苄基苄基亚苄基

仪器信息网苄基苄基亚苄基专题为您提供2024年最新苄基苄基亚苄基价格报价、厂家品牌的相关信息, 包括苄基苄基亚苄基参数、型号等,不管是国产,还是进口品牌的苄基苄基亚苄基您都可以在这里找到。 除此之外,仪器信息网还免费为您整合苄基苄基亚苄基相关的耗材配件、试剂标物,还有苄基苄基亚苄基相关的最新资讯、资料,以及苄基苄基亚苄基相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

苄基苄基亚苄基相关的资料

苄基苄基亚苄基相关的论坛

  • 化妆品中的“3-亚苄基樟脑”如何检测?

    2011年9月7日消息,法国健康产品安全机构(AFSSAPS)宣布一项紧急禁令,要求生产商禁止在化妆品中使用3-亚苄基樟脑(3-Benzylidene-camphor,3-BC),原因是该物质具有潜在风险会干扰人体内分泌。非政府组织国际化学秘书处(ChemSec)对该决定表示欢迎,并呼吁法国按照REACH法规将3-亚苄基樟脑拟定为高度关注物质(SVHC)。ChemSec 称,3-亚苄基樟脑常作为紫外线过滤层在防晒剂中使用,该物质可通过皮肤被人体吸收,目前已在孕妇母乳中发现3-BC的存在。AFSSAPS也在决议声明中表示,最近的研究表明3-BC会干扰内分泌,特别是影响生育问题,含有该物质的化妆品可能对人类的健康造成严重的危害。因此,机构决定即刻引进禁令,禁止在化妆产品中使用该物质。生产商、进口商,以及分销商必须尽快采取措施停止将产品投放市场并将未销售的产品从货柜上撤离。ChemSec项目协调员对法国颁布3-BC禁令的举动表示支持,并希望能将禁令扩展至欧盟范围,鼓励法国及欧盟其他成员国仿效德国,将内分泌干扰物质增加至REACH候选名单中。

  • 求助分析此图(苄基马来酰亚胺?)

    dongxianwenbianan为苄胺的红外光谱,dongxianwen20应该是苄基马来酰亚胺的光谱,怎么分析3000以上的峰?请教各位老师,如何分析酰胺中的C—N和稀烃的C—H?

苄基苄基亚苄基相关的方案

苄基苄基亚苄基相关的资讯

  • 可检测基因编辑脱靶效应,此技术有望完善基因编辑治疗
    p style=" text-align: center "   img src=" https://img1.17img.cn/17img/images/201903/uepic/22506cf5-5909-4022-83a3-3fd7e13aec9a.jpg" title=" 00.jpg" alt=" 00.jpg" style=" text-align: center " / /p p style=" text-align: center " 研究人员在观察胚胎培养情况。中科院神经科学研究所供图 br/ /p p   “渐冻人”(运动神经元症)、“玻璃娃娃”(成骨不全症 )、“月亮孩子”(白化病)、地中海贫血……各种各样的罕见病一直因发病率低而缺乏有效的治疗方案,给患者和家庭带来无限的痛苦。 /p p   据统计,全球有7000多种罕见病,其中80%的罕见病是单基因遗传病。近年来,随着基因编辑技术的逐渐成熟,基因治疗被人们寄予厚望。 /p p   然而,基因治疗的风险不可低估,其中“脱靶效应”是基因编辑技术最大的风险来源。 /p p   近日,中科院神经科学研究所、脑科学与智能技术卓越创新中心杨辉研究组与中科院马普计算生物学研究所、中国农科院深圳农业基因组研究所及美国斯坦福大学团队合作,开发出一种名为GOTI的全新的检测基因编辑工具脱靶技术。该技术可精准客观地评估基因编辑工具的脱靶率。该研究于3月1日在线发表于《科学》。 /p p   strong  难题: /strong /p p strong   如何有效检测基因编辑工具的安全性 /strong /p p   CRISPR/Cas9是广受关注的新一代基因编辑工具。学术界普遍认为,基于CRISPR/Cas9及其衍生工具的临床技术将为人类的健康作出巨大贡献。然而,基因编辑工具“脱靶”风险也一直备受关注。若将其应用于临床,“脱靶效应”可能会引起包括癌症在内的很多种副作用。 /p p   中科院神经科学研究所研究员杨辉在接受《中国科学报》采访时表示,临床技术对于潜在风险和副作用的容忍度极低,因此一种能突破之前限制的脱靶检测技术,将成为CRISPR/Cas9及其衍生工具能否最终走上临床的关键。 /p p   “其实,过去人们推出过多种检测脱靶的方案,但这些方法都存在局限性。传统上,对脱靶的检测依赖于算法预测,靠不靠谱无人得知 或依赖于体外扩增,但这个会引入大量的噪音,会导致检测的精确度大打折扣。”杨辉说。 /p p   由于不能高灵敏度地检测到脱靶突变,尤其是单核苷酸突变,因此关于CRISPR/Cas9及其衍生工具的真实脱靶率一直存在争议。 /p p   然而,任何科学技术归根结底都需要服务于全人类,尤其像基因编辑这样的神奇技术。想要有效地操纵这把“上帝的手术刀”,还得给它做个全方面的体检。 /p p    strong 突破: /strong /p p strong   GOTI技术精准捕捉“脱靶”逃兵 /strong /p p   要提升检测脱靶效应的精度,就必须彻底颠覆原有的脱靶检测手段。 /p p   为实现这一目标,实验人员建立了一种名叫GOTI的脱靶检测技术。“我们在小鼠受精卵分裂到二细胞期时,编辑一个卵裂球,并使用红色荧光蛋白标记。小鼠胚胎发育到14.5天时,将整个小鼠胚胎消化成为单细胞,利用流式细胞分选技术并基于红色荧光蛋白,分选出基因编辑细胞和没有基因编辑的细胞,然后通过全基因组测序比较两组差异。这样就避免了单细胞体外扩增带来的噪音问题。”中国农科院深圳农业基因组研究所研究员左二伟告诉《中国科学报》。 /p p   同时,由于实验组和对照组来自同一枚受精卵,理论上基因背景完全一致,因此直接比对两组细胞的基因组,其中的差异基本就可以认为是基因编辑工具造成的。这样便能发现此前脱靶检测手段无法发现的完全随机的脱靶位点。 /p p   随后,该团队将成功建立的GOTI投入基因编辑技术脱靶检测。 /p p   实验人员先是检测了最经典的CRISPR/Cas9系统。结果发现,设计良好的CRISPR/Cas9并没有明显的脱靶效应。但是,同样被寄予厚望的CRISPR/Cas9衍生技术BE3则存在非常严重的脱靶,而且这些脱靶大多出现在传统脱靶预测认为不太可能出现脱靶的位点。 /p p   杨辉建议,人们应冷静地分析一些新兴技术的安全性。这些脱靶位点有部分出现在抑癌基因上,因此经典版本的BE3有着很大的隐患,目前不适合作为临床技术。 /p p    strong 未来: /strong /p p strong   完善基因编辑治疗手段、建立行业标准 /strong /p p   杨辉告诉记者,团队接下来将进一步检测BE3除导致异常基因突变外还可能存在的其他问题,并在此基础上,设法改进这个系统,从而建立一种不会脱靶,也没有其他风险的单碱基突变技术。 /p p   中科院马普计算生物学研究所研究员李亦学表示,最新工作建立了一种在精度、广度和准确性上远超之前的基因编辑脱靶检测技术,显著提高了基因编辑技术的脱靶检测敏感性,有望借此开发出精度更高、安全性更好的新一代基因编辑工具。 /p p   “我们希望未来可基于这项新技术,制定一些行业标准。凡是进入临床的基因编辑技术,必须经过这套系统的检验才能证明其安全性,以便让这个领域有序、健康地发展下去。”他说。 /p p   中科院院士、中科院神经科学研究所所长蒲慕明认为,该技术针对基因编辑的安全性问题,“有了它,便可以更加客观、可靠地评估基因编辑工具的脱靶率”。 /p p   针对该技术在单碱基编辑工具BE3中发现的重大“安全隐患”,蒲慕明表示:“这能让我们重新审视基因编辑技术的安全性,但不是说这项技术不能再开展基因治疗了。正是因为已经建立新的检测技术,我们才知道如何去修正、改善BE3,从而开发安全性更高的新一代基因编辑工具,造福患者。” /p
  • 食品添加剂6-苄基腺嘌呤等检测国标通过评审
    近日,江门检验检疫局承担制定的“进出口食品添加剂6-苄基腺嘌呤的检测方法”和“进出口食品添加剂蔗糖聚丙烯醚的检测方法”两项国家标准顺利通过了国家认监委、国家标准委和中国检科院等部门的专家评审。   由于此前国内外均无相关标准,江门检验检疫局这两项国家标准的顺利通过评审为今后我国对进出口食品添加剂6-苄基腺嘌呤、蔗糖聚丙烯醚的检测提供了保证。这也是江门局首次承担国家标准的制定,填补了该局国家标准制修订工作的空白,为继续参与国家标准的制修订打下了良好的基础,标志着该局的科研能力迈上了一个新的台阶。
  • 精准基因编辑时代到来!华人科学家重排原子精准编辑基因!
    p   当我们在谈论生命时,我们谈论的都是化学分子。DNA也好,蛋白质也罢,正是这些生物大分子发生的原子重排,才催生出无数生化反应,为地球带来生命。 /p p style=" text-align: center " img title=" 001.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/c0bbe2b5-3415-4594-bc51-72b794f474de.jpg" / /p p style=" text-align: center " strong   本研究的主要负责人David Liu教授(图片来源:Broad研究所) /strong /p p   今日,Broad研究所的华人学者David Liu教授公布了一项了不起的研究!他的团队开发了一种“碱基编辑器”,能在细胞内用简单的化学反应,使DNA的一种碱基进行原子重排,让它变成另一种碱基。与CRISPR-Cas9等流行的基因编辑手段不同,这种技术无需使DNA断裂,就能完成基因的精准编辑。这项研究发表在了顶尖学术期刊《自然》上。 /p p style=" text-align: center " img title=" 002.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/25395cd0-f659-4486-b95c-07cbee1c729a.jpg" / /p p style=" text-align: center "   strong  将近一半的致病变异来源于C-G组合到A-T组合的改变(图片来源:《自然》) /strong /p p   要看懂这项研究,我们先来看看DNA本身。我们知道,DNA的双螺旋结构由4种碱基:腺嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)与鸟嘌呤(G)组成。它们A和T配对,C和G配对,就像字母一样,编写了人类的遗传信息。然而由于化学结构的问题,C这个字母不大稳定,容易出现自发的脱氨突变,把原本的好好的C-G组合,变成A-T组合。据估计,每天人类的每个细胞里都会出现100-500次这样的突变。而人类已知的致病单碱基变异,高达一半属于这种突变。 /p p style=" text-align: center " img title=" 003.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/3079c9ad-aff8-4c2e-b7ab-54dc17de1cbe.jpg" / /p p style=" text-align: center " strong   合适的脱氨反应能将腺嘌呤转变为结构类似于鸟嘌呤的肌苷(图片来源:《自然》) /strong /p p   换句话说,如果我们能定点修复这些基因突变,把A-T变回C-G,就有望从根源上纠正人类的许多遗传疾病。这正是Liu教授团队的研究思路。在实验室中,他们观察到了一个很有意思的现象——腺嘌呤(A)在出现脱氨反应后,会变成一种叫做肌苷的分子,而它与鸟嘌呤(G)的结构非常接近,也能成功骗过细胞里的DNA聚合酶。简单的几轮DNA复制后,A-T组合就能变回C-G。 /p p   但科学家们遇到一个棘手的问题——自然界中并没有能够在DNA中催化腺嘌呤进行脱氨反应的酶。 /p p   如果没有现成的道路,那就开辟一条!在人体中,科学家们发现了一种叫做TadA的酶,它能催化转运RNA上的腺嘌呤(A),使它脱氨。尽管催化的对象不同,但Liu教授的团队认为它有足够的应用潜力。于是,利用演化的力量,科学家们对TadA进行了改造。他们将编码TadA的基因引入大肠杆菌内,并寄希望于这种酶能在大肠杆菌快速的繁衍中,突变出催化DNA腺嘌呤的能力。 /p p style=" text-align: center " img title=" 004.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/77d2e2cb-4181-4432-b16c-f701f36c851b.jpg" / /p p style=" text-align: center "   strong  本研究中,碱基编辑器的作用机理(图片来源:《自然》) /strong /p p   同时,科学家们也想到,DNA上的腺嘌呤特别多,总不能把他们全都转化为鸟嘌呤吧。因此,特异性地对某个碱基进行催化,是这套系统迈入实际应用的关键。Liu教授想到了自己的实验室邻居张锋教授,这名华人学者以CRISPR基因编辑技术而闻名于世。如果我们借助CRISPR-Cas9系统的精准,但不让它切开双链DNA,或许就能定点对腺嘌呤进行原子重排,让它变成另一种碱基。为此,科学家们在筛选TadA酶的过程中,也同样引入了一套切不动DNA的特殊CRISPR-Cas9系统,用于精准定位。 /p p   功夫不负有心人!这套系统虽然极为复杂,但在经历了漫长的7代筛选后,Liu教授团队终于开发出了一款全新的“碱基编辑器”,其核心正是能有效针对DNA的TadA酶。无论是在细菌里,还是在人类细胞中,这款编辑器都能顺利发挥作用。在人类细胞里,它的编辑效率超过了50%! /p p style=" text-align: center " img title=" 005.JPEG" src=" http://img1.17img.cn/17img/images/201710/insimg/e1500d56-ca99-4809-932c-2bd6c898751f.jpg" / /p p style=" text-align: center "   strong  这套系统能有效用于人类细胞(图片来源:《自然》) /strong /p p   尽管这套系统利用了CRISPR-Cas9系统,但科学家们在这篇论文里指出,他们开发的技术与CRISPR-Cas9系统各有千秋。在矫正单碱基突变方面,它比CRISPR-Cas9系统更为有效,也更“干净”。它几乎没有引起任何随机插入和删除等突变,在全基因组里的脱靶效应也要好于CRISPR-Cas9技术。要知道,这可是人们对CRISPR-Cas9技术安全性的最大担忧之一。 /p p   先前,研究人员们也同样开发了编辑其他碱基的方法。目前,Liu教授的团队已经有了把C变成T,把A变成G,把T变成C,以及把G变成A的工具。诚然,这些工具目前距离人类临床应用还有不小的距离。但要知道,它只涉及碱基的原子重排,无需让DNA双链断裂,从而降低了基因治疗过程中的风险。此外,许多遗传病都是单基因突变,用这些工具进行治疗也显得更为有的放矢。 /p p   我们感谢Liu教授的团队为我们带来如此令人兴奋的基因编辑新工具。毫无疑问,基因编辑的时代已经到来,你准备好迎接冲击了吗? /p p   参考资料:[1] Programmable base editing of AT to GC in genomic DNA without DNA cleavage /p p & nbsp /p

苄基苄基亚苄基相关的仪器

  • CRISPR-Cas9技术原理:  CRISPR(clustered,regularlyinterspaced,shortpalindromicrepeats)是一种来自细菌降解 入侵的病毒DNA或其他外源DNA的免疫机制。在细菌及古细菌中,CRISPR系统共分成3类,其中Ⅰ类和Ⅲ类需要多种CRISPR相关蛋白(Cas蛋白)共同发挥作用,而Ⅱ类系统只需要一种Cas蛋白即可,这为其能够广泛应用提供了便利条件。  目前,来自Streptococcuspyogenes的CRISPR-Cas9系统应用最为广泛。Cas9蛋白(含有两个核酸酶结构域),可以分别切割DNA两条单链。Cas9首先与crRNA及tracrRNA结合成复合物,然后通过PAM序列结合并侵入DNA,形成RNA-DNA复合结构,进而对目的DNA双链进行切割,使DNA双链断裂。  由于PAM序列结构简单(5' -NGG-3’),几乎可以在所有的基因中找到大量靶点,因此得到广泛的应用。CRISPR-Cas9系统已经成功应用于植物、细菌、酵母、鱼类及哺乳动物细胞,是目前高效的基因组编辑系统。CRISPR-Cas9技术优势:  1.效率高:可精确编辑基因组,敲除效率高  2.周期短:CRISPR-Cas9系统的构建和使用极为方便,极大降低了实验难度,缩短实验周期  3.高嵌合率,生殖遗传稳定;  4.多重编辑能力:可实现多个靶位点同时进行基因打靶;  5.可实现大片段DNA敲除、敲入、条件性敲除。武汉贝赛模式生物科技有限公司提供基因编辑(转基因、基因全敲、条件性敲除、基因敲入、点突变等)大小鼠模型,提供定制的基因编辑细胞系构建服务(基因敲除,点突变,基因敲入),进行动物相关实验(大小鼠净化、精子及胚胎保种等),提供模式动物繁殖供应和药物药效评价以及新药研发服务等。
    留言咨询
  • PRE双向可编程交流电源具备了“回收式电网模拟源”的能量回收功能和“可编程交流电源”高基波带宽功能及可编程功能,功率范围从15kVA~150kVA,并将部分输出指标提升至全新高度,使应用测试更加精准、便捷。 主要特点 ● 全功率回馈,真正双向,交直流四象限输出功能;● 谐波扩展至100次@50????/60????、25次@400????;● 输出电压可扩展至L-N/450Vac@40???? -70????,无需增加升压变压器;● 输出基波频率提升至5000????;● 恒功率曲线输出,无需设置高、低压档位;● 交流、直流、交直流输出模式;● 单相、三相(三相联动)、分相输出模式;● 可编程输出阻抗;● 兼容SCPI的RS-232, USB 和以太网接口。 关键特性 高功率密度 PRE具有极高的功率密度,体积、重量均是传统电源的1/6,移动、运输方便。同样占地面积可获得更大容量。 高精度 PRE可提供高达±0.025% F.S.精度的输出电压及±0.025% F.S.精度的负载调整率。PRE的双向特征不仅是无缝回馈,它能在并网逆变器、储能变流器规范测试中证明设备符合相关标准,配合其可编程内阻功能,真正模拟发电机内阻、特别是中频(400 ????)、高频供电(1550 ????)时线缆传输阻抗对设备的影响。 一档恒定功率输出 普通的交流电源电压输出范围有两个档位,以提供要么高电压要么大电流。PRE系列设计了沿一个恒定功率曲线工作的独特的单电压范围。在L-N/167Vac时即可输出额定功率,这个工作状态范围可扩展至L-N/450Vac输出不中断。220Vac输出功率超过额定功率,PRE1530M可测试15kW设备。 直流输出功率不降额 普通交流可编程电源,在输出直流时,输出电流只有交流有效值的一半,PRE直流输出电流与交流有效值相同,使用户得到更多功率。 输出范围宽 PRE双向可编程交流电源无需增加外部升压变压器,输出电压高达L-N/0-450V,全面涵盖钢铁、石油、煤矿相关行业产品测试。 内置测试标准 满足IEC 61000-4-11/-13/-14/-27/-28测试标准,性能有更大提升。幅值动态响应时间达100us,相位精度达0.1°,谐波范围扩展至100次@50Hz/60Hz;25次@400Hz,含量高达40%。远远高于IEC 61000-4及MIL-HDBK-704中有关谐波测试要求,在满足法规要求的条件下探知产品设计边界。 内置多达30种典型谐波电压波形,方便用户一键调取。 技术参数 产品型号PRE1530MPRE1531PRE1532PRE1533PRE1534PRE1535PRE1536PRE1537PRE1538PRE1539输出模式交流、直流、交流+直流、直流+交流输出相数三相、单相交流输出 电压 额定范围(??_??????)L-N/0-300,L-L/0-520@全频率范围扩展范围(??_??????)①L-N/0-450,L-L/0-780设置分辨率(??)0.01精度±0.025% F.S.波形种类 正弦,三角波,方波,1%削波,2%削波,5%削波,10%削波,自定义直流分量(????)<20电压失真<0.3%@50Hz/60Hz;<1%@15Hz-400Hz;<2%@400Hz-5000Hz;<0.3%@15Hz-1600Hz(使用滤波附件);<1%@1600Hz-5000Hz(使用滤波附件)负载调整率±0.025% F.S.源调整率±0.01% F.S. @10%变化远端补偿自适应电压摆率AC>3.0V/μs频率 范围(????)15.00–5000.0设置分辨率(????)②0.01精度±0.01%相位 范围A = 0°, B = 240°, C = 120°(默认);可编程范围0°–359.9°精度±0.1°分辨率±0.1°谐波 次数100次@50????;100次@60????;25次@400????;含量③40%幅值误差±5%@设置值或基波值的0.1%@40次以下相位角范围0°-359.9°显示方式表格瞬态 编程 编程步数100步编程参数电压、频率、上升时间、平顶时间、相位上升时间范围100μs-10s平顶时间范围100μs-999s最小编程时间步长100μs编辑模式添加、在此前插入、删除执行 运行模式运行、停止、循环电流限制 范围(??)@三相306090120150180210240270300范围(??)@单相90180270360450540630720810900过流保护100%-105%@最长3秒峰值因数④1-6峰值电流(??)@三相75150225300375450525600675750峰值电流(??)@单相225450675900112513501575180020252250精度±0.25% F.S.输出阻抗⑤ 电阻(Ω)-10.0~+10.0电感(????)0~2.00直流输出 电压 范围(??)636设置分辨率(??)0.01输出精度±0.1%F.S.输出纹波(??_??????)⑥<0.15@(DC-300kHz)负载调整率±0.02%F.S.源调整率±0.01F.S.%@10%变化输出摆率DC>3.0V/μs电流 范围(??)90180270360450 540 630 720 810 900 测量参数 交流电压 范围(??_??????)L-N:0–600分辨率(??_??????)0.01精度±0.025% F.S.输出频率 范围(????)15–5000分辨率(????)0.01精度±0.01%交流电流 范围(??)1002003004005006007008009001000分辨率0.010.050.1精度±0.1% F.S.峰值电流 范围(??)4倍额定分辨率(??)0.01精度±2% F.S.峰值因数 范围1.00–6.00分辨率0.01精度±2.0% F.S.有功功率 范围(????)20406080100120140160180200分辨率(??)1精度±0.1% F.S.视在功率 范围(??????)20406080100120140160180200分辨率(????)1精度±0.1% F.S.功率因数 范围-1.00~+1.00分辨率0.01直流电压 范围(??)±1000分辨率(??)0.01精度±0.1% F.S.直流电流 范围(??)1002003004005006007008009001000分辨率(??)0.010.050.1精度±0.1% F.S.输入 接线方式三相四线 ABC+PE频率(????)47 - 63电压范围(??)⑦304 - 480每相电流(??)306090120150180210240270300输入峰值电流(??)< 1.5倍额定功率因数> 0.95效率> 0.86保护 保护⑧过流 截流@直流模式;断开@交流模式峰值过流 断开过功率 断开过容量 断开过压(设定1%-105%) 断开过温 断开过压或欠压 断开注解: ①:40????-70????范围内; ②:分辨率0.01????或当前设置值的0.01%,二者取数值较大值; ③:额定幅值300??_??????的40%,指总含量; ④:峰值因数指峰值电流与有效值的比值,标准正弦波典型值为1.414,最大允许值为6,但峰值不超过单机最大电流值,并非指额定值条件下的峰值因数; ⑤:稳态输出下的阻抗,且不超过输出最大值; ⑥:示波器交流融合并20MHz带宽限制; ⑦:可工作的范围,输出功率降额见“输入电压降额曲线”; ⑧:“过压或欠压”特指输入网侧过欠压。 规格型号型号输出路数额定功率 (??????)最大电压 (??_??????)三相最大电流 (??_??????)单相最大电流 (??_??????)最大电压 (??_????)最大电流 (??_????)外型PRE1530M三相154503090636904UPRE1530S三相154503090636904UPRE1531三相304506018063618030UPRE1532三相454509027063627030UPRE1533三相6045012036063636030UPRE1534三相7545015045063645030UPRE1535三相904501805406365402×30UPRE1536三相1054502106306366302×30UPRE1537三相1204502407206367202×30UPRE1538三相1354502708106368102×30UPRE1539三相1504503009006369002×30U
    留言咨询

苄基苄基亚苄基相关的耗材

  • 五氟苄基溴
    产品信息:五氟苄基溴 (PFBBr)适用于羧酸、酚类和磺酰胺类的电子捕获 GC 分析* 用于萃取烷化技术时,反应时间很短:~20 分钟*衍生物具有很高的 EC 敏感性,因而适于检测低水平脂肪酸*可分析沥青中的痕量有机物 订货信息:五氟苄基溴描述规格部件号数量PFBBr(五氟苄基溴)5gTS-582201/包
  • S-苄基氯化异硫脲
    SA02401338S-Benzylthiuronium Chloride OAS S-苄基氯化异硫脲1gPerkin Elmer 0240-1338Thermo 33835200
  • CRISPR/Cas9基因编辑试剂盒(质粒)
    技术背景CRISPR/Cas是一套最早在细菌中发现的由RNA引导的DNA内切酶系统。CRISPR/Cas9系统主要由gRNA(guide RNA)和Cas9蛋白两部分组成。针对目的基因,通过人工设计的gRNA来识别目的基因序列,并引导Cas9蛋白酶对特定区域DNA 双链进行有效切割,造成DNA双链的断裂,激起细胞以非同源末端连接或同源重组的方式进行修复,从而实现基因敲除。产品介绍Quick KO® 基因敲除试剂盒是一款专为科研用户定制研发的 all-in-one 即用型CRISPR基因敲除操作试剂盒。其内包含了CRISPR基因敲除所需的,从gRNA设计到获得敲除细胞株,完成实验的重要材料。在完成基因编辑实验的同时,大大提高科研效率。组分Quick-KO® PlasmidQuick-KO® gRNAOptimized SpCas9NC gRNACell Lysis BufffferBuffer ABuffer BValidity TestPCR Master Mix (2×)Control TemplateGenotyping Primer F1Genotyping Primer F2Genotyping Primer R1Genotyping Primer R2ddH2O产品优势1.提供的gRNAs均经过验证,保障敲除成功率 a.每一个出厂的基因敲除试剂盒都经过团队的技术验证,确保敲除效率 b.更高的敲除成功率,避免反复实验,节约实验成本 2.独有载体设计,无需自行构建,到手即用,高效便捷 细胞基因编辑实验流程: a.如已经掌握细胞各项实验参数,可以省去预实验部分,更快完成实验; b.独有载体设计,无需自行构建,提升实验效率; c.只需裂解少量细胞,无需提取和纯化DNA,节约细胞扩增和核酸提取的时间; d.Quick-KO® 采用Multi-gRNA表达策略,在工具细胞中均已验证高效

苄基苄基亚苄基相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制