当前位置: 仪器信息网 > 行业主题 > >

微纳米操纵系统

仪器信息网微纳米操纵系统专题为您提供2024年最新微纳米操纵系统价格报价、厂家品牌的相关信息, 包括微纳米操纵系统参数、型号等,不管是国产,还是进口品牌的微纳米操纵系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微纳米操纵系统相关的耗材配件、试剂标物,还有微纳米操纵系统相关的最新资讯、资料,以及微纳米操纵系统相关的解决方案。

微纳米操纵系统相关的论坛

  • 【原创大赛】【微观看世界】纳米操纵

    【原创大赛】【微观看世界】纳米操纵

    1.实验讲叙:纳米操纵是搬运纳米零件、组装纳米器件、最终实现纳米制造的基础工艺技术。纳米尺度空间所涉及的物理层次,是即非宏观又非微观的相对独立的中间领域,被人称之为介观研究领域。它是在纳米空间尺度内操纵原子和分子,对材料进行加工,制造有特定功能的产品或对某物质进行研究。掌握其原子、分子的运动规律和特性的崭新高技术科学。同时也是现代科学和现代技术结合的产物。本文讲叙以某种纳米粉末颗粒为试验材料,基于SPM的Nanoman(纳米操纵)技术上对纳米颗粒进行神奇搬迁拼图的全过程。2.实验仪器:采用bruker(布鲁克)公司的扫描探针显微镜(型号:Nanoman VS)3.实验材料:未知的纳米颗粒平均宽度170nm,高度44nm4.实验原理:通过探针对纳米颗粒拨动达到使粉末颗粒搬迁,如图http://ng1.17img.cn/bbsfiles/images/2013/11/201311202204_478477_2224533_3.jpg

  • 纳米操纵仪详细规格说明

    [url=http://www.f-lab.cn/micromanipulators/liftout-shuttle.html][b]Kleindiek纳米操纵仪[/b][/url]是为外部电子显微学制备样品而设计的超精密[b]样品拾取装卸[/b]系统,它在纳米尺度灵活[b]微操纵样品[/b]。[b]Kleindiek纳米操纵仪安装[/b]安装有一根微夹钳,一个四轴辅台,在表面有一个允许快速接近的小型CCD摄像头。Kleindiek纳米操纵仪是由安装在一个超小型平台上的一个四轴辅台构成。在辅台上安装了一个微夹钳,促进提取。操作该辅台将预切样品放置在微夹钳下。在这之后,微夹钳夹住样品并轻轻地固定住样品,固定要足够牢固,只要使辅台向旁边下落,就可以将样品从大量材料提取出。一旦分离,在TEM网格上,将样品与SEM兼容胶水接触,并且用离子束固化。[img=纳米操纵仪]http://www.f-lab.cn/Upload/SY-LOS-L_.jpg[/img][url=http://www.f-lab.cn/micromanipulators/liftout-shuttle.html][b]Kleindiek纳米操纵仪[/b][/url]规格:[list][*]取样室兼容平台上的辅台[*]最大样品尺寸:30mm[*]行程:X和Y =10mm[*]行程:Z轴为3mm[*]行程:R =360°(无限)[*]速度:可达1mm/秒[*]分辨率:0.5nm[*]笛卡尔运动[*]没有反弹或翻转[*]是大多数SEM和FIB工具的简单取样室装置[*]几乎不受震动影响[*]微夹钳[*]运输和组装微型物体的高分辨率夹持器[*]抓握区域:(5至10 µ m)[*]分辨率:20nm[*]夹持力:5至5000μN(变量)[*]最大跨度范围:20〜 40 µ m[*]SemCam[*]样品表层的小相机[*]允许快速接近[*]包括显示器和LED照明[/list]

  • 纳米压印设备商光舵微纳完成近亿元B+轮融资

    据致道资本官微消息,近日,致道资本已投项目——苏州光舵微纳科技股份有限公司(简称:光舵微纳)完成由国投创合投资的近亿元B+轮股权融资。作为国内领先的纳米压印技术完整方案提供商,光舵微纳经过多年的研发及市场应用推广,制造出了多款研发型纳米压印设备及全自动量产型纳米压印设备,实现了设备、耗材及工艺的全方位突破。纳米压印技术是微纳加工领域的一项关键底层技术,在国际半导体蓝图(ITRS)中,该技术被列为下一代半导体加工技术的重要代表之一。[img=图片]https://img1.17img.cn/17img/images/202401/uepic/35f3a9bc-4344-456c-bb7c-169186c68048.jpg[/img]光舵微纳在LED图形化衬底产业(LED-PSS)处于绝对的技术及市场领先地位,纳米压印设备及耗材已在客户端实现超过4000万片LED-PSS的大规模稳定量产,在此应用场景上实现了对尼康光刻机的产业化替代,并处于快速扩张阶段。同时,积极拓展纳米压印技术在高端半导体、AR衍射光波导、生物检测器件、消费电子等诸多重大[color=#686868]领域的产业化应用,并取得了重要进展。[/color][img=图片]https://img1.17img.cn/17img/images/202401/uepic/a55665c3-16b9-45c4-ad33-6ace1d7108bf.jpg[/img]此次融资完成后,光舵微纳将继续提升其核心研发团队的技术实力,积极研发应用于多个重要场景的高端纳米压印设备并进行广泛的市场开拓,进行产线扩充,推进纳米压印技术在更多应用领域的导入,打造从产品、系统到整体解决方案的商业模式,助力我国半导体制造产业的高速发展。[来源:致道资本][align=right][/align]

  • 微纳米粉捕集装置

    微纳米粉捕集装置

    [font=仿宋_GB2312][size=19px]将待分离粉末加入到电磁筛分部分最上部,承筛部分放置筛孔为微米的筛网(如10、20微米)。[/size][/font][font=仿宋_GB2312][size=19px]筛网层上面有机玻璃盖,通过管路联接到微纳米物质分离捕集器。这是一款内置双层粗孔片和超细滤膜的配件,可将微纳米微粒和大于上层筛孔直径的物料分离。[img=,554,283]https://ng1.17img.cn/bbsfiles/images/2023/12/202312011653556947_148_1812435_3.png!w554x283.jpg[/img][/size][/font][font=仿宋_GB2312][size=19px]捕集器另一端联接真空泵。工作时,真空泵提供负压传输到筛分仪,筛分仪超声装置可将原料粉团聚体打开,并将堵塞的筛孔打开,有利于三维震动的筛分部分将物料快速筛下,扬起微细粒颗粒的作用,空气和纳微米颗粒由筛分仪向真空泵运移,纳微米颗粒最终在捕集器中分离富集[/size][/font][font=宋体][size=19px]。[img=,156,409]https://ng1.17img.cn/bbsfiles/images/2023/12/202312011654144101_1924_1812435_3.png!w156x409.jpg[/img]本装置特点:[font=Wingdings]u [/font][font=宋体]电磁驱动,清洁能源[/font][font=Wingdings]u [/font][font=宋体]三维抛掷筛分,速度快,重复性高[/font][font=Wingdings]u [/font][font=宋体]操作简便,功率、振幅可调节[/font][font=Wingdings]u [/font][font=宋体]独有S型压盘设计,可快速拆卸筛子,筛分效率高[/font][font=Wingdings]u [/font][font=宋体]采用单向夹具,可快速压紧[/font][font=Wingdings]u [/font][font=宋体]连续、精微、间断三种震动模式可选[/font][font=Wingdings]u [/font][font=宋体]干法、湿法筛分可选[/font][/size][/font]

  • 全国纳米标委会低维纳米结构与性能工作组秘书长梁铮博士参加ChinaNANO 2017国际会议

    全国纳米标委会低维纳米结构与性能工作组秘书长梁铮博士参加ChinaNANO 2017国际会议

    8月29日,中国国际纳米科学技术会议(ChinaNANO 2017)在北京召开,中国科学院院长白春礼院士为大会主席并代表会议组委会致开幕欢迎词。泰州石墨烯研究检测平台执行主任、全国纳米技术标准化技术委员会低维纳米结构与性能工作组(下简称“全国低维工作组”)、中国国际石墨烯资源产业联盟国际标准工作委员会(下简称“中烯盟国际标委会”)秘书长梁铮博士参加了ChinaNANO 2017标准及计量分会的专家交流和讨论。国际标准化组织纳米技术标委会(下简称“国际纳米标委会”)ISO/TC229主席Koltsov博士受邀作“全球纳米材料产业标准化进展”、韩国标准科学研究所纳米安全计量中心Nam Woong Song院长受邀作“纳米安全评价标准化进展”的主旨发言,中国食品药品检定研究院徐丽明主任等其他专家分别就纳米材料安全、检测、计量以及标准物质研制作专题报告。Koltsov主席介绍了全球纳米产业的近况及前景,对国际纳米标委会的标准化工作作了说明和总结,并指出国际纳米标委会将对全球整个纳米产业提供标准化支持,推动其健康有序发展。梁铮博士向Koltsov主席汇报了我国低维纳米技术领域标准化的最新进展。8月21日,在国家纳米科学中心、全国纳米技术标准化技术委员会的大力支持和指导下,全国低维工作组在江苏泰州正式成立,编号为SAC/TC279/WG9,南京大学长江学者、国家杰出青年基金获得者王欣然教授任组长,秘书处设在泰州石墨烯研究检测平台,该工作组将全面负责组织协调全国低维纳米技术领域标准化工作。当天,中烯盟国际标委会亦同时举行揭牌仪式并召开了第一次全体工作会议。梁铮博士向Koltsov主席进一步提到,以石墨烯为代表的低维纳米材料和相关纳米技术领域目前在中国已逐步从实验室研究阶段进入到产业化阶段,具有广泛和迫切的标准化需求,需要在前期国际国内纳米技术标准化工作的基础上,充分考虑石墨烯等低维纳米材料的特殊结构与性能,研究开发准确、有效、稳定的标准方法。Koltsov主席表示,国际纳米标委会将积极探讨与中国国家标准、联盟标准等各级标准化工作组织的合作机制,推动我国低维纳米技术领域各级标准的制定,为中国乃至国际纳米材料产业的健康发展提供有力支撑。测量方法的标准化、标准物质研制和计量技术的发展是确保纳米科学研究及产业化过程中各种技术指标一致性、准确性、可靠性的重要手段。此次ChinaNANO 2017标准及计量分会专门讨论了国际国内纳米技术标准化最新工作进展、发展路线图、研究热点,纳米测量不确定度评价、标准物质研制、纳米计量等领域所面临的技术挑战等,对我国石墨烯等新兴低维纳米材料的标准化具有重要的指导意义。[align=center][img=,450,337]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311359_01_2047_3.jpg[/img][/align][align=center]全国低维工作组秘书长梁铮博士参加ChinaNano2017国际会议[/align][align=center][img=,450,337]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311400_01_2047_3.jpg[/img][/align][align=center]全国低维工作组秘书长梁铮博士认真听取报告[/align][align=center][img=,450,337]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311400_02_2047_3.jpg[/img][/align][align=center]全国低维工作组秘书长梁铮博士与国际标准化组织纳米技术标委会ISO/TC229主席Koltsov博士亲切交谈[/align]

  • 【我们不一YOUNG】基于超声-微纳米气泡辅助技术的可变光程水质多参数检测方法研究

    [font=&][color=#666666]针对目前国家标准分析检测水质多参数方法存在的科学与技术问题,提出了一种基于超声-微纳米气泡(US-MNB)辅助技术、连续光谱法和顺序注射分析法(SIA)的可变光程水质多参数检测新方法。设计水质多参数检测系统,通过检测总磷(TP)、化学需氧量(COD)、氨氮(NH[/color][/font][font=&][size=12px][color=#666666]3[/color][/size][/font][font=&][color=#666666]-N)和六价铬(Cr[/color][/font][font=&][size=12px][color=#666666]6+[/color][/size][/font][font=&][color=#666666])四种水质参数,验证了新方法的可行性。系统设计的核心是基于超声与微纳米气泡相结合的消解室以及具有可变光程功能的光谱扫描检测室,可达到快速消解和稳定检测的目的。同时系统基于国家水质检测标准,优化了水质多参数联合检测流程,并利用分光光度法和顺序注射分析技术对四种水质参数的含量进行连续光谱检测。首先,在常温常压下采用US-MNB辅助技术结合强氧化剂对TP进行消解,同时对检测室中NH[/color][/font][font=&][size=12px][color=#666666]3[/color][/size][/font][font=&][color=#666666]-N参数显色反应后的化合物直接进行光谱扫描测定,消解后,再进行TP的测定。同理,消解COD的同时,对检测室中的Cr[/color][/font][font=&][size=12px][color=#666666]6+[/color][/size][/font][font=&][color=#666666]参数显色反应后的化合物直接进行光谱扫描测定,消解后,再进行COD的测定。整个检测过程所用时间大幅降低,可在短时间内自动完成水质多参数的测定,显著地提高了检测的效率。以上述四种水质参数为测定对象,利用最小二乘法构建回归模型,拟合回归方程并计算相关系数,并绘制各参数的浓度-吸光度标准工作曲线。结果表明:TP标准工作曲线拟合系数≥0.984 5,且浓度与吸光度成正相关,重复性(RSD)为3.05%~3.62%,加标回收率为97.8%~103.6% COD标准工作曲线拟合系数≥0.998 7,且浓度与吸光度成负相关,重复性(RSD)为2.12%~2.74%,加标回收率为98.7%~104.7% NH[/color][/font][font=&][size=12px][color=#666666]3[/color][/size][/font][font=&][color=#666666]-N标准工作曲线拟合系数≥0.995 3,且浓度与吸光度成正相关,重复性(RSD)为3.41%~3.59%,加标回收率为99.2%~102.4% Cr[/color][/font][font=&][size=12px][color=#666666]6+[/color][/size][/font][font=&][color=#666666]标准工作曲线拟合系数≥0.993 8,且浓度与吸光度成正相关,重复性(RSD)为3.51%~3.92%,加标回收率为98.9%~109.3%。系统可准确测定水样中TP、 COD、 NH[/color][/font][font=&][size=12px][color=#666666]3[/color][/size][/font][font=&][color=#666666]-N和Cr[/color][/font][font=&][size=12px][color=#666666]6+[/color][/size][/font][font=&][color=#666666]的含量,且具有良好的稳定性与可靠性。基于超声-微纳米气泡辅助技术的可变光程水质多参数检测方法研究,对于拓宽光谱法在水质多参数快速检测领域的应用以及提升检测效率等方面的研究具有重要作用。 [/color][/font]

  • 【分享】巧夺天工!纤维纳米发电机(图)

    【分享】巧夺天工!纤维纳米发电机(图)

    [img]http://ng1.17img.cn/bbsfiles/images/2017/10/2008441608_01_1633307_3.jpg[/img]图:(a)低倍扫描电子显维照片显示两个互相缠绕的、表明长有氧化锌纳米线阵列的纤维,其中一个镀有金。(b)高倍扫描电子显维照片显示两纤维界面处的纳米线对纳米线结构。(c)显示多根纤维组成的纤维纳米发电机的串/并连式连接来提高输出电压/电流。(图片来源:王中林实验室) 从2006年开始,王中林小组相继发明了纳米发电机、直流发电机。在2006年他首次提出了压电电子学(Piezotronics)的概念和新研究领域。由于氧化锌具有独特的半导体和压电性质,弯曲的氧化锌纳米线能在其拉伸的一面产生正电势,压缩的一面产生负电势。氧化锌半导体和金属电极之间的肖特基势垒则能控制电荷的积累与释放,从而实现机械能到电能的转化,并有效释放。   2007年初,基于压电电子学原理,王中林研究小组用超声波带动纳米线阵列运动,研制出能独立从外界吸取机械能、并将之转化为电能的纳米发电机模型。在超声波带动下,这种纳米发电机已能产生上百纳安的电流。但是,在实际环境中,机械能主要以低频震动形式存在,如空气的流动、引擎的震动等。要让纳米发电机能广泛应用于各方面,一个关键的问题就是要降低纳米发电机的响应频率,让纳米线阵列在几个赫兹的低频震动下也能将机械能转化为电能。   为了实现这一目标,王中林教授和王旭东博士及秦勇博士组成研究小组。利用溶液化学方法,他们将氧化锌纳米线沿径向均匀生长在纤维表面,然后用两根纤维模拟了将低频震动转化为电能的这一过程。为了能实现电极与氧化锌纳米线之间的肖特基接触,他们采用磁控溅射在一根纤维表面镀了一层金膜作为电极,而另一根表面是未经处理的氧化锌纳米线。当两根纤维在外力作用下发生相对运动时,表面镀有金膜的氧化锌纳米线像无数原子力显微镜探针一样,同时拨动另外一根纤维上的氧化锌纳米线;所有这些氧化锌纳米线同时被弯曲、积累电荷,然后再将电荷释放到镀金的纤维上,实现了机械能到电能的转换。   相对于之前的直流纳米发电机,新成果实现了如下突破:首先,通过让氧化锌纳米线在纤维之上生长,为实现柔软,可折叠的电源系统(如“发电衣”)等打下了基础;其次,基于纤维的纳米发电机能在低频震动下发电,这就使得步行、心跳等低频机械能的转化成为可能;再次,由于其合成方法简单,条件温和,这就大大扩展了基于氧化锌纳米线的纳米发电机的应用范围。根据目前的实验数据,他估计,如果能用这些纤维编织成布在极端优化的条件下,每平方米这样的布可能输出大约20-80毫瓦的电能。   王中林说,目前这种由两根纤维组成的纳米发电机的输出功率还很小,这主要是由于纤维的内阻较大以及纤维之间接触面积较小造成的。目前,他们正努力提高这种基于纤维的纳米发电机的输出能量。例如,通过在纤维上预先镀一层导电材料然后生长氧化锌纳米线,可以明显降低纳米发电机的内阻,进而可提高纤维基纳米发电机的输出电流;也可以通过增加纤维的数量来提高纳米发电机的输出能量。   文章的审稿人认为:“这是一项很有创意、具有突破性的研究……作者的思路是革命性的。”王中林认为,新成果将为纳米发电机在生物技术、纳米器件、个人携带式电子设备以及国防技术等领域的应用开拓更为广泛的空间。    “今天,纳米科技已经从早期对纳米材料结构和基本物理化学特性的研究,发展到利用纳米材料的优良特性有目的地制造纳米器件,各种各样的纳米器件被纷纷制造出来,如纳米传感器、纳米电动机甚至纳米机器人等。”王中林说,“但与此同时,为这些微型化、集成化的纳米器件提供能量的仍是传统电源,如电池。因此,迫切需要开发出纳米尺度的电源系统,为纳米器件的进一步小型化、集成化提供基本能源。”   目前,已经有BBC、NBC、PBS、《国家地理》等多家国际权威新闻媒体对这一重要的科学成果进行了报道。

  • 【好书分享】纳电子机械系统和微电子机械系统(英文版)

    本书是讲述纳机械和微机械电子学系统方面的最新书籍,是研究生物芯片领域中很好的参考书。希望大家喜欢!书名为《纳机电系统和微机电系统》副标题是“纳机电系统和微机电系统的基础”,由Sergey Edward Lyshevski编写,CRC Press印刷出版。全书分为4章,第一章讲述纳米和微米工程和微纳米加工技术方面的基础知识;第二章讲述纳机械和微机械电子的数学模型和设计方面的内容;第三章讲述纳机械和微机械电子的结构设计、建模和模拟方法;第四章讲述纳机械和微机械电子的操纵。这本书的专业性和针对性很强,我想应该是给微纳机械和生物芯片专业的研究生和研究人员专门编写的。我国在这些领域的研究工作要远远落后与国外,特别是美国。由于维纳机电在经济和国家安全方面重要性,美国对我国在这方面的封锁是很严重,例如很多华人在硅谷工作并且取得很大的成就,但是他们是不准回大陆的(台湾可以)。所以我们为了民族的振兴应该努力学习,在纳机械和微机械电子这些前沿领域追赶美国和世界上的其他强国!!!![em57] [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=21569]Nano-.and.Microelectromechanical.Systems[/url]

  • 【求助】问一个困扰很久的弱问题,关于一维纳米材料的XRD图谱

    关于一维或二维纳米材料的XRD图谱中,有的峰强度会非常高,可以说明样品按某方向生长此XRD峰强度是否也反映了材料在基底上的几何取向,还是仅仅和晶体本身的生长方向有关系?例如一种纳米线已知均按(001)方向生长,但是随机取向分布在基底上的,并非统一垂直于基底,那么(001)峰还会特别强吗?

  • 北京纳米跃升工程在宏观尺度超润滑领域取得突破

    塑料问答:近日,在北京市科委支持下,清华大学化工系魏飞教授团队与清华大学微纳米力学与多学科交叉创新研究中心、北京大学信息学院合作,在超润滑领域取得重大突破,在世界上首次检测到了大气环境下厘米以上长度碳纳米管管层间的超润滑现象。所实现的超润滑尺度比以前报道结果的最高值高出3个数量级,同时所得到的摩擦剪切强度比以前报道结果的最低值降低了4个数量级。相关成果发表在国际纳米领域权威学术期刊《自然—纳米技术》上。  摩擦现象一直是人类面临的最具挑战性的问题之一。全世界约1/3至1/2的一次性能源由摩擦过程消耗;工业发达国家因摩擦磨损造成的损失高达GDP的5%-7%。在微观尺度,由于材料比表面积增大,使得摩擦现象更加显著,界面摩擦成为制约器件性能和寿命的关键因素。解决摩擦磨损问题的根本途径是实现固体界面之间的极低摩擦甚至零摩擦,即超润滑。过去二十年中所发现的超润滑现象主要是在纳米尺度和高真空条件下实现的,实现宏观尺度上的超润滑不仅要求固体表面具有超高的模量,而且要求在宏观尺度上原子级平整,无缺陷与位错,如此苛刻的条件使得人们普遍认为大尺度下几乎不可能实现超润滑。  碳纳米管从结构上看是由石墨烯卷曲而成,理论研究表明,当碳纳米管存在哪怕只有一个原子级别的缺陷时,其管壁间摩擦力就会急剧增大。经过近十年的努力,魏飞教授团队在制备长达数厘米且无缺陷的碳纳米管的制备方面取得了一系列突破,发展了单根碳纳米管的纳米颗粒标记技术,这些工作为宏观尺度超润滑工作奠定基础。在上述基础上,魏飞团队首先在光学显微镜下通过用微弱气流吹动碳纳米管的方法观察到了碳纳米管管壁之间快速相对运动的奇妙现象,进而利用扫描电镜下的微纳米操纵平台进行双壁碳纳米管内层的可控抽出,并测量了管壁间的超低摩擦力。研究发现,双壁碳纳米管的管壁之间存在着超低的摩擦力,并且这种摩擦力与碳纳米管的长度没有关系,即无论多长的碳纳米管,其内层都可以被轻易地抽出来。  这项工作被《自然—纳米技术》杂志审稿人评价为里程碑式原创性工作,对于研究和控制摩擦力做出了重大的、创造性的贡献,为下一代全碳电子器件构筑、超润滑机械开发以及超高速微纳米机械、电子器件制备提供了基础。转自塑料问答

  • 【分享】什么是纳米科技?

    纳米科学技术是研究在千万分之一米(10-8)到亿分之一米(10-9米)内,原子、分子和其它类型物质的运动和变化的学问;同时在这一尺度范围内对原子、分子进行操纵和加工又被称为纳米技术。纳米科技的研究内容 创造和制备优异性能的纳米材料 设计、制备各种纳米器件和装置 探测和分析纳米区域的性质和现象 什么是纳米?  纳米是尺寸或大小的度量单位:千米(103 )→米→厘米→毫米→微米→纳米( 10-9) 4倍原子大小,万分之一头发粗细 纳米科技研究什么问题?  生物科学技术、信息科学技术、纳米科学技术是下一世纪内科学技术发展的主流。生物科学技术中对基因的认识,产生了转基因生物技术,可以治疗顽症,也可以创造出自然界不存在的生物;信息科学技术使人们可以坐在家中便知天下大事,因特网几乎可以改变人们的生活方式。  纳米科学是研究在千万分之一米(10-8)到亿分之一米(10-9米)内,原子、分子和其它类型物质的运动和变化的学问;同时在这一尺度范围内对原子、分子进行操纵和加工又被称为纳米技术。 还原论:把物质的运动都还原到原子、分子这一层面上。原子论和量子力学取得了巨大的成功。有机合成;分子生物学;转基因食品、克隆羊;原子光谱和激光;固体电子论和IC;几何光学到光纤通讯。 宏观世界上经典物理、化学、力学的巨大成就:计算机和网络、宇宙飞船、飞机、汽车、机器人等改变了人们的生活方式  科学技术有认识上的盲区或人类知识大厦上的裂缝。裂缝的一边是以原子、分子为主体的微观世界,另一岸是人类活动的宏观世界。两个世界之间不是直接而简单的联结,存在一个过渡区--纳米世界。例:分子合成 ≤1.5nm, →活体 微电子技术在0.2μm,显微外科只能连接大、小、微血管≤ PM10和PM1.5的微粒几十个原子、分子或成千个原子、分子“组合”在一起时,表现出既不同于单个原子、分子的性质,也不同于大块物体的性质。这种“组合”被称为“超分子”或“人工分子”。“超分子”性质,如熔点、磁性、电容性、导电性、发光性和染、颜色及水溶性有重大变化。当“超分子”继续长大或以通常的方式聚集成大块材料时,奇特的性质又会失去,像真是一些长不大的孩子。  在10nm尺度内,由数量不多的电子、原子或分子组成的体系中新规律的认识和如何操纵或组合及探测、应用它们---纳米科学技术的主要问题。 原子和分子的微观世界和宏观世界的过渡区内的新现象和新规律 探测纳米长度内物理、化学生物信息的新原理和新方法 新概念和新理论:强关联、强场、快过程、少粒子的量子体系 应用 新科学还是老理论的翻版?历史悠久的新科学技术西汉铜镜和黑漆鼓徽墨漆器催化剂材料感光材料和彩色胶片含有高岭土颗粒的轮胎WHY?不清楚近十年,计算机和材料设计;探测技术STM、AFM、SNOM;IC和生命科学的推动;制备技术发展;理论的发展高强度和高韧性、可自修复、有智能、可再生→新一代纳米材料 为什么小尺寸会有如此重要的影响? 表面效应 小尺寸效应 量子限域效应 研究目标和可能的应用 材料和制备:更轻、更强和可设计;长寿命和低维修费;以新原理和新结构在纳米层次上构筑特定性质的材料或自然界不存在的材料;生物材料和仿生材料;材料破坏过程中纳米级损伤的诊断和修复; 微电子和计算机技术:2010年实现线条为100nm的芯片,纳米技术的目标为:纳米结构的微处理器,效率提高一百万倍;10倍带宽的高频网络系统;兆兆比特的存储器(提高1000倍);集成纳米传感器系统; 医学与健康快速、高效的基因团测序和基因诊断和基因治疗技术;用药的新方法和药物“导弹”技术;耐用的人体友好的人工组织和器官;复明和复聪器件;疾病早期诊断的纳米传感器系统 航天和航空低能耗、抗辐照、高性能计算机;微型航天器用纳米测试、控制和电子设备;抗热障、耐磨损的纳米结构涂层材料 环境和能源发展绿色能源和环境处理技术,减少污染和恢复被破坏的环境;孔径为1nm的纳孔材料作为催化剂的载体;MCM-41有序纳孔材料(孔径10-100nm)用来祛除污物;纳米颗粒修饰的高分子材料 生物技术和农业在纳米尺度上,按照预定的大小、对称性和排列来制备具有生物活性的蛋白质、核糖、核酸等。在纳米材料和器件中植入生物材料产生具有生物功能和其他功能的综合性能。,生物仿生化学药品和生物可降解材料,动植物的基因改善和治疗,测定DNA的基因芯片等

  • 【2014诺奖回顾】光学显微纳米新时代

    【2014诺奖回顾】光学显微纳米新时代

    http://ng1.17img.cn/bbsfiles/images/2014/12/201412191620_527962_2972800_3.jpg 1873年,显微学家厄恩斯特•阿贝提出“传统光学显微镜分辨率为不会超过0.2微米”的物理限制。大约一个半世纪之后,来自美国的埃里克•白兹格(Eric Betzig)和威廉姆•莫尔纳尔(William Moerner)以及德国的斯特凡•赫尔(Stefan Hell)成功突破了这一限制,他们利用荧光分子,发明了一种超级分辨率荧光显微镜,从此开启了光学显微镜的纳米时代,正因如此,三人荣获2014年诺贝尔化学奖。 该显微镜融合了另外两种显微镜的成像原理,其一是2000年斯特凡•赫尔发明的受激发射损耗(STED)显微镜,其原理是利用两条激光束,一条激发荧光分子使其发出荧光,另一条抵消除纳米级荧光外的所有荧光;这样一纳米一纳米地扫描样品,所得图像的分辨率突破了阿贝的物理限制。其二是2006年埃里克•白兹格和威廉姆•莫尔纳尔发明的单分子显微镜,其工作原理是开关单分子荧光,科学家们反复多次对扫描同一样品,每次只让几个分子发出荧光,叠加所有图像后得到的致密图像就有纳米级分辨率。如今,纳米显微学已经广泛用于全世界,深入人们生活的各个方面,科学家们从此能了解更多活细胞中分子的细节,从而为改善人类生存环境做出更大贡献。

  • 细胞单分子操纵磁镊系统特点及应用

    [url=http://www.f-lab.cn/microscopes-system/magnetic-tweezers.html][b]细胞单分子操纵磁镊系统[/b][/url],magnetic tweezers是继激光光镊技术仪器后又一种细胞操纵和细胞力学测量仪器.它采用倒置显微镜和电动平移旋转定位台和PicoTwist磁力细胞操纵捕获技术,组成强大的单分子操纵磁镊仪器。细胞单分子操纵磁镊系统是通过梯度分布的磁场对处于其中的可磁化微粒施力,通过显微镜观察并分析微粒运动过程,这套磁镊可同时对40个细胞分子视频采集和跟踪测量。[b]细胞单分子操纵磁镊系统特点[/b]操作稳定—图像漂移很低分辨率高,测力能力强—适合超薄样品可以同时对40个细胞单分子成像和跟踪测量磁铁来控制 DNA拉伸和超螺旋结构[b]细胞单分子操纵磁镊系统应用[/b]细胞单分子,生物单分子,细胞力学,生物力学等,在单分子水平上对生物分子行为(包括构象变化、相互作用、相互识别等)的实时﹑动态检测以及在此基础上的操纵﹑调控等;对单个生物大分子施以力或力矩,并测量它们的物理性质(如DNA弹性、蛋白质的力学变性等);对单个生物大分子施以力或力矩,测量它们的力学生化反应(如分子马达);研究机械力的作用如何影响细胞的生长、分裂、运动、粘附以及信号的传输,基因的表达;在生物大分子上施加力以使之发生构像上的变化,研究生物单分子形成新的结构,以及力学以及动力学之间的相互联系等。研究各种药物可能导致的DNA、蛋白质凝聚、变性过程;给出分子实时行为与性质的分布,有效避免对集群测量苛刻的同步(synchronization)要求,如DNA的解链(unzipping)、蛋白质的折叠(folding)等。[b][img=细胞单分子操纵磁镊系统]http://www.f-lab.cn/Upload/magnetic-tweezers.jpg[/img][/b]细胞单分子操纵磁镊系统:[url]http://www.f-lab.cn/microscopes-system/magnetic-tweezers.html[/url]

  • 好书推荐——《拉曼光谱学与低维纳米半导体》

    给大家推荐一本书,北京大学张树霖老师编著的《拉曼光谱学与低维纳米半导体》。书中前半部分主要介绍拉曼仪器,拉曼技术和拉曼相关的基础知识,后半部分介绍拉曼在纳米材料中的应用和进展。由科学出版社在2008年出版,有兴趣的同仁可以购买,相关的技术问题可以拿来讨论。作者简介:张树霖,教授/博士生导师,中国物理学会光散射专业委员会国际顾问组成员;国际拉曼光谱学大会国际执委会主席(2002-2004)、终身委员。2004年,获国家自然科学二等奖:“若干低维材料的拉曼光谱学研究”(第一作者)。1986年,获国家教委颁发的教学仪器研制一等奖:“RBD—Ⅱ型激光拉曼光谱仪”(研制主持人)。http://www.waterlike.com.tw/image/book/O58C087001.jpg

  • 全国纳米技术标准化技术委员会低维纳米结构与性能工作组(SAC/TC279/WG9)成立会议暨国家标准编制启动会赞助方案

    会议时间:2017年8月20日-21日会议地点:泰州天德湖宾馆主办单位:国家纳米科学中心、江苏省质量技术监督局承办单位:泰州市质量技术监督局、泰州石墨烯研究检测平台(全国纳米技术标准化技术委员会低维纳米结构与性能工作组秘书处)协办单位:中国国际石墨烯资源产业联[color=windowtext]盟、南京大学、东南大学、上海交通大学、复旦大学、[/color]南京邮电大学、西北工业大学、中国科学院上海技术物理研究所、内蒙古石墨烯材料研究院赞助单位:岛津企业管理(中国)有限公司、低维材料在线赞助联系人:袁文军(手机13761090949,邮箱[email=sponsor@graphene-center.org][color=black]sponsor@graphene-center.org[/color][/email])[align=center][b]赞助条款细则[/b][/align]近年来,越来越多的低维纳米材料,如石墨烯、二硫化钼、氮化硼、二维黑磷单晶等被相继发现,以这些材料为基础的各种复杂结构,如异质结、堆垛结构等也不断产生。这些低维纳米材料与结构的新奇性质以及在光电、催化、传感等领域的前景引起了学术界和产业界的高度关注,也逐步进入了从实验室研发到产业化应用的阶段。统一的命名方式、测试方法、技术规范、性能评价等标准的建立,对该领域相关产业和技术的发展具有有力的支撑作用,开展标准化工作已成为迫切需求。经国家标准化管理委员会和中国科学院批准,全国纳米技术标准化技术委员会低维纳米结构与性能工作组正式成立,编号为SAC/TC279/WG9,负责组织协调全国低维纳米技术领域标准化工作。经研究,定于2017年8月20日~21日在江苏省泰州市召开全国纳米技术标准化技术委员会低维纳米结构与性能工作组(SAC/TC279/WG9)成立会议,暨国家标准编制启动会。同时,为了加速国家标准、团体标准立项进度,推动我们主导相关国际标准,同期举办中国国际石墨烯资源产业联盟国际标准工作委员会第一次全体大会。本次会议预计参会人数近200人,是低维纳米技术领域相关企业、仪器设备厂商向中国和国际低维纳米行业展示自己产品并积极参与国家标准编制的一个很好机会,我们诚挚地邀请贵单位赞助这一盛会并展示宣传,共同推动低维纳米技术领域的蓬勃发展。大会的基本赞助条款如下:[b]A类赞助(5万元)[/b]承担会议期间举行的酒会、晚宴部分费用。(1) 由赞助企业代表在会议欢迎酒会或晚宴上代表本企业致辞;(2) 成为全国纳米技术标准化技术委员会低维纳米结构与性能工作组的长期战略合作单位,优先推荐相关专家成为观察员;(3) 长期优先参与标准的编制讨论;(4) 在会议手册上印制公司LOGO或显示公司名称;(5) 在会议各轮通知、日程及网页的突出位置显示公司的LOGO;(6) 在会场展区提供大约 4 平方米的展位,在展示区内提供2个宣传易拉保位置;(7) 免费参加会议(含会务费、资料费、餐费);(8) 会议资料袋中放置赞助单位的宣传资料。[b]B类赞助(2万元)[/b](1) 有权参与本次标准的编制讨论;(2) 在会议手册上印制公司LOGO或显示公司名称;(3) 在会议各轮通知、日程及网页的突出位置显示公司的LOGO;(4) 在会场展区提供大约3平方米的展位,在展示区内提供1个宣传易拉保位置;(5) 免费参加会议(含会务费、资料费、餐费);(6) 会议资料袋中放置赞助单位的宣传资料。更多合作,会议支持,会议展示,欢迎来电洽谈。如果赞助企业有其它特殊要求,请提出具体设想。我们将竭诚为本次会议的赞助商提供全方位细致周到的宣传与服务。联系人:袁文军(手机13761090949)E-mail:[email=sponsor@graphene-center.org][color=black]sponsor@graphene-center.org[/color][/email]会议网站:[url=http://www.grapheneiso.com/][color=black]http://www.grapheneiso.com/[/color][/url][align=right] 全国纳米技术标准化技术委员会[/align][align=right]低维纳米结构与性能工作组[/align]

  • 微纳形貌分析利器——4D微纳形貌动态表征DHM

    微纳形貌分析利器——4D微纳形貌动态表征DHM

    科研史上前所未有的观测手段——数字全息DHM可高速实时测量三维形貌,达到了亚纳米精度。克服了传统AFM、CLSM等需要扫描进行三维成像的特性。 表征透明/半透明三维形貌Ø 测量厚度从几纳米到几十微米Ø 可测最高三层透明薄膜Ø 测量薄膜折射率Ø 微纳器件动态三维形貌时序图(1000fps), 还可测频率响应(高达25MHz) 主要应用北京大学 搭建平面应变鼓膜实验平台测量纳米薄膜的动态力学性能天津大学 微结构表面形貌和运动特性测量华中科技大学 微纳制造与测试,微小光学元件检测,微电子制造封装与测试清华大学 透射式全息显微镜,测量透明样品形貌,还可以测量材料光学参数、内部结构以及缺陷杂质等 • 超快速高精度的三维成像,大面积三维形貌表征,表面粗糙度,MEMS振动测量分析,表征微流体器件和微颗粒三维追踪测试配合MEMS Analysis Tool、光学反射软件Reflectometry Analysis等专用软件实现更多功能[img=,600,400]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131406_01_1546_3.gif[/img][img=,384,216]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131407_01_1546_3.gif[/img][img=,690,]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131406_02_1546_3.jpg[/img]

  • 纳米科学的介绍

    [font=微软雅黑][size=10.5000pt][font=微软雅黑]纳米科学是[/font]80年代初迅速发展起来的新的前沿科研领域,1990年在美国巴尔的摩召开的第一届国际纳米科学技术会议,并正式创办的《纳米技术》杂志,标志着纳米科学的诞生。[/size][/font][font=微软雅黑][size=10.5000pt][font=微软雅黑]纳米科学是指研究在[/font]0.1nm~100nm尺寸范围内物质具有的物理、化学性质和功能的科学,它包括纳米生物学、纳米电子学、纳米化学、纳米材料学和纳米机械学等新兴学科。[/size][/font][font=微软雅黑][size=10.5000pt]而纳米科技是指一种用单个原子,分子制造物质的科学技术,它以纳米科学为基础,进行制造新材料、新器件,研究新工艺的方法。在这里纳米不仅是一个空间尺度概念,而且表示了一种新的思考方式,即生产过程越来越精细。[/size][/font][font=微软雅黑][size=10.5000pt]人类通过在原子、分子和超分子水平上控制了纳米结构来发现纳米材料的奇异特性,以及学会有效地利用这些特性,使得人类能够按照自己的意志,在纳米尺度上直接操纵单个原子、分子的排布制造出具有特定功能的产品,最终能够仿照自然界生态中非常复杂的过程,这也是纳米科技的最终目的,换句话说,我们是为了更好地理解这个世界而研究纳米物质的。[/size][/font]

  • 关于召开全国纳米技术标准化技术委员会 低维纳米结构与性能工作组(SAC/TC279/WG9)成立会议 暨国家标准编制启动会的通知

    各相关单位和专家:近年来,越来越多的低维纳米材料,如石墨烯、二硫化钼、氮化硼、二维黑磷单晶等被相继发现,以这些材料为基础的各种复杂结构,如异质结、堆垛结构等也不断产生。这些低维纳米材料与结构的新奇性质以及在光电、催化、传感等领域的前景引起了学术界和产业界的高度关注,也逐步进入了从实验室研发到产业化应用的阶段。统一的命名方式、测试方法、技术规范、性能评价等标准的建立,对该领域相关产业和技术的发展具有有力的支撑作用,开展标准化工作已成为迫切需求。经国家标准化管理委员会和中国科学院批准,全国纳米技术标准化技术委员会低维纳米结构与性能工作组正式成立,编号为SAC/TC279/WG9,负责组织协调全国低维纳米技术领域标准化工作。经研究,定于2017年8月20日~21日在江苏省泰州市召开全国纳米技术标准化技术委员会低维纳米结构与性能工作组(SAC/TC279/WG9)成立会议,暨国家标准编制启动会。同时,为了加速国家标准、团体标准立项进度,推动我国主导相关国际标准,同期举办中国国际石墨烯资源产业联盟国际标准工作委员会第一次全体大会。现将有关事项通知如下:一、会议主体及参会对象主办单位:国家纳米科学中心、江苏省质量技术监督局承办单位:泰州市质量技术监督局、泰州石墨烯研究检测平台(全国纳米技术标准化技术委员会低维纳米结构与性能工作组秘书处)协办单位:中国国际石墨烯资源产业联盟、南京大学、东南大学、上海交通大学、复旦大学、南京邮电大学、西北工业大学、中国科学院上海技术物理研究所、内蒙古石墨烯材料研究院赞助单位:岛津企业管理(中国)有限公司、低维材料在线参会对象:全国纳米技术标准化技术委员会低维纳米结构与性能工作组全体委员、中国国际石墨烯资源产业联盟国际标准工作委员会全体委员、低维纳米技术领域相关单位及专家、有意参加标准编制工作的相关单位及专家。二、会议内容(一)全国纳米技术标准化技术委员会低维纳米结构与性能工作组成立仪式1. 领导致辞2. 工作组成员证书颁发(二)国家标准工作会议1. 20170324-T-491 国家标准《石墨烯薄膜的性能测试方法》编制启动会。报告人:智林杰研究员国家纳米科学中心2. 国家标准《储能用石墨烯基复合电极材料的振实密度测试方法》技术交流。报告人:智林杰研究员国家纳米科学中心3. 国家标准项目需求研讨(如有需求请用附件2反馈)(三)联盟标准工作会议1. 中国国际石墨烯资源产业联盟国际标准工作委员会第一次全体大会及委员证书颁发2. 纳米技术国际标准化进展。报告人:葛广路研究员国家纳米科学中心3.二维高分子材料:从微观到宏观的结构与形貌调控。报告人:张帆教授 上海交通大学4.多极轴分子铁电/压电材料。报告人:游雨蒙教授 东南大学5.新型二维材料的电子输运和器件应用。报告人:缪峰南京大学6. 原子力显微镜在纳米材料观测中的应用。报告人:陈强岛津企业管理(中国)有限公司7. 专家专题报告8. 联盟标准项目需求研讨(如有需求请用附件2反馈)三、标准化需求征集本次会议面向全国各单位征集低维纳米技术领域的标准化需求,供本次国家或联盟标准工作会议研讨和后续立项。如有需求请于7月28日前反馈《附件2:标准化需求征集表》至邮箱:[email]standard@graphene-center.org[/email]。联系人:邵悦13914543362,梁铮18936799578。四、会务安排(一)会议报到时间:8月20日全天,欢迎晚宴18:30开始。会议于8月21日召开,会期一天。(二)会议地址:泰州天德湖宾馆酒店地址:泰州市海陵区海陵南路268号(天德湖公园内)(三)交通1. 高铁到镇江南站后,会务组安排专车接站,接站发车时间:17:00(需接站者请在附件1会议回执中注明)。2. 高铁南京站到泰州火车站动车约1小时20分钟。3. 扬州泰州机场到泰州汽车南站约35分钟车程,大巴班次如下:10:00、12:00、13:40,、18:00、20:10。4. 南京禄口机场到泰州汽车南站约2.5小时车程,大巴班次如下:10:30、12:30、14:30、16:30、19:00、21:30。五、会务费用及相关事宜1.会议费用全免(含会务费、资料费、餐费)。往返差旅、zhusu费自理。2.会议酒店客房紧张,会务组可提前帮助预订房间。住宿标准:大床房和标准间均为380元/间• 天(含双早)。标准间如需拼房,请在附件1会议回执中注明。六、参会报名希各单位接此通知后于8月4日前将《附件1:会议回执》反馈至邮箱:[email]standard@graphene-center.org[/email]。参会联系人:邵悦13914543362,梁铮18936799578。会议网址:[url]http://www.grapheneiso.com/[/url]七、会议赞助更多合作,会议支持,会议展示,欢迎来电洽谈。赞助/参展联系人:袁文军13761090949,[email]sponsor@graphene-center.org[/email][align=right] [/align][align=right]全国纳米技术标准化技术委员会[/align][align=right]低维纳米结构与性能工作组 [/align][align=right] 2017年7月15日[/align][align=right] [/align]附件1:会议回执附件2:标准化需求征集表附件3:国家标准项目介绍附件1:会议回执 [table=623][tr][td]姓 名[/td][td]性别[/td][td]单位[/td][td]职务[/td][td]联系电话[/td][td]8月20日是否订房(注明大床/双床)[/td][td]8月21日是否订房(注明大床/双床)[/td][/tr][tr][td] [/td][td] [/td][td] [/td][td] [/td][td] [/td][td] [/td][td] [/td][/tr][tr][td] [/td][td] [/td][td] [/td][td] [/td][td] [/td][td] [/td][td] [/td][/tr][tr][td] [/td][td] [/td][td] [/td][td] [/td][td] [/td][td] [/td][td] [/td][/tr][tr][td] [/td][td] [/td][td] [/td][td] [/td][td] [/td][td] [/td][td] [/td][/tr][tr][td=7,1] [b]备注:会务组将到高铁镇江南站接站,接站发车时间:17:00[/b]是否需要接站: [color=red](必填项,请填“是/否”)[/color]到站班次: [color=red](若无需接站则不必填写)[/color]到站时间: [color=red](若无需接站则不必填写)[/color][/td][/tr][/table]希各单位接此通知后于8月4日前将《附件1:会议回执》反馈至邮箱:[email]standard@graphene-center.org[/email]。参会联系人:邵悦13914543362,梁铮18936799578。会议网址:[url]http://www.grapheneiso.com/[/url]附件2:标准化需求征集表[table][tr][td]项目名称(中文)[/td][td=3,1] [/td][/tr][tr][td]项目名称(英文)[/td][td=3,1] [/td][/tr][tr][td]标准类别[/td][td=3,1] 选填:产品/基础/方法/管理/安全/卫生/环保/其他[/td][/tr][tr][td]提出单位[/td][td=3,1] [/td][/tr][tr][td]主要提出人[/td][td=3,1] [/td][/tr][tr][td]主要提出人联系电话[/td][td] [/td][td]主要提出人电子邮件[/td][td] [/td][/tr][tr][td]项目提出时间[/td][td=3,1] [/td][/tr][tr][td]项目计划开始时间[/td][td] [/td][td]项目计划结束时间[/td][td] [/td][/tr][tr][td]目的、意义[/td][td=3,1] [/td][/tr][tr][td]范围和主要技术内容[/td][td=3,1] [/td][/tr][tr][td]国内外情况简要说明[/td][td=3,1] [/td][/tr][tr][td]项目成本预算[/td][td=3,1] [/td][/tr][tr][td]备注[/td][td=3,1] [/td][/tr][/table]希各单位接此通知后于8月4日前将《附件2:标准化需求征集表》反馈至邮箱:[email]standard@graphene-center.org[/email]。联系人:邵悦13914543362,梁铮18936799578。附件3:国家标准项目介绍 [table][tr][td][b]标准名称[/b][/td][td]石墨烯薄膜的性能测试方法[/td][/tr][tr][td][b]ICS分类号[/b][/td][td]07.030[/td][/tr][tr][td][b]目的意义[/b][/td][td]石墨烯是一种典型的二维纳米材料,由于石墨烯具有高电子传输速率以及光透过率,石墨烯薄膜材料被广泛应用于透明导电膜的制备,在许多光电器件,如太阳能电池、触摸屏、智能窗、液晶显示等领域中备受关注。由于不同应用对于透明导电膜的性能要求不同,在使用前需要对石墨烯薄膜的导电性、透光性等性能进行测试,以评价石墨烯薄膜的光电性能,并有助于选出符合应用所需的材料。 本标准使用四探针法对石墨烯薄膜的导电性和面电阻均匀性进行测试,使用原子力显微镜扫描法对石墨烯薄膜的厚度进行测试,使用紫外-可见-近红外分光光度法对石墨烯薄膜的透光性进行测试。国内尚无测试石墨烯薄膜上述性能的标准方法。因此,为满足国内该领域的使用需求,制定石墨烯薄膜性能测试标准具有重要意义。[/td][/tr][tr][td][b]范围和主要 技术内容[/b][/td][td]本标准规定了在常温常压空气环境下使用四探针法对石墨烯薄膜样品的导电性和面电阻均匀性进行测试的方法。通过定量测试石墨烯薄膜的方块电阻值,并结合厚度信息得到电导率值,从而进行石墨烯薄膜样品的导电性的综合评价。本标准规定了九点电阻测量法测定石墨烯薄膜的面电阻均匀性的方法,通过测定特定的九个点的方块电阻值,计算方块电阻偏差的相对大小,从而得到薄膜样品均匀性的评价。本标还准规定了原子力显微镜扫描法测定石墨烯薄膜的厚度的方法,通过扫描样品边缘处的高度差,得到薄膜的厚度信息。本标准同时规定了在空气环境下使用紫外-可见-近红外分光光度法(UV-Vis-NIR)对石墨烯薄膜样品的透光性进行测试的方法。通过定量测试石墨烯薄膜在紫外-可见-近红外波长范围内的透过率曲线,进行石墨烯薄膜样品在所选取的波长范围内透光性的综合评价。同时,本标准提供一种对可见光区域内石墨烯薄膜的透光性的评价方法。 技术内容: 使用四探针测试仪对石墨烯薄膜的方块电阻和电导率进行测试,明确石墨烯薄膜的导电性。具体为样品准备、方块电阻的测试、样品厚度测试、电导率的计算,重复进行三次样品测试。使用四探针测试仪对石墨烯薄膜的面电阻均匀性进行测试,具体为选取测试区域和测试点、方块电阻的测试、均匀性的计算。使用原子力显微镜对样品的厚度进行测试,具体为样品准备、原子力显微镜扫描得到厚度信息、多次扫描取平均值。使用紫外-可见-近红外分光光度计对石墨烯薄膜在某一波长范围的透光率进行测试,明确石墨烯薄膜的透光性。具体为样品准备、波长区间及扫描速率确定,重复进行三次样品测试,由透光率曲线得到石墨烯薄膜的透光性评价。[/td][/tr][tr][td][b]国内外情况[/b][/td][td]国内尚无对石墨烯薄膜的导电性、面电阻均匀性、厚度、透光性等性能测试制定标准方法。[/td][/tr][/table] [table][tr][td][b]标准名称[/b][/td][td]储能用石墨烯基复合电极材料的振实密度测试方法[/td][/tr][tr][td][b]ICS分类号[/b][/td][td]07.030[/td][/tr][tr][td][b]目的意义[/b][/td][td]石墨烯作为一种新型纳米材料,其独特的二维单原子层结构赋予了它许多新颖特性,如优异的机械性能、良好的导热和导电性能等,其在诸多领域均表现出良好的应用前景。基于石墨烯与锂离子电池活性电极材料的复合,一类新型纳米复合电极材料正成为科学界和工业界重点关注的能源材料体系。尽管能源电极材料的振实密度对于其实际应用至关重要,目前国际国内尚无石墨烯基复合电极材料的振实密度测试的相关标准,其主要原因是各种维度、结构和形态的石墨烯基复合电极材料在不同的堆积方式下及不同形态的测试器皿中具有不同的振实体积,致使现存的颗粒及粉末振实密度测试方法完全无法应用于该类新型的纳米材料体系;制定该类材料的振实密度测试标准对推进材料的实际应用无疑具有极其重要的意义。[/td][/tr][tr][td][b]范围和主要 技术内容[/b][/td][td]本标准提供石墨烯基复合电极材料振实密度的测定方法,即要求在考虑石墨烯基复合电极材料的结构及形态特征的基础上,将未排列及预排列的样品置于器皿形状与材料维度相匹配的器皿中振实;本标准提供一种对石墨烯基复合电极材料的振实密度进行表征的指导。 技术内容:使用振实密度测试仪将精确称量的具有不同堆积方式的石墨烯基复合电极材料根据材料的维度等结构形态信息在不同形状的体积测试器皿中进行振实,以石墨烯基复合电极材料的质量除以材料经振实后的体积,得到其振实密度值。具体为样品堆积方式的确定、器皿形状的选择、样品量的确定、振实过程的控制等,重复进行三次样品振实密度测试,确保数据可靠性。[/td][/tr][tr][td][b]国内外情况[/b][/td][td]国内尚无针对纳米材料-石墨烯基复合电极材料进行其振实密度测试的标准方法。[/td][/tr][/table]

  • 微纳形貌分析利器——4D微纳形貌动态表征

    微纳形貌分析利器——4D微纳形貌动态表征

    科研史上前所未有的观测手段——数字全息可高速实时测量三维形貌,达到了亚纳米精度。克服了传统AFM、CLSM等需要扫描进行三维成像的特性。 表征透明/半透明三维形貌Ø 测量厚度从几纳米到几十微米Ø 可测最高三层透明薄膜Ø 测量薄膜折射率Ø 微纳器件动态三维形貌时序图(1000fps), 还可测频率响应(高达25MHz) 主要应用北京大学 搭建平面应变鼓膜实验平台测量纳米薄膜的动态力学性能天津大学 微结构表面形貌和运动特性测量华中科技大学 微纳制造与测试,微小光学元件检测,微电子制造封装与测试清华大学 透射式全息显微镜,测量透明样品形貌,还可以测量材料光学参数、内部结构以及缺陷杂质等 • 超快速高精度的三维成像,大面积三维形貌表征,表面粗糙度,MEMS振动测量分析,表征微流体器件和微颗粒三维追踪测试配合MEMS Analysis Tool、光学反射软件Reflectometry Analysis等专用软件实现更多功能[img=,690,]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131349_01_1546_3.jpg[/img][img=,600,400]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131350_01_1546_3.gif[/img][img=,384,216]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131351_01_1546_3.gif[/img][img=,384,216]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131354_01_1546_3.gif[/img][img=,384,216]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131351_04_1546_3.gif[/img][img=,384,]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131358_01_1546_3.jpg[/img]

  • 微纳形貌分析利器——4D微纳形貌动态表征DHM

    微纳形貌分析利器——4D微纳形貌动态表征DHM

    科研史上前所未有的观测手段——数字全息DHM可高速实时测量三维形貌,达到了亚纳米精度。克服了传统AFM、CLSM等需要扫描进行三维成像的特性。 表征透明/半透明三维形貌Ø 测量厚度从几纳米到几十微米Ø 可测最高三层透明薄膜Ø 测量薄膜折射率Ø 微纳器件动态三维形貌时序图(1000fps), 还可测频率响应(高达25MHz) 主要应用北京大学 搭建平面应变鼓膜实验平台测量纳米薄膜的动态力学性能天津大学 微结构表面形貌和运动特性测量华中科技大学 微纳制造与测试,微小光学元件检测,微电子制造封装与测试清华大学 透射式全息显微镜,测量透明样品形貌,还可以测量材料光学参数、内部结构以及缺陷杂质等 • 超快速高精度的三维成像,大面积三维形貌表征,表面粗糙度,MEMS振动测量分析,表征微流体器件和微颗粒三维追踪测试配合MEMS Analysis Tool、光学反射软件Reflectometry Analysis等专用软件实现更多功能[img=,600,400]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131410_01_1546_3.gif[/img][img=,690,]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131410_02_1546_3.jpg[/img][img=,384,216]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131410_03_1546_3.gif[/img][img=,384,216]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131410_04_1546_3.gif[/img]

  • 【资料】纳米新技术(共3讲)

    [B][center]什么是纳米技术 [/center][/B] 纳米是长度单位,原称"毫微米",就是10-9(10亿分之一米)。纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在1至100纳米范围内材料的性质和应用。  从具体的物质说来,人们往往用"细如发丝"来形容纤细的东西,其实人的头发一般直径为20-50微米,并不细。单个细菌用肉眼看不出来,用显微镜测出直径为5微米,也不算细。极而言之,1纳米大体上相当于4个原子的直径。  纳米技术包含下列四个主要方面:   第一方面是纳米材料,包括制备和表征。在纳米尺度下,物质中电子的放性(量子力学学性质)和原子的相互作用将受到尺度大小的影响,如能得到纳米尺度的结构,就可能控制材料的基本性质如熔点、磁性、电容甚至颜色。而不改变物质的化学成份。用超微粒子烧成的陶瓷硬度可以更高,但不舱裂:无机的超微粒子灰分在加入橡胶后,将粘在聚合物分子的端点上,所做成的轮胎将大大减小磨损和处长寿命。   第二方面是纳米动力学,主要是微机械和微电机,或总称为微型电动机械系统(MEMS),用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等。MEMS用的是一种类似于集成电器设计和制造的新工艺。特点是部件很小,刻蚀的深度往往要求数十至数百微米,而宽度误差很小。这种工艺还可用于制作三相电动机,用于超快速离心机或陀螺仪等。在研究方面还要相应地检测准原子尺度的微变形和微摩擦等。虽然它们目前尚未真正进入纳米尺度,但有很大的潜在科学价值和经济价值。   第三方面是纳米生物学和纳米药物学,如在云母表面用纳米微粒度的胶体金固定 DNA的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,DNA的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。   第四方面是纳米电子学,包括基于量子效应的纳米电子器件、纳米结构的光/电性质、纳米电子材料的表征,以及原子操纵和原子组装等。当前电子技术的趋势要求器件和系统更小、更快、更冷。"更小"是指响应速度要快。"更冷"是指单个器件的功耗要小。但是"更小"并非没有限度。  纳米技术是建设者的最后疆界,它的影响将是巨大的  在1998年的四月,总统科学技术顾问,Neal Lane 博士评论到,如果有人问我哪个科学和工程领域将会对未来产生突破性的影响,我会说该个启动计划建立一个名为纳米科技。"大挑战"机构,资助进行跨学科研究和教育的队伍,包括为长远目标而建立的中心和网络。一些潜在的可能实现的突破包括:   把整个美国国会图书馆的资料压缩到一块像方糖一样大小的设备中,这通过提高单位表面储存能力1000倍使大存储电子设备储存能力扩大到几兆兆字节的水平来实现。  由自小到大的方法制造材料和产品,即从一个原子、一个分子开始制造它们。这种方法将节约原材料和降低污染。  生产出比钢强度大10倍,而重量只有其几分之一的材料来制造各种更轻便,更省燃料的陆上、水上和航空用的交通工具。  通过极小的晶体管和记忆芯片几百万倍的提高电脑速度和效率,使今天的奔腾Ⅲ 处理器已经显得十分慢了。   运用基因和药物传送纳米级的MRI对照剂来发现癌细胞或定位人体组织器官   去除在水和空气中最细微的污染物,得到更清洁的环境和可以饮用的水。  提高太阳能电池能量效率两倍。

  • 超精细显微操纵仪

    [url=http://www.f-lab.cn/micromanipulators/mo-972.html][b]超精细显微操纵仪MO-972[/b][/url]是集高精度液压,步进电机电动控制和精密机械制造特色与一体的高精度[b]微操纵仪[/b]器,能够在30mm的距离内无振动地完成插入电极工作[b],[/b]是全球领先的高精度[b]显微操纵仪[/b]器。[b][img=超精细显微操纵仪]http://www.f-lab.cn/Upload/MO-972-L_.jpg[/img][url=http://www.f-lab.cn/micromanipulators/mo-972.html]超精细显微操纵仪[/url]特点[/b]油压精细,机械,显微操作器 瓦特/步进电机,开放型,W/ XYZ轴10mm驱动单元,(Z轴)50mm,(X轴)13mm,(Y轴)18mm。开放式平台可以安装允许许多驱动单元,或安装一个网格。在30mm工作距离内,使用远程控制可以实现准确,无振动的电极插入.导管可拆卸。平台和室可以拆卸和单独移动。油压显微操作器(带步进电机)用于慢性实验。使用5相步进电机操作更精确的精细Z轴电机驱动。产品包括数字控制系统+电机模块+驱动单元位置记忆功能和收回及退回功能。三种驱动模式:自由,设置和步骤.?三种驱动精度可供选择:粗,细,超细。深度,垂直,水平坐标都会显示。一种位置测量系统在实验时或实验后会计算移动距离,带来方便。另外,可以输入各驱动模式数值改变驱动量。一个控制箱可以经由内部卡总线插槽系统控制多达三个驱动单元。最小驱动精确度:粗调:0.5μm;精细:0.05微米;超细:0.005微米。 USB通信接口。

  • 【新闻】我国纳米科技论文总数已居世界前列

    毫无疑义,纳米科技是当今世界科技发展的一个热门领域,也是科学家和百姓众说纷纭的一个前沿科学话题。在刚刚创刊的《前沿科学》杂志上,刊载了中国科学院院士白春礼和中国国家纳米科学中心研究员裘晓辉撰写的《中国纳米科技研究的进展》一文。 在这篇论文中,作者总结了过去十年中国在纳米科技的基础研究和应用研究中取得的重要进展,概述了中国科技人员近期在纳米科技的部分研究领域中所取得的突出成就,并且就我国纳米科技发展过程中存在的一些问题进行了分析。 近日,记者采访了裘晓辉研究员,请他向读者介绍中国纳米科技研究的现状及进展。 裘晓辉指出,在世界范围内,无论是发达国家还是发展中国家,各国政府都已认识到纳米科技的发展将成为21世纪经济增长的新动力,因而在不断地加强对纳米科技研发的投入。我国不仅于2001年成立了全国纳米科技指导协调委员会,统筹规划全国的纳米科技研究方向,而且在2006年初由国务院制定的《2006—2020年国家中长期科学和技术发展规划纲要》中将纳米科学列入了这段时期内基础科学研究的四个主要方向之一,将纳米材料和纳米器件作为发展先进材料的重点目标。与纳米技术相关的重点研发项目有:纳米电子学和纳米生物学的核心技术;新功能材料的研发及工业化;发展亚微米尺度上的微纳电子机械系统。

  • 纳米生物:创新在起跑线

    ——国家863计划纳米生物技术主题专家张阳德教授访谈录编者按:岁末年初,我国纳米生物领域出现了几件大事:2007年12月31日,中国医药生物技术协会纳米生物技术分会在深圳宣告成立。工程院院士何继善、科学院院士姚开泰等全国近百名专家参加。2008年2月,中国纳米生物技术分会在北京举行第一届委员大会,卫生部纳米生物技术重点实验室主任、卫生部肝胆肠外科研究中心主任、中南大学生物医学工程研究院院长张阳德教授,选举为首届主任委员。大会选举了中国工程院陈志南院士、中国科学院曾益新、魏于全、姚开泰院士、江雷教授5位专家为副主任委员。郭应禄院士等35名业内专家为常务委员。这个汇集我国纳米生物领域的医学、化学、微电子、精密机械加工的专家组成的强大团队,将整合科技界、产业界纳米生物技术的资源,开展国家“863计划”纳米生物技术研究的攻关和实施。为此,我们邀请张阳德教授阐述了我国开发纳米生物技术尤其是在医学应用的战略和关键问题。先发制人,后发制于人记者:科学的交叉与融合,产生了一些新兴的领域。其中纳米生物技术与医用材料,就属于这样的领域。作为国家863计划纳米生物技术的主题专家,你如何看待当今纳米生物技术的发展现状?张阳德:即使你比刘翔跑得还要快,你也得与对手站在同一条起跑线上。我们在现代科技与产业的一些方面,落后于西方发达国家,这并不是我们跑得不够快,而是因为没能站在同一个起点。纳米生物技术是纳米科技与当代生物医学多学科结合的产物,是当代生物技术的前沿和热点。尤其在医药卫生领域有着广泛的应用和巨大的产业化前景。当今国际,由纳米药物载体,纳米生物传感器,纳米生物临床检测诊疗手段引发的新技术革命方兴未艾。据预测,到2010年,纳米生物技术对美国GDP的贡献将达到万亿美元,在日本的市场规模也将达到30万亿日元。在中国这样的人口大国,市场前景更加不可限量。纳米生物技术在医学临床应用,将成为我国重要的战略高技术领域,直接影响着国民经济和社会发展,关系到国家安全和人民健康。记者:目前这一领域中各国的竞争趋势如何?张阳德:先发制人,后发制于人。抢占战略制高点,向来是发达国家发展战略高技术的一个原则。从2000年开始的美国国家纳米技术行动计划,将纳米生物医疗列为突破重点。美国国家卫生研究院(NIH)2001年专门组织了“纳米科技与生物医学”的研讨会,提出了“纳米科技将导致新的生物学和生物工程”的结论。美国NIH在2002年度科研项目计划中,超过50%%的经费是针对生物反恐怖的,其中多数项目的完成希望借助纳米科学技术。美国国家癌症研究所(NIC)的计划是希望借助纳米科学技术,主要包括纳米颗粒材料技术以及纳米传感器技术,形成一些新的、针对恶性肿瘤的早期诊断与治疗技术。欧盟2002年正式推出了第6框架计划(2002~2006年),旨在将科学发展的成果转化为产业界的实际竞争优势。纳米生物技术的研究重点包括先进的药物传递方式、具有生物实体的纳米电子学、生物实体的界面、生物实体的电子探测、生物分子或复合物的处理操纵和探测。

  • Winner801光相关纳米粒度仪

    Winner801光相关纳米粒度仪Winner801是我公司最新推出的基于动态光散射原理的纳米粒度仪,也是国内首款采用光子相关光谱(PCS)技术的纳米粒度仪。它采用我公司自主研制的高速数字相关器和专业的高性能光电倍增管作为核心器件,具有快速、高分辨率、重复及准确等特点,是纳米颗粒粒度测定的首选产品。主要性能特点:先进的测试原理:本仪器采用动态光散射原理和光子相关光谱技术,根据颗粒在液体中的布朗运动的速度测定颗粒大小。小颗粒布朗运动速度快,大颗粒布朗运动速度慢,激光照射这些颗粒,不同大小的颗粒将使散射光发生快慢不同的涨落起伏。光子相关光谱法就根据特定方向的光子涨落起伏分析其颗粒大小。因此本仪器具有原理先进、精度极高的特点,从而保证了测试结果的真实性和有效性;是纳米激颗粒粒度测定的首选仪器。高灵敏度与信噪比:本仪器的探测器采用专业级高性能光电倍增管(PMT),对光子信号具有极高的灵敏度和信噪比,从而保证了测试结果的准确度;极高的分辨能力:使用PCS技术测定纳米级颗粒大小,必须能够分辨纳秒级信号起伏。本仪器的核心部件采用微纳公司研制的CR140数字相关器,具有识别8ns的极高分辨能力和极高的信号处理速度,因此可以得到准确的测定结果。超强的运算功能:本仪器采用自行研制的高速数字相关器CR140进行数据采集与实时相关运算,其数据处理速度高达125M,从而实时有效地反映颗粒的动态光散射信息。稳定的光路系统:采用短波长LD泵浦激光光源和光纤技术搭建而成的光路系统,使光子相关谱探测系统不仅体积小,而且具有很强的抗干扰能力,从而保证了测试的稳定性。高精度恒温控制系统:样品测试区域设计有半导体恒温装置,温控精度高达0.1℃,保证测试样品温度恒定,消除因温度的变化导致介质的折射率、粘度的变化以及布朗运动突变等因素,从而保证测试结果的准确度和稳定性。 适用测试对象:各种纳米级、亚微米级固体颗粒与乳液。

  • 2013年4月2日网络会议:微纳米粉体的比表面及孔径分布的测试与分析

    http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_646405_2507958_3.gif微纳米粉体的比表面及孔径分布的测试与分析主讲人:钟家湘 北京精微高博 董事长 活动时间:2013年4月2日 下午 14:30http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_646405_2507958_3.gif1、报名条件:只要您是仪器网注册用户均可报名参加。2、参加及审核人数限制:限制报名人数为120人,审核人数100人。3、报名截止时间:2013年4月2日下午14:304、报名参会:http://simg.instrument.com.cn/meeting/images/20100414/baoming.jpg5、参与互动:本次讲座采取网络讲堂直播模式,欢迎大家积极发言提问。 *参会期间您还可以将有疑问的数据通过上传的形式给老师予以展示,并寻求解答* 每次会议从提问的用户中随机抽取出一名幸运之星,奖励一个价值150元的耳机。6、环境配置:只要您有电脑、外加一个耳麦就能参加。建议使用IE浏览器进入会场。7、提问时间:现在就可以在此帖提问啦,截至2013年4月1日8、会议进入:2013年4月2日14:00点就可以进入会议室9、开课时间:2013年4月2日14:3010、特别说明:报名并通过审核将会收到1 封电子邮件通知函(您已注册培训课程),请注意查收,并按提示进入会议室!为了使您的报名申请顺利通过,请填写完整而正确的信息哦~http://simg.instrument.com.cn/webinar/20110223/images/zb_11.gif注意:由于参会名额有限,如您通过审核,请您珍惜宝贵的学习交流机会,按时参加会议。如您临时有事无法参会,请您进入报名页面请假。无故不参会将会影响您下一次的参会报名。快来参加吧:我要报名》》》快来提问吧:我要提问》》》

  • 【转帖】欧盟提议将纳米材料纳入Reach系统

    近日,欧盟提议,将纳米材料划入欧盟的“REACH”系统(负责化学物质的注册、评估、批准、限制)中,并要求在纳米产品的使用标签上,标明其含有纳米材料。比利时消费者保护和环境保护的部长PaUL Magnette在本周举行的关于纳米材料的可追溯性会议上称,消费者日常生活中使用的纳米材料的数量正在呈上涨的趋势,但消费者对纳米材料并不了解。当前的法律法规中,并没有关于纳米材料的使用标签要求以及它可能会给消费者带来的潜在危险,这一点是不能被民众接受的。此外,Magnette表示,使纳米材料被人们普遍接受和认可的唯一途径是,减少其使用功效中的不确定因素。据了解,到目前为止,全球并未有任何国家制定出关于纳米科技的详细法规。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制