菊苣酸对照品

仪器信息网菊苣酸对照品专题为您提供2024年最新菊苣酸对照品价格报价、厂家品牌的相关信息, 包括菊苣酸对照品参数、型号等,不管是国产,还是进口品牌的菊苣酸对照品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合菊苣酸对照品相关的耗材配件、试剂标物,还有菊苣酸对照品相关的最新资讯、资料,以及菊苣酸对照品相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

菊苣酸对照品相关的资料

菊苣酸对照品相关的论坛

  • EpMYB2激活紫锥菊中初级和特化代谢基因正向调控菊苣酸的生物合成

    菊苣酸是世界上广受欢迎的药用植物紫锥菊([b]Echinacea purpurea[/b] (L.) Menoch)的主要活性成分,被公认为商业热销紫锥菊产品的质量指标。虽然紫锥菊中菊苣酸的生物合成途径已被近期阐明,但其调控网络仍然不清楚。通过共表达和系统发育分析,该研究发现了[b]EpMYB2[/b],一个典型的R2R3型MYB转录因子(TF),对甲基茉莉酸甲酯(MeJA)刺激有响应,是菊苣酸生物合成的正调控因子。除了直接调控菊苣酸生物合成基因外,[b]EpMYB2[/b]还正向调控上游莽草酸途径的基因。我们还发现[b]EpMYC2[/b]可以通过结合其G-box位点激活[b]EpMYB2[/b]的表达,[b]EpMYC2-EpMYB2[/b]模块参与了MeJA诱导的菊苣酸生物合成。总的来说,我们鉴定了一个通过激活初级和特化代谢基因正向调控菊苣酸生物合成的MYB转录因子[b]EpMYB2[/b],连接了茉莉酸信号通路与菊苣酸生物合成之间的缺口。这项工作为利用生物技术手段提高紫锥菊药用质量开辟了新方向。 [align=left][b]前言[/b][/align] 几千年来,人类一直使用植物来维持健康。天然产物分子是药物开发的重要资源)。紫锥菊([b]Echinacea purpurea[/b] (L.) Menoch)原产于北美,并在全球广泛种植。除了作为观赏植物种植外,它还被用作草药治疗口疮、感冒和蛇咬伤。现代药理学实验已经证明它具有免疫调节、抗炎、抗氧化和抗病毒活性。紫锥菊产品几十年来在全球范围内畅销,通常用于预防和治疗普通感冒。在紫锥菊中发现了许多不同的化学成分,包括咖啡酸衍生物、糖蛋白、烷基胺和黄酮类化合物。其中,菊苣酸作为一种咖啡酸衍生物,是这些多种化学成分中最具代表性的,广泛积累在整个植物中,已被用作紫锥菊产品和原材料的质量指标。许多研究报告已经证明,菊苣酸具有多种生物活性,例如抗病毒、抗氧化、抗炎、肝脏保护、肾脏保护和抗癌,这些生物活性已经在最近的综述中得到了介绍。到目前为止,紫锥菊一直是菊苣酸补充剂的主要来源。由于市场对紫锥菊及其菊苣酸的需求量大,有必要提高植物中菊苣酸的含量,这依赖于生物合成途径和调控网络的阐明。 我们之前已经阐明了紫锥菊中菊苣酸的生物合成途径。首先,苯丙氨酸通过限速酶苯丙氨酸解氨酶(PAL)和随后的一些酶(如肉桂酸4-羟化酶(C4H)和4-香豆酸连接酶(4CL))转化为对香豆酰CoA。对香豆酰CoA是多种苯丙素类化合物生物合成的关键中间体,包括黄酮类化合物、羟基肉桂酸衍生物和白藜芦醇类化合物(Vogt, 2010)。在菊苣酸的生物合成过程中,对香豆酰CoA通过羟基肉桂酰CoA:莽草酸/奎宁酸羟基肉桂酰转移酶(HCT)和对香豆酰莽草酸/奎宁酸3'-羟化酶(C3'H)转化为咖啡酰CoA。两种BAHD型酰基转移酶(羟基肉桂酰CoA:酒石酸羟基肉桂酰转移酶(HTT)和羟基肉桂酰CoA:奎宁酸羟基肉桂酰转移酶(HQT))利用咖啡酰CoA作为酰基供体,分别以酒石酸和奎宁酸为酰基受体,生成槲皮素酸和绿原酸。最后,一种特殊的丝氨酸羧肽酶样(SCPL)型酰基转移酶——菊苣酸合酶(CAS)催化菊苣酸的生物合成,以槲皮素酸为酰基受体,绿原酸为酰基供体(Fu, Zhang, Jin等,2021)。我们进一步描述了酰基转移酶的底物多样性,并描绘了紫锥菊中菊苣酸及其类似物的整个生物合成网络。毫无疑问,菊苣酸的积累是由其生物合成基因的表达决定的。与此同时,生物合成基因的表达通常受到转录因子(TFs)的调控。尽管我们已经阐明了生物合成途径,但菊苣酸的调控网络仍然不清楚。 植物的各种转录因子(TFs)家族已经被发现参与植物次生代谢的调控,例如v-Myb髓样细胞白血病病毒癌基因同源物(MYB)、基础/螺旋-环-螺旋(bHLH)、WD重复、乙烯响应因子(ERF)、WRKY和基础亮氨酸拉链(bZIP)。其中,MYB转录因子被认为是苯丙素代谢的主要调控因子。它们包含一个保守的N端DNA结合结构域重复(R)和一个可变的C端调控区域。根据R的数量,MYBs可以分为四类,包括1R-、R2R3-、3R-和4R-MYB蛋白。R2R3-MYBs是植物MYBs中占主导地位的,被认为在功能多样化中帮助植物从水生环境适应到陆地环境。亚家族3、4、5、6、7、8、13、21、31、32、44和79的R2R3-MYBs主要被报道调控苯丙素生物合成途径,通过直接结合启动子作为激活因子或抑制因子发挥作用。许多植物R2R3-MYBs识别DNA靶点的AC元件,这些元件富含腺嘌呤和胞嘧啶残基。例如,AtMYB12,亚家族7的成员,被报道直接结合启动子的MYB12BS位点(CACCTACC、TACCTAMC和TAGCWACC),调控蔗糖磷酸合酶(DAHPS)、苯丙氨酸解氨酶(PAL)、查尔酮合酶(CHS)和黄烷酮3-羟化酶(F3H)的表达。 此外,生物和非生物刺激也影响植物次生代谢物的生物合成。植物防御机制的诱导通常伴随着大量次生代谢物的产生。在此过程中,脂质衍生植物激素——茉莉酸(JAs)发挥了关键作用。例如,JAs诱导了许多次生代谢物的生物合成,如长春碱、青蒿素、尼古丁和紫杉醇。许多转录因子家族的成员对JAs有响应,并调控JAs诱导的次生代谢物积累。在茉莉酸信号通路中,茉莉酸ZIM域(JAZ)家族的抑制蛋白通常与转录因子结合并抑制其激活功能。在JAs存在的情况下,JAZ蛋白被SCFCOI1复合物降解,最终释放转录因子。该通路中研究最透彻的转录因子属于MYC家族(bHLH型TF),包括MYC2、MYC3和MYC4。例如,MYC2s直接和间接地调控次生代谢物的诱导,通过结合下游基因启动子上的G-box位点并激活其表达。 有趣的是,菊苣酸的生物合成在紫锥菊的毛状根、幼苗和细胞悬浮培养物中显著受到甲基茉莉酸甲酯(MeJA)的诱导。目前尚不清楚哪种转录因子参与了紫锥菊中MeJA诱导的菊苣酸生物合成。将转录因子与生物合成基因结合使用将显著提高目标代谢物的产量。因此,必须识别潜在的正向调控因子以实现高产量的菊苣酸生产。最近,我们建立了紫锥菊开花期不同组织的转录组,并鉴定了一个属于亚家族6的R2R3-MYB转录因子[b]EpMYB1[/b],该转录因子正向调控紫锥菊中的花青素生物合成。在此基础上,我们通过共表达和系统发育分析鉴定了可能参与菊苣酸生物合成的转录因子。通过系统表征和体内转基因验证,鉴定出一个MYB转录因子,并阐明了其调控机制。进一步的研究还解释了其在MeJA诱导的菊苣酸生物合成中的作用。这项研究进一步阐明了菊苣酸的生物合成,并为利用生物技术手段提高紫锥菊中菊苣酸含量奠定了基础。 [align=left][b]结果[/b][/align] [b][b]参与菊苣酸生物合成的TF的筛选[/b][/b] 该团队之前已经阐明了紫锥菊中菊苣酸的生物合成途径(图1A)。利用最近建立的多组织转录组数据集,我们通过BLASTP方法识别出了菊苣酸生物合成基因。通过对这些生物合成基因表达水平的层次聚类分析,我们发现它们的表达模式相似,并且在根部高表达(图1B)。尤其是[b]EpPAL[/b]、[b]EpC4H[/b]、[b]Ep4CL[/b]、[b]EpC3’H[/b]、[b]EpHTT[/b]和[b]EpCAS[/b]具有紧密的共表达关系(图1B)。这些结果通过RT-q[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]得到了验证。共表达分析已经被广泛应用于中间代谢物、生物合成基因和调控因子的鉴定。随后,我们使用这六个高度相关的菊苣酸生物合成基因作为诱饵进行共表达分析。通过与这六个基因共表达且线性相关系数高于0.8的基因的交集,共获得了139个转录因子(图1C)。MYB转录因子已经被证明可以调控苯丙素代谢。在这139个转录因子中,21个被注释为MYB。在去除冗余序列后,我们将这21个[b]EpMYBs[/b]与[b]AtMYBs[/b]进行比对并用于系统发育分析。这些[b]EpMYBs[/b]分布在几个亚家族中,包括2、7、14、20和78。之前有报道指出,亚家族3、4、5、6、7、8、13、21、31、32、44和79的成员参与调控苯丙素代谢。在这10个[b]EpMYBs[/b]中,亚家族7的两个成员(即CL4945.Contig5_All和CL4945.Contig7_All)可能具有调控苯丙素的潜力。当这两个[b]EpMYBs[/b]在[b]Nicotiana benthamiana[/b]叶片中瞬时过表达时,CL4945.Contig5_All(命名为[b]EpMYB2[/b])显著增加了总酚含量(图1D)。总体而言,我们通过共表达、系统发育分析和异源功能研究确定了[b]EpMYB2[/b]为潜在的菊苣酸生物合成调控因子。 [b][b]EpMYB2[/b] 正向调控菊苣酸生物合成[/b] 对[b]EpMYB2[/b]与拟南芥亚家族7成员的多序列分析表明,[b]EpMYB2[/b]具有完整的R2和R3结构域,可被鉴定为R2R3-MYB。进一步对[b]EpMYB2[/b]与其他植物物种亚家族7成员的系统发育分析显示,[b]EpMYB2[/b]与[b]Gentiana trifloral[/b]的[b]GtMYBP4[/b]较为接近,后者已被报道能促进类黄酮生物合成(图2A)。RT-q[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]分析表明,[b]EpMYB2[/b]在根、茎和叶柄中高表达,这与RNA-seq数据一致(图2B)。通过在烟草叶片中瞬时表达[b]EpMYB2-GFP[/b]融合蛋白,发现[b]EpMYB2[/b]定位于细胞核中(图2C)。此外,[b]EpMYB2[/b]的表达对不同的胁迫处理(尤其是MeJA)具有响应(图2D),这表明它可能在环境胁迫与次生代谢之间起到链接作用。 为了探索[b]EpMYB2[/b]的体内功能,我们构建了[b]EpMYB2-OE[/b]紫锥菊愈伤组织。对照组和[b]EpMYB2-OE[/b]组愈伤组织的表型都呈现淡黄色,彼此之间没有显著差异(图3A)。[b]EpMYB2-OE[/b]组的[b]EpMYB2[/b]表达水平显著高于对照组(P 0.05)(图3B)。采用基于[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-高分辨率质谱(LC-HRMS)的非靶向代谢组学方法,对紫锥菊愈伤组织进行代谢物变化评估。在主成分分析(PCA)得分图中,对照组与[b]EpMYB2-OE[/b]组显著分离(图3C)。进一步的载荷图评估表明,主要的差异离子属于菊苣酸及其类似物甲基菊苣酸和其底物槲皮素酸与绿原酸,根据保留时间和质谱进行鉴定(图3D)。与对照组相比,[b]EpMYB2-OE[/b]组中这些化学物质的含量显著增加(图3E)。此外,菊苣酸生物合成基因,包括[b]EpPAL[/b]、[b]EpC4H[/b]、[b]Ep4CL[/b]、[b]EpHCT[/b]、[b]EpC3’H[/b]、[b]EpHQT[/b]、[b]EpHTT[/b]和[b]EpCAS[/b],均受[b]EpMYB2[/b]上调(图3F)。这些结果表明,[b]EpMYB2[/b]是菊苣酸生物合成的正向调控因子。另一方面,鉴于亚家族7的成员被确认是类黄酮调控因子,我们进一步研究了[b]EpMYB2[/b]对类黄酮的影响。[b]EpMYB2[/b]对关键生物合成基因的表达和类黄酮代表性化学物质的水平没有表现出一致的促进作用。它显著增加了芸香苷的含量,但未显著增加紫茉莉苷的含量。菊苣酸的增加幅度远高于芸香苷,这表明[b]EpMYB2[/b]对菊苣酸生物合成的激活作用比对类黄酮的更强。所有这些结果表明,[b]EpMYB2[/b]主要在紫锥菊中促进菊苣酸的生物合成。 [b][b]EpMYB2[/b] 正向调控上游的初级代谢基因[/b] 许多转录因子被发现具有多个调控靶点,尤其是一些调控次生代谢的转录因子,它们也被发现参与初级代谢的调控。为了进一步评估[b]EpMYB2[/b]的功能,我们对转基因愈伤组织进行了RNA-seq分析。将上调的基因进行KEGG途径富集分析。令人感兴趣的是,除了苯丙氨酸代谢外,苯丙氨酸、酪氨酸和色氨酸的生物合成途径也得到了富集(图4A)。这些芳香族氨基酸来源于莽草酸途径,属于初级代谢途径,并且是苯丙素代谢的上游(图4B;表S1)。我们使用RT-q[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]评估了这些上游生物合成基因的表达水平。几种结构基因,包括[b]EpDAHPS[/b]、[b]EpEPSPS[/b]、[b]EpCM[/b]、[b]EpPAT[/b]和[b]EpADT[/b],被[b]EpMYB2[/b]显著上调(P 0.05)(图4C)。因此,色氨酸、酪氨酸和苯丙氨酸的含量均显著增加(P 0.05)(图4D)。综上所述,[b]EpMYB2[/b]被发现具有多个潜在的调控靶点,覆盖了初级和次级代谢途径。 [b][b]EpMYB2[/b] 通过直接结合激活关键的苯丙氨酸和菊苣酸生物合成基因的表达[/b] 为了探索[b]EpMYB2[/b]对菊苣酸生物合成的调控机制,我们尝试克隆这些初级和次级代谢基因的启动子。使用之前报道的方法,我们成功克隆了10个启动子(图5B)。然后,我们采用双荧光素酶测定法来测试[b]EpMYB2[/b]对这些启动子激活的作用(图5A)。[b]EpMYB2[/b]对[b]proEpCM[/b]、[b]proEpPAT[/b]、[b]proEpPAL[/b]、[b]proEpC4H[/b]、[b]proEp4CL[/b]、[b]proEpHCT[/b]、[b]proEpC3’H[/b]、[b]proEpHTT[/b]和[b]proEpCAS[/b]表现出激活效应,但对[b]proEpHQT[/b]没有影响(图5C)。在菊苣酸生物合成中起主导作用的关键代谢基因[b]EpPAL[/b]、[b]EpHCT[/b]和[b]EpHTT[/b]被广泛激活(图5C)。[b]EpHQT[/b]在紫锥菊种子发芽过程中的表达模式也表现出明显的差异,这表明其具有不同的调控网络。这些结果表明,[b]EpMYB2[/b]可以通过直接激活重要代谢基因的启动子来调控菊苣酸的生物合成。为了进一步识别潜在的结合位点,我们对这些启动子进行了分析,发现[b]proEpCM[/b]、[b]proEpPAT[/b]、[b]proEpPAL[/b]、[b]proEpHCT[/b]、[b]proEpC3’H[/b]和[b]proEpHTT[/b]在ATG上游500 bp内都包含[b]MYB12BS[/b]位点(图5B)。我们选择了[b]EpPAL[/b]、[b]EpHCT[/b]和[b]EpHTT[/b]这三个菊苣酸生物合成的关键代谢基因,来研究潜在的结合位点。在[b]EpPAL[/b]、[b]EpHCT[/b]和[b]EpHTT[/b]的启动子上突变[b]MYB12BS[/b]位点后,在双荧光素酶测定法中[b]EpMYB2[/b]对这些启动子的激活水平显著降低(图S7A;图5D、F)。此外,我们采用酵母单杂交(Y1H)实验来确认直接的结合效应。[b]EpMYB2[/b]显示出直接结合在[b]proEpHCT[/b]和[b]proEpHTT[/b]的[b]MYB12BS[/b]位点上(图5E、G)。由于[b]proEpPAL[/b]具有较高的自活性,因此难以验证[b]EpMYB2[/b]对其的直接结合作用(图S7B)。这些结果表明,[b]MYB12BS[/b]至少是[b]EpMYB2[/b]的一个结合位点。综上所述,我们发现[b]EpMYB2[/b]可以通过与启动子结合直接激活基因表达,并识别了一个结合位点。 [b][b]EpMYC2-EpMYB2[/b] 模块介导了MeJA诱导的菊苣酸生物合成[/b] 先前的研究表明,紫锥菊中菊苣酸的生物合成受到MeJA的诱导。在本研究中,我们注意到[b]EpMYB2[/b]的表达显著受到MeJA的影响(图2D),这让我们推测[b]EpMYB2[/b]是否参与了MeJA诱导的菊苣酸生物合成。由于[b]EpMYB2[/b]主要在根部表达(图2),我们处理了紫锥菊根部以进一步探索[b]EpMYB2[/b]在JA信号响应中的作用。结果表明,[b]EpMYB2[/b]的表达水平显著被MeJA处理所诱导(图6A)。此外,菊苣酸生物合成基因的表达水平和化学物质的含量也均受诱导(图6B)。考虑到[b]MYC2[/b]在JA信号途径中的重要作用,我们通过BLASTP分析发现了[b]EpMYC2[/b],该基因是从[b]Artemisia annua[/b]中鉴定出的[b]AaMYC2[/b]的同源基因。多序列比对分析表明,[b]EpMYC2[/b]包含完整的[b]MYC2[/b]结构域,包括基础和HLH(螺旋-环-螺旋)结构域、JAZ结合域(JID)以及与MED25蛋白结合的转录激活域(TAD)。系统发育分析显示,[b]EpMYC2[/b]与[b]AaMYC2[/b]较为接近,是bHLH亚家族7的典型成员(图6C)。为了探究[b]EpMYC2[/b]是否会影响[b]EpMYB2[/b]的表达,我们克隆了包含两个G-box位点的[b]EpMYB2[/b]启动子。[b]EpMYC2[/b]通过双荧光素酶测定法验证了其对[b]EpMYB2[/b]启动子的激活作用(图6D)。当启动子上距ATG 126 bp的G-box位点被突变后,[b]EpMYC2[/b]对[b]EpMYB2[/b]启动子的激活水平显著下降(图6D)。通过酵母单杂交(Y1H)实验确认了[b]EpMYC2[/b]直接结合[b]proEpMYB2[/b]–126 bp G-box位点的作用)。因此,[b]EpMYC2[/b]通过G-box位点激活了[b]EpMYB2[/b]启动子的表达。以上结果表明,[b]EpMYC2-EpMYB2[/b]模块介导了MeJA诱导的菊苣酸生物合成。 [align=left][b]结论[/b][/align]该研究发现了一种 MYB TF,即 EpMYB2,它能通过直接激活涵盖初级和特化代谢基因的初级和特化代谢基因的表达,正向调控紫锥菊中的菊苣酸生物合成通过直接激活涵盖初级和次级代谢的初级和特化代谢基因的表达,积极调控紫锥菊的菊苣酸生物合成。次生代谢基因的表达。鉴定EpMYC2-EpMYB2模块还连接了JA信号途径与菊苣酸生物合成之间的联系。这些结果进一步解释了菊苣酸的生物合成,并为菊苣酸的工程生产铺平了道路。此外,与 CK 组几乎不产生菊苣酸相比,EpMYB2 过度表达的紫锥菊中的菊苣酸含量相当可观,可将其视为提取菊苣酸的原料。

  • 【分享】欧盟拟修订莴苣和菊苣中乙胺嘧啶的最大残留限量

    根据欧盟委员会(EC)No 396/2005法规第6节的规定,澳大利亚收到一份来自AGRIPHAR S.A公司要求欧盟修改莴苣和菊苣中乙胺嘧啶(pyrimethanil)杀虫剂的最高残留限量(MRL)的申请。为了与欧洲南部和北部的气候相适应,澳大利亚决定提高这些作物中乙胺嘧啶的最大残留限量(MRL)。澳大利亚依据欧盟委员会(EC)No 396/2005法规第8节的规定起草了评估报告,并提交至欧盟委员会,之后于2010年12月1日转至欧洲食品安全局。欧洲食品安全局对澳大利亚根据91/414/EEC指令提交的评估报告草案(DAR)进行了审核,对乙胺嘧啶的毒理学概况进行了评审,认为新的MRL符合其0.17 mg/kg bw/d的ADI值,并不会对消费者构成公众健康风险,做出如下决定:代码商品现有的最大残留限量 (毫克/千克)提议的最大残留限量 (毫克/千克)对提议的建议执行的残留物质:乙胺嘧啶0251020莴苣1020拟议的MRL残留量数据充分,不会对消费者构成健康风险。0251030菊苣1020

菊苣酸对照品相关的方案

菊苣酸对照品相关的资讯

  • 对照品如何保存,又应该如何使用?
    对照品系指用于鉴别、检查、含量测定的标准物质,包括杂质对照品,不包括色谱用的内标物质。在药品检验工作中我们常会用到一种用来检查药品质量的特殊参照物——药品标准物质(对照品)。它在药品检验中具有十分重要的地位。随着仪器分析的广泛使用,必将越来越多地使用药品标准物质。下面远慕生物就来介绍一下如何对对照品进行保存和使用:  (1)对照品应按说明书规定的条件妥善保存,一般置干燥阴凉处保存,某些对照品如维生素E等需避光低温保存。要注意对照品的使用期限,过期、变质的对照品不宜再使用。开瓶后建议短期内用完,避免开瓶后长期不用,同时,在重复使用过程中应尽量避免对照品的分解、污染或吸潮。  (2)使用中检所对照品时,应严格按说明书执行。一般情况下,供鉴别、检查用的对照品不能用于含量测定。红外鉴别用的对照品使用时应注意与样品在晶型上的差异,必要时可采用相同的方法对样品和对照品重结晶。例如氨苄西林钠具有多种不同的晶型,可用丙酮对样品和对照品重结晶后测定,以确保二者晶型和红外光谱图的一致。  (3)由中国药品生物制品检定所提供的对照品或国际对照品为法定对照品,以法定对照品作对照标化的原料可称为二级对照品或工作对照品。药品生产单位为节约成本,可使用工作对照品进行日常检验,但药品检验所必须使用法定的对照品,出具的检验报告书才具有法律效力。  (4)除另有规定外,对照品使用时应采用适宜的方法测定其水分的含量,按干燥品(或无水物)进行计算后使用,否则会造成含量测定结果偏高。对热稳定的对照品可直接干燥后使用;对热不稳定的对照品可同时另取一份作干燥失重,扣除水分后使用。此外,对照品若含有结晶水或盐基,使用时应注意其换算。  远慕生物提供以下服务:  1.中药提取物的定制研发和生产,中药提取物代加工相关服务。  2.中药高含量提取物的工业化高效分离及分离纯化生产  3.天然产物原料药和中间体的生产,定制(包括合成,半合成)
  • 化学药品研发中对照品(标准品)有关技术要求
    药物的质量研究与质量标准的制订是药物研发的主要内容之一,药品标准物质也是质量标准和质量研究中不可分割的一部分,是药品质量标准的物质基础。药品标准物质在新药研究中与产品定性、杂质控制及量值溯源密切相关,标准物质的运用贯穿于质量研究与质量标准的制订工作中。一、概述标准品、对照品系指用于药品鉴别、检查、含量测定的标准物质,即药品标准中使用的具有确定的特性或量值,用于对供试药品赋值、定性、评价测定方法或校准仪器设备的物质,其中标准品系指用于生物检定、抗生素或生化药品中含量或效价测定的标准物质。《药品注册管理办法》规定“中国药品生物制品检定所负责标定和管理国家标准物质”,“申请人在申请新药生产时,应当向中国药品生物制品检定所提供制备该药品标准物质的原材料,并报送有关标准物质的研究资料”。但在新药研究中,普遍存在对照品(标准品)的应用超前于中检所制备和标定的情况,鉴于新药研究的连续性以及标准物质在新药研究中涉及量值溯源、产品定性、杂质控制及其在药品质量控制中的重要性,标准物质的制备和标定与药品的质量研究、稳定性研究乃至药理毒理学研究中剂量的确定等临床前基础研究间存在密切关系,因此,药品对照品(标准品)的研究(制备与标定)也是药品审评的一项重要内容。二、对照品来源1、所用对照品(标准品)中检所已经发放提供,且使用方法相同时,应使用中检所提供的现行批号对照品(标准品),并提供其标签和使用说明书,说明其批号,不应使用其他来源者;如使用方法与说明书使用方法不同(如定性对照品用作定量用、效价测定用标准品用作理化测定法定量、UV法或容量法对照品用作色谱法定量等),应采用适当方法重新标定,并提供标定方法和数据;若色谱法含量测定用对照品用作UV法或容量法,定量用对照品用作定性等,则可直接应用,不必重新标定。2、申报临床研究时,如中检所尚无供应,为不影响注册进度,可先期与中检所接洽制备和标定,申报时提供标定报告、标签(应标明效价或含量、批号、使用效期)和使用说明书;也可与省所合作标定,申报时提供标准品或对照品研究资料,“说明其来源、理化常数、纯度、含量及其测定方法和数据”;标定有困难时,可使用国外药品管理当局或药典委员会发放的对照品(标准品)或国外制药企业的工作对照品(标准品),进行标准制订和其他基础性研究,但应提供其标签(应标明其含量)和使用说明书,能保证其量值溯源性;也可使用国外试剂公司(如sigma公司等)提供的对照品(标准品),但应提供试剂公司该批对照品(标准品)的检测报告(用作含量测定时,应有确定的含量数据),如为高纯度试剂,提供了国外试剂公司检测报告(用作含量测定时,应有确定的含量数据)时,也可使用,并应能保证其量值溯源性,但申请人应及时与中检所接洽对照品(标准品)的标定事宜,临床研究期间完成此工作。3、直接申报生产品种,如中检所尚无供应,可参照2中要求进行,并提供相应研究资料,但申请人在标准试行期间应与中检所接洽并完成的标定事宜。三、对照品(标准品)标定的技术要求1、创新药物应说明对照品(标准品)原料的制备路线、精制方法、质检报告,提供理化常数和纯度的测定数据及分析结果(包括相关图谱),提供标定方法的研究和验证资料(如与原料药质量研究项下相同,可不再提供)、含量测定数据及经统计分析得到的对照品(标准品)含量结果,并说明进行临床前药学研究、药理毒理学研究所用样品的含量是否用该批对照品(标准品)确定或可用该批对照品(标准品)进行量值溯源。纯度测定方法应选用色谱法,并采用两种以上不同分离机理或不同色谱条件并经验证的色谱方法相互验证比较,同时采用二极管阵列检测器或其它适宜方法检测HPLC法的色谱峰纯度,而后根据测定结果经统计分析确定对照品(标准品)原料的纯度。对于组份单一、纯度较高的药物,对照品(标准品)标定方法宜首选可进行等当量换算、精密度高、操作简便快速的容量法。可根据药物分子中所具有的官能团及其化学性质,选用不同的容量分析方法,但应符合如下条件:(1)反应按一个方向进行完全;(2)反应迅速,必要时可通过加热或加入催化剂等方法提高反应速度;(3)共存物不得干扰主药反应,或能用适当方法消除;(4)确定等当点的方法要简单、灵敏;(5)标化滴定液所用基准物质易得,并符合纯度高、组成恒定且与化学式符合、性质稳定(标定时不发生副反应)等要求。标定方法的选择要关注如下事项:(1)供试品的取用量应满足滴定精度的要求(消耗滴定液约20ml);(2)滴定终点的判断要明确,提供滴定曲线。如选用指示剂法,应考虑其变色敏锐,并用电位法校准其终点颜色;(3)为排除因加入其它试剂而混入杂质对测定结果的影响,或便于剩余滴定法的计算,可采用“将滴定的结果用空白试验校正”的办法;(4)要给出滴定度(采用四位有效数字)的推导过程。标定结果要根据3个以上实验室各不少于15组测定结果经统计分析,去除离群值和可疑值后的结果,并报告可信限。如该药物没有可进行等当量换算并符合要求的容量法时,可采用反复纯化的原料,色谱法确定纯度后扣除有关物质、炽灼残渣、水分和挥发溶剂等后的理论含量确定为标准品含量,以此为基准进行对照品(标准品)的换代和量值传递。用于抗生素微生物检定法的第一代基准标准品可参照上述方法标定,如为多组份抗生素,其组份比例应与拟上市产品组份比例一致或接近,或以其中某一组份纯品为基准标准品,但要注意标准品换代时量值传递的恒定。仅用于鉴别定性的化学对照品,注重其结构确证的研究资料,纯度和含量的要求一般可适当降低。杂质对照品,用作限度要求时,应提供其来源(合成路线)、结构确证的研究资料,应具备较高的纯度和含量,并提供纯度和含量的的测定结果,提供质量控制标准。2、其他类别药物用于抗生素微生物检定法的标准品须用上市国的国家标准品或原发厂的工作标准品为基准标准品进行标定。标定时采用的原料药应符合相应要求,并提供原料的制备路线、精制方法、质检报告,提供理化常数和纯度的测定数据及分析结果(包括相关图谱)。标定须用现行版中国药典附录收载的“抗生素微生物检定法”-三剂量法,并提供详细的方法学研究,包括检定菌和培养基的选择、剂量和剂距选择、缓冲液选择(如与质量研究项下相同,可不再提供)。每次标定结果均应照“生物检定统计法-量反应平行线测定法(3.3)”法进行可靠性测验及效价计算。对照品是质量标准的重要组成部分,从日常工作中发现,研发单位在对照品的制备、研究、标定、使用及保存过程中,仍存在部分问题。作为对照品,其研究工作的质量以及质量标准的高低直接影响新药研究的质量,对其提出技术要求是为了保证药品的质量控制与新药研究的结果准确有效,需重视起来。
  • 现代中药对照品与标品资源库落户中山
    全国规模最大的现代中药及天然产物活性物质对照品与标准品资源库,将落户中山健康科技产业基地。   全国标准样品技术委员会天然产物标样专业工作组常务副组长张天佑在接受记者采访时说,我国个别中药药品近年来相继出现的问题,正是标准缺失所致。从现代中药及天然产物活性物质中提取有效成分制作对照品与标准品,使之成为溯源性的根据、分析检测仪器的校准标准物质和质量控制的标准,可为中药新药研发、生产提供标准,“这是中药走向国际市场,突破国际技术壁垒的途径。”   国家药监局原副局长任德权称,选择在中山建立这个资源库,不仅因为中山国家健康科技产业基地已经具备承载这个项目的成熟条件,而且由于中山毗邻港澳,可联合粤、港、澳的资源共同打造一个国家级的标准平台,为中国争取在国际标准化中的话语权。   “这样,中药出口就拿到了‘国际通行证’。”中山国家健康科技产业基地公司总经理梁兆华形象地比喻。   该项目由中山健康科技产业基地、全国标准样品技术委员会、中山大学药学院和广东新龙和药业有限公司合作,项目运营后,3至5年内可以建成拥有几千种对照品与标准品的资源库。该项目有望在今年“328”招商经贸洽谈会上签约。

菊苣酸对照品相关的仪器

  • 产品描述方便和安全的通风系统 内置通风口:顶部的通风孔和背部的排气孔可以防止爆炸性气体的累积。 排气系统:该储藏柜可以连接室内通风系统,有效排出柜体内部烟 (除了SC-C0706D1)安全储存具有腐蚀性物质 内部材料具有抗腐蚀性:表面为石炭酸的涂层适合长期储存酸性物质。 强硬的金属结构:强硬的钢框架防止变形。树脂表面具有优越的抗化学性。 有效节约内部空间:可以根据不同的样品调整内部空间结构 ( 除了SC-C0706D1)坚硬的搁板架结构 坚硬的搁板架结构:每块搁板架可承受重达 80Kg 重量。牢固地安装在柜内两壁。 安全的设计:为了防止样品的溢出,搁板架四周有高出 30mm 的槽。 合适的搁板架可以储藏各种样品:标配环氧粉末涂层钢板架和 PP 材质的防漏托盘,具有抗化学的特点 ( 除了SC-C0706D1)卧式防酸 / 防腐蚀储藏柜技术参数型号SC-C-0812D2SC-C-0809D2SC-C-0806D1SC-C0706D11)内部容积 (L / cu ft)312 / 156 x 2 个226 / 113 x 2 个146115溢出托盘数量 (标配)2211搁板承载重量 (kg)≤80≤80≤80≤80材质内部环氧粉末涂层钢外部酚醛树脂涂层钢尺寸 (W×D×H)内部尺寸 (mm)543 x 456 x 634 x 2 个393 x 456 x 634 x 2 个505 x 456 x 634505 x 421 x 542外部尺寸 (mm)1200 x 548 x 820900 x 548 x 820600 x 548 x 820600 x 510 x 650外部尺寸 / 开门 (mm)1200 x 1190 x 820900 x 940 x 820600 x 1060 x 820600 x 1060 x 650净重 (kg)110926552订货号F60122F60121F60113F60012 立式防酸 / 防腐蚀储藏柜技术参数型号SC-C-1912D4SC-C-1912D2SC-C-1906D2SC-C-1906D1内部容积 (L / cu ft)852 / 213 x 4 个894 /447 x 2 个426 / 213 x 2 个445溢出托盘数量 (标配)4 / 86 / 122 / 43 / 6搁板数量 (标配 / zui多)8 / 128 / 144 / 64 / 7搁板间距 (mm)120100130100搁板承载重量 (kg)≤80≤80≤80≤80材质内部环氧粉末涂层钢外部酚醛树脂涂层钢尺寸 (W×D×H)内部尺寸 (mm)561x466x818 x 4 个561x466x1712 x 2 个561x466x818 x 2 个558x466x1712外部尺寸 (mm)1255x555x19001255x555x1900655x555x1900655x555x1900外部尺寸 / 开门 (mm)1255x1110x19001255x1110x1900655x1120x1900655x1120x1900净重 (kg)284257160146订货号F60043F60025F60023F600111) SC-C0706D1 没有搁板架和溢出托盘。样品直接放置于底部集水槽 (承载重量重达 80Kg) ※ 建议在有通风系统的实验室里使用,这样更加有效的吸收柜内内部的烟雾。 ※在储藏酸 / 腐蚀性样品时,单独使用该设备会影响产品的耐用性。
    留言咨询
  • 蒲公英液相检测--菊苣酸图谱分离度解决菊苣酸的化合物性质中文名:菊苣酸英文名:Cichoric acid分子式:C22H18O12分子量:474.374CAS号:70831-56-0 结构式: 菊苣酸是中药蒲公英的主要成分,虽然蒲公英是一种较为常见的药材,但是在中国药典(2020版)液相检测中,修改了蒲公英液相检测方法,菊苣酸出峰时与杂质的分离效果不是很理想,影响实验结果,很多品牌的色谱柱均不能解决该问题,给实验室分析工作带来诸多不便。 喆分色谱在实验过程中经过不断的努力尝试,调整色谱填料键合工艺以及微调方法的基础上解决了菊苣酸与杂质分离不好的问题,让以检测菊苣酸为目标化合物的众多产品多了一个优良的色谱柱选择。 本文建立了检测蒲公英的液相方法,采用Zafex Acutfex PW-C18(250*4.6mm,5um),让菊苣酸在液相检测中与杂质的分离效果极其明显清晰可见,峰型良好,满足药典系统适应性,优化了该品种检测。2、适用范围 本检测适用于中药材蒲公英以及菊苣酸作为含量测定项的中成药和保健品的含量测定。3、色谱柱规格: 色谱柱:Zafex Acutfex PW-C18 规格:250*4.6mm,5um 货号:X1825465004、液相条件:按照高效液相色谱法(通则0512)测定 色谱条件与系统适用性实验 以十八烷基硅烷键合硅胶为填充剂;以甲醇为流动相A;以0.1%甲酸水溶液为流动相B;按下表中的规定进行梯度洗脱;柱温为30℃,流速为1.0mL/min,检测波长为327nm.理论板数按菊苣酸峰计算应不低于5000. 6、结论 通过以上实验对比可以看出,Zafex Acutfex PW-C18液相检测色谱图,完全符合中国药典要求,与其他品牌的色谱柱的出峰与杂质的分离效果图对比,喆分色谱柱更适合药典方法蒲公英的液相检测,为客户提供一个更好的选择。
    留言咨询
  • Sanotac致力于天然产物和中药对照品分离纯化、化学药物杂质对照品分离纯化应用的中压制备色谱、制备液相色谱技术的开发,系统软件符合“CFDA GXP和FDA 21CFR Part 11 ”法规要求,可实现多达 4元梯度洗脱和自动馏分收集,同时兼容ge AKTA、isco、biotage,buchi、biorad等中压分离纯化制备色谱的色谱柱和纯化柱,是一款高效、功能强大的模块化快速纯化制备液相色谱,在中药化学对照品分离纯化领域已经得到广泛应用:皂苷类对照品分离纯化 ,黄酮类对照品分离纯化,异黄酮类对照品分离纯化,香豆素类对照品分离纯化,色原酮类对照品分离纯化,生物碱类对照品分离纯化,酚酸类对照品分离纯化,萜类对照品分离纯化,蒽醌类对照品分离纯化,木脂素类对照品分离纯化。快速纯化制备液相色谱系统技术特点: *微处理器控制,高速双驱动和平行的泵头具有高速的腔室压力反馈,补偿再填充和溶剂压缩效果,实现在宽动态范围内获得精确高重现的流速。 *采用轮曲线补偿技术有效控制流量脉动,保证最低的基线噪声。 *多点流量校正曲线,保证在全流量范围内的流量精度。 *浮动柱塞设计,保证高压密封圈的使用寿命。 *10个用户程序,可实现流量和梯度编程。 *双波长检测、波长时间程序和停泵扫描——三种测定方式使得基线噪音和漂移降到最低,获得了最高的灵敏度和最低检测限,以及更宽的线性范围。对应各种测定需求,可以同时对主要成分、副产物和杂质进行可靠的定量。 *可快速便捷的更换灯和流通池,氘灯钨灯实现智能切换,确保正常运行时间的最大化。系统自动收集器特点: ?独创的运动原理,直线和旋转运动结合,可最迅速地到这任意收集位置 ?体积、时间、闺值、斜率组合多种收集模式,满足各种收集需要,可设 立普通模式、顺序收集和循环收集 ?精确的最小管路设计,减少样品在流通池后扩散带来的收集不准确 ?软件延迟体积的设置,使收集更精准,产品更纯净 ?采用高精度切瓶技术,废液通道独立,切换瓶过程无滴漏 ?分于动和自动两种收集方式,操作简单、方便 ?配套软件可以实时采集多路波长信号,收集信号可任意选择 ?实时显示设备状态、连接和收集瓶位置,收集直观,位置清晰 ?兼容多种收集容器,最多可允许收集瓶: 13--15mm 试管 120 支 ?具有收集容器自识别功能,可防止使用不同型号收集容器时安放错位 ?最大程度的空间利用,设备占用空间小,使用方便。 快速纯化制备液相色谱技术参数: 泵头316L不锈钢泵 高精度、低脉冲、耐腐蚀 (peek泵头可选)流速范围0.01-100.00ml/min(梯度)流速精度±0.5%压力范围0-20MPa压力脉动≤0.2MPa梯度类型台阶、线性变化梯度、可在线修改梯度和流速最小梯度调节1%检测器光源氘灯+钨灯(进口)检测波长190-800nm 全波长检测器 双波长同时检测波长精度±1nm吸光度范围0-2AU收集全自动收集器收集管架2×60支试管(Φ15mm*150mm试管) 其他规格可以选配收集模式普通模式(按时间收集、峰收集、阈值收集)、顺序收集、循环收集手动上样阀制备色谱阀(标配10ml定量环)上样方式固体上样或液体上样电源220V±10% 50Hz色谱软件控制通过sanochrom色谱软件控制泵、紫外、自动收集器等组件设置与运行控制界面图形界面,USB接口+RS-232可接口,采用基于Windows7/Windows 8/Windows 10的PC软件工作站,软件符合“CFDA GXP和FDA 21CFR Part 11 ”法规要求
    留言咨询

菊苣酸对照品相关的耗材

  • Nalgene 3123球底离心瓶,聚碳酸酯;聚丙烯螺旋盖
    Nalgene 3123球底离心瓶,聚碳酸酯;聚丙烯螺旋盖?额定转速达27,500 xg。其球形底部设计有助于颗粒的形成与采取。为确保在高转速或对危险品进行离心处理时的防漏效果,请加装Nalgene 密封盖( 目录编号DS3131-0038)。需要使用单独出售的Nalgene 支撑(目录编号DS3124-0010)。在进行高温高压操作之前,请将盖放置在瓶的顶部,但不要按螺纹旋转密封。填充量达到其总容量的80% 以上才能够正常工作。可高温高压灭菌/ 透明订货信息:Nalgene 3123球底离心瓶,聚碳酸酯;聚丙烯螺旋盖目录编号 3123-0250标称容量,ml250每盒数量4每箱数量36
  • 甲酚那酸含量及其有关物质测定 PEG-20M
    甲酚那酸含量及其有关物质测定 PEG-20M 关键词:甲酚那酸,铜,2,3-二甲基苯胺,有关物质, 2010年中国药典标准:甲酚那酸是解热镇痛非甾体抗炎药,测定其有关物质,照高效液相色谱法(附录 V D)测定,用十八烷基硅烷键合硅胶为填充剂,以磷酸二氢铵溶液-乙腈-四氢呋喃为流动相,检测波长为254nm,理论踏板数按甲酚那酸峰计算不低于5000. 测定2,3-二甲基苯胺,超气相色谱法(附录 V E)试验,以聚乙二醇(PEG-20M)为固定液的毛细管色谱柱,对照品采用恒温150℃维持至2,3-二甲基苯胺峰出峰后。(药典二部 P140) 需要详细的药典标准请联系北京绿百草:010-51659766. 登录网站获得更多产品信息: www.greenherbs.com.cn
  • 7135 生物转运搬运篮,聚碳酸酯;硅胶垫圈,聚碳酸酯夹具
    Nalgene 7135 生物转运搬运篮,聚碳酸酯;硅胶垫圈,聚碳酸酯夹具?采用封闭系统设计,可在运送放置了盛有潜在危险样品的试管或样品架的Unwire 试管架* 过程中,对实验室工作人员起到保护作用。坚硬且抗裂。可清楚的观察到篮内的容纳物。模制侧面手柄,易于掌握。夹具可安全的将搬运篮封闭,并确保防漏密封。对于常规杀菌,请在进行高温高压处理时将盖子拆除。如果样品在搬运篮内意外溅出,为避免有生物危害的物质暴露在外,不要打开夹具,请对搬运篮和其中的容纳物进行高温高压灭菌并对其进行处理。符合OSHA 标准29 CFR 部分1910.1030,可用于防止血载病菌。提供可选的不锈钢手柄(目录编号7136-0001)。可高温高压灭菌/ 生物危害/ 透明,防漏* 可容纳所有尺寸的Unwire 试管架,目录编号5970. 5971. 5972. 5973 和5976。订货信息:Nalgene 7135 生物转运搬运篮,聚碳酸酯;硅胶垫圈,聚碳酸酯夹具目录编号 7135-0001L×W×H,mm68×184×171L×W×H,in.15×14×10-1/2每盒数量1每箱数量4

菊苣酸对照品相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制