碳纳米管台式炉

仪器信息网碳纳米管台式炉专题为您提供2024年最新碳纳米管台式炉价格报价、厂家品牌的相关信息, 包括碳纳米管台式炉参数、型号等,不管是国产,还是进口品牌的碳纳米管台式炉您都可以在这里找到。 除此之外,仪器信息网还免费为您整合碳纳米管台式炉相关的耗材配件、试剂标物,还有碳纳米管台式炉相关的最新资讯、资料,以及碳纳米管台式炉相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

碳纳米管台式炉相关的厂商

  • 400-860-5168转5085
    苏州微流纳米生物技术有限公司由海归工程师创立, 地处苏州工业园区生物纳米科技园内。公司技术团队具有十余年国内外纳米均质领域服务经验,一直与国外厂商保持了紧密的合作关系,公司是美国Genizer官方授权亚洲区总代理、美国BEE官方授权中国区总代理。  公司主营代理超高压均质、脂质体挤出等设备和技术,为脂肪乳 (丙泊酚、前列地尔、氯维地平等),精细化工(MLCC、锂电池、导电涂层等),细胞破碎,纳米粒(紫杉醇白蛋白等)、纳米脂质体(多柔比星、伊立替康)、纳米纤维素、混悬液(泊沙康唑、氯替泼诺等)等领域客户提供了优质的解决方案。公司致力于成为纳米均质服务领域的专家,“品质至上、效能优先”是我们的经营理念,公司将竭诚为您提供优质的服务与解决方案。  苏州微流纳米生物技术有限公司供应: 高压微射流均质机、高压均质机、微射流金刚石交互容腔、超高压均质机、纳米分散仪、纳米均质机、纳米破碎仪、脂质体挤出器、微流化器、纳米激光粒度仪、实验到生产型Genizer微射流超高压均质机、实验型和生产型脂质体挤出器、脂肪乳配液系统、脂质体工业化制备、石墨烯导电浆料、碳纳米管导电浆料、MLCC多层陶瓷电容导电涂层、电池导电浆料纳米化系统。
    留言咨询
  • 南京牧科纳米科技有限公司目前主要由10位具有海外留学经历和国内顶尖研究课题组多年研究经验的博士团队组成。牧科是国内唯一一家专门从事二维材料单晶CVD合成和二维半导体纳米片溶液及冷干粉末合成的(类石墨烯类材料)合成与研发的专业技术咨询和服务的纳米科技公司。公司现有产品主要包括:(1)各类人工合成二元、三元和四元二维单晶材料;单层机械剥离二元、三元和四元二维单晶材料,及定制类相关拓扑绝缘二维材料;(2)CVD法生长各类单层类石墨烯二维半导体材料MoS2,WS2,MoSe2,WSe2以合金CVD定制, CVD-BN薄膜定制,定做横向,纵向结构二维异质节(3) CVD生长二六族(Zn,Cd)+(S,Se,Te), 三五族(Ga,In)+(Sb,As,P) 纳米线以及异质节结构;(4)石墨烯单晶系列100um-2mm,5mm,1cm 大六边形单晶 (5)氧化石墨烯溶液、氧化石墨烯干粉,石墨烯干粉,石墨烯溶液,热还原石墨烯干粉,碳纳米管阵列衬底。(6)CdSe, CdSe/ZnS, CdSe/Cds,ZnSe-ZnS量子点/近红外PbS量子点/InP-ZnS量子点/水溶性发光量子点/上转换发光纳米粒子/LED用量子点 全光谱量子点溶液,(7)有机无机杂化钙钛矿单晶。尺寸可根据需要定制。(8)基团修饰氧化铁、四氧化三铁、三氧化二铁、聚苯乙烯磁性粒子、金纳米棒、三角纳米笼、银纳米颗粒生物制剂(8)实验用SIO2/SI,掺杂硅,本征硅衬底,镀金衬底,M面,C面,R面蓝宝石衬底,MgO、Zno、GGG晶体,TiO2等单晶衬底,激光切割等服务等亦可提供最先进相关测试服务(AFM,SEM,TEM ,XPS,Raman,BET,XRD,常温及变温PL,紫外-可见-近红外吸收/反射/透射光谱等常规测试服务)。如需获得更多的了解,欢迎您咨询QQ:2984216964 025-66171690 18052095282,或者A直接访问我们的公司网址是:http:www.mukenano.com
    留言咨询
  • 400-860-5168转4657
    苏州纳洛泰仪器有限公司专业提供高压微射流均质机,高压均质机,超高压灭菌器,微流控乳化机,微反应乳化机,primix乳化机,脂质体挤出器及对射流金刚石交互容腔等配件。我们的设备广泛应用在制药(高端注射制剂,紫杉醇白蛋白等)、生物技术(细胞破碎提取,疫苗制剂)、化妆品(细化透皮吸收)、精细化工(喷墨、添加剂等分散)、保健品(组分细化混悬)纳米新材料分散(石墨烯剥离,碳纳米管)等领域。
    留言咨询

碳纳米管台式炉相关的仪器

  • 碳纳米管,是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料。它主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管。层与层之间保持固定的距离,约为0.34nm,直径一般为2~20nm。由于其独特的结构,碳纳米管的研究具有重大的理论意义和潜在的应用价值,如:其独特的结构是理想的一维模型材料 巨大的长径比使其有望用作坚韧的碳纤维,其强度为钢的100倍,重量则只有钢的1/6 同时它还有望用作为分子导线,纳米半导体材料,催化剂载体,分子吸收剂和近场发射材料等。 Specim可提供碳纳米管近红外光谱及影像分析工具,采用近红外光谱相机,搭载与近红外显微平台,并配合压电陶瓷纳米位移台,实现碳纳米管的影像及光谱扫描,不仅可以用于电致发光的光谱分析,也可用与光致发光光谱测量,为研究者提供大量的光谱及影像数据以供研究分析使用。光谱测量范围:970nm- 2500nm(900nm-1700nm)。
    留言咨询
  • 供应碳纳米管台式炉 400-860-5168转2623
    SSP-354 碳纳米管台式炉 SSP-354 碳纳米管台式炉是美国Nanotech 的优势产品,Nanotech 技术起源于NASA 的格伦碳纳米管研究中心。这项技术能够生产出高纯度、低缺陷密度的碳纳米管。 目前SSP-354能够生产出1~100纳米直径的单壁或多壁的碳纳米管。而且有别于 Arc discharge、Laser ablation、CVD这三种生产方式需要预催化的模式。 SSP-354可生产高纯度、低缺陷密度的CNTs,仪器操作步骤简单无需预催化,桌面放置,非常适合研究所、大学实验室操作。
    留言咨询
  • 台式高性能CVD石墨烯/碳纳米管快速制备系列—nanoCVDNanoCVD系列台式设备是专为制备高质量的石墨烯与碳纳米管而开发的高性能台式CVD系统。在与诺奖科研团队的长期合作中获得的丰富经验使该系列产品具有非常高的性能。特别是针对石墨烯、碳纳米管等不同的应用进行了针对性的优化。该系列产品操作简便,生长条件控制,生长迅速、制备出的样品具有高质量、高可重复性,这些特点使得该系列产品受到多个石墨烯研究团队的赞誉。该系列产品适合于想要制备高质量石墨烯或碳纳米管用于高端学术研究的团队。例如,埃克塞特大学、哈德斯菲尔德大学、莱顿大学、亚森工业大学这些知名的高校均是nanoCVD系列的用户。nanoCVD采用全新的设计理念,可以快速、高质量地生产石墨烯或碳纳米管。与传统的简易CVD(管式炉)相比,该系统基于冷壁设计方案,具有以下主要优点:◎ 系统可以快速的升温和降温。◎ 更加的条件控制和可靠的工艺重现性。◎ 安全性设计,具有尾气稀释模块。◎ 智能化设计,全自动引导式触屏操作系统。◎ 支持自动程序的设定与储存。◎ 雄厚的技术积累,专业的技术支持。设备型号台式超高质量石墨烯快速制备CVD系统- nanoCVD 8GnanoCVD-8G系统是性能稳定的快速的石墨烯生长系统。nanoCVD-8G具有压强自动控制系统,可以的控制石墨烯生长过程中的气氛条件。系统采用低热容的样品台可在2分钟内升温至1000℃并控温。该装置采用了冷壁技术,样品生长完毕后可以快速降温。正是因为这些条件可以让用户在30分钟内即可获得高质量的石墨烯。用户通过HMI触屏进行操作,所有的硬件都是自动化的。更有内置的标准石墨烯生长示例程序供用户参考。该系统安装迅速,非常适合需要持续快速获取高质量石墨烯用于高质量学术研究的团队。埃克塞特大学、哈德斯菲尔德大学、莱顿大学、亚森工业大学等很多全球著名的高校都是该系统的用户。主要特点: ◎ 合成高质量、可重复的石墨烯◎ 生长条件控制◎ 高温度:1100 °C◎ 生长时间:30 min◎ 基片尺寸大:20 × 40 mm2◎ 全自动过程控制◎ MFC流量计控制过程气体 (Ar、H2与CH4) ◎ 用户友好型触屏控制◎ 可设定、存储多个生长程序◎ 可连接电脑记录数据◎ 易于维护◎ 全面安全性设计,尾气稀释模块◎ 兼容超净间◎ 系统性能稳定部分数据展示:小型等离子增强大尺寸石墨烯制备CVD系统 - nanoCVD WPGnanoCVD-WPG将nanoCVD-8G高质量石墨烯生长的功能与等离子体增强技术相结合,系统可制备晶圆尺寸(3英寸或4英寸)别的样品。除此之外,利用该系统的生长控制条件可以制备多种高质量的2D材料,该系统是小型CVD系统性能上的一个重大飞跃。全新的设计方案和控制系统使该系统成为制备大面积2D样品的上佳选择。应用领域包括:石墨烯和2D材料、光伏电、触屏材料、高性能生物电子材料、传感器、储能材料。主要特点:◎ 晶圆样品尺寸: 3英寸、4英寸◎ 150 W/13.56 MHz RF 电源◎ 多个等离子体电◎ 高温度1100 °C◎ 腔体冷壁技术◎ 全自动条件控制◎ 用户友好的触屏操作◎ 可设定、存储多个生长程序◎ 可连接电脑记录数据◎ 易于维护◎ 全面安全性设计,尾气稀释模块◎ 兼容超净室◎ 基于成熟的NanoCVD技术生长条件:◎ 衬底:Cu、Ni等薄膜或薄片◎ 工作原料:CH4,C2H4, PMMA等◎ 保护气体:H2,Ar,N2等典型配置指标:◎ 腔体:腔壁水冷技术,热屏蔽不锈钢腔体◎ 真空系统:分子泵系统,5×10-7 mbar本底真空。◎ 样品台:大4英寸直径,高1100°C ◎ 操作控制:触摸屏/电脑接口;可手动控制或自动控制◎ 气体控制:MFC 流量计,Ar,CH4,H2为标配种类。◎ 过程控制:自动控制◎ 等离子源:150 W/13.56 MHz RF 电源,样品台附近或需要的位置产生等离子体。 ◎ 安全性:冷却与真空锁系统,气体稀释模块。台式超碳纳米管快速制备CVD系统 - nanoCVD 8NnanoCVD-8N与石墨烯生长系统nanoCVD-8G有诸多共同之处,并针对碳纳米管生长条件进行了优化。这些条件对于碳纳米管(CNT)样品的质量和可重复性(主要是单壁形式)是至关重要的。创新的冷壁式腔体与传统管式设备相比更易控制实验条件和快速升降温。nanoCVD-8N具有智能的控制系统和完备的安全性设计。设备易于安装,易于使用,是快速进入高质量研究的理想选择。该系统获得沃里克大学用户的高度赞誉。碳纳米管可采用Fe、Co、Ni的纳米颗粒作为催化剂生长在SiO2/Si, Si3N4以及石英等衬底上。通过衬底与催化剂的选择,可以生长的碳纳米管有:• 随机: 随机方向的相互交叠的单壁碳纳米管• 有序: 平行的单壁碳纳米管• 竖直: 竖直的单壁碳纳米管束主要特点: ◎ 合成的碳纳米管具有很高的可重复性;◎ 专门为单壁碳纳米管进行了优化;◎ 生长条件控制;◎ 高温度:1100 °C;◎ MFC流量计控制过程气体 (Ar、H2与CH4); ◎ 基片尺寸:大20 × 40 mm2;◎ 生长时间:30 min;◎ 全自动生长条件控制;◎ 用户友好型触屏;◎ 可设定、存储多个生长程序◎ 可连接电脑记录数据;◎ 易于维护;◎ 全面安全性设计,尾气稀释模块;◎ 兼容超净间;◎ 系统性能稳定;部分数据展示: 发表文章Residual metallic contamination of transferred chemical vapor deposited grapheneLupina, G., et al. ACS Nano 2015 DOI: 10.1021/acsnano.5b01261本文作者研究了通常用于将CVD石墨烯放置到应用衬底上的湿转移工艺会导致材料的微量污染。这些纯度会对石墨烯的其他特殊特性产生不利影响,并对电子和光电应用产生影响。相关设备: nanoCVD-8G Transparent conductive graphene textile fibersNeves, A. I. S., et al. Scientific Reports 2015 DOI: 10.1038/srep09866使用nanoCVD-8G制成的石墨烯被转移到纤维上,次生产出柔韧的、完全嵌入的纺织电。石墨烯的高质量意味着电具有超低的表面电阻和高的机械稳定性。相关设备: nanoCVD-8G High quality monolayer graphene synthesized by resistive heating cold wall chemical vapor depositionBointon, T. H., et al. Advanced Materials 2015 DOI: 10.1002/adma.201501600展示了冷壁法CVD合成石墨烯的优势,并报道了使用nanoCVD – 8G制备的高质量石墨烯材料具有超高的载流子迁移率,表现出半整数量子霍尔效应,这与剥离制备的样品相当。相关设备: nanoCVD-8GMapping nanoscale electrochemistry of individual single-walled carbon nanotubesGüell, A. G., et al. Nano Letters 2014 DOI: 10.1021/nl403752e利用nanoCVD – 8N技术制备了单壁碳纳米管,并利用电化学技术对其进行了研究。高分辨率的测量可以检查单个单壁碳纳米管的特性。这一发现对未来使用SWNT电的器件设计具有重要意义。相关设备: nanoCVD-8N Nanoscale electrocatalysis: Visualizing oxygen reduction at pristine, kinked, and oxidized sites on individual carbon nanotubesByers, J. C., et al. Journal of the American Chemical Society 2014 DOI: 10.1021/ja505708y电化学技术,结合使用nanoCVD - 8N技术产生的单壁碳纳米管,被用来证明即使在没有掺杂、修饰或缺陷的情况下,碳纳米管也表现出显著的活性。相关设备: nanoCVD-8N用户单位埃克塞特大学哈德斯菲尔德大学莱顿大学亚森工业大学
    留言咨询

碳纳米管台式炉相关的资讯

  • 碳纳米管:个性十足的神奇材料
    p style=" text-indent: 2em text-align: justify " 近日,中国科学技术大学化学与材料学院杜平武教授课题组,首次利用纳米管稠环封端“帽子”模板,构建出纵向切割的纳米管弯曲片段。这种通过三个弯曲型分子连接两个石墨烯单元的方法,可直接得到纳米笼状结构,为构建封端锯齿型碳纳米管提供了新思路。相关研究成果发表在最新一期《德国应用化学》上。 /p p style=" text-indent: 2em text-align: justify " 无独有偶。几乎在同时,以研制出世界上第一颗原子弹而闻名于世的洛斯阿拉莫斯实验室的研究人员,使用功能化碳纳米管生产出首个能在室温下使用通信波长发射单光子的碳纳米管材料。神奇材料碳纳米管,为何如此受各国科学家追捧? /p p style=" text-indent: 2em text-align: justify " 空间结构像“挖空的足球” /p p style=" text-indent: 2em text-align: justify " 1985年,“足球”结构的C60一经发现即吸引了全世界的目光。将“足球”挖空,保持表面的五角和六角网格结构,再沿着一个方向扩展六角网格,并赋予平面网格以碳—碳原子和共价键,就形成了具有中空圆柱状结构的碳纳米管。 /p p style=" text-indent: 2em text-align: justify " 碳纳米管是一种具有特殊结构的一维量子材料。其主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管,层与层之间保持固定的距离,约0.34纳米,直径一般为2—20纳米。 /p p style=" text-indent: 2em text-align: justify " “可以将碳纳米管联想为头发丝,而实际上它的直径只有头发丝的几万分之一,即几万根碳纳米管并排起来才与一根头发丝相当。”杜平武教授告诉科技日报记者,作为典型的一维纳米结构,单层碳原子和多层碳原子网格卷曲而成的单壁与多壁碳纳米管,直径通常为0.8—2纳米和5—20纳米,目前报道的最细碳纳米管直径可小至0.4纳米。 /p p style=" text-indent: 2em text-align: justify " 杜平武告诉记者,碳纳米管可以看做是石墨烯片层卷曲而成,因此按照石墨烯片的层数可分为:单壁碳纳米管和多壁碳纳米管。若依其结构特征,碳纳米管则可分为扶手椅形纳米管和锯齿形纳米管等几种类型。 /p p style=" text-indent: 2em text-align: justify " 制备方法是挑战 /p p style=" text-indent: 2em text-align: justify " “通常的碳纳米管制备方法主要有电弧放电法、激光烧蚀法、化学气相沉积法、固相热解法、辉光放电法、气体燃烧法以及聚合反应合成法等。”杜平武告诉记者,电弧放电法是生产碳纳米管的主要方法。1991年日本物理学家饭岛澄男就是从电弧放电法生产的碳纤维中首次发现的碳纳米管。“这种方法比较简单,但很难得到纯度较高的碳纳米管,并且得到的往往都是多层碳纳米管,而实际研究中人们往往需要的是单层碳纳米管。” /p p style=" text-indent: 2em text-align: justify " “随后科研人员又发展出了化学气相沉积法,在一定程度上克服了电弧放电法的缺陷,得到的碳纳米管纯度比较高,但管径不整齐,形状不规则。”杜平武说,后续逐步发展起来的固相热解法等,均受限于环境和条件。 /p p style=" text-indent: 2em text-align: justify " “碳纳米管的制备过程与有机合成反应类似,其副反应复杂多样,很难保证同一炉碳纳米管均为扶手椅形纳米管或锯齿形纳米管。”杜平武说,在强酸、超声波作用下,碳纳米管可以先断裂为几段,再在一定纳米尺度催化剂颗粒作用下增殖延伸,而延伸后所得的碳纳米管与模板的卷曲方式相同。 /p p style=" text-indent: 2em text-align: justify " “如果通过类似于DNA扩增的方式对碳纳米管进行增殖,那么只需找到少量的扶手椅形纳米管或锯齿形纳米管,便可在短时间内复制、扩增出数量几百万倍于模板数量的、同类型的碳纳米管。”杜平武说,这可能会成为制备高纯度碳纳米管的新方式。 /p p style=" text-indent: 2em text-align: justify " 性能及尺寸超越硅基材料 /p p style=" text-indent: 2em text-align: justify " “碳纳米管具有完美的一维管式结构,碳原子以碳—碳共价键结合,形成自然界中最强的化学键之一,因此轴向具有很高的强度和韧性。此外六角平面蜂窝结构围成的管壁侧面没有悬挂键,所以碳纳米管具有稳定的化学特性。”杜平武说,碳纳米管优异的性能表现在电学、热学和光学等方面,具有超越传统的导电、导热特性等等。 /p p style=" text-indent: 2em text-align: justify " 2013年,斯坦福大学科学家制备了由平行排列的单壁碳纳米管为主要元器件的世界上最小“计算机”。近两年,碳纳米管电子器件的性能及尺寸又一次次被突破,势在超越并最终取代目前商用的硅基器件。 /p p style=" text-indent: 2em text-align: justify " 碳纳米管还可以制成透明导电的薄膜,用作触摸屏的替代材料。且原料是甲烷、乙烯、乙炔等碳氢气体,不受稀有矿产资源的限制。碳纳米管触摸屏具有柔性、抗干扰、防水、耐敲击与刮擦等特性,可以做成曲面,已在可穿戴装置、智能家具等领域得到应用。 /p p style=" text-indent: 2em text-align: justify " 碳纳米管还给物理学家提供了研究毛细现象的最细毛细管,给化学家提供了进行纳米化学反应的最细试管,科学家甚至研制出能称量单个原子的“纳米秤”。“我国在碳纳米管材料的基础研究方面处于领先地位,结构均一性的控制方法和理论不断创新,控制指标也逐年刷新。”杜平武说。 /p
  • 碳纳米管技术首次检测出太赫兹光子
    光有X光、红外线、紫外线等很多种类,其中最受科学家关注的是“太赫兹光”。太赫兹光不仅能够观察无法看见的分子的运动,还可以用于癌症检查等,用途十分广泛。但迄今为止,人类对太赫兹光的检测以及产生这种光源都非常困难,属于未知领域。   光具有波和粒子两重特性。2006年日本理化学研究所石桥研究小组利用“碳纳米管”的微小结构在世界上首次检测出太赫兹光子。   在天然原子中,围绕原子核的电子具有分散的能量。把电子封闭在直径数纳米的碳纳米管内,电子就会像在天然原子中一样具有能量,与所藏身的碳纳米管一起形成“人工原子”。改变纳米管的长度,电子能量的间隔会随之发生自由变化。   研究小组向“碳纳米管人工原子”照射太赫兹光,在液态氦温度环境下检测出了人工原子内的电子吸收太赫兹光等现象。这与爱因斯坦的“光电效果”是同一原理。   太赫兹波介于电磁波粒子特性极强的光和强电波之间的周波带,有利于生物体检测和环境诊断。目前对太赫兹波的光源和检测器的开发仍处于落后状态,这一研究成果对利用太赫兹波开发高敏感度检测仪器具有重要意义。同时,对碳纳米管新功能量子纳米级设备的开发提供了新的手段。
  • 首个10纳米以下碳纳米管晶体管问世
    据美国物理学家组织网2月2日(北京时间)报道,来自IBM、苏黎世理工学院和美国普渡大学的工程师近日表示,他们构建出了首个10纳米以下的碳纳米管(CNT)晶体管,而这种尺寸正是未来十年计算技术所需的。这种微型晶体管能有效控制电流,在极低的工作电压下,仍能保持出众的电流密度,甚至可超过同尺寸性能最好的硅晶体管的表现。相关研究报告发表在最新一期的《纳米快报》杂志上。   很多科研小组都致力研发小尺寸的晶体管,以切合未来计算技术对于更小、更密集的集成电路的需要。但现有的硅基晶体管一旦尺寸缩小,就会失去有效控制电流的能力,即产生所谓的“短沟道效应”。   在新研究中,科研人员舍弃硅改用单壁碳纳米管进行实验。碳纳米管具有出色的电气性能和仅为直径1纳米至2纳米的超薄“身躯”,这使其在极短的通道长度内也能保持对电流的闸门控制,避免“短沟道效应”的生成。而IBM团队研制的10纳米以下碳纳米管晶体管首次证明了这些优势。   科学家表示,理论曾预测超薄的碳纳米管将失去对于电流的闸门控制,或减少输出时的漏极电流饱和,而这都会导致性能的降低。此次研究的最大意义在于,证明了10纳米以下的碳纳米管晶体管也能表现良好,且优于同等长度性能最佳的硅基晶体管,这标志着碳纳米管可成为规模化生产晶体管的可行备选。   工程师在同一个纳米管上制造出若干个独立的晶体管,其中最小一个的通道长度仅为9纳米,而这个晶体管也表现出了极好的转换行为和漏极电流饱和,打破了理论的预言。当与性能最佳,但设计和直径不同的10纳米以下硅基晶体管进行对比时,9纳米的碳纳米管晶体管具有的直径归一化(漏)电流密度,可达到硅晶体管的4倍以上。而且其所处的工作电压仅为0.5伏,这对于降低能耗十分重要。此外,超薄碳纳米管晶体管的极高效能也显示出了其在未来计算技术中大规模使用的潜力。   总编辑圈点   没人不爱便携。所以电子元件抗拒不了“越缩越小”的命运。但对于碳纳米管晶体管,性能和尺寸却在“闹矛盾”:既往理论认为,如果缩到了15纳米以下的长度,那载体有效质量相对于其它半导体来说,就太小了,从而非常容易就隧穿和渗入设备——不受控制,这是身为电子元件所最不被看好的。不过,现在工程师们搞定了它,据其论文讲,问题发生在碳纳米管金属触点的物理模型有所不足,而此前的研究均忽视了这一点,没人仔细观察电子在通过那小小交界处时发生了什么。

碳纳米管台式炉相关的方案

  • 改性碳纳米管的XPS测定与分析
    碳纳米管以其独特的结构和优异的性能,在纳米、生物、能源、催化、电子材料等领域有很大的应用潜力。近些年随着碳纳米管及纳米材料研究的深入,其广阔的应用前景也不断地展现出来;目前碳纳米管的合成和应用已经成为材料科学研究的前沿热点。然而,由于其分散性以及与基体材料的相容性问题制约着碳纳米管材料的发展;为解决这两个问题,很多科研工作者致力于碳纳米管表面改性的研究,以提升其分散性和相容性。XPS作为一种表面分析技术,由于其表面敏感性,这就使XPS成为碳纳米管研究过程中一种必不可少的研究手段。本文通过ESCALAB Xi+对改性前后的碳纳米管进行检测分析,探索不同改性工艺获得的改性碳纳米管的结构与组成信息,文章中将详细介绍如何利用XPS准确的获得材料表面组成和化学态信息。
  • 用SAXS研究碳纳米管的内部结构
    碳纳米管(CNTs)是具有圆柱形纳米结构碳的同素异形体。由CNTs构成的复合材料展示了有趣的和新颖的特性,这使得它们可以应用于多个领域,如材料科学、电子,光学或其他领域等。聚合物/多壁碳纳米管的复合材料可以使用SAXSess mc² 进行测量。 碳纳米管的内部结构可以通过碳纳米管横截面的电子密度分布计算得出。
  • 探究研磨时间对碳纳米管分散体稳定性的影响
    嵌段共聚物(BCP)纳米复合材料由于独特的纳米结构形态以及碳纳米管(CNTs)的定向掺入使得开发具有特殊热、机械和电学性能的功能材料成为可能。CNTs具有优良抗拉强度,优异导电性,高导热性,密度低等众多特点。通过将CNTs选择性地定向掺入到非混相共混物的合适相形态中,可以特异性地调整电学、热学和力学性能。碳纳米管的长径比较大阻碍了碳纳米管在纳米级BCP结构域中的定向掺入,碳纳米管的平均长度为1.5µm,明显超过了嵌段共聚物相的结构域尺寸。使用短CNTs比较容易将CNTs选择性掺入嵌段共聚物,但随着长径比的减小,电渗透阈值增加,即需要更多的填料含量来生产导电复合材料。对碳纳米管进行不同时长的球磨处理,并分别与BCP进行混合制备成复合分散体,利用LUMiSizer®分散体分析仪进行分散稳定性表征,研究不同研磨时间对稳定性的影响。

碳纳米管台式炉相关的资料

碳纳米管台式炉相关的试剂

碳纳米管台式炉相关的论坛

  • 【转】单壁碳纳米管拉曼光谱的理论研究

    单壁碳纳米管拉曼光谱的理论研究(这是楼主在本科做SRTP时,在老师的帮助下利用计算机模拟碳纳米管的振动模式)碳纳米管的应用前景碳纳米管的导电性能与结构有关,不同结构的碳纳米管有可能是金属性的也有可能是半导体性的。电子在一维尺寸上表现出输运特性,其最为突出的特性可以归纳为以下三点:(1)纳米尺度形成的细微结构。一般单壁碳纳米管的直径在0.4~2nm,长度则可达数微米至数毫米,因而具有很大的长径比,是准一维的量子线。(2)纳米结构造就的特殊电学性质。碳纳米管的电学性质中最为特别的有5点:管的能隙(禁带宽度)随螺旋结构、直径变化;电子在管中形成无散射的弹道输运;电阻振幅随磁场变化的AB效应;低温下具有库仑阻塞效应和吸附气体对能带结构的影响。(3)碳碳键构筑的超高力学性能。碳纳米管的基本网格和石墨烯一样,是由自然界最强的价键之一,sp2杂化形成的C=C共价键组成,因此碳纳米管是所有已知最结实、刚度最高的材料之一。其轴向弹性模量目前从理论估计和实验测定均接近甚至超过石墨烯片。碳纳米管的强度极高,其独特的电学、力学和化学特性使它在下列方面具有广阔的应用前景。

  • 碳纳米管消解仪器问题

    需求是测定碳纳米管中Fe和Ni的含量,但是碳纳米管常规方法无法消解,请问各位老师有没有什么好方法或者仪器可以做到?

  • 【求助】碳纳米管 纯化

    准备做碳纳米管修饰电极,求关于碳纳米管纯化的经典文章!看到很多人引用Tsang S. C. 在 Nature上发的文章,好像不止一篇。可惜我找不到原文,各位大侠能否帮忙找到原文?不胜感激!

碳纳米管台式炉相关的耗材

  • 单壁碳纳米管
    碳具有 的特性: 按照质量,碳是宇宙中第4丰富的元素,也是 化学活性的元素之一。碳不仅能与其他元素结合,而且可与自身结合,形成最坚硬的金刚石和最软的石墨。碳还是有机化学和所有已知生命的根基。碳有几乎无限的应用。近年来,包括石墨烯(碳的二维形式)和单壁碳纳米管(主要为柱状石墨烯)在内的形态表现出非凡的属性,鼓舞着世界各地的科学家寻找各种用途。与石墨烯一样,单壁碳纳米管的属性充满前途,甚至有可能改变全球产业的面貌。与石墨烯不同的是,2014 年开始就有大量单壁碳纳米管在全球范围内供货。TUBALL由单壁碳纳米管构成,“成品”杂质含量极低(SWCNT含量≥75%),且在大多数应用中无需进一步的纯化。TUBALL具有独特的物理属性,可提高大多数材料的强度、导电性和/或导热性,包括聚合物复合材料、橡胶、金属和许多其他材料。与多壁碳纳米管、碳纤维和大多数类型的碳黑不同,TUBALL在添加 0.001%-0.1% 的重量后即可显著改善材料属性。产品特点:填料重量含量达到 0.001% 时开始展现功效同时提高材料属性(机械强度、导电性和导热性)各种潜在应用: 聚合物复合材料、橡胶、金属和许多其他材料高质量的SWCNT含量(数量 ≥ 75%,G/D大于50)无定形碳含量小(低于 1%)铁 (Fe) 催化剂颗粒包封在碳外壳中在大多数应用中,无需对生产过程做任何额外更改市场价格比具有同类质量和属性的所有其他产品低50倍技术参数规格计量单位数值评价方法碳含量wt.%85TGA, EDXCNTwt.%≥75TEM, TGA碳纳米管的层数单位1-2TEM碳纳米管的平均外径nm1.8±0.4拉曼光谱, TEMCNT长度um5AFM金属杂质wt.%15EDX, TGA根据特定客户的要求,可对任何所需数量的TUBALL进一步纯化与功能化,从而达到以下规格:
  • 碳纳米管
    简介:二维晶体材料指的是以石墨烯为代表的单原子层及少数原子层厚度的晶体材料,巨纳集团除了提供石墨烯材料、设备、检测等一体化服务外,还联合美国2D Semiconductors为全球客户提供高质量的二维晶体材料、粉体、溶液、薄膜等材料,并提供定制服务,以满足客户的不同需求。碳纳米管MWCNTs
  • 碳纳米管浆料高剪切研磨分散机,超高速碳纳米管浆料高剪切研磨分散机设备厂家,碳纳米管浆料研磨分散机,锂电池浆料研磨分散机,导电浆料研磨分散机,锂电池研磨分散设备IKN研磨分散机
    碳纳米管浆料高剪切研磨分散机,超高速碳纳米管浆料高剪切研磨分散机设备厂家,碳纳米管浆料研磨分散机,锂电池浆料研磨分散机,导电浆料研磨分散机,锂电池研磨分散设备IKN研磨分散机,锂电池浆料分散难点,研磨分散机在锂电池浆料分散中的优势。 碳纳米管导电浆料主要由碳纳米管、其他导电填料、分散助剂、和溶剂组成其质量百分比组成为:碳纳米管:0.5-15%其他导电物质0.1-2%,分散剂:0.1-5%,其余为溶剂。 该碳纳米管导电浆料制备方法为:先将分散助剂溶解在溶剂中然后在搅拌条件下加入碳纳米管和其他导电填料,待碳纳米管和其他导电填料充分浸润后,采用IKN研磨分散机对浆料进行研磨分散几小时后即可得到稳定分散的碳纳米管导电浆料。本发明方法简单不破坏碳纳米管结构和导电性,所制得的碳纳米管导电浆料具有优良的导电性,且性质稳定均一,静置3个月后,浆料稳定性 90%。对于碳纳米管浆料以及其他锂电池浆料的研磨分散普遍存在着2个难以解决的问题:1、研磨的细度,传统的设备研磨设备是通过刀头去磨细,这样经常会破坏碳纳米管结构和导电性,使物料变性。而IKN研磨分散机.细化物料更多的是通过物料与物料直接的撞击来完成研磨细化的功能,不会破坏物料结构。2、容易形成二团聚体在碳纳米管粒径细化之后,由于分子之间的作用力,小的物料又会二次团聚从而影响zui终产品的物料粒径以及分散的效果。IKN研磨分散机很好的克服了二团聚的现象 IKN研磨分散机是研磨机和分散机-体化的设备,在碳纳米管浆料粒径细化后瞬间通过分散工作腔进行分散避免二次团聚的现象。 超高速碳纳米管浆料高剪切研磨分散机设备厂家CMD2000系列研磨分散设备是IKN(上海)公司经过研究刚刚研发出来的一款新型产品,该机特别适合于需要研磨分散乳化均质一步到位的物料。 我们将三高剪切均质乳化机进行改装我们将三变跟为一然后在乳化头上面加配了胶体磨磨头,使物料可以先经过胶体磨细化物料,然后再经过乳化机将物料分散乳化均质。胶体磨可根据物料要求进行更换(我们提供了2P,2G,4M,6F,8SF等五种乳化头供客户选择)。 碳纳米管浆料研磨式分散机是由锥体磨,分散机组合而成的高科技产品。第1由具有精细度递升的三锯齿突起和凹槽。定子可以无限制的被调整到所需要的与转子之间的距离。在增强的流体湍流下凹槽在每都可以改变方向 第二由转定子组成, 分散头的设计也很好地满足不同粘度的物质以及颗粒粒径的需要。碳纳米管浆料研磨分散机的特点:①线速度很高剪切间隙非常小当物料经过的时候形成的摩擦力就比较剧烈结果就是通常所说的湿磨。②定转子被制成圆椎形具有精细度递升的三锯齿突起和凹槽。③定子可以无限制的被调整到所需要的与转子之间的距离④在增强的流体湍流下凹槽在每都可以改变方向。⑤高质量的表面抛光和结构材料,可以满足不同行业的多种要求。碳纳米管浆料研磨分散机,锂电池浆料研磨分散机导电浆料研磨分散机,锂电池研磨分散设备锂电池浆料分散难点研磨分散机在锂电池浆料分散中的优势。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制