当前位置: 仪器信息网 > 行业主题 > >

微量混合挤出仪

仪器信息网微量混合挤出仪专题为您提供2024年最新微量混合挤出仪价格报价、厂家品牌的相关信息, 包括微量混合挤出仪参数、型号等,不管是国产,还是进口品牌的微量混合挤出仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微量混合挤出仪相关的耗材配件、试剂标物,还有微量混合挤出仪相关的最新资讯、资料,以及微量混合挤出仪相关的解决方案。

微量混合挤出仪相关的论坛

  • 测量混合气体中的微量氢气含量,请问哪家的气相色谱值得推荐

    最近实验室需要购入一台[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url],进样方式为手动注射器抽取气体样品注入,测定混合气体中的微量氢气含量(光催化产氢)请问哪家厂家的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]比较值得推荐另外请问,购买色谱并不附带色谱工作站吧,单独购买色谱工作站是不是智达的就可以?

  • [已应助]混合样品的基体改进剂如何选择加入方式?

    石墨炉法测定混合样品中微量元素含量,如铜、铁、锰、锌、铅、镉,常用的基体改进剂有钯、磷酸二氢铵、硝酸镁,1、是选择测定不同的元素时加入不同的基体改进剂还是一次性加入所有元素的基体改进剂?2、基体改进剂是在进样时用进样器分别加入还是在样品溶液稀释时即在溶液中加入实现一次进样?

  • FT-IR分析固体混合物样品,对单组分含量的要求到底有多高?

    一直没想明白,在KBr压片时,一般检测样品只要几个毫克就够了,这是对纯物质组分而言的。 那么如果检测样品是多组分混合物,在压片时,检测混合物样品是否也只能几个毫克?否则多了会对谱图产生影响。那么每个单组分最低含量到底要多少才会可以从谱图中识别出来这种物质的存在? 仪器的说明一般只会标明谱段宽度,对于这个指标似乎没有涉及。刚接触这个分析技术,没有实战经验,因此疑问。 谢谢关注!(本文所指物质对无机而言,如CaO中含微量CaSO4等)

  • 【求助】请问如何配制苯系物的混合标液?

    公司刚买了PE 的全套ATD-GC-MS,要做室内空气的苯系物的测定,没有买苯系物的混合标液,只是买了苯,甲苯,二甲苯等的色谱纯试剂,请问如何将这些配制成混合标液呢?我看了色谱纯的甲苯的参数,纯度=99.8%,我用GC-MS做了一下,纯度不错,没发现其他苯系物的杂峰.请问是不是就把这个试剂看成是纯的甲苯,用他来直接配制混标?如果是的话,是不是用微量取样器量取一定体积,然后乘以甲苯密度,得到甲苯的质量,再除以体积得到浓度(xx ug/mL)呢?另外大家用什么来稀释苯系物呢?是用二硫化碳吗?配的混合标液中各组分的浓度是多大?最后做标准曲线的时候,是不是直接用微量进样器量取一定体积后直接注入采样管呢(sample tube)?然后再用氮气吹一会采样管?我的是ATD进样(冷阱捕集后再二级脱附).老板催的紧,下了死命令,要下周一前出报告,不然可能就要被炒了,好担心啊,请大家帮帮忙吧`~~~~谢谢谢谢~~~~~~~~[em63] [em49]

  • 【求助】请教:化学试剂间能混合或不能混合

    化学试剂有的可以混合(混合后增加了试剂的双重功效或变成了另一种化合物),有的性质不同混合后降低了原试剂的性质,有的混合后还有危险性(如易燃易爆),为慎重起见特请教:二氯乙烷、二硫化碳、正己烷三种试剂哪两种可以混合?混合后能增加它们的双重效应?  化学试剂间能混合或不能混合,进行少量的试验(点滴混合试验),以什么作标准(怎样签别)?

  • 微混合器是如何设计出来的

    微混合器是如何设计出来的

    岛津设计出了20ul、40ul、80ul、180ul的微混合器,安捷伦也有50ul、100ul的混合器,waters有20ul、30ul的混合器,甚至国外还有15ul的混合器,这让很多人很震惊。国产的混合器都是几百甚至上千ul的。有人知道微混合器的结构吗?国内为什么没人能设计一款让中国人扬眉吐气的高端微混合器。发几张图片看看http://img1.jike.com/get?name=T1n4dMBCJ_1RCvBVdK岛津的http://img1.jike.com/get?name=T15hDfB_Yg1RCvBVdKhttp://ng1.17img.cn/bbsfiles/images/2012/09/201209192321_391967_2369266_3.jpg明尼克卖的,应该是waters的http://ng1.17img.cn/bbsfiles/images/2012/09/201209192322_391968_2369266_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/09/201209192323_391970_2369266_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/09/201209192329_391971_2369266_3.jpg理想的三通混合器http://ng1.17img.cn/bbsfiles/images/2012/09/201209192346_391974_2369266_3.jpghttp://img1.jike.com/get?name=T1J8W7BTLy1RCvBVdK

  • 【基础知识9】混合酸碱指示剂

    混合酸碱指示剂[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=14215]混合酸碱指示剂[/url]

  • 同时螯合多种微量元素的技术

    假如有一种办法,能够同时把钙、镁、铜、锌、硼、铁、锰等微量元素都螯合,与大量元素肥料混合后也不沉淀,算不算是一种有价值的技术?

  • 高效湿法混合机

    名称:高效湿法混合机操作规程(SOP)关键词: 高效湿法混合目的:建立高效湿法混合机使用的标准操作程序。范 围:SHK-220B 高效湿法混合颗粒机的使用过程。责任者:操作工、设备管理人员、车间管理人员。主体内容:1、操作前的准备(1)检查物料锅有无异物。(2)搅拌桨与切刀的转动是否为反时针方向。2、接通气、水、电源,把气、水转换阀转到通气的位置。气压调至0.5Mpa。(1)开启切碎、搅拌电机数秒钟,检查各运动转动部件是否正常,然后关闭。(2)关闭出料活塞,门信号灯亮,打开物料锅盖,将原辅料倒入锅内,然后关闭物料锅盖。(3)按要求调整时间继电器,设置干粉混合时间。(4)启动搅拌、切碎开关,先用低速开机后,再将速度调至要求,进行干混。(5)设定时间到达时,依次关闭搅拌、切碎电机。(6)待门信号灯亮后,打开物料锅盖,加入粘合剂。(7)按要求设定湿混造粒时间,启动搅拌、切碎开关,进行制粒。(8)设定时间到达时,自动停机,将盛料器准备于出料口下,打开活塞,启动搅拌,把颗粒排出。(9)按要求进行设备清洁,填写设备运行记录。3、注意事项(1)使用过程中桶盖一定要盖好,否则无法启动。(2)清除排料口时,一定要当主传动完全停止后,方可清除。名称:高效湿法混合机维护保养 (SOP)关键词: 高效湿法混合 维护保养目的:建立SHK-220B型高效湿法混合机维护保养的有关规定。范 围:SHK-220B型高效湿法混合机的维护保养责任者:操作工、维修工、设备管理人员。主体内容:1、维护与保养(1)使用前检查气压(应≥0.5Mpa),低于规定时,机器不能启动。(2)每换一个产品须进行清洗,平时至少每周清洗一次。物料锅清洗后进行清洗步骤如下l 旋下中心体(向左旋)。l 拆掉垫套,用取浆器取下搅拌浆。[font='Helvetica

  • 【分享】三维运动混合机有何优势?

    三维运动混合机是由机座、传动系统、电器控制系统,多向运动工机构,混合桶等部件组成,与物料直接接触的混合桶采用不锈钢材料制造,桶体内外壁均经抛光,这样的话,即美观大方,而且便于清洗,这种桶体内外壁均经抛光的设计,完全是站在客户的角度上为客户考虑的,不仅如此,此项设计还便于操作。    三维运动混合机在运行中,由于混合桶体具有多方向运转动作,使各种物料在混合过程中,加速了流动和扩散作用,同时避免了一般混合机因离心力作用所产生的物料比重偏析和积累现象,混合无死角,能有效确保混合物料的最佳品质。  三维运动混合机由于混合桶体具有多方向的运动,使桶体内的物料交叉混合点多,具有以下优点混合效果高,均匀度可达99.9%上最大装载系数可达0.9(普通混合机为0.4-0.6),混合时间短,效率高。    三维运动混合机广泛应用于制药、化工、食品、冶金、轻工及科研单位,能非常均匀地混合流动性较好的粉状或颗粒状的物料,使混合后的物料能达到最佳混合状态。

  • 溶剂混合对检测的影响

    流动相的配制与混合具有其特殊的意义和作用,混合不当都会对正常的检测造成不同程度的影响,下面几种情况都是色谱检测时经常遇到的,那么,您遇到下面的情况是怎么处理哒呢?下面的混合对检测会造成什么影响呢?欢迎各位版友提出您的建议和处理措施!=======================================================================~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1:流动相的配制方式不同对组分保留时间的影响 a:分别量取规定数量的溶剂和水,然后混合在一起。 b:先量取一定体积的溶剂,然后再加水稀释至规定的总体积。 c:先量取一定体积的水,然后再加入溶剂至规定的总体积。2:流动相比例阀混合温度的变化对检测的影响 a:甲醇与水的混合放出热量。 b:乙腈与水的混合吸收热量。3:流动相的泵前低压混合与流动相的泵后高压混合对检测的影响 a:四元泵低压泵前混合。 b:二元泵高压泵后混合。4:流动相溶剂与缓冲盐互溶性对检测的影响 a:高浓度的溶剂与缓冲盐梯度混合。 b:纯溶剂与水的梯度混合。

  • 【求助】混合液的含量测定

    各位大哥,小弟遇到一个很棘手的问题。我有一个混合液是,甲醇,水,乙醇,草酸,草酸二甲酯的混合液。不知道用什么办法才能求出他们各自的含量?如果那位知道,请不吝赐教。谢谢了

  • 【求助】请教:混合碱含量测定?

    用盐酸滴定溶液至橙色后,为什末将溶液煮沸,放冷却后继续滴定至溶液再次出现橙色才为第二终点?混合碱含量测定中,用盐酸滴定溶液至橙色后,为什末将溶液煮沸,放冷却后继续滴定至溶液再次出现橙色才为第二终点?

  • 低含量动物纤维与其他纤维混合物含量的测定

    GB/T16988—1997《特种动物纤维与绵羊毛混合物含量的测定》是检测散纤维、纱线、机织物、针织物中含两种及以上动物纤维含量的依据。其中的“10测量”中的“注:若纤维根数已够1500根,而载玻片只移动到中间,则要继续计数到边端方可停止。若上述某类纤维在混合物中的含量比例较低,试样达不到测量直径要求的根数,则量取片子上此类纤维全部根数为止。”,笔者认为这个注的内容不便于实际操作,而且不能适应所有的低含量动物纤维与其他纤维混合物的含量测定。  1存在的问题  一方面,这个注的内容仅适用于动物纤维总根数达到了1500根的情况,即使是这样,笔者认为也不利于实际操作,原因是:当测量载玻片上的纤维总根数达到了1500根时,其中某类动物纤维含量较低,达不到测量直径要求的根数,按照标准要求必须量取载玻片上此类纤维全部根数为止。这样做的问题是:  ①如果一个载玻片上的纤维根数远远超过1500根,为了量取载玻片上的数量很少的纤维根数,就要把每种动物纤维都加以区别并计数,直到整个载玻片上的纤维都计数测量完,这样做要耗费大量的时间;  ②如果仅量取片子上的数量很少的纤维根数,而其他动物纤维不再区别并计数,则在量取片子上的数量很少的纤维直径的同时其根数必须另外计数,再从总的测量根数中减去(即不能计入测量总根数,仅仅参与该种纤维的平均直径的计算),否则计算出的纤维含量是不正确的。这个处理方式是在以前人工测量、计数和计算的前提下才能做到,现在测量计数和计算都是用的软件,结果直接生成,按照标准中的规定难以做到。

  • 【原创】混合机分类介绍

    [URL=http://www.njhxg.com/honghe/]http://www.njhxg.com/honghe/[/URL]常用的混合机械分为气体和低粘度液体混合器、中高粘度液体和膏状物混合机械、热塑性物料混合机、粉状与粒状固体物料混合机械四大类。 气体和低黏度液体混合机械的特点是结构简单,且无转动部件,维护检修量小,能耗低。这类混合机械又分为气流搅拌、管道混合、射流混合和强制循环混合等四种。 中、高黏度液体和膏状物的混合机械,一般具有强的剪切作用;热塑性的物料混合机主要用于热塑性物料(如橡胶和塑料)与添 加剂混合;粉状、粒状固体物料混合机械多为间歇操作,也包括兼有混合和研磨作用的机械,如轮辗机等。混合时要求所有参与混合的物料均匀分布。混合的程度分为理想混合、随机混合和完全不相混三种状态。各种物料在混合机械中的混合程度,取决于待混物料的比例、物理状态和特性,以及所用混合机械的类型和混合操作持续的时间等因素。 液体的混合主要靠机械搅拌器、气流和待混液体的射流等,使待混物料受到搅动,以达到均匀混合。搅动引起部分液体流动,流动液体又推动其周围的液体,结果在溶器内形成循环液流,由此产生的液体之间的扩散称为主体对流扩散。当搅动引起的液体流动速度很高时,在高速液流与周围低速液流之间的界面上出现剪切作用,从而产生大量的局部性漩涡。这些漩涡迅速向四周扩散,又把更多的液体卷进漩涡中来,在小范围内形成的紊乱对流扩散称为涡流扩散。 机械搅拌器的运动部件在旋转时也会对液体产生剪切作用,液体在流经器壁和安装在容器内的各种固定构件时,也要受到剪切作用,这些剪切作用都会引起许多局部涡流扩散。搅拌引起的主体对流扩散和涡流扩散,增加了不同液体间分子扩散的表面积减少了扩散距离,从而缩短了分子扩散的时间。若待混液体的粘度不高,可以在不长的搅拌时间内达到随机混合的状态;若粘度较高,则需较长的混合时间。对于密度、成分不同、互不相溶的液体,搅拌产生的剪切作用和强烈的湍动将密度大的液体撕碎成小液滴并使其均匀地分散到主液体中。搅拌产生的液体流动速度必须大于液滴的沉降速度。少量不溶解的粉状固体与液体的混合机理,与密度成分不同,互不相溶的液体的混合机理相同,只是搅拌不能改变粉状固体的粒度。若混合前固体颗粒不能使其沉降速度小于液体的流动速度,无论采用何种搅拌方式都形不成均匀的悬浮液。 不同膏状物的混合主要是将待混物料反复分割并使其受到压、辗、挤等动作所产生的强剪切作用,随后又经反复合并、捏合,最后达到所要求的混合程度。这种混合很难达到理想混合,仅能达到随机混合。粉状固体与少量液体混合后为膏状物,其混合机理与膏状物料混合的机理相同。不同的热塑性物料以及热塑性物料与少量粉状固体的混合,需要依靠强剪切作用,反复地揉搓和捏合,才能达到随机混合。 流动性好的颗粒状固体物主要是靠容器本身的回转,或靠装在容器内运动部件的作用,反复地翻动、掺和而得以混合,这类物料也可用气流产生对流或湍流以达到混合。固体颗粒的对流或湍流不易产生涡流,混合速度远低于液体的混合,混合程度一般也只能达到随机混合。流动性很差的、互相发生粘附的颗粒或粉状固体,则常需用带有机械翻动和压、辗等动作的混合机械。[URL=http://www.njhxg.com/honghe/]http://www.njhxg.com/honghe/[/URL]

  • 【求助】混合器的混合效果

    在做液相色谱梯度洗脱时,用的是高压混合,发现两相溶剂极性相差小混合后,运行程序空走基线比较稳定,但两相溶剂极性相差大混合后,运行程序空走基线就不稳定,这是什么原因,是否是混合器的混合效果差,请教各位老师,谢谢!

  • 化工机械设备助手-混合机的原理

    化工机械设备助手-混合机的原理 混合机械是利用机械力和重力等,将两种或两种以上物料均匀混合起来的机械。混合机械广泛用于各类工业和日常生活中。 混合机械可以将多种物料配合成均匀的混合物,如将水泥、砂、碎石和水混合成混凝土湿料等;还可以增加物料接触表面积,以促进化学反应;还能够加速物理变化,例如粒状溶质加入溶剂,通过混合机械的作用可加速溶解混匀。 常用的混合机械分为气体和低粘度液体混合器、中高粘度液体和膏状物混合机械、热塑性物料混合机、粉状与粒状固体物料混合机械四大类。 气体和低黏度液体混合机械的特点是结构简单,且无转动部件,维护检修量小,能耗低。这类混合机械又分为气流搅拌、管道混合、射流混合和强制循环混合等四种。 中、高黏度液体和膏状物的混合机械,一般具有强的剪切作用;热塑性的物料混合机主要用于热塑性物料(如橡胶和塑料)与添加剂混合;粉状、粒状固体物料混合机械多为间歇操作,也包括兼有混合和研磨作用的机械,如轮辗机等。 混合时要求所有参与混合的物料均匀分布。混合的程度分为理想混合、随机混合和完全不相混三种状态。各种物料在混合机械中的混合程度,取决于待混物料的比例、物理状态和特性,以及所用混合机械的类型和混合操作持续的时间等因素。 液体的混合主要靠机械搅拌器、气流和待混液体的射流等,使待混物料受到搅动,以达到均匀混合。搅动引起部分液体流动,流动液体又推动其周围的液体,结果在溶器内形成循环液流,由此产生的液体之间的扩散称为主体对流扩散。 当搅动引起的液体流动速度很高时,在高速液流与周围低速液流之间的界面上出现剪切作用,从而产生大量的局部性漩涡。这些漩涡迅速向四周扩散,又把更多的液体卷进漩涡中来,在小范围内形成的紊乱对流扩散称为涡流扩散。 机械搅拌器的运动部件在旋转时也会对液体产生剪切作用,液体在流经器壁和安装在容器内的各种固定构件时,也要受到剪切作用,这些剪切作用都会引起许多局部涡流扩散。 搅拌引起的主体对流扩散和涡流扩散,增加了不同液体间分子扩散的表面积减少了扩散距离,从而缩短了分子扩散的时间。若待混液体的粘度不高,可以在不长的搅拌时间内达到随机混合的状态;若粘度较高,则需较长的混合时间。 对于密度、成分不同、互不相溶的液体,搅拌产生的剪切作用和强烈的湍动将密度大的液体撕碎成小液滴并使其均匀地分散到主液体中。搅拌产生的液体流动速度必须大于液滴的沉降速度。 少量不溶解的粉状固体与液体的混合机理,与密度成分不同,互不相溶的液体的混合机理相同,只是搅拌不能改变粉状固体的粒度。若混合前固体颗粒不能使其沉降速度小于液体的流动速度,无论采用何种搅拌方式都形不成均匀的悬浮液。 不同膏状物的混合主要是将待混物料反复分割并使其受到压、辗、挤等动作所产生的强剪切作用,随后又经反复合并、捏合,最后达到所要求的混合程度。 这种混合很难达到理想混合,仅能达到随机混合。粉状固体与少量液体混合后为膏状物,其混合机理与膏状物料混合的机理相同。 不同的热塑性物料以及热塑性物料与少量粉状固体的混合,需要依靠强剪切作用,反复地揉搓和捏合,才能达到随机混合。 流动性好的颗粒状固体物主要是靠容器本身的回转,或靠装在容器内运动部件的作用,反复地翻动、掺和而得以混合,这类物料也可用气流产生对流或湍流以达到混合。固体颗粒的对流或湍流不易产生涡流,混合速度远低于液体的混合,混合程度一般也只能达到随机混合。 流动性很差的、互相发生粘附的颗粒或粉状固体,则常需用带有机械翻动和压、辗等动作的混合机械。文章摘自:化工机械网

  • 互溶溶剂混合或混合物转移过程,玻璃容器中出现的水纹

    在配置溶液过程,我们往一种溶剂中加入另一种,通常会出现流线型的水纹,看起来有点像一滴水滴入一杯水中,在水杯外看起来的晃动,但是不同物质有点不一样,特别是高密度成分往低密度互溶成分中添加的时候产生的纹路。但是有时候观察到这种水纹出现在已经混合均匀的液体的转移过程,搞不明白,不知道有没有谁观察和总结过,描述一下

  • 【讨论】测螯合态的样品,配制了混合标准曲线,曲线中EDTA二纳的加入量为多少合适?

    [em09509]有一批螯合态的 铜,铁,锰,锌。把它们混合在一起,制成一个混合样。铜,铁,锰含量大致都为:2.5ppm,锌大致为0.3ppm。标准溶液也混在一起,铜,铁,锰的标准曲线都为:0,1,2,3,4,5ppm,锌为0.1,0.2,0.3,0.4,0.5ppm。现在想向标准曲线中加入EDTA二纳,不知道该加入多少?我这样想的:EDTA二纳加入宜多不宜少,就按标准曲线中金属离子浓度最高的为标准,来计算edta二纳的加入量。曲线中浓度最高为5ppm的,那么金属离子总浓度为:5+5+5+0.5=15.5ppm这几个金属中锌的原子量最大,就以65来算。那么金属离子 量浓度c=(15.5/1000)/65=0.000238mol/L ,EDTA二纳与金属离子以一比一的比例来螯合,分子量为237.那么我把EDTA二纳的浓度至少配成0.000238mol/L,一升中加入EDTA二纳质量为:237*0.000238=0.080361538g 即每升中加入EDTA二纳质量为0.080361538g该实验结果准确度要求并不高,只验证样品中含量是不是够数。不知道这样的想法有没有问题?若有更简单易行的方法,请大家指点!!

  • 【选购指南】VELP漩涡混合器选购指南

    如何选择适合的VELP漩涡混合器,在此根据VELP漩涡混合器的产品特点以及适用范围,为大家做个选购指南,希望大家在选购漩涡混合器的时候,有个更明确的方向和决策。 1. 如果只是需要基本功能的漩涡混匀器,该如何选购? 推荐: RX3漩涡混匀器。RX3漩涡混匀器是最简单的,固定的搅拌速度,单一运行,耐化学腐蚀性,混合能力强、稳定性好。RX3漩涡混匀器是基础型混匀器,触摸型,RX3漩涡混匀器的高科技技术确保耐化学腐蚀,表面镀锌,符合人体工程学的高度创新设计,确保良好的稳定性,应用广泛,是实验室基础混合器,可满足最基本的混合要求。http://www.velpchina.cn/uploadfiles/2013/11/201311141025402540.jpg图一:RX3漩涡混匀器

  • 【讨论】混合气体检测,该如何进行?

    公司充装高纯氮,高纯氩,纯氮,纯氩,医用氧,工业氧,各种混合气体,可是现在化验室只有手摇的氧分析仪,露点仪,微量氧分析仪,氧化锆氧分析仪,不知道怎么弄了,还好有台大连科纳的氩分析仪,不过故障中,头大

  • 求混合酸、混合碱的滴定方案

    各位板油,帮忙看下以下的几种样品溶液,如何使用电位滴定仪来滴定呢?1、HF、HNO3和H2SiF6混合溶液,希望采用酸碱滴定的方式测定各自的含量;预计氢氟酸和硝酸浓度大约30%,氟硅酸浓度不超过1%;理论上以上三种混合酸的滴定应该有出现4个突跃点吧?但实际滴定总是很难发现,能有3个点就不错了。2、NaOH和Na2SiO3混合溶液,希望采用酸碱滴定的方式测定各自的含量。预计氢氧化钠和硅酸钠的含量分别为30%和不超过5%。先行谢谢啦

  • 气相色谱如何测定醇水混合物的含量

    [color=#444444]我最近做性能测试要测试醇水混合物以及酚水混合物各组分含量的确定,查看资料要用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]测定。以前没有接触过[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url],假如我现在用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]测定乙醇与水混合物中乙醇和水的含量,应该选用哪种类型的柱子?如果我用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]测定苯酚和水混合物中苯酚和水的含量那应该用哪种柱子?这两种测试的柱子是不是可以通用?希望各位不吝赐教,在下感激不尽![/color]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制