优秀青年科学基金、高等学校学科创新引智计划(111计划)的资助。 /p p br/ /p p style=" text-align:center " img alt=" " oldsrc=" W020171107525632911367.png" src=" http://img1.17img.cn/17img/images/201711/uepic/74f6b9bf-6e50-4459-9c17-bdff754781c0.jpg" / /p p style=" text-align: center " 光致变色荧光SP-Gal的分子设计及其在溶液和细胞内的作用机制 /p
  • 北京2台离子探针仪器全球“最忙”
    在过去10年里,北京离子探针中心的两台高分辨二次离子探针质谱仪(SHRIMP Ⅱ和SHRIMP Ⅱe-MC)或许是全球最忙及成绩最好的科学仪器。在12月18日该中心十周岁庆祝会上,中心主任刘敦一教授表示,以这两台仪器为核心的大型科学仪器共享平台,极大推动了我国地球科学的发展。   过去10年,SHRIMP仪器处于样品分析的机时平均为266.8昼夜/年,开放机时平均为76%。自2007年起,单台SHRIMP仪器的科研论文产出量已连续位居世界同类仪器的第一位。   高效源于中心建立的SHRIMP远程共享控制系统。该网络不仅实现了国内科研人员可实时观测样品图像、在线获取实验数据等应用,还使跨国远程共享科学仪器进入常态,开创了通过远程共享系统共享国外SHRIMP仪器的功能。   “十一五”以来,该中心又联合国内外22家高校及科研院所,在SHRIMP远程共享平台的基础上,整合了一批微束类分析仪器,构建起网络虚拟实验室,为进一步建立以远程操作为主要手段的大型仪器虚拟中心奠定基础。   刘敦一透露,该中心将继续发展以SHRIMP为代表的大型科学仪器远程共享网络,尽快在西班牙和巴西建立服务器系统,在美国华盛顿大学(圣路易斯)建立远程工作站。该中心还将积极投入大型科学仪器自主研发工作,逐步建立起一个具有优秀技术专家和研发设施的科学仪器自主创新基地。   据了解,SHRIMP Ⅱ在锆石微区年龄测定上具有无可替代的优势,引领锆石年代学进入微区、原位分析的新时代。2001年,我国引进第一台该机器,北京离子探针中心也于当年成立。该中心今年被科技部和财政部认定为首批国家级科技基础条件平台。
  • 在读博士首创“纳米探针” 打破国外技术封锁
    外观如同一支铅笔,能够探入癌细胞、H7N9等病毒内提取细胞质,还能作为手表齿轮等高精密加工的工具&mdash 凭借&ldquo 纳米探针&rdquo 的发明,不久前,江苏&ldquo 星辰纳米&rdquo 团队以机械能源小组第一名的成绩捧起了全国&ldquo 创青春· 优胜杯&rdquo 的金奖奖杯,并获得多家创投机构的青睐,开始踏上高科技创新创业之路。   这支团队的带头人,就是师从中科院朱荻院士的南京航空航天大学在读博士生孟岭超。   传奇&ldquo 学霸&rdquo &mdash 本科三转专业,包揽第一   传说中,孟岭超是一位叱咤南航的&ldquo 学霸&rdquo :从大二开始三转专业,南航机电学院的工业设计、飞行器制造、航空维修工程和机械制造及其自动化共4个专业被他学了个遍,并且每个专业的综合测评都是No.1,多次获得国家奖学金以及校长通令嘉奖等。保送研究生后,他顺利成为江苏省精密与微细制造技术重点实验室的成员,师从中科院院士朱荻教授,从事精密、微细特种加工技术的研究。三年中已发表论文四篇、公开专利四项,并连续两年获得优秀研究生团队等称号。   &ldquo 我这个人从小比较要强,什么事一旦认准就要做到最好。所以在别人&lsquo 喝咖啡&rsquo 的时间,我边&lsquo 喝咖啡&rsquo 边学习,就连坐校车往返于两个校区之间时,我也会看书温习。&rdquo 孟岭超说,本科期间涉猎多个专业,为后来的研究打下了比较扎实的基础。   科创&ldquo 狂人&rdquo &mdash 每天做试验,一站14个小时   当&ldquo 学霸&rdquo 并不是孟岭超的目标。他真正想做的,是开发自身&ldquo 小宇宙&rdquo 搞科创。   &ldquo 从大一开始,我就加入了学校的一个科创基金团队,跟着研究生一起装机床、接线路、做实验、建模型、画图纸、查文献、拟仿真、改软件、修设备&hellip &hellip 就这样从一名科创&lsquo 小白&rsquo 成长为了一枚科创&lsquo 狂人&rsquo 。&rdquo 他自嘲。   2010年,就读大三的孟岭超组建了自己的科创团队,开始了全新的科创之路。团队成员来自南航各个专业,在大家的共同努力下,他们的&ldquo AGV视觉导航小车&rdquo 等科创作品获得了多项荣誉。   就读研究生后,孟岭超的科创课题转为微细特种加工技术。&ldquo 我刚开始提出把碳纳米管制成加工电极的想法时,几乎没人相信我能成功,因为国内根本没有先例。&rdquo 孟岭超说,从理论上论证可行后,他每天从早上8点就到实验室,常常一直干到晚上10点,试验平均每三分钟一次,每天要试验上百次,而且只能站着做。&ldquo 就这样持续试验半年多、失败上万次后,我终于成功地把纳米和微米&lsquo 焊接&rsquo 到了一起。&rdquo   2013 年&ldquo 挑战杯&rdquo 全国大学生课外学术科技作品竞赛上,他的作品《碳纳米管工具电极的制备与应用》由于突破了国内纳米探针制备技术的空白,打破了国外技术的垄断,得到专家评委的高度评价,获得了江苏省一等奖、全国二等奖。   创业&ldquo 新兵&rdquo &mdash 要用&ldquo 纳米铅笔&rdquo 绘出星辰梦想   此后,孟岭超在导师的指导下,潜心研究、不断改进纳米探针制备技术。今年,由南航创业孵化中心为其团队提供工作场地,江苏星辰纳米科技有限公司宣告成立。目前,赵淳生院士团队以及南航的部分科研团队都在使用他们研制的纳米探针,公司还与国内8家高科技企业建立起合作关系。   &ldquo 纳米探针运用于原子粒显微镜,可以实现对癌细胞、H7N9病毒等的探温乃至于提取的一系列过程。而在高精密加工方面,有了纳米探针这样的工具,我们才能生产出更多纳米级的产品。比如手表齿轮,未来如果使用这样的纳米探针制造,精度就会有明显的提高。再比如微型机器人的制造也离不开这样的工具。而一旦这样的微型医疗机器人问世,对于医疗界来说,将具有划时代的意义。&rdquo 孟岭超告诉记者,过去,国内的研究存在空缺,而国外也常有技术封锁,我国高精密制造业存在&ldquo 微米利用不足,纳米几乎为零&rdquo 的发展困境。多年来,朱荻院士的研究就是为了改变这样的现状。   &ldquo 星辰公司的目标就是成为国内首创、国际领先的纳米探针生产企业,实现国内微细制造技术从精密到超精密的突破性跨越。&rdquo 孟岭超说,不久前有一家跨国企业希望购买他们的技术和整个团队,但被他婉言谢绝,&ldquo 我们更想做一颗独立的星星,在群星闪耀的夜空中,绽放出属于自己的热量与光芒。&rdquo   说这话的时候,这个1989年出生的小伙子满脸绽放自信的光彩。
  • AFSEM原位微区表征系统 助力新型纳米探针构筑及纳米热学成像研究
    获取材料甚至是器件整体的热学特性,是相关研究与开发当中非常有意义的课题。随着研究对象特征尺寸的不断减小,研究者们对具有高热学分辨率和高水平方向分辨率的表面温度表征方法以及与之相应的仪器的需求也日益显著。在诸多潜在的表征技术当中,扫描热学显微镜(Scanning Thermal Microscopy)是其中颇为有力的一种,它可以满足特征线度小于100 nm的研究需求。然而,这种表征方法,对纳米探针的结构及功能特性有比较高的要求,目前商用的几种纳米探针受限于各自的结构特点,均有一定的局限性而难以满足相应要求,也就限制了相应表征方法的发展与应用。着眼于上述问题,奥地利格拉茨技术大学的H. Plank团队提出了基于纳米热敏电阻的三维纳米探针,用于实现样品表面温度信息的超高分辨表征。相关成果于2019年六月发表在美国化学协会的期刊ACS Applied Materials & Interfaces上(ACS Appl. Mater. Interfaces, 2019, 11, 2522655-22667. Three-Dimensional Nanothermistors for Thermal Probing.)。 图1 三维热学纳米针的概念、结构、研究思路示意图 H. Plank等人提出的这种三维纳米探针的核心结构是一种多腿(multilegged)纳米桥(nanobridge)结构,它是利用聚焦离子束技术直接进行3D纳米打印而获得的,因而可以直接制作在(已经附有许多复杂微纳结构与微纳电路、电的)自感应悬臂梁上(self-sensing cantilever, SCL)。由于纳米桥的每一个分支的线度均小于100 nm,因而需要相应的表征策略与技术来系统分析其纳米力学、热学特性。为此,H. Plank研究团队次采用了有限元模拟与SEM辅助原位AFM(scanning electron microscopy-assisted in situ atomic force microscopy)测试相结合的策略来开展相应的研究工作,并由此推导出具有良好机械稳定性的三维纳米桥(垂直刚度达到50 N/m?1)的设计规则。此后,H. Plank引入了一种材料调控方法,可以有效提高悬臂梁微针的机械耐磨性,从而实现高扫描速度下的高质量AFM成像。后,H. Plank等人论证了这种新式三维纳米探针的电响应与温度之间的依赖关系呈现为负温度系数(?(0.75 ± 0.2) 10?3 K?1)关系,其探测率为30 ± 1 ms K?1,噪声水平在±0.5 K,从而证明了作者团队所提出概念和技术的应用潜力。 图2 三维热学纳米针的制备及基本电学特性 文中在进行三维纳米探针的力学特性及热学响应方面所进行的AFM实验中,采用了原位AFM技术,堪称一大亮点。研究所用的设备为奥地利GETec Microscopy公司生产的AFSEMTM系统,AFSEMTM系统基于自感应悬臂梁技术,因此不需要额外的激光器及四象限探测器,即可实现AFM的功能,从而能够方便地与市场上的各类光学显微镜、SEM、FIB设备集成,在各种狭小腔体中进行原位的AFM测试。此外,通过选择悬臂梁的不同功能型针,还可以在SEM或FIB系统的腔体中,原位对微纳结构进行磁学、力学、电学特性观测,大程度地满足研究者们对各类样品微区特性的表征需求。着眼于本文作者的研究需求来讲,比如探针纳米桥的分支在受力状态下的力学特性分析,只有利用原位的AFM表征技术,才可以同时获取定量化的力学信息以及形貌改变信息。当然,在真空环境下使用原位AFM系统表征微区的力、热、电、磁信息的意义远不止于操作方便或同时获取多种信息而已。以本文作者团队所关注的微区表面热学分析为例,当处于真空环境下时,由于没有减小热学信息成像分辨率的、基于对流的热量转移,因而可以充分发挥热学微纳针的潜能,探测到具有高水平分辨率的热学信息。 图3 利用AFSEM在SEM中原位观测nanobridge的力学特性 图4 将制备所得的新型纳米热学探针安装在AFSEM上,并在SEM中进行原位的形貌测量:a)SEM图像;b)AFM轮廓图像
  • 新疆理化所等在ESIPT探针调控检测高锰酸钾方面取得进展
    高锰酸钾(KMnO4)广泛用于医药消毒、水质净化、工业生产等领域,但过量摄入或排放会对人体及环境造成危害。因此,实现对微量高锰酸钾的超灵敏、特异性、快速检测具有重要意义。近年来,激发态分子内质子转移(ESIPT)类分子因具有大的斯托克斯位移、强的光稳定性、高的量子产率以及对周围介质的光敏感性等特点,被用于反应型荧光探针的设计。ESIPT探针的发光性能可通过溶剂氢键作用、分子异构化、介质酸/碱度和化学修饰等来调节。目前,多数化学修饰策略集中于研究分子性质和ESIPT变化过程,而关于分子对目标分析物传感性能影响的研究较少被应用于实际检测。因此,是否可以采用化学修饰策略来提高ESIPT探针的传感性能尚不清楚,而该方面的研究将对理性设计高效探针具有重要意义。中国科学院新疆理化技术研究所痕量化学物质感知团队提出了识别基团对位取代基吸电子强度精确调控提升ESIPT荧光探针反应活性及产物荧光稳定性的探针分子设计策略。研究基于KMnO4氧化不饱和烯烃的性质,以2-(2’-羟基苯基)苯并恶唑(HBO)为荧光团,采用缩合反应将识别位点丙烯酰基接枝于HBO的质子给体-OH上以抑制ESIPT过程的发生,在识别位点的对位引入不同吸电子强度的取代基团(-F、-CHO、-H、-CH3),设计合成了四种ESIPT基荧光探针(BOPA-F、BOPA-CHO、BOPA-H、BOPA-CH3)。当检测KMnO4时,可以打断碳碳双键形成邻二羟基,随后酯键断裂释放质子给体,ESIPT过程被激发,进而实现对KMnO4的荧光点亮检测。进一步的研究发现,取代基吸电子强度调控可显著地提升探针检测KMnO4时的荧光强度及荧光稳定性。理论计算结果表明,取代基的改变有效调节了探针对KMnO4的反应活性及产物的振子强度。以具有较强吸电子能力的-CHO作为取代基的探针BOPA-CHO对KMnO4具有最佳检测效果,检测限为0.96 nM,响应时间<3 s,对21种其他氧化剂及常见的阴/阳离子表现出优异的特异性,反应产物荧光稳定时间至少可达7天。此外,研究以聚氨酯海绵作为传感基底,构建了探针BOPA-CHO-海绵基测试笔,对KMnO4微粒的检测限可达11.62 ng,且对土壤中含量为1%的KMnO4微粒及手套表面63 ng/cm2的残留颗粒仍可观察到特征蓝色荧光,验证了探针BOPA-CHO在实际应用场景中的适用性。该工作提出的吸电子强度精确调控提升ESIPT探针反应活性及产物荧光稳定性的探针分子设计策略,被证明是可用于在复杂场景下识别痕量KMnO4溶液、固体微粒和残留物的可靠、有效的方法。同时,该策略将有助于促进化学科学、分子工程以及先进传感技术等领域的快速发展。相关研究成果以Precise Electron-Withdrawing Strength Modulation of ESIPT Probes for Ultrasensitive and Specific Fluorescence Sensing为题,发表在《分析化学》(Analytical Chemistry)上。研究工作得到国家自然科学基金、中国科学院青年创新促进会、中国科学院基础前沿科学研究计划从0到1原始创新项目等的支持。该工作由新疆理化所和中北大学合作完成。吸电子强度调控ESIPT探针构筑策略、响应机制及海绵基测试笔实际场景检测示意图
  • 新疆理化所基于探针结构精细调控实现高氯酸盐可视化检测
    高氯酸盐具有强氧化性和高稳定性,是广泛应用于固体推进剂、军工生产、航天器材、烟花爆竹等领域的重要含能材料之一。据美国爆炸数据中心统计,以高氯酸盐/氯酸盐作为原料直接或间接参与的爆炸案达全球爆炸案总量的63.4%。因此,开展对痕量高氯酸盐固体的高灵敏、准确的现场检测对保障国家公共安全具有重要的现实意义。中国科学院新疆理化技术研究所爆炸物传感检测团队长期致力于痕量危化品检测方法研究,在危爆品、特别是非制式爆炸物的高灵敏、快速、识别检测原理和器件设计方面发展了系列新的解决方案(Adv. Mater. 2020, 32, 1907043、Adv. Sci. 2020, 2002991、Angew. Chem. Int. Ed. 2022,DOI: 10.1002/anie.202203358等)。近期在高氯酸盐现场可视化检测方面取得进展,提出了一种基于自组装配合物探针与水凝胶耦合作用协同调控的超高灵敏比色-荧光双模可视化传感新策略,成功实现了超痕量高氯酸盐的现场双模可视化检测。该团队以三联吡啶铂(II)辅助配体为切入口,结合量子化学计算,系统研究了不同辅助配体对水溶液中三联吡啶铂(II)自组装产物Pt-Pt金属作用导致的MMLCT态光谱能量和发光稳定性的影响,阐明了辅助配体调控高氯酸根诱导聚集产物发光性质的一般性规律。研究发现,异硫氰酸根为辅助配体时,高氯酸根诱导聚集的三联吡啶铂(II)自组装产物具有能量最低且最稳定的MMLCT吸收/发射光谱,而溴为辅助配体时,自组装产物的MMLCT发生强度最高。因此,结合反阴离子调控,获得了具有良好水溶性的三联吡啶铂(II)配合物高氯酸盐比色-荧光双模可视化探针,实现了对高氯酸盐的高灵敏、高特异、快速、双模可视化传感。在此基础上,该团队提出了利用水凝胶反应介质与探针之间的耦合效应对传感材料发光信号局域增强的提升策略。通过将该铂(II)配合物探针与具有均一网络结构的PVA水凝胶耦合,利用自组装生成的微米级一维纤维状聚集体与水凝胶网络的相互作用,实现了对发光产物的完全锚定,实现了对0.75 μm(0.73 fg)高氯酸盐单颗粒的比色-荧光双模传感信号的直接观测,对空气中高氯酸盐悬浮微粒的检测限低至0.02 fg。该研究提出的辅助配体精细调控提升自组装阴离子探针双模可视化传感性能的策略,不仅可为具有特异双模光学响应信号的阴离子探针设计提供指导,还发展了基于单颗粒响应信号直接观测的超灵敏嗅觉传感方法,可为其他超痕量难挥发化学物质传感提供借鉴。此外,爆炸物传感检测团队以该研究为核心,与新疆公安厅共同发布自治区地方标准1项(DB 65/T 4451-2021《氯酸盐和高氯酸盐的检测目视化学比色法》),为相关行业提供了高氯酸盐检验鉴定操作规范。系列研究成果分别发表在《Journal of Materials Chemistry A》(杂志封底)和《Sensors and Actuators B: Chemical》上,博士研究生苏珍为第一作者,导师窦新存研究员和李毓姝副研究员为共同通讯作者,相关理论计算部分与太原科技大学李坤教授合作完成。研究工作得到国家自然科学基金委、中国科学院及自治区相关项目的资助。论文链接:https://pubs.rsc.org/en/content/articlelanding/2022/ta/d2ta00843bhttps://www.sciencedirect.com/science/article/pii/S0925400521002975封底链接:https://pubs.rsc.org/en/content/articlelanding/2022/ta/d2ta90087d
  • 东南大学116.00万元采购探针台
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 8寸探针台(SEU-ZB-220931)采购公告 江苏省-南京市 状态:公告 更新时间: 2023-02-14 招标文件: 附件1 附件 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:探针台 开标时间:2023-03-07 00:00 预算金额:116.00万元 采购单位:东南大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:江苏省华采招标有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 8寸探针台(SEU-ZB-220931)采购公告 江苏省-南京市 状态:公告 更新时间:2023-02-14 招标文件: 附件1 附件
  • 东南大学116.00万元采购探针台
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 8寸探针台(第三次)(SEU-ZB-220931(第三次))采购公告 全国 状态:公告 更新时间: 2023-04-19 招标文件: 附件1 附件 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:探针台 开标时间:2023-05-12 00:00 预算金额:116.00万元 采购单位:东南大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:江苏省华采招标有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 8寸探针台(第三次)(SEU-ZB-220931(第三次))采购公告 全国 状态:公告 更新时间: 2023-04-19 招标文件: 附件1 附件
  • 我国科学家利用聚集体调控探针实现多种细胞器动态超分辨成像
    近日,中科院大连化学物理研究所研究员徐兆超团队发展了聚集体调控探针,解决了以往蛋白标签荧光探针在超分辨成像应用中缺乏对多种细胞器通用性标记的问题。相关研究成果已发表于《聚集体》。  纳米尺度下细胞器与亚细胞器动态行为的监测与解析对于生命进程的解密至关重要。徐兆超团队前期针对溶酶体内酸性微环境设计合成了溶酶体自闪染料,并借助单分子定位显微镜(SMLM)实时监测了溶酶体运动并发现4种溶酶体间相互作用模式,针对脂滴内部高度疏水环境设计了缓冲脂滴探针,实现了脂滴的稳定超分辨成像并发现脂滴融合的新模式。该团队构建的SNAP蛋白标签探针还克服了传统线粒体探针易受电位波动而脱靶的问题,实现了对线粒体的稳定标记和动态超分辨成像。  然而,蛋白标签荧光探针依然面临细胞渗透性差的问题,特别是探针在细胞内局域分布使得单一探针难以具有对多种细胞器广谱性标记的性能。对此,该团队发展了具有“单体—二聚体—聚集体”多体系动态调控的SNAP蛋白标签探针BGAN-Aze,该探针在细胞外形成荧光淬灭的纳米聚集体而具有快速穿透细胞膜和在细胞内广泛分布的能力,在细胞内以单体的形式与目标蛋白共价连接,并伴随荧光的恢复,最终实现细胞内多种细胞器选择性荧光识别与细胞器亚结构的动态超分辨成像。  此外,研究发现BGAN-Aze为不带电荷的中性分子,可保持高度的细胞渗透性与生物相容性,能够实现纳米尺度下对细胞膜、线粒体、细胞核等多种细胞器亚结构的长时间追踪。  该探针基于遗传编码技术,实现了细胞内多种细胞器选择性荧光识别的广谱应用性,并且实现了细胞器亚结构的动态超分辨成像,进而揭示了多种未见报道的细胞器结构动态变化,为进一步研究不同细胞器的功能提供工具。
  • 精密测量院利用F-19 MRI双模态探针实现肺癌中硝基还原酶的精准活体成像
    近日,中国科学院精密测量科学与技术创新研究院研究员周欣研究团队设计构建了一种双模态分子探针氟化硝基Cy7,实现了活体肺癌中硝基还原酶的19F 磁共振和近红外荧光精准成像。相关研究成果发表在《德国应用化学》(Angew. Chem. Int. Ed.)上,并被遴选为本期的VIP(Very Important Paper)。   硝基还原酶(NTR)是一种重要的生物标志物,广泛用于评价肿瘤缺氧程度。虽然已经有一些光学成像方法用于硝基还原酶的活体成像,然而组织穿透深度及定量浓度较低等缺点限制其在临床诊断中的广泛应用。19F MRI可直接检测19F原子核信号,且活体成像中无背景信号干扰,信号强度与外源性探针的浓度成正比,有潜力成为传统1H MRI在临床应用中的互补新技术。在该体系中,FCy7-NO2不仅可以作为一种快速响应的近红外荧光增强探针用于监测肺癌中的硝基还原酶,并且利用该分子的19F MRI化学位移敏感特性,可选择性地针对深层次肺癌中的硝基还原酶进行活体成像。     该研究提出的利用19F磁共振/荧光双模态成像技术用于肿瘤中硝基还原酶的精准成像及定量分析方法可为肿瘤标记物的精确诊断提供重要工具。同时,根据硝基还原酶的含量可用于区分正常和缺氧肿瘤组织,定量评估缺氧程度,有望为生物医学领域提供新方法和新技术。     研究工作得到国家科技部、国家自然科学基金委和中科院的支持。  图1.探针可在较宽浓度范围内灵敏地检测活体肺癌中的硝基还原酶的变化。  图2.FCy7-NO2可通过近红外荧光和19F MR化学位移成像识别精准原位肺癌。
  • 中国地学界电子探针分析技术平台2023年度交流会顺利召开
    为进一步促进国内电子探针新技术发展和交流、拓展电子探针新技术应用,中国地学界电子探针分析技术平台2023年度交流会于6月2日-6月3日在中国地质科学院京区地质科研实验基地顺利举行。本次会议由中国地质科学院矿产资源研究所(以下简称“资源所”)承办,资源所宋扬副所长出席会议并讲话,中国地质调查局科技外事部康磊副处长、资源所周剑雄研究员、南京大学张文兰教授级高工、中国有色桂林矿产地质研究院有限公司董事长/党委书记朱景和同志、中国科学院地质与地球物理研究所陈意研究员等作为特邀嘉宾出席会议。本次会议共有19位来自国内外地学界电子探针的专家报告各自的最新研究成果,其中有5个是特邀报告,包括4个来自国外专家和1个国内专家的特邀报告。来自美国威斯康辛大学的John Fournelle通过视频连线方式作了题为“EPMA: Three easy-to-make errors”的线上报告,来自美国俄勒冈大学的John Donovan作了题为“Best Practices in Modern EPMA Microanalysis”的线上报告,来自瑞士伯尔尼大学的Pierre Lanari作了题为“Quantitative compositional mapping by EPMA”的线上报告,来自美国密苏里大学-堪萨斯城分校的赵东高教授来到现场作了题为“Quantitative electron probe microanalysis of strategic uranium mineral resources: analytical procedures and standard reference materials”的报告,来自中国科学院地质与地球物理研究所陈意研究员在现场作了题为“面向月球和行星科学研究的电子探针分析技术”的报告。其他报告的内容包括电子探针技术方法和应用的最新进展,主要涉及超轻元素分析、微量元素分析、变价元素分析、稀土矿物分析、新矿物分析研究、标样研发等。另外还有5个来自显微分析仪器厂商的最新产品和分析技术报告。本次会议采用线下参会+线上直播同时进行的方式,吸引来自全国有关高校、科研院所、显微分析仪器厂商60余人现场参会,同时有累计4000余人通过学术直播平台参与会议。本次会议使得地学界电子探针分析技术平台的影响力进一步扩大,对国内电子探针技术的发展和交流起到了重要的促进作用。 当前,自然资源部和中国地质调查局正在紧锣密鼓的实施新一轮找矿突破战略行动,同时推进构建以星空地海井多维、高分辨率、高精度探测观测监测“三测体系”为突破口的现代化地质调查技术体系,打造国家地质调查科技创新“火车头”。资源所正在深入学习贯彻党的二十大精神,认真落实全国自然资源工作会议和中国地质调查局工作会议部署,以“地质找矿重大突破的引领者,矿产资源安全保障的支撑者”为使命,聚焦铜、铁、钾盐、锂等紧缺战略性矿产,加大制约找矿突破的关键科学问题和“卡脖子”技术难题的攻关,以科技创新引领推动实现找矿新突破。矿产资源研究所的矿物研究室是国内最早引进电子探针仪器并开展相关研究的实验室之一。经过几十年来实验室研究人员和技术人员的不懈努力,在利用电子探针进行基础地质和矿床地质研究、微束分析标准化研究等方面都取得了许多重要的成果。矿物室近年来承担了《系统矿物学》修编、《中国矿物志》研编、国家重点研发计划项目课题、自然科学基金项目、地质调查项目以及白云鄂博找矿勘查等不同类型的项目,地调、科研和横向项目齐头并进,并且都取得了不错的成果。在川西甲基卡、湖南仁里、江西宜丰、冀北窟窿山等稀有金属矿床中,通过详细的矿物学研究示踪成岩成矿过程,并提出了硬岩型锂铍铌钽资源工艺矿物学评价指标体系;在白云鄂博,不但取得了铁和萤石找矿的突破,还发现了新矿物“白鸽矿”;另外,实验室在技术研发方面也一直积极探索,在金红石、石英微量元素分析、铀矿物电子探针测年、铍矿物电子探针分析、稀土矿物电子探针分析等方面都建立了自己的方法。实验室仪器使用效率一直保持国内领先,为所内外的科研和生产提供了重要的支撑作用。本次会议上,我国电子探针领域著名的先驱级人物,也是资源所矿物室的元老周剑雄老师也来到了现场并讲话。周老师对矿物学的热爱和电子探针技术发展的关切激励着我国年轻的电子探针工作者不断努力进取。矿物学是矿产资源研究领域重要的基础学科,电子探针分析技术是支撑矿物学发展的核心关键技术,是矿物学、岩石学、矿床学、地球化学、天体学和其他相关学科领域必不可少的研究工具。随着国家对基础研究和矿产勘查的高度重视,相信矿物学和电子探针分析技术共同进入了前所未有的发展机遇期,相信在新时代基础地质研究和新一轮找矿突破战略行动中,电子探针分析技术也将进一步发挥重要作用。中国地学界电子探针分析技术平台自2019年建立以来,得到众多同行的支持和广大用户的欢迎;2020年平台启动交流会在地学电子探针界引起巨大反响,2022年的技术交流会更是吸引了累计4500余人通过学术直播平台观看会议;而本次会议采用了线下+线上联合的方式,一方面方便现场的充分交流,另一方面也方便了更多人的参与,极大加强了技术人员和科研人员之间的经验交流和信息共享。捷欧路(北京)科贸有限公司、岛津企业管理(中国)有限公司、牛津仪器科技(上海)有限公司、布鲁克(北京)科技有限公司、超微动力科技(香港)有限公司、北京普瑞赛司仪器有限公司、北京金竟科技有限责任公司、北京格微仪器有限公司、北京中科矿研检测技术有限公司等多家厂商和公司代表参加了本次会议。厂商人员和技术、科研人员之间的交流通过本次会议也得到了增强。(供稿:陈振宇、孔维刚)会议合影周剑雄老师致辞陈振宇研究员主持会议开幕式会场情况
  • 美国RHK Technology公司推出新一代革命性扫描探针显微镜控制平台R9plus
    继美国RHK Technology公司推出的革命性扫描探针显微镜控制平台R9取得大成功之后,其研发团队通过升软硬件及功能隆重发布新一代R9plus控制器。基于特的单箱集成,R9plus将无限的灵活性,精心设计的实用功能和高的设备稳定性巧妙结合在一起。R9plus细化和扩展的固件、软件,以及进一步优化的模拟电路提供给用户优越的性能和体验。 相比于R9控制器,升后的R9plus(图1)特点主要有:全新的FPGA固件构架大地提高了配置灵活性,对于高测量提供有60多个可用的数据通道,数据流和扫描速度均提高5倍,模拟电路噪声水平降低到原来的1/4,锁相放大器的解调带宽增加至100KHz,一个控制器可以运行两个立的扫描探针显微镜(SPM)和设置任意密度的网格点进行图谱测量等。图1:R9plus便捷的单箱集成 图2:R9plus更低的噪声水平 R9plus允许高质量图像和谱图数据的采集。利用R9plus采集扫描隧道谱图,即网格谱线数据,允许实时显示10条阈值谱线(图3)。谱线的每个像素点可以单显示和分析。谱线数据可以取平均值用于与衬底的噪声进行比较。图3:硅的网格扫描隧道谱图 R9plus对于原子力显微镜(AFM)的控制也有大的优势。先,其多个内部集成的锁相放大器可以探测针-样品间非线性相互作用机制;其次,通过表征非接触原子力显微镜(Non-contact atomic force microscope)和频率调制开尔文探针显微镜(Frequency-modulated Kelvin probe microscope)结合技术中的边带振幅,NC-AFM锁相环(phase lock loop)的带宽可以与开尔文测试分离,由此可以更快地扫描且噪声更低。再次,两个锁相环可以同时立地测试双探针NC-AFM。后,提供一个切换开尔文探针不同模式的开关键,且可以同时测量2*?Bias and 3*?Bias由此得到 dC/dZ和dC/dV信号。图4:边带频率调制开尔文测量噪声较低 R9plus基本功能可被初学者快速掌握,使用方便,同时R9plus的灵活性又适用于高用户,可突破限制,灵活设计更加符合实验需求的功能和模式。对于任何别的用户体验和简单或苛刻实验步骤的任何阶段,R9plus以其完全充分整合的内部电路、直观的图形用户界面,易于定制的硬件描述语言,高的数据完整性,有利的诊断工具,低的噪音和高的速度为用户提供有力的支持。 相关产品:RHK-R9扫描探针显微镜控制器:http://www.instrument.com.cn/netshow/SH100980/C159539.htm
  • 200万!清华大学计划采购12寸半自动探针台
    一、项目基本情况项目编号:BIECC-22ZB0922/清设招第2022395号项目名称:清华大学12寸半自动探针台购置项目预算金额:200.0000000 万元(人民币)最高限价(如有):200.0000000 万元(人民币)采购需求:用于微系统研发过程中,外部采购片12寸及以下晶圆电学特性测试,通过自动控制芯片移动检测器件电学参数,实现整晶圆快速检测,快速监控芯片是否正常。晶圆上贴片(D2W)后,全晶圆检测。结合实验室现有仪器,实现SIP封装后混合信号快速准确测试。具体要求详见第四章。包号名 称数量0112寸半自动探针台1套合同履行期限:合同签订后180日内交付。本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:通过“信用中国”网站(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)查询信用记录(截止时点为投标截止时间),对列入失信被执行人、重大税收违法案件当事人、政府采购严重违法失信行为记录名单的供应商,没有资格参加本项目的采购活动;3.本项目的特定资格要求:无三、获取招标文件时间:2022年12月01日 至 2022年12月08日,每天上午9:30至11:30,下午13:30至16:30。(北京时间,法定节假日除外)地点:北京市海淀区学院路30号科大天工大厦B座1703室(北四环学院桥东北角)方式:现场购买(只接受现金)或电汇/网银购买标书售价:¥500.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年12月23日 09点30分(北京时间)开标时间:2022年12月23日 09点30分(北京时间)地点:北京市海淀区学院路30号科大天工大厦B座17层1706第二会议室(北四环学院桥东北角)五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1、疫情期间建议优先选择电汇或网银购买标书,请投标人汇款时务必注明“标号+用途”(比如:22ZB0922保证金或者22ZB0922标书款),以便财务查账及汇总。期满后购买招标文件的潜在投标人不足3家的,采购单位可以顺延招标文件出售时间并另行公告。电汇或网银购买标书,请将电汇底单(网银转账页面)扫描件及以下表格发邮件至jowena@163.com,邮件主题请务必注明“(项目编号)购买标书信息”。项目编号BIECC-22ZB0922包号/单位名称纳税人识别号快递地址联系人联系电话2、账户名称:北京国际工程咨询有限公司开户银行:华夏银行北京学院路支行帐 号:102420000000025463、招标文件电子版文件下载网址:http://www.biecc.com.cn/fushulanmu/Biaoshuxiazai/,无需注册,进入页面找到对应项目,点击查看详情,进入详情页免费下载。4、投标文件请于投标当日投标截止时间之前递交至投标地点,逾期递交的文件恕不接收。疫情防控期间建议采用快递形式递交投标文件。对于采用快递形式递交文件的投标人,应同时随附一份关于认可开标现场内容的承诺书原件(格式自拟,无需密封),并于快递发出后将公司名称、本项目编号、快递单号等信息发送至邮箱bjgjgczb1@163.com,以便代理机构及时查收快递。采用快递形式递交投标文件的(推荐采用顺丰快递),请务必自行掌握投递时间,确保在递交文件截止时间前送达,逾期到达的文件恕不接收。快递信息为:北京市海淀区学院路30号科大天工大厦B座1703室,杨梦雪收,010-82373532。5、评标方法:综合评分法6、采购项目需要落实的政府采购政策:节能产品强制采购;节能产品、环境标志产品优先采购;政府采购促进中小企业发展;政府采购支持监狱企业发展;政府采购促进残疾人就业;进口产品管理;支持脱贫攻坚;扶持不发达地区和少数民族地区;支持自主创新;支持绿色建材等。7、本项目招标公告仅在中国政府采购网及清华大学设备采购信息发布平台上发布。对其他网站转发本公告可能引起的信息误导、造成投标人的经济或其他损失的,采购人及采购代理不负任何责任。8、凡对本次招标提出询问及质疑,请与北京国际工程咨询有限公司联系。有关招标(采购)文件购买、中标(成交)通知书领取及服务费发票、保证金交纳及退还事宜的联系电话:010-8237 0821;有关招标(采购)文件技术部分的问题咨询:因项目经理外出、开标等原因,请优先通过电子邮箱bjgjgczb1@163.com联系,或者联系010-82373532。如需质疑,质疑函请采用政府采购供应商质疑函范本格式,以书面形式一次性提交。详见附件下载七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:清华大学地址:北京市海淀区清华大学,邮编100084联系方式:吴老师 627760002.采购代理机构信息名称:北京国际工程咨询有限公司地址:北京市海淀区学院路30号科大天工大厦A座6层联系方式:王蕾蕾、杨梦雪010-823735323.项目联系方式项目联系人:王蕾蕾、杨梦雪电话:010-82373532
  • 扫描探针显微镜(Scanning Probe Microscope--SP
    什么是扫描探针显微镜(Scanning Probe Microscope--SPM)? SPM是一个大的种类,目前,SPM家族中已经产生了二三十种显微镜,如扫描隧道显微镜STM)、原子 (力显微镜(AFM)、磁力显微镜(MFM)、静电力显微镜(EFM)、近场光学显微镜(SNOM)等等。 SPM的工作原理是基于微观或介观范围的各种物理特性,通过原子线度的极细探针在被研 究物质的表 面上方扫描时检测探针&mdash 样品两者之间的相互作用,以得到被研究物质的表面特性,不同类型的SPM之间 的主要区别在于它们的针尖特性及其相应的针尖----样品相互作用方式的不同。   扫描隧道显微镜模块:   STM(Scanning Tunneling Microscope的简称)的工作原理来源于量子力学中的隧道效应原理。 当金属探针在与导电样品非常接近时(小于1nm),控制探针在样品表面进行逐行扫描,检测探针与样 品间隧道电流的变化来获取样品表面形貌、I-Z、I-V曲线等其它特性。 由于要在探针和样品间产生并传输隧道电流,所以只能检测导电 样品。   什么是原子力显微镜(Atomic Force Microscope -- AFM)? AFM是SPM最重要的发展。它控制一个微悬臂探针在样品表面进行逐行扫描,当探针在与样品非 常接近时(小于1nm),由于两者间原子的相互作用力,使对微弱力极敏感的微悬臂发生偏转,再 通过光杠杆作用将微小偏转放大,用四象限光电探测器检测,以获取样品表面形貌和其它物理、化 学特性。AFM按照其成像模式和检测信号的不同,有多种不同的工作模式,适用于不同性质的材料. 样品。 由于AFM对样品没有导电性的要求,应用范围十分广泛,弥补了STM只能观察导电样品的不足。   原子力显微镜基础模块:   该模块包含原子力显微镜接触模式和横向力模式。 模式 接触模式:微悬臂探针紧压样品表面,扫描过程中与样品保持接触。该 时探 模式分辨率较高,但成像针对样品作用力较大,容易对样品表面形 测表 成划痕,或将样品碎片吸附在针尖上,适合 检测强度较高、结构 稳定的样品。 横向力模式:是接触模式的扩展技术,针尖压在样品表面扫描时,与起 伏力方向垂直的横向力使微悬臂探针左右扭曲,通过检测这种扭 曲,获得样品纳米尺度局域上探针的横向作用力分布图。 原子力显微镜专业模块:   该模块包含原子力显微镜轻敲模式和相移模式。 轻敲模式:在扫描过程中微悬臂被压电驱动器激发到共振振荡状态,样 品表面的起伏使微悬臂探 针的振幅产生相应变化,从而得到样品 的表面形貌。 由于该模式下,针尖随着悬臂的振荡,极其短暂地对样品进行&ldquo 敲 击&rdquo ,因此横向力引起的对样品的破坏几乎完全消失,适合检测粉体颗 粒、生物样品及其它柔软、易碎、易吸附的样品,但分辨率接触模式低。 相移模式:是轻敲模式的扩展技术,通过检测微悬臂实际 振动与其驱动信 号源的相位差的变化来成像。引起相移的因素很多,如样品的组分、 硬度、粘弹性、环境阻尼等。因此利用相移模式,可以在纳米尺度上 获得样品表面局域性质的丰富信息。 液相模式:(选配)配有液体池,工作时探针和样品都在液体环境中, 适用于生物样品 摩擦力显微镜模块:   原子力显微镜基础模块中的横向力模式可以获得样品与探针的横向作用力分布图。由于影响 横向力的因素很多,主要包括样品移动方向与针尖悬臂角度、样品晶格排列角度、摩擦力、台阶扭动、 粘弹性等,因此,如果能够基本确定其它因素,利用横向力模式可以对样品纳米级摩擦系数进行间接测 量,进行表面裂缝及粘弹性分析等。 摩擦力显微镜是用于定量评价极轻载荷下(10^-7&mdash 10^-9N)薄膜材料的摩擦学特性,通过对针 悬臂 尖及悬臂的力学特性准确标定,能够获取微观摩擦系数,为纳米摩擦学研究提供依据。利用我们独创的 对分模式扫描,可以准确标定针尖悬臂与扫描方向的90度角,以消除针尖放置角度的不准确和扫描器 误安装位置的差;通过设定正压力的变化范围,可以连续改变正压力, 几分钟内就可完成几小时才能 完成的测量过程,而且系统状态变化很小, 使得测量更准确;由于有4通道同步采集,在所有的力测量过程中,我们 可以同时采集到样品的起伏、针尖所受到的起伏力、横向力,可以准确 分析针尖的状态,为精确分析摩擦力提供了更为详实的数据。   磁力/静电力显微镜模块:   抬起模式:该工作模式分两个阶段,第一阶段与普通原子力显微镜形貌成像一样,在探针与样品间 距1nm以内成像,然后,将探针抬起并一直保持相同距离,进行第二次扫描,该扫描过程可以对一些 相对微弱但作用程较长的作用力进行检测,如磁力或静电力。 磁力显微镜(Magnetic Force Microscope -- MFM):控制磁性 探针在磁性样品表面进行逐行扫描,利用抬起模式进行二次成像,获得样 品纳米尺度局域上磁畴结构及分布图。 静电力显微镜(Electrostatic Force Microscope -- EFM): 控制导电探针在样品表面进行逐行扫描,利用抬起模式二次成像,获得 样品纳米尺度局域上静电场分布图。   扫描探针声学显微镜模块: 扫描探针声学显微镜(SPAM,Scanning Probe Acoustic Microscope)是将原子力显微镜与电声成 像技术相结合,采用声学成像模式,借用声波记录下物质的内部模样,建立了低频(30kHz)高分 辨率(~10nm)扫描探针声学显微成像技术。其特点是能够获得反映材料亚表面纳米尺度结构的声 学像和性能的原位检测,克服了现有SPM只能获得材料表面结构和性质的不足。迄今为止,反映材 料亚表面纳米尺度结构及有关物性的声学功能模式的SPM在国内外报道甚少。   样品定位辅助模块:   该模块包含高分辨CCD光学显微系统和高精度电控样品移动平台。 高分辨CCD光学显微系统:在计算机上成像,用于观察探针和样 品,放大80&mdash 600倍。 高精度电控样品移动平台:计算机自动控制,配合 光学显微系统 进行精确样品移动和定位的装置。移动范围5mm*5mm,单步移动步长最小 85nm。   纳米加工模块:   SPM的纳米加工技术是纳米科技的核心技术之一,常用的加工方法包括机械刻蚀、电致/场致刻 润笔 蚀、浸润笔(Dip-Pen Nano-lithography,DNP)等。其基本原理是利用SPM针尖在样品表面准确移动, 与样 同时控制针尖-样品间的相互作用,就可完成所需的加工过程。 常用的移动方法包括矢量和点阵。矢量法通过矢量产生插件建立矢量数据文件,然后进行刻蚀。 使用这种方法,线条连续,刻蚀速度快,但矢量编辑较为麻烦。点阵法通过插件自动分析需要刻蚀的图 象,在样品上边扫描边刻蚀。这种方法不用编辑矢量,与原图像几乎不失真,但刻蚀速度慢,线条不连 续。可以根据需要选择不同的方法。   SPM通用平台开放式开发系统模块:   SPM通用平台开放式开发系统是一套完整的SPM模块化开发平台,简称&ldquo 开发系统&rdquo 。包括软件 板和 开发模硬件开发套件。如果您需要在已有的SPM功能上开发特殊要求的功能模块,就需要购买开发系 统。目前,离线软件开发模板我们都免费赠送,鼓励用户亲自开发,或者提出详细要求和算法,委托我 们为SPM定制1-2个特殊功能的处理插件,这都是免费的服务。 软硬件结合的特殊功能的SPM开发就要使用&ldquo 开发系统&rdquo 了。这套系统具体包括软件开发模板、硬件 扩展接口测试箱(硬件扩展实验板组)、硬件接口插件模板、开发手册。该系统的设计充分考虑了用户级 二次开发的方便性、可行性和可靠性。当然,您也可以购&ldquo 开发系统&rdquo ,然后提出IDEA,由我们来帮您 合作完成。 在您了解了各个功能模块后,您可以选型了,我们为了您搭建了四种机型,它们的外形都基本 一样,那是因为这样便于您今后无障碍模块化升级。 模块/型号 ZL STM-II 型 扫描隧道显微镜 ZLAFM-II型 原子力显微镜 ZLAFM-III型 扫描探针显微镜 ZL3000型扫 描探针显微镜 扫描隧道 显微镜模块         原子力显微镜 基础模块         原子力 显微镜 专业模块         摩擦力 显微镜模块     可选配    磁力/静电力 显微镜模块         样品定位 铺助模块   可选配     纳米 加工 模块   可选配 可选配 可选配 SPM通用平台 开发系统     可选配 可选配 扫描探针 声学模块     可选配 可选配 各功能模块介绍摘要: 1.扫描隧道显微镜只能检测 导电样品,因其有样品的局限性,所以通常作为教学仪器。 2.原子力显微镜对样品没有导电性的要求,应用范围十分广泛。AFM基础模块包括接触模式和横 向模式;AFM专业模块包括轻巧和相移模式。 3.接触模式AFM适合检测表面强度较高、结构稳定的样品。 4.横向力模式AFM可以获得样品纳米尺度局限上探针的横向作用力分布图。 5.轻敲模式AFM适合检测粉体颗粒、生物样品及其它柔软、易碎、易吸附的样品,但分辨率比接 触模式较低。 6.相移模式AFM对不同组分材料的组分变化比较敏感。 7.磁力显微镜可以获得样品纳米尺度局域上磁畴结构及分布图。 8.静电力显微镜可以获得样品纳米尺度局域上静电场分布图。 9.样品定位辅助模块用于实现样品在毫米量级范围内以纳米精度搜寻定位。 10.纳米加工模块用于实现矢量刻蚀和图形刻蚀方法的纳米加工。 11.如需开发特殊功能SPM,需要购买SPM通用平台开放式开发系统。 配置/型号 ZL STM-II ZL AFM-I ZL AFM-II ZL AFM-III ZL 3000 主机 可扩展式电子学控制机箱 多模式扫描探针显微镜组合式探头 扫描隧道显微镜 原子力显微镜 接触/横向力 模式 原子力显微镜 轻敲/相移 模式 摩擦力显微镜 磁力/静电力显微镜 针尖粗调/自动趋近机构 扫描器(单一多量程自适应扫描器不更换技术) 针尖架 扫描隧道模式针尖架 原子力基础模式针尖架 原子力专业模式针尖架 磁力模式针尖架 静电力模式针尖架 组合式纳米级减振系统 1个 包含 包含 包含 包含 包含                     1套 6&mu m 6&mu m 50&mu m 50&mu m 100&mu m 1个 2个 3个 5个 1个       1套 软件 系统   在线控制软件 1套 离线图像处理/分析软件 离线软件开发模板 摩擦力分析软件         网络实验室远程控制软件      培训课件/实验教材/科普教材/说明书光盘   附件 标准样品 1套 样品载片 5片 5片 10片 10片 15片 STM探针 Pt-Ir 20 20cm   20cm AFM接触/横向力/摩擦力模式探针(进口)   10枚 AFM轻敲/相移模式探针(进口)       10枚 MFM磁力探针(进口)         5枚 EFM导电探针(进口) 5枚 专用工具(镊子、针尖剪刀、玻璃皿 等) 1套 样品 定位 模块 高分辨CCD光学显微系统 可选配 高精度电控样品移动平台     纳米加工模块 SPM通用平台开放式开发系统       什么是扫描探针显微镜(Scanning Probe Microscope--SPM)? SPM是一个大的种类,目前,SPM家族中已经产生了二三十种显微镜,如扫描隧道显微镜STM)、原子 (力显微镜(AFM)、磁力显微镜(MFM)、静电力显微镜(EFM)、近场光学显微镜(SNOM)等等。 SPM的工作原理是基于微观或介观范围的各种物理特性,通过原子线度的极细探针在被研 究物质的表 面上方扫描时检测探针&mdash 样品两者之间的相互作用,以得到被研究物质的表面特性,不同类型的SPM之间 的主要区别在于它们的针尖特性及其相应的针尖----样品相互作用方式的不同。   扫描隧道显微镜模块:   STM(Scanning Tunneling Microscope的简称)的工作原理来源于量子力学中的隧道效应原理。 当金属探针在与导电样品非常接近时(小于1nm),控制探针在样品表面进行逐行扫描,检测探针与样 品间隧道电流的变化来获取样品表面形貌、I-Z、I-V曲线等其它特性。 由于要在探针和样品间产生并传输隧道电流,所以只能检测导电 样品。   什么是原子力显微镜(Atomic Force Microscope -- AFM)? AFM是SPM最重要的发展。它控制一个微悬臂探针在样品表面进行逐行扫描,当探针在与样品非 常接近时(小于1nm),由于两者间原子的相互作用力,使对微弱力极敏感的微悬臂发生偏转,再 通过光杠杆作用将微小偏转放大,用四象限光电探测器检测,以获取样品表面形貌和其它物理、化 学特性。AFM按照其成像模式和检测信号的不同,有多种不同的工作模式,适用于不同性质的材料. 样品。 由于AFM对样品没有导电性的要求,应用范围十分广泛,弥补了STM只能观察导电样品的不足。   原子力显微镜基础模块:   该模块包含原子力显微镜接触模式和横向力模式。 模式 接触模式:微悬臂探针紧压样品表面,扫描过程中与样品保持接触。该 时探 模式分辨率较高,但成像针对样品作用力较大,容易对样品表面形 测表 成划痕,或将样品碎片吸附在针尖上,适合 检测强度较高、结构 稳定的样品。 横向力模式:是接触模式的扩展技术,针尖压在样品表面扫描时,与起 伏力方向垂直的横向力使微悬臂探针左右扭曲,通过检测这种扭 曲,获得样品纳米尺度局域上探针的横向作用力分布图。 原子力显微镜专业模块:   该模块包含原子力显微镜轻敲模式和相移模式。 轻敲模式:在扫描过程中微悬臂被压电驱动器激发到共振振荡状态,样 品表面的起伏使微悬臂探 针的振幅产生相应变化,从而得到样品 的表面形貌。 由于该模式下,针尖随着悬臂的振荡,极其短暂地对样品进行&ldquo 敲 击&rdquo ,因此横向力引起的对样品的破坏几乎完全消失,适合检测粉体颗 粒、生物样品及其它柔软、易碎、易吸附的样品,但分辨率接触模式低。 相移模式:是轻敲模式的扩展技术,通过检测微悬臂实际 振动与其驱动信 号源的相位差的变化来成像。引起相移的因素很多,如样品的组分、 硬度、粘弹性、环境阻尼等。因此利用相移模式,可以在纳米尺度上 获得样品表面局域性质的丰富信息。 液相模式:(选配)配有液体池,工作时探针和样品都在液体环境中, 适用于生物样品 摩擦力显微镜模块:   原子力显微镜基础模块中的横向力模式可以获得样品与探针的横向作用力分布图。由于影响 横向力的因素很多,主要包括样品移动方向与针尖悬臂角度、样品晶格排列角度、摩擦力、台阶扭动、 粘弹性等,因此,如果能够基本确定其它因素,利用横向力模式可以对样品纳米级摩擦系数进行间接测 量,进行表面裂缝及粘弹性分析等。 摩擦力显微镜是用于定量评价极轻载荷下(10^-7&mdash 10^-9N)薄膜材料的摩擦学特性,通过对针 悬臂 尖及悬臂的力学特性准确标定,能够获取微观摩擦系数,为纳米摩擦学研究提供依据。利用我们独创的 对分模式扫描,可以准确标定针尖悬臂与扫描方向的90度角,以消除针尖放置角度的不准确和扫描器 误安装位置的差;通过设定正压力的变化范围,可以连续改变正压力, 几分钟内就可完成几小时才能 完成的测量过程,而且系统状态变化很小, 使得测量更准确;由于有4通道同步采集,在所有的力测量过程中,我们 可以同时采集到样品的起伏、针尖所受到的起伏力、横向力,可以准确 分析针尖的状态,为精确分析摩擦力提供了更为详实的数据。   磁力/静电力显微镜模块:   抬起模式:该工作模式分两个阶段,第一阶段与普通原子力显微镜形貌成像一样,在探针与样品间 距1nm以内成像,然后,将探针抬起并一直保持相同距离,进行第二次扫描,该扫描过程可以对一些 相对微弱但作用程较长的作用力进行检测,如磁力或静电力。 磁力显微镜(Magnetic Force Microscope -- MFM):控制磁性 探针在磁性样品表面进行逐行扫描,利用抬起模式进行二次成像,获得样 品纳米尺度局域上磁畴结构及分布图。 静电力显微镜(Electrostatic Force Microscope -- EFM): 控制导电探针在样品表面进行逐行扫描,利用抬起模式二次成像,获得 样品纳米尺度局域上静电场分布图。   扫描探针声学显微镜模块: 扫描探针声学显微镜(SPAM,Scanning Probe Acoustic Microscope)是将原子力显微镜与电声成 像技术相结合,采用声学成像模式,借用声波记录下物质的内部模样,建立了低频(30kHz)高分 辨率(~10nm)扫描探针声学显微成像技术。其特点是能够获得反映材料亚表面纳米尺度结构的声 学像和性能的原位检测,克服了现有SPM只能获得材料表面结构和性质的不足。迄今为止,反映材 料亚表面纳米尺度结构及有关物性的声学功能模式的SPM在国内外报道甚少。   样品定位辅助模块:   该模块包含高分辨CCD光学显微系统和高精度电控样品移动平台。 高分辨CCD光学显微系统:在计算机上成像,用于观察探针和样 品,放大80&mdash 600倍。 高精度电控样品移动平台:计算机自动控制,配合 光学显微系统 进行精确样品移动和定位的装置。移动范围5mm*5mm,单步移动步长最小 85nm。   纳米加工模块:   SPM的纳米加工技术是纳米科技的核心技术之一,常用的加工方法包括机械刻蚀、电致/场致刻 润笔 蚀、浸润笔(Dip-Pen Nano-lithography,DNP)等。其基本原理是利用SPM针尖在样品表面准确移动, 与样 同时控制针尖-样品间的相互作用,就可完成所需的加工过程。 常用的移动方法包括矢量和点阵。矢量法通过矢量产生插件建立矢量数据文件,然后进行刻蚀。使用这种方法,线条连续,刻蚀速度快,但矢量编辑较为麻烦。点阵法通过插件自动分析需要刻蚀的图 象,在样品上边扫描边刻蚀。这种方法不用编辑矢量,与原图像几乎不失真,但刻蚀速度慢,线条不连 续。可以根据需要选择不同的方法。   SPM通用平台开放式开发系统模块:   SPM通用平台开放式开发系统是一套完整的SPM模块化开发平台,简称&ldquo 开发系统&rdquo 。包括软件 板和 开发模硬件开发套件。如果您需要在已有的SPM功能上开发特殊要求的功能模块,就需要购买开发系 统。目前,离线软件开发模板我们都免费赠送,鼓励用户亲自开发,或者提出详细要求和算法,委托我 们为SPM定制1-2个特殊功能的处理插件,这都是免费的服务。 软硬件结合的特殊功能的SPM开发就要使用&ldquo 开发系统&rdquo 了。这套系统具体包括软件开发模板、硬件 扩展接口测试箱(硬件扩展实验板组)、硬件接口插件模板、开发手册。该系统的设计充分考虑了用户级 二次开发的方便性、可行性和可靠性。当然,您也可以购&ldquo 开发系统&rdquo ,然后提出IDEA,由我们来帮您 合作完成。 在您了解了各个功能模块后,您可以选型了,我们为了您搭建了四种机型,它们的外形都基本 一样,那是因为这样便于您今后无障碍模块化升级。 模块/型号 ZLSTM-II 型 扫描隧道显微镜 ZLAFM-II型 原子力显微镜 ZLAFM-III型 扫描探针显微镜 ZL3000型扫 描探针显微镜 扫描隧道 显微镜模块         原子力显微镜 基础模块         原子力 显微镜 专业模块         摩擦力 显微镜模块     可选配    磁力/静电力 显微镜模块         样品定位 铺助模块   可选配     纳米 加工 模块   可选配 可选配 可选配 SPM通用平台 开发系统     可选配 可选配 扫描探针 声学模块     可选配 可选配 各功能模块介绍摘要: 1.扫描隧道显微镜只能检测 导电样品,因其有样品的局限性,所以通常作为教学仪器。 2.原子力显微镜对样品没有导电性的要求,应用范围十分广泛。AFM基础模块包括接触模式和横 向模式;AFM专业模块包括轻巧和相移模式。 3.接触模式AFM适合检测表面强度较高、结构稳定的样品。 4.横向力模式AFM可以获得样品纳米尺度局限上探针的横向作用力分布图。 5.轻敲模式AFM适合检测粉体颗粒、生物样品及其它柔软、易碎、易吸附的样品,但分辨率比接 触模式较低。 6.相移模式AFM对不同组分材料的组分变化比较敏感。 7.磁力显微镜可以获得样品纳米尺度局域上磁畴结构及分布图。 8.静电力显微镜可以获得样品纳米尺度局域上静电场分布图。 9.样品定位辅助模块用于实现样品在毫米量级范围内以纳米精度搜寻定位。 10.纳米加工模块用于实现矢量刻蚀和图形刻蚀方法的纳米加工。 11.如需开发特殊功能SPM,需要购买SPM通用平台开放式开发系统。 配置/型号 ZL STM-II ZL AFM-I ZL AFM-II ZL AFM-III ZL 3000 主机 可扩展式电子学控制机箱 多模式扫描探针显微镜组合式探头 扫描隧道显微镜 原子力显微镜 接触/横向力 模式 原子力显微镜 轻敲/相移 模式 摩擦力显微镜 磁力/静电力显微镜 针尖粗调/自动趋近机构 扫描器(单一多量程自适应扫描器不更换技术) 针尖架 扫描隧道模式针尖架 原子力基础模式针尖架 原子力专业模式针尖架 磁力模式针尖架 静电力模式针尖架 组合式纳米级减振系统 1个 包含 包含 包含 包含 包含                     1套 6&mu m 6&mu m 50&mu m 50&mu m 100&mu m 1个 2个 3个 5个 1个       1套 软件 系统   在线控制软件 1套 离线图像处理/分析软件 离线软件开发模板 摩擦力分析软件         网络实验室远程控制软件       培训课件/实验教材/科普教材/说明书光盘   附件 标准样品 1套 样品载片 5片 5片 10片 10片 15片 STM探针 Pt-Ir 20 20cm   20cm AFM接触/横向力/摩擦力模式探针(进口)   10枚 AFM轻敲/相移模式探针(进口)       10枚 MFM磁力探针(进口)         5枚 EFM导电探针(进口) 5枚 专用工具(镊子、针尖剪刀、玻璃皿 等) 1套 样品 定位 模块 高分辨CCD光学显微系统 可选配 高精度电控样品移动平台     纳米加工模块 SPM通用平台开放式开发系统
  • 扫描力探针技术在能源纳米技术研究中大有可为
    p   能源纳米技术,泛指利用纳米材料和纳米尺度的特征效应构筑能源纳米器件,致力于解决可再生能源转化和存储过程中的瓶颈问题,目前已成为一个重要的学科交叉领域。能源纳米器件显著区别于电子器件和光电子器件,其工作机制决定于器件中电子、空穴和离子等载流子的长程传输过程,其传输过程常与化学转化相耦合,并且不同于传统化学反应中电子被局域在原子核附近。基于原子力显微镜(AFM)发展的扫描力探针显微术(SFM)从最初的形貌扫描工具,逐步发展成了可探测力学、电学、热学、磁学、光学和化学等性质的多模式功能成像技术,同时结合其高空间和时间分辨率,适应于复杂环境的原位工况成像能力等优势,被广泛用于能源纳米器件工作机理的研究。 /p p   中国科学院苏州纳米技术与纳米仿生研究所研究员陈立桅团队,长期致力于能源纳米器件界面形貌、化学结构和电子过程的扫描力探针研究,目前已在Acc. Chem. Res,Nat. Commun.,JACS,Adv. Mater.,Joule,Nano Lett.,Nano Energy 等期刊上发表了一系列原创性研究成果。近日,受邀在《先进材料》(Advanced Materials)上撰写题为Functional Scanning Force Microscopy for Energy Nanodevices 的综述文章(DOI: 10.1002/adma.201802490),聚焦近年来能源纳米器件的扫描力探针技术的研究进展。 /p p   该综述首先介绍了扫描探针各种功能成像技术的发展历程,从最基本的形貌成像模式开始(图1),依次介绍纳米力学模式、化学成像模式、载流子探测模式和时间分辨成像技术等。第二部分介绍了各种扫描力探针功能成像模式在能源转换器件,如有机光伏电池和有机-无机钙钛矿电池中的进展。该部分重点突出了原位工况研究器件内部界面动态演化的重要意义和面临的挑战(图2)。在第三部分中,该综述介绍了以锂离子电池为典型代表的能源储存器件中固态电解质中间相(SEI)的形貌、力学性质、化学组分在电池循环中的演变,及其与电池循环性能的关联(图3)。该类器件区别于能源转换器件的主要特点是器件行为决定于离子的传输,因此推动了一系列探测离子运动的功能成像模式的发展。最后,该综述总结了扫描力探针技术在能源纳米技术发展中起到的积极推动作用,同时指出进一步提高测量分辨率和测量精度对于推动能源纳米技术领域革新具有重要意义。 /p p style=" text-align: center "   此综述和相关研究工作得到国内外合作者的大力支持,受到国家自然科学基金、科技部重点研发计划、江苏省自然科学基金、中科院先导专项和科研装备研制项目、苏州纳米协同创新中心(教育部2011计划)以及苏州纳米所的经费资助与研发条件支持。 br/ img title=" 1.jpg" alt=" 1.jpg" src=" https://img1.17img.cn/17img/images/201809/uepic/3077aae7-37fa-4433-af33-770f84021604.jpg" / /p p style=" text-align: center "   图1.扫描力探针技术原理图,通过针尖扫描过程中是否振动将扫描力探针技术分为非振动模式(a)和振动模式(b)两大类 br/ img title=" 2.jpg" alt=" 2.jpg" src=" https://img1.17img.cn/17img/images/201809/uepic/611aebf3-4b8d-49b6-9176-fdacae6f7a8e.jpg" / /p p style=" text-align: center "   图2.原位工况研究有机光伏器件和有机-无机钙钛矿光伏器件能级结构的演变 br/ img title=" 3.jpg" alt=" 3.jpg" src=" https://img1.17img.cn/17img/images/201809/uepic/b1bdb1ed-c242-4cdc-952b-b2a6033070e1.jpg" / /p p style=" text-align: center "   图3.锂离子电池SEI形成原理示意图及其形貌变化的原位表征 /p p br/ /p
  • 新疆理化所在ESIPT探针调控检测高锰酸钾方面取得进展
    高锰酸钾(KMnO4)是制作简易爆炸装置常用的氧化剂原料之一,同时也被广泛用于医药消毒、水质净化、工业生产等领域,其过量摄入或排放会对人体及环境造成严重的危害。因此,实现对微量高锰酸钾的超灵敏、特异性、快速检测对维护公共安全和环境保护具有重要意义。近年来,激发态分子内质子转移(ESIPT)类分子因具有大的斯托克斯位移、强的光稳定性、高的量子产率和对周围介质的光敏感性等特点,被广泛用于反应型荧光探针的设计。ESIPT探针的发光性能可通过溶剂氢键作用、分子异构化、介质酸/碱度和化学修饰等来调节。目前,大多数化学修饰策略主要集中于研究分子性质和ESIPT变化过程,而关于分子对目标分析物传感性能影响的研究很少被应用于实际检测。因此,是否可以采用化学修饰策略来提高ESIPT探针的传感性能尚不清楚,而该方面的研究将对理性设计高效探针具有重要意义。基于此,中国科学院新疆理化技术研究所痕量化学物质感知团队提出了识别基团对位取代基吸电子强度精确调控提升ESIPT荧光探针反应活性及产物荧光稳定性的探针分子设计策略。基于KMnO4氧化不饱和烯烃的性质,以2-(2’-羟基苯基)苯并恶唑(HBO)为荧光团,采用缩合反应将识别位点丙烯酰基接枝于HBO的质子给体-OH上以抑制ESIPT过程的发生,在识别位点的对位引入不同吸电子强度的取代基团(-F、-CHO、-H、-CH3),设计合成了四种ESIPT基荧光探针(BOPA-F, BOPA-CHO, BOPA-H, BOPA-CH3)。当检测KMnO4时,可以打断碳碳双键形成邻二羟基,随后酯键断裂释放质子给体,ESIPT过程被激发,进而实现对KMnO4的荧光点亮检测。进一步研究发现,取代基吸电子强度调控可显著地提升探针检测KMnO4时的荧光强度及荧光稳定性。理论计算结果表明,取代基的改变有效调节了探针对KMnO4的反应活性及产物的振子强度。以具有较强吸电子能力的-CHO作为取代基的探针BOPA-CHO对KMnO4具有最佳检测效果,检测限为0.96 nM,响应时间吸电子强度调控ESIPT探针构筑策略、响应机制及海绵基测试笔实际场景检测示意图
  • 建通发布美国TEC建筑气密性测试系统DG700新品
    DG700建筑整体气密性测试系统BUILDING PERFORMANCETESTING TOOLS鼓风门系统明尼阿波利斯鼓风门一向被认为是全球设计很好的建筑气密性测试系统。美国TEC(The Energy Conservatory)公司开发了完备的测试程序,并集成了专门的测试配件。该系统可供需求侧管理(DSM)部门、能耗评估、HVAC系统承包商、建筑业者以及建筑热工等专业人员使用。鼓风门系统主要用于测试建筑围护结构的气密性水平,诊断和演示空气渗透问题以及估计自然空气渗透率以及空气渗透所产生的能效损失,并可用于对建筑整体性能进行评估。配置窗户测试附件可测试门窗气密性。主要特性精密设计和严格校准的风扇经注模、粗糙化处理的轻质风扇外罩精确、稳定的流量测量,无需更换流量计可快速、准确测量的流量范围,采用C环选件,流量低限可至100CFM固态变速风扇控制兼容加压测试和减压测试支持110V或220V交流电源轻质耐久的门框支架创新性设计的可变铝框架和耐久尼龙罩面,经多年研究和数千次实验而成。没有比该系统更容易的方法将鼓风门风扇密封在门洞里全锁扣设计可保证仅需几秒即可将铝框从紧凑的存放盒中取出安装完毕精密设计的凸轮杆装置保证尼龙罩面与门框严丝密缝可适应常见住宅各种门框尺寸(特殊门框亦可定制)带有观察窗的尼龙罩面,方便监控室外活动① 轻质坚固的铝合金可伸缩门框② 高精度DG700压力和流量表 双通道同时显示压力或流量 提供:USB、串口或WiFi连接计算机③ 风扇控制器,精确控制风扇转速④ 经校准的风扇,3/4马力电机,带有A,B流量环,可选C,D,E流量环⑤ DG700通过USB或WIFI link连接计算机 通过TECLOG软件自动测量 自动调整风扇转速以保证恒定的压力技术参数 部件项目参数Model 3型鼓风门上限流量:6300 CFM (2973 l/s, 10700 m3/h) (自然状态)5350 CFM (2524 l/s, 9090 m3/h) (压差50 Pa)5000 CFM (2360 l/s, 8495 m3/h) (压差75 Pa)下限流量:300 CFM (141 l/s, 510 m3/h) (采用B环)85 CFM (40 l/s, 144 m3/h) (采用C环)30 CFM (14 l/s, 51 m3/h) (采用D环)11 CFM (5 l/s, 18 m3/h) (采用E环)尺寸:管径50 cm,长度26 cm重量:15 kg(含A环和B环)精确度:±3% (采用 DG-700压力流量表或APT系统)符合标准ASTM E779-03、E1554-07、CGSB-149.10-M86、EN 13829、ATTMA 、NFPA 2001、RESNET 、USACE电压110V 或 220V.可调门框及用材门框材料:模压铝材宽度:71~101 cm高度:132~244 cm密封材料:三元乙丙橡胶(含双环戊二稀)柔性垫层罩面材料:尼龙帆布(带有聚乙烯薄膜窗)Multi-fan Blower Door Systems测量大型建筑物气密性扩展为2风扇系统及3风扇系统美国TEC大型建筑物气密性测试系统通常由2~3个鼓风机和2个DG-700主机及控制软件组成。主要用来测试大型建筑物气密性,建筑物表面积可达7000~36000m2,内部体积上限可达450000m3,可广泛应用于工业厂房、粮仓、消防系统和其它大型公共建筑场所,是目前世界上先进的气密性测试设备。3个鼓风机、2个DG-700主机,加上TECLOG软件,可组成一个测试模块,上限的流量范围可达27000m3/h(50Pa下)。2个DG-700主机中的一个作为主控制器,利用TECLOG软件控制主控制器自动调节风扇速率。若系统流量超出范围,可增加一个模块,即6个鼓风机、4个主机组合测试,这几乎能解决所有的大型建筑物气密性测试难题。主要配置表 部件单风扇系统2风扇系统3风扇系统说明鼓风机(风扇)1个2个3个model 3型可调节的门框1套1套1套特殊需求可定制尼龙密封门1个(单孔)1套(2风扇孔)1套(3风扇孔)DG-700主机1个2个2个风扇控制器1个2个3个TECLOG软件1套1套1套USB控制线1条2条3条电脑和主机通讯线3合1风扇控制线1条1条1条主机和风扇通讯线DG-700数字压力计 Digital Pressure and Flow GaugeDG-700型压力流量表:包括两个精密压力传感器,可同时显示室内外压力和鼓风门风扇读数。特设的“基准压力”和“CFM @50”功能便于快速、准确的获得气密性数据。除此之外,还可将DG-700连接到笔记本电脑,通过TECTITE软件实现鼓风门自动测量。 技术规格独立压力通道数2压力范围–1250到1250帕斯卡(5到5英寸水柱)显示分辨率0.1pa精度1%读数或0.15帕斯卡(取较大值)测量单位英寸水柱,CFM, CFM@50, CFM@25, m3/h, m3/h@50, m3/h@25, l/s, l/s@50, in2@25, cm2@50, cm2@25, fpm, m/s自动调零开始及每10s时间平均1,5,10秒,长期(连续更新)工作温度范围0° C ~ 48° C校准Meets ASTM Standard E779-03, E1554-07, CGSB-149.10-M86,EN 13829, ATTMA Technical Standard 1 and NFPA 2001, RESNET andUS ACE. Recommended calibration interval is 2 years.电池寿命6节碱性电池,可连续使用100小时创新点:操作简单、彩屏显示、可根据实际情况更换流量环控制出风量的大小 美国TEC建筑气密性测试系统DG700
  • 清华大学林金明教授:微流控探针诱导化学质膜穿孔用于单细胞蛋白质递送
    将小分子、核酸、蛋白质和药物导入细胞是监测和了解细胞行为以及生物功能的重要途径。然而,质膜是阻止外源分子进入细胞的生物屏障。因此,如何在保持细胞活力的同时高效地将外源分子递送到细胞中是细胞生物学领域的一个重要课题。为了克服现有大规模细胞内递送方法的弱点,例如细胞活性和递送效率不一致,主要基于膜破坏介导机制的微技术已成为一种有前景的解决方案。利用化学质膜穿孔进行单细胞递送的尚未得到广泛研究。2024年4月26日,清华大学化学系林金明教授团队在《ACS Applied Materials & Interfaces》杂志在线发表了题为“Chemical Plasma Membrane Perforation Generated by a Microfluidic Probe for Single-Cell Intracellular Protein Delivery”的工作。该研究使用微流控探针将含有毛地黄皂苷和货物的溶液精确地作用到单细胞上。毛地黄皂苷与质膜中的胆固醇结合诱导质膜穿孔,货物通过孔进入细胞。碘化丙啶 (0.67 kDa) 和 FITC-葡聚糖 (10、40 和 150 kDa) 可以在3分钟内成功引入单细胞,同时保持细胞活力。两种蛋白质(细胞色素C和亲环素A)被递送进入细胞,并观察到它们在细胞中得生理功能。图1. 微流控探针诱导单细胞化学质膜穿孔首先,利用Comsol Multiphysics软件对微流控探针形成的微区域进行数值模拟。使用荧光素(扩散系数=500 μm2 /s)来指示溶质扩散。结果表明,注入的溶液可以被完全吸出,并且溶质被限制在液滴状微区域内而不会扩散。微区内溶质浓度分布均匀。计算了基质上的剪切应力,低剪切应力不会对细胞造成额外的机械损伤。实验在与模拟相同的条件下进行,使用荧光素显示微流控探针产生的微区域,与浓度分布模拟结果一致。溶液的连续流动使微区中毛地黄皂苷和货物的浓度几乎恒定,有利于维持递送过程的连续性和稳定性。图2. 流体的数值模拟通过微流控探针进行碘化丙啶(PI)的细胞内递送来验证该方法的可行性以及优化递送条件。尝试使用 20-100 μg/mL 毛地黄皂苷将 PI 递送至U87细胞。随着毛地黄皂苷浓度的增加,ts(PI开始进入时间)和tm(PI进入速度最大时间)逐渐减少,表明细胞穿孔加速。当毛地黄皂苷浓度为60 μg/mL时,ts约为20 s,1 min内即可观察到清晰的荧光。此外,还尝试了不同的PI浓度进行细胞内递送,较高的PI浓度也使得PI能够更快地进入细胞。还测试了流速对递送结果的影响。注入流量保持2 μL/min,抽出流量在6~14 μL/min之间调整。当抽吸流速大于8 μL/min时,进入细胞的PI量随着流速的增长而显着增加。图3. 毛地黄皂苷浓度、PI浓度和流速对细胞内递送的影响为了证明该方法的效率和通用性,使用该方法将PI递送至U87、HUVEC和A549细胞。当递送时间为20秒时,三种类型的细胞几乎不发出荧光。随着递送时间逐渐增加,细胞的相对荧光强度显着增加,递送处理50 s后观察到强烈的红色荧光。由于洋地黄皂苷的作用,质膜逐渐透化,PI通过质膜上形成的孔继续进入细胞。还检查了该方法递送大分子的能力,使用不同分子量(10、40和150 kDa)的 FITC-葡聚糖作为货物。FITC-葡聚糖可以在3min内进入细胞,并且FITC-葡聚糖进入的量随着递送时间的增加而增加。图4. PI和FITC-葡聚糖递送的结果在验证了这种方法用于单细胞胞内递送的可行性后,作者尝试了细胞内蛋白质递送。Cyt C ( Mw = 13 kDa) 是线粒体中的一种蛋白质,可将电子转移到呼吸链以维持ATP的产生。当cyt C释放到细胞质中时,它会引发细胞凋亡。由于外源cyt C在正常情况下不能进入细胞,利用微流控探针将cyt C递送至A549中作为抗肿瘤药物以诱导细胞凋亡。对照组和仅用毛地黄皂苷或cyt C处理的细胞之间未观察到caspase-3水平和Hoechst 33342染色结果的显着差异。毛地黄皂苷诱导的质膜穿孔不会引起细胞凋亡。仅用cyt C处理的细胞中caspase-3的水平也没有增加,表明正常情况下cyt C不能穿过质膜进入细胞激活凋亡途径。然而,在进行毛地黄皂苷介导的cyt C递送的细胞中,caspase-3水平显著增加,蓝色荧光显著增强。细胞形态发生明显变化,细胞体积缩小,并形成凋亡小体。这些结果表明,递送的cyt C成功诱导细胞凋亡,并且外源蛋白可以通过微流控探针有效地引入细胞内并发挥作用。图5. Cyt C被递送至A549以诱导细胞凋亡为了进一步探索这种方法在细胞研究中的潜力,作者利用它来研究肿瘤耐药性。CypA (M w = 18 kDa) 是一种广泛存在的细胞内蛋白质,可充当抗氧化剂。最近有报道称CypA通过重塑细胞氧化状态介导结直肠癌耐药。BCNU是一种常用的抗肿瘤药物,其诱导细胞毒性的机制之一是谷胱甘肽还原酶的抑制导致ROS的积累。利用微流控探针将CypA递送到U87中,研究CypA对胶质瘤耐药性的影响。与对照组相比,未经CypA递送的细胞经BCNU处理1小时后ROS水平显着升高,并且细胞形态发生改变。对于递送CypA的细胞,ROS含量显着低于未递送细胞,并且细胞保持正常形态。结果表明,递送的CypA在细胞中具有抗氧化作用,这可能增强U87对BCNU的耐药性。抑制CypA表达可能是治疗神经胶质瘤的潜在方法。图6. CypA对胶质瘤耐药性的影响总结作者开发了一种基于开放式微流控探针的方法,以方便高效地实现单细胞递送。该方法通过使用化学试剂对单个细胞进行质膜穿孔,将最大分子量为150 kDa 的外源货物递送到细胞中。与载体介导或场辅助递送方法相比,该方法不需要对货物进行额外处理,无需物理场辅助的温和递送条件也避免了对货物和细胞的额外损伤。作者展示了使用微流控探针进行cyt C和CypA的细胞内递送,证明了该方法能够研究外源蛋白质对细胞生命活动的影响。未来,各种货物(肽、蛋白质、mRNA、DNA、质粒、细胞器等)可以通过这种方法导入细胞内,调节细胞的生理功能和命运。而且该方法不需要昂贵的设备,操作简单,有望成为单细胞递送的一种理想方法。清华大学化学系林金明教授为该论文的通讯作者,清华大学化学系2022级博士生宋扬为本论文的第一作者。该研究受到国家重点研发计划(No.2022YFC3400700)和国家自然科学基金(No.22034005)的支持。关于林金明教授工学博士,分析化学专业。1984年福州大学毕业,1992年在日本昭和大学国际交流基金的资助下前往该大学药学部从事访问研究。1994年获得日本政府奖学金转入东京都立大学攻读博士学位,1997年3月获得工学博士学位,同年留校任教,2000年入选中国科学院“百人计划”,受聘中科院生态环境研究中心研究员、博士生导师;2001年获得国家杰出青年科学基金,2002年3月底回国工作,2004年入选清华大学“百名人才引进计划”,受聘清华大学化学系教授、博士生导师。2008年受聘教育部长江学者特聘教授,2014年入选英国皇家化学会会士。目前主要从事微流控芯片质谱联用细胞分析、化学发光/荧光免疫分析、复杂样品前处理分析、空气负离子检测与健康评估等研究。已培养博士研究生43名(含联合培养,其中留学生2名)、硕士研究生28名、博士后11名(其中留学生3名)、访问学者10名(其中外国访问学者1名)。
  • 法国ATEQ医疗应用的案例|正压接头输液接头气密性测试
    随着医疗器械技术水平的不断提高和进步,无针接头和无针正压接头在医疗器械领域中具有许多优势。它们不仅可以避免针刺伤,预防血源性疾病的传播,还可以在每次注药结束时自动产生瞬间正压,防止血液回流,减少导管堵塞。 综合以上的优势,越来越多的医疗器械厂家开始着手生产该类型的接头。由于无针接头或输液接头涉及到塑料超声波焊接,以及弹性体和塑料件之间的密封性结合,气密性测试是一个非常棘手的问题。法国ATEQ医疗应用的案例|正压接头输液接头气密性测试 英国肖氏SHAW露点仪|残氧仪|冷镜露点仪气密性测试是无针接头生产过程中一个重要的挑战。以下是一些针对无针接头气密性测试的建议:塑料超声波焊接和密封性结合:在生产无针接头的过程中,塑料超声波焊接是一种常用的连接方法。为了确保接头的气密性,需要确保焊接的质量和接头的结构设计。同时,弹性体和塑料件之间的密封性结合也是关键,需要选择合适的材料和加工工艺来实现良好的密封效果。气密性测试方法:对于无针接头的气密性测试,可以考虑以下方法:压力衰减测试:在一定的时间内,保持对无针接头的压力,并检测压力的变化。如果压力没有明显下降,那么可以认为无针接头是密封良好的。 测试设备和标准:需要选择合适的测试设备和标准来确保测试的有效性和准确性。这些设备和标准应该根据产品的具体要求和生产工艺进行调整。法国ATEQ医疗应用的案例|正压接头输液接头气密性测试 英国肖氏SHAW露点仪|残氧仪|冷镜露点仪生产过程的控制:除了气密性测试,还需要对整个生产过程进行控制,以确保每个无针接头的质量和气密性。这包括原材料的选择和检验、焊接过程、组装过程、清洁和消毒等方面。操作人员的培训和评估:为了确保测试的有效性和准确性,需要对操作人员进行定期的培训和评估。他们需要了解气密性测试的原理、操作方法和注意事项,并能够按照规定的标准进行测试和记录结果。无针接头产品泄漏标准要求:在产品标准里面只是提到水检15min内无液体泄漏,但是该标准无法量化,无法满足产品的后期批量生产要求。因此我们建议采用使用压缩空气检测的方法来进行检测。 验证方法: 针对无针接头产品的测试要求,我们可以将产品泄漏冒气泡分为A,B,C三个分档。A:一秒一个气泡或更多气泡B: 2秒到5秒一个气泡C: 5秒以上一个气泡 法国ATEQ医疗应用的案例|正压接头输液接头气密性测试 英国肖氏SHAW露点仪|残氧仪|冷镜露点仪 使用ATEQ气密性检漏仪可以测试出一秒一个气泡的产品和不泄漏的产品有数值差异。后再使用通水方法进行验证,可以发现B类和C类产品无液体泄漏,因此我们可以将产品泄漏标准,定为A类产品的数值标准。 使用法国ATEQ气密性检漏仪进行产品泄漏测试是一种常用的方法,但是根据所提供的信息,对于某些产品,特别是无针接头,测试的难度较高。在这种情况下,为了确保测试的有效性和准确性,需要采用一些技巧和策略,包括采用外抱封堵头的方式进行非径向密封测试和采用反复预充气的方法撑开超声波虚焊接位置。这些措施可以提高测试的可靠性此外,根据所提到的19th World Conference on Non-Destructive Testing 2016中的研究结果,不同材质的溶液水密性和气体泄漏率之间存在关系。对于无损检测领域的气密性测试,防水性能的最低规格为1.010-2 mbarl/s (1.010-3 Pa.m3/s),这一标准可以作为泄漏测试的基础。需要注意的是,在制定产品泄漏标准时,需要考虑产品的实际情况和客户的使用要求。如果客户要求产品不漏气或在酒精中看不到气泡,这需要采用更为严格的测试方法来验证,如采用压缩空气检测、流量测试等更为精确的方法来确定产品的泄漏情况。综上所述,针对无针接头等医疗器械的气密性测试需要进行充分的考虑和科学的制定测试方法,以保证产品的质量和客户的要求。法国ATEQ医疗应用的案例|正压接头输液接头气密性测试 英国肖氏SHAW露点仪|残氧仪|冷镜露点仪法国ATEQ阿黛凯作为一家专业的气密性检测设备制造商,其产品在多个行业都得到了广泛的应用。除了医疗行业,ATEQ还为电子、汽车、新能源、储能、家电等行业提供了气密检测解决方案。在电子行业,ATEQ的产品可以用于检测手机、平板电脑等消费电子产品的气密性,以确保产品的防水防尘性能。在汽车行业,ATEQ的产品可以用于检测汽车零部件的气密性,以确保产品的质量和安全性。在新能源和储能行业,ATEQ的产品可以用于检测电池组和储能系统的气密性,以确保产品的安全性和性能。在家电行业,ATEQ的产品可以用于检测洗衣机、空调等家用电器的气密性,以确保产品的防水性能和密封质量。更多法国ATEQ医疗应用的案例|正压接头输液接头气密性测试 英国肖氏SHAW露点仪|残氧仪|冷镜露点仪、法国ATEQ真空衰减仪、真空衰减容器密封完整性测试仪、药厂泄露检测仪、压力衰减&真空衰减法测试仪、ATEQ法国阿黛凯泄露仪、压力衰减&真空衰减法测试仪、汽车用泄露检测仪资料请致电英肖仪器仪表(上海)有限公司汽车用泄露检测仪资料请致电英肖仪器仪表(上海)有限公司1⃣ ️ 7⃣ ️ 3⃣ ️ 1⃣ ️ 7⃣ ️ 6⃣ ️ 0⃣ ️ 8⃣ ️ 3⃣ ️ 7⃣ ️ 6⃣ ️ 获取。
  • 大陆探针台设备厂商第一名冲刺创业板IPO
    近日,国内最大的半导体探针台生产商矽电半导体设备(深圳)股份有限公司(下称“矽电半导体”或“公司”)向创业板递交招股书,保荐机构为招商证券。据了解,矽电半导体主要从事半导体专用设备的研发、生产和销售,专注于半导体探针测 试技术领域,系境内领先的探针测试技术系列设备制造企业。探针测试技术主要应用于半导体制造晶圆检测(CP, Circuit Probing)环节,也应用于设计验证和成品测试(FT, Final Test)环节,是检测芯片性能与缺陷,保证芯片测试准确性,提高芯片测试效率的关键技术。公司自主研发了多种类型应用探针测试技术的半导体设备,产品已广泛应用于集成电路、光电芯片、分立器件、第三代化合物半导体等半导体产品制造领域。公司已成为中国大陆规模最大的探针台 设备制造企业。招股说明书显示,矽电半导体核心技术团队拥有超过 30 年的探针测试技术研发经验,自设立以来立足技术创新,掌握了探针测试核心技术,打破了海外厂商垄断,在探针台领域成为中国大陆市场重要的设备厂商。公司的探针测试系列产品已应用于士兰微、比亚迪半导体、燕东微、华天科技、三安光电、光迅科技、歌尔微等境内领先的晶圆制造、封装测试、光电器件、分立器件及传感器生产厂商。根据 SEMI 和 CSA Research 统计,2019 年矽电股份占中国大陆探针台设备市场 13% 的市场份额,市场份额排名第四,为中国大陆设备厂商第一名。此外,矽电半导体还是中国大陆首家实现产业化应用的12英寸晶圆探针台设备厂商,产品应用于境内领先的封测厂商和12英寸芯片产线。公司搭载自主研发光电测试模块的晶粒探针台,已应用于境内多家领先的光电芯片制造厂商,满足新一代显示技术 Mini/Micro LED 芯片测试环节设备需求。基于公司在探针测试技术领域的积累和半导体专用设备行业的经验,公司研发并量产了分选机、曝光机和 AOI 检测设备等其他半导体专用设备。在营收数据上,2019年至2021年,矽电半导体营收分别为9331.73万元、1.88亿元和3.99亿元,2019年至2021年的复合增长率为106.82%,同期净利润分别为528.38万元、3285.38万元和9603.97万元,年复合增长率为326.34%。
  • Nature子刊带大家进入热扫描探针构筑的奇妙纳米世界
    上世纪五十年代末期,诺奖得主、物理学鬼才理查德费曼在加州理工学院的物理年会上,作了题为《There' s Plenty of Room at the Bottom》的报告,具前瞻性地提出了他对于纳米尺度操作及控制的框架性想法,并由此开启了无数科研工作者在纳米尺度上探究物质奥秘并通过相关的纳米技术来改变、造福人类的道路。同样是在上世纪五六十年代,采用平面处理工艺批量制备晶体管的策略出现,由此开启了集成电路产业的飞速发展。摩尔博士在六十年代中期提出了著名的摩尔定律“当价格不变时,集成电路上可容纳的元器件的数目,约每隔18-24个月便会增加一倍,性能也将提升一倍”。而其中元器件数量的增多,是通过不断缩小元器件的关键尺寸来实现的。不论是在纳米尺度上进行探索,或是与人们生活息息相关的集成电路产业发展,都需要制备各种各样的纳米结构、纳米功能单元或纳米器件。而在制备各类纳米结构的过程中,为重要的操作就是通过光刻来实现在不同的材料上定义图案区域。目前,在工业上,先进的EUV光刻机具备7 nm技术节点的制备工艺中所需的图形加工能力,但其单值高,比一架F-35战斗机的价格还会高出不少。对于科研工作者来说,目前通常采用的基于光学曝光原理的科研光刻设备(科研的无掩模曝光系统、掩模对准式曝光系统等),能够实现的图形加工分辨率一般在微米尺度或亚微米尺度。而随着研究对象尺度的不断减小,对纳米尺度结构构筑的需求,上述基于光学曝光原理的科研光刻系统显然是不能够完全满足的。基于聚焦电子束、离子束的各类图案化加工设备,比如电子束光刻系统、聚焦离子束系统等,能够有效满足科研中对于纳米尺寸的图形加工需求。然而,由于电子束流和离子束流需要聚焦,这类设备通常由较为复杂的电子光学系统构成,因此价格相较于上述科研光学光刻设备要高出很多(即使是科研的电子束曝光系统,其单值也远超科研的光学曝光设备)。另一方面,聚焦电子束、离子束系统的复杂性也对操作人员和设备维护人员提出了较高的要求。 图1 热扫描探针光刻系统诱导材料局部变化的三种机制 在科研领域中,扫描探针光刻(thermal scanning probe lithography)是另一种颇受关注的图案化工艺方案,能够实现纳米(甚至原子的)图案制备的需求,其核心思路是通过纳米针诱导材料表面局部的改性来实现图案化。纳米针诱导材料表面改性的机制有很多种,包括力学、电学、热学、扩散等等,也由此产生了许多不同的扫描探针光刻技术。在诸多的扫描探针光刻技术中,热扫描探针光刻技术(thermal scanning probe lithography,t-SPL)是近年来发展起来的一种可快速、可靠、高精度地实现纳米图案化工艺,其技术核心是利用加热针的热能来诱导局部材料的改性。通常,热是材料转化中较为普遍的驱动因素,在很多材料中能诱导结晶、蒸发、熔化等改性现象。在纳米尺度上,由于只有很小的体积被加热,所以材料改性的特征时间是以纳秒量来计算的。因此,加热几微秒就足以改变针下的材料。对于刻写速度而言,悬臂梁的机械扫描运动成为图案化工艺速度方面的主要限制。然而,凭借扫描探针领域良好的技术积累,目前可以实现高达20 mm/s的刻写速度,能够满足大多数科研上的图案化制备工艺需求。同时在微纳图案结构的加工精度及分辨率方面,热扫描探针光刻技术可以实现特征线宽在10 nm以下的微纳结构的制备。图2 利用热扫描探针光刻进行热敏抗刻蚀剂的图案化工艺后,结合各类工艺实现的微纳结构及器件案例 作为一种高精度图案化工艺设备,近些年来热扫描探针光刻技术得到飞速发展,然而很多研究人员还比较陌生。着眼于此,洛桑联邦理工的S. T. Howell博士以及瑞士Swisslitho的F. Holzner博士撰写了综述《Thermal scanning probe lithography—a review》(已于2020年4月6日刊载在NPG旗下期刊Microsystems & Nanoengineering,详细信息可参考链接https://doi.org/10.1038/s41378-019-0124-8),Howell等人向大家详细介绍了热扫描探针光刻的历史、原理、图案转移工艺以及在基于新型低维材料的微纳电子器件、自旋电子器件、光子学微纳结构、微纳流控、微纳机电等领域的应用案例。图3 利用热扫描探针光刻进行定域材料转换的应用案例 另一方面,不同于很多新型光刻策略还停留在实验室中,瑞士Swisslitho公司已经成功将热扫描探针光刻技术商品化,名为NanoFrazor。在国内外的诸多用户当中,已有不少基于NanoFrazor制备的结构而开展的研究,相关结果也都发表在了Science、Nature、PRL、等高水平期刊上。图4 热扫描探针诱导的增材工艺的应用案例
  • 我司在北京某研究所成功安装美国Janis公司生产的高低温真空探针台 2016-11
    我司于2016年11月在北京某研究所成功安装美国Janis公司生产的高低温真空探针台。该探针台变温范围大(8K-675K (LHe),80K-675K(LN2)),温度稳定性好(优于10mK)。配三同轴探针臂,漏电流优于50fA。配无油分子泵组,低温下真空度优于5*10-6mbar。与Keithley 4200半导体特性仪匹配使用,用于功能材料、拓扑绝缘体、纳米结构和器件等变温测试,也可以用于半导体器件、MEMS器件、超导器件与封装前在真空下做原位测试以及高低温的老化测试。 高低温真空探针台系统
  • 狂发Nature等顶刊!Lake Shore低温探针台,助力超越硅极限的二维晶体管革新
    当今科技迅猛发展,电子器件的小型化和性能提升是科研人员的极致追逐。其中,晶体管是当代电子设备中不可或缺的核心组件,其尺寸微缩和性能提升直接关系到整个电子行业的进步。与此同时,硅基场效应晶体管(FET)的性能逐渐逼近本征物理极限,国际半导体器件与系统路线图(IRDS)预测硅基晶体管的栅长最小可缩短至12 nm,工作电压不低于0.6 V,这决定了未来硅基芯片缩放过程结束时的极限集成密度和功耗。因此,迫切需要发展新型沟道材料来延续摩尔定律。 二维(2D)半导体具备可拓展性、可转移性、原子级层厚和相对较高的载流子迁移率,被视为超越硅基器件的下一代电子器件的理想选择。近年来,先进的半导体制造公司和研究机构,都在对二维材料进行研究。Lake Shore的低温探针台系列产品可容纳最大1英寸(25.4mm)甚至8英寸的样品,可以为二维半导体材料研究提供精准的温度磁场控制及精确可重复的测量,是全球科研工作者的值得信赖的工具。本文我们将结合近期Nature、Nature electronics期刊中的前沿成果,一起领略Lake Shore低温探针台系列产品在二维晶体管革新中的应用吧! 图1. Lake Shore低温探针台1. 探针台电学测量揭秘最快二维晶体管——弹道InSe晶体管 对于二维半导体晶体管的速度和功耗方面的探索,北京大学电子学院彭练矛院士,邱晨光研究员课题组报道了一种以2D硒化铟InSe为沟道材料的高热速度场效应晶体管,首次使得二维晶体管实际性能超过Intel商用10纳米节点的硅基FinFET(鳍式场效应晶体管),并将工作电压下降到0.5V,称为迄今速度最快、能耗最低的二维半导体晶体管。相关研究成功以“Ballistic two-dimensional InSe transistors”为题发表于《Nature》上。 基于Lake Shore 低温探针台完成的电学测试表明,在0.5 V工作电压下,InSe FET具有6 mSμm-1的高跨导和饱和区83%的室温弹道比,超过了任何已报道的硅基晶体管。实现低亚阈值摆幅(SS)为每75 mVdec-1,漏极诱导的势垒降低(DIBL)为22 mVV-1。此外,10nm弹道InSe FET中可靠地提取了62 Ωμm的低接触电阻,可实现更小的固有延迟和更低的能量延迟积(EDP),远低于预测的硅极限。 这项工作首次证实了2D FET可以提供接近理论预测的实际性能,率先在实验上证明了二维器件性能和功效上由于先进硅基技术,为2D FET发展注入信心和活力。2. 探针台光电测量揭示光活性高介电常数栅极电介质——2D钙钛矿氧化物SNO 与2D半导体兼容的高介电常数的栅极电介质,对缩小光电器件尺寸至关重要。然而传统三维电介质由于悬挂键的存在很难与2D材料兼容。为解决以上问题,复旦大学方晓生教授等人进行了大量研究实验,发现通过自上而下方式制备的2D钙钛矿氧化物Sr10Nb3O10(SNO)具有高介电常数(24.6)、适中带隙、分层结构等特点,可通过温和转移的方法,与各种2D沟道材料(包括石墨烯、MoS2,WS2和WSe2)等构建高效能的光电晶体管。文章以“Two-dimensional perovskite oxide as a photoactive high-κ gate dielectric”为题发表在Nature electronics上。图3. 具有SNO顶栅介电层的双栅WS2光电晶体管的电特性和光响应 基于Lake Shore探针台的光电测试表明,SNO作为顶栅介电材料,与多种通道材料兼容, 集成光电晶体管具有卓越的光电性能。MoS2晶体管的开/关比为106,电源电压为2V,亚阈值摆幅为88&thinsp mVdec-1。在可见光或紫外光照射下,WS2光电晶体管的光电流与暗电流比为~106,紫外(UV)响应度为5.5&thinsp ×&thinsp 103&thinsp AW-1,这是由于栅极控制和光活性栅极电介质电荷转移的共同作用。本研究展示了2D钙钛矿氧化物Sr2Nb3O10(SNO)作为光活性高介电常数介质在光电晶体管中的广泛应用潜力。 3. 探针台电学测量探索200毫米晶圆级集成——多晶MoS2晶体管 二维半导体,例如过渡金属硫族化合物(TMDs),是一类很有潜力的沟道材料,然而单器件演示采用的单晶二维薄膜,均匀大规模生长仍具挑战,无法应用于大尺度工业级器件制备。与单晶相比,多晶TMD的较大规模生长就容易很多,具备工业化应用集成的潜力。 有鉴于此,三星电子有限公司Jeehwan Kim和Kyung-Eun Byun 团队提出一种使用金属-有机化学气相沉积(MOCVD)制造大规模多晶硫化钼(MoS2)场效应晶体管阵列的工艺,与工业兼容,在商用200毫米制造设备中进行加工,成品率超过99.9%。文章以“200-mm-wafer-scale integration of polycrystalline molybdenum disulfide transistors”为题发表在Nature electronics上。 图4. 三种不同接触类型(a常规顶部接触,b多晶MoS2的底部接触,c单层MoS2底部接触)的电学特性和肖特基势垒高度 基于Lake Shore低温探针台CPX-VF的电学测试表明,相比于顶部接触,底部接触可以更好的消除2D FETs阵列中多晶2D/金属界面的肖特基势垒。没有肖特基势垒的多晶MoS2场效应晶体管表现良好,迁移率可达21 cm2V-1s-1,接触电阻可达3.8 kΩµ m,导通电流密度可达120µ Aµ m-1,可比拟单晶晶体管。4. Lake Shore低温探针台系列 美国Lake Shore公司的低温探针台根据制冷方式不同,主要分为无液氦低温探针台和消耗制冷剂低温探针台,其下又因为磁场方向、尺寸大小差别,有更多型号的细分,适用于不同应用场景(电学、磁学、微波、THz、光学等),客户可根据需要,选择不同的温度和磁场配置。客户可以选择自己搭配测试仪表集成各类测试,也可以选择我们的整体测试解决方案,如电输运测试、半导体分析测试、霍尔效应测试、铁电分析测试,集成光学测试等。图5. 低温探针台选型和适用的应用场景Lake Shore低温探针台主要特征☛ 最大±2.5 T磁场☛ 低温至1.6 K,高温至675 K☛ fA级低漏电测量☛ 最高67 GHz高频探针☛ 3 kV 高电压探针(定制) ☛ 大温区低温漂探针☛ 真空腔联用传送样品(定制)☛ <30 nm低振动适用于显微光学测量☛ 无需翻转磁场快速霍尔效应测试☛ 多通道高精度低噪声综合电学测量☛ 光电、CV、铁电、半导体分析测试参考文献:1. J. Jiang, L. Xu, C. Qiu, L.-M. Peng, Ballistic two-dimensional InSe transistors. Nature 616, 470-475 (2023).2. S. Li, X. Liu, H. Yang, H. Zhu, X. Fang, Two-dimensional perovskite oxide as a photoactive high-κ gate dielectric. Nature Electronics 7, 216-224 (2024).3. J. Kwon et al., 200-mm-wafer-scale integration of polycrystalline molybdenum disulfide transistors. Nature Electronics 7, 356-364 (2024).相关产品1、Lake Shore低温探针台系列
  • 山东师大省部共建分子与纳米探针实验室通过验收
    11月20日,教育部科技司组织验收专家组对依托山东师范大学建设的“分子与纳米探针”省部共建教育部重点实验室进行了验收。由南京大学陈洪渊院士任组长,来自北京大学、南开大学、湖南大学、厦门大学、中科院化学所等6位国家杰出青年和国家自然科学基金委员会的管理专家组成了验收组。在听取了实验室负责人唐波教授的建设工作总结汇报,进行了答辩交流和实地考察后,专家们认为该实验室全面完成了各项建设任务,达到了计划建设目标,一致同意通过验收。   验收会议在山东师范大学国际交流中心召开。教育部科技司基础处明媚副处长、省教育厅副厅长郭建磊、教育厅科研处处长张厚吉、副处长吕序峰,山东师范大学校长赵彦修教授、副校长唐波教授以及科技处、化学化工与材料科学学院负责人和实验室有关人员参加了会议。会议由教育部科技司基础处明媚副处长主持。赵彦修校长首先致欢迎辞,对各位领导和专家多年来给予学校的支持和帮助表示感谢,并简要介绍了学校科学研究及重点实验室建设情况。山东省教育厅郭建磊副厅长介绍了山东省重点实验室建设情况。教育部明媚副处长就验收的要求作了具体说明,实验室负责人唐波教授全面汇报了实验室的建设情况。   “分子与纳米探针”省部共建教育部重点实验室是2007年教育部批准立项建设的。自建设以来,实验室以设计并构建探针为基础,构造具有分析、分离与识别功能的分子与纳米探针 利用探针与客体的相互作用,对生命以及化学过程进行跟踪分析,认识其转化及分离、识别机制,从理论和实验上进行了系统性的开拓研究,形成了光学探针、识别与分离材料、电化学探针、微纳结构设计与应用等四个研究方向,定位准确,重点突出,特色鲜明。   在建设期间引进和培养了多名学术带头人,培养了国家杰出青年基金获得者1名、全国先进工作者1名,国家级百千万人才工程1名,泰山学者1名和山东省杰出青年基金获得者1名。从国内外引进博士后、博士13名。形成了以院士、国家杰出青年基金获得者和泰山学者等为学术带头人的富有创新活力的研究团队,人员梯队结构合理,2009年,实验室研究团队荣获山东省优秀创新团队,并记省政府集体一等功。   建立了“农药、医药中间体清洁生产”教育部工程研究中心和精细化学品清洁合成山东省重点实验室 三年来,完成国家自然科学基金11项,教育部新世纪优秀人才支持计划项目1项,其他省部级项目16项,鉴定科技成果7项,申请和授权国家发明专利46项,发表SCI论文200余篇,其中J. Am. Chem. Soc. 7篇,IF大于5.0的25篇, 获得国家及省部级科研奖励13项,省部级教学成果奖励4项 实验室与多家企业签订了技术合作合同,完成横向合作课题13项 培养硕士研究生218人,博士研究生7人,为企业培训技术人员200人。   所培养的研究生1人获全国优秀博士学位论文提名奖、1人获2008年全国首届优秀教育硕士论文奖,4人获山东省优秀博士、硕士奖,2人获山东省研究生优秀科技创新成果奖。科技创新能力得到明显提升,在科技创新、成果转化、人才培养、学术交流、条件建设、产学研结合等方面取得了显著成绩,促进了学校创新能力和学术水平的提高,扩大了学校的学术影响。   验收专家组还对实验室今后的建设提出了建议,希望教育部、山东省、山东师范大学继续加大投入,并给予政策倾斜,以推进实验室的建设,使学术水平、人才队伍建设等方面达到更高层次。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制