当前位置: 仪器信息网 > 行业主题 > >

探针导热系数仪

仪器信息网探针导热系数仪专题为您提供2024年最新探针导热系数仪价格报价、厂家品牌的相关信息, 包括探针导热系数仪参数、型号等,不管是国产,还是进口品牌的探针导热系数仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合探针导热系数仪相关的耗材配件、试剂标物,还有探针导热系数仪相关的最新资讯、资料,以及探针导热系数仪相关的解决方案。

探针导热系数仪相关的论坛

  • 耐火隔热材料性能测试:有效导热系数与真导热系数的相互关系研究

    耐火隔热材料性能测试:有效导热系数与真导热系数的相互关系研究

    [table][tr][td][color=#ff0000]摘要:本文针对耐火隔热材料导热系数测试中的大温差和小温差这两类主流测试方法,明确了有效导热系数和真导热系数的定义,首次详细描述了这两个参数之间的关系、区别和详细转换方法,明确了这两类主流测试方法的适应范围,从而便于在耐火隔热材料性能评价中选择合适的测试方法,有利于对耐火隔热材料的隔热性能做出准确测试评价,从而保证对隔热材料及结构的正确选择和设计。[/color][/td][/tr][/table]关键词:耐火材料、隔热材料、有效导热系数、真导热系数、导热系数、大温差、测试方法[align=center][b][color=#3333ff]注:文中有大量公式,但不便在网页中进行完整显示。本文的PDF格式完整版本,已在本文的结尾处附上。[/color][/b][/align][b][color=#ff0000]1. 引言[/color][/b] 导热系数是评价和使用耐火隔热材料的关键参数,但在实际测试和应用中还存在许多困惑和误区。 耐火隔热材料在实际高温条件下使用时多为板材和管材,隔热材料大多处于一个受热面和背热面温度相差巨大的热环境中。而在材料样品导热系数具体测试中,有些是在模拟实际使用热环境的大温差条件下进行测量,而有些则是在很小温差、甚至没有温差的条件下进行测量,不同的测量导致所得到的结果相差很大,这给耐火隔热材料的性能评价和使用带来很大困扰。 由于技术上的局限性和测试及验证手段不足等原因,耐火隔热材料行业多年来一致对耐火隔热材料导热系数测试方法缺乏准确的理解,对哪种测试方法更能准确表征耐火隔热材料性能并不明确,由此造成测试方法混杂和乱用的现象,使得很多隔热结构设计人员在耐火隔热材料的性能评价和选材中不知该用哪种测试方法,经常会出现误导现象,甚至导致工程应用中出现漏热等重大事故。 为了满足耐火隔热材料在实际工程中的应用,加强对耐火隔热材料导热系数测试的准确了解,规范耐热隔热材料导热系数测试方法的选择,本文首次将耐火材料导热系数测试方法,按照测试过程中样品一维热流方向上的大温差和小温差进行分类,由此分别定义出有效导热系数和真导热系数。通过对这两种导热系数分析、计算和验证,展示出这两种导热系数的区别、相互关系以及可转化性,明确如何正确选择耐火隔热材料测试方法,明确如何正确描述和表达耐火隔热材料的隔热性能,由此实现耐火隔热材料测试评价和选材的规范性。[color=#ff0000][b]2. 耐火隔热材料导热系数主要测试方法和设备2.1. 测试方法[/b][/color] 材料导热系数测试方法主要分为稳态法和瞬态法,对于耐火隔热材料的导热系数测试而言也是如此。但由于耐火隔热材料一般都是在高温下使用,所以相应的测试方法也需要满足高温要求。由此,目前国内外也仅有限几种方法可用于耐火隔热材料高温条件下的导热系数测试,如图 2‑ 1所示。[align=center][img=,500,156]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142042533218_8908_3384_3.png!w690x216.jpg[/img][/align][align=center][color=#ff0000]图2‑ 1 耐火隔热材料高温导热系数测试方法分类[/color][/align] 采用以上测试方法进行耐火隔热材料的测试设备如下:[color=#ff0000][b]2.2. 测试设备2.2.1. 稳态热流计法高温导热系数测试仪器[/b][/color] 稳态热流计法高温导热系数测试仪器依据GB/ T 10295、ASTM C201和ASTM C518标准测试方法,是一种标准的稳态法导热系数测试设备。稳态热流计法高温导热系数测量原理如图 2‑ 2所示,当水平放置的被测平板状样品上下热面和冷面处在恒定温度时,在被测样品的中心区域和热流测量装置的中心区域会建立起类似于无限大平板中存在的一维稳态热流。通过测量热流密度、试样的热面和冷面温度以及试样厚度则可获得被测试样的导热系数。稳态热流计法高温导热系数测试仪器图 2‑ 3所示。[align=center][img=,690,389]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142044227159_7689_3384_3.png!w690x389.jpg[/img][/align][align=center][color=#ff0000]图2‑ 2 热流计法高温导热系数测量装置原理图[/color][/align][align=center][color=#ff0000][img=,690,535]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142044416555_2241_3384_3.jpg!w690x535.jpg[/img][/color][/align][align=center][color=#ff0000]图2‑ 3 上海依阳公司热流计法高温导热仪[/color][/align] 与其它测试方法相比,稳态热流计法高温导热系数测试方法及其仪器最显著特点就是测试条件可以模拟耐火隔热材料在各种实际工程中的应用环境,稳态热流计法是目前唯一能模拟出实际工程隔热环境的测试方法,在被测样品上能够建立起工程实际应用中的隔热大温差,即温度样品冷面可以控制在室温~50℃以下,而样品热面温度则可以达到1500℃以上的高温。[b][color=#ff0000]2.2.2. 稳态保护热板法中温导热系数测试仪器[/color][/b] 稳态保护热板法导热系数测试仪器依据GB/T 10294和ASTM C177标准测试方法,是一种标准的稳态法导热系数测试设备。稳态保护热板法导热系数测试原理如图 2‑ 4所示。保护热板法有单样品和双样品之分,样品置于加热板上,样品2/3尺寸大小的热板内布置用于量热的加热丝,其它尺寸外缘部分布置防护加热丝,并有隔离缝,下部是辅助防护加热,这样热板部分的发热量通过样品形成一维稳态热流,均作为热流密度的计算量,因此保护热板法是一种绝对方法。稳态保护热板法高温导热系数测试仪器如图 2‑ 5所示。[align=center][img=,516,301]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142045185716_9092_3384_3.jpg!w516x301.jpg[/img][/align][align=center][color=#ff0000]图2‑ 4 单样品防护热板法测量原理图[/color][/align][align=center][color=#ff0000][img=,441,486]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142045307632_8761_3384_3.jpg!w441x486.jpg[/img][/color][/align][color=#ff0000][/color][align=center]图2‑ 5 德国耐驰公司高温保护热板法分析仪[/align] 稳态保护热板法高温导热系数测试方法及其仪器最显著特点就是其测量精度最好,常用于计量和校准标准材料和其它测试仪器,被测样品冷热面温差小,最大不超过50℃,但保护热板法测试仪器用于耐火保温材料导热系数测试中的最大问题是测试温度不高,样品热面温度最高只能达到600℃。[b][color=#ff0000]2.2.3. 准稳态高温导热系数测试仪器[/color][/b] 准稳态导热系数测试技术是一种新型测试方法,准稳态高温导热系数测试仪器依据ASTM E2584标准测试方法。准稳态法是一种介于稳态法和瞬态法之间的一种测试方法,准稳态导热系数测试原理如图 2‑ 6所示。[align=center][img=,560,370]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142046135293_9233_3384_3.png!w690x457.jpg[/img][/align][align=center][color=#ff0000]图 2‑ 6 准稳态法导热系数测量原理图[/color][/align] 准稳态法采用的是一维热流加热方式,被测平板状样品在被加热或冷却到一定阶段后,通过试样的热流速度将达到一个缓慢变化状态,也就是准稳态状态,由此可以测量样品在加热和冷却过程中热流随时间的变化速度,,通过得到的准稳态条件下的热流和温度变化测试数据,可以准确计算出被测材料的热扩散系数、热容、热焓和导热系数。准稳态法高温导热系数测试仪器如图 2‑ 7所示。[align=center][img=,500,578]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142047447306_5655_3384_3.png!w690x798.jpg[/img][/align][align=center][color=#ff0000]图 2‑ 7 上海依阳公司准稳态法高温导热仪[/color][/align] 从原理上讲准稳态法是一种大温差形式的动态测试方法,在试验过程中的测量参数都是试样表面温度变化,不涉及到材料的内部变化,而是将材料的内部变化都看成为一个等效传热过程,因此这种方法可以用于材料在具有相变和化学反应过程中的有效热扩散系数、热容、热焓和有效导热系数测量。准稳态法的另外一个突出优点在于大大缩短了测试周期,基本可在36小时内测试得到一条有效导热系数随温度的变化曲线。[b][color=#ff0000]2.2.4. 瞬态热线法高温导热系数测试仪器[/color][/b] 瞬态热线法导热系数测试仪器依据GB/T 5990和ASTM C1133标准测试方法,是一种标准的瞬态法导热系数测试设备。瞬态热线法导热系数测试原理如图 2‑ 8所示。[align=center][img=,475,359]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142048251129_5443_3384_3.jpg!w475x359.jpg[/img][/align][align=center][color=#ff0000]图 2‑ 8 热线法导热仪结构原理图[/color][/align] 热线法是在样品(通常为大的块状样品)中插入一根热线。测试时,在热线上施加一个恒定的加热功率,使其温度上升。测量热线本身或与热线相隔一定距离的平板的温度随时间上升的关系。热线法高温导热系数测试仪器如图 2‑ 9所示。[align=center][img=,690,555]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142048505870_3628_3384_3.jpg!w690x555.jpg[/img][/align][align=center][color=#ff0000]图2‑ 9 美国TA公司热线法高温导热仪[/color][/align] 瞬态热线法高温导热系数测试方法及其仪器最显著特点就是仪器结构简单和测试温度高,可以轻松实现1400℃下的高温测试,这也是过去常用的耐火隔热材料导热系数测试方法和仪器。 与上述稳态测试方法相比,瞬态热线法高温导热系数测试方法及其仪器在测试过程中要求被测样品整体温度达到均匀一致后再进行测量,所以瞬态热线法是一种无温差的测试方法。由于热线法中的热线很细,热线通电加热后热量向热线的径向方法传播,所以热线法测量的是样品整体导热系数而没有方向性,所以热线法要求被测样品由各向同性材质制成。[b][color=#ff0000]2.2.5. 瞬态闪光法高温导热系数测试仪器[/color][/b] 需要特别指出的是:传统意义上的瞬态闪光法并不适合对耐火隔热材料材料的导热系数进行测试, 这主要是因为耐火隔热材料的导热系数普遍偏低,脉冲光辐照到样品前表面后,脉冲形式的加热热量无法传递到样品背面,使得样品背面几乎没有任何温度变化,背温探测器基本检测不到任何温升信号。因此,Gembarovic和Taylor在闪光法基础上开发了一种步进加热三点测温的测试方法用于低导热材料的高温热扩散系数测量,测量原理如图 2‑ 10所示,整个测量装置的结构如图 2‑ 11所示。[align=center][img=,600,363]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142049373131_4398_3384_3.png!w690x418.jpg[/img][/align][align=center][color=#ff0000]图 2‑ 10 瞬态步进加热三点测温法高温热扩散系数测量原理图[/color][/align][align=center][b][img=,690,441]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142049522161_6872_3384_3.png!w690x441.jpg[/img][/b][/align][align=center][color=#ff0000]图2‑ 11 瞬态步进加热三点测温法高温热扩散系数测试系统结构示意图[/color][/align] 这种测试方法和设备可以对相对较小的样品()进行温度高达1500℃下的高温热扩散系数测量,测量原理与闪光法近似,只是将闪光加热的脉冲宽度加的很长,对样品表面进行长时间的加热,从而使得热量能传递到样品背面获得有效测量信号。但这种测试方法在取样过程中样品不能太厚,否则热量还是无法传递到样品背面,由此很容易造成取样没有代表性问题。[b][color=#ff0000]2.3. 各种测试方法测试能力比较[/color][/b] 通过上述耐火隔热材料导热系数各种测试方法和相应测试设备的描述,将各种测试方法和测试仪器的主要特点、能力和要求进行汇总比较,如图 2‑ 12所示,由此对各种测试方法有一个直观的了解。[align=center][color=#ff0000][img=,590,160]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142051019290_574_3384_3.png!w690x188.jpg[/img][/color][/align][align=center][color=#ff0000]图2‑ 12 耐火隔热材料导热系数测试方法和测试仪器比较[/color][/align] 从图 2‑ 12中的综合比较可以看出,综合能力排名前两位的是准稳态法和稳态热流计法,这也就是上海依阳实业有限公司选择生产这两种测试仪器的主要原因之一。[b][color=#ff0000]3. 真导热系数和有效导热系数的定义[/color][/b] 根据上述针对耐火隔热材料导热系数测试方法所进行的介绍,可以发现尽管测试方法和测试设备有不同形式,但这些测试方法都离不开温度场这个环境变量和测试条件,即无论测试方法怎么变化,都必须使得被测样品要么是大温差、要么是小温差(将无温差归到小温差范围内)。这样,我们就可以将耐火隔热材料的导热系数按照温差大小分别对应进行定义,即: (1)样品小温差下,或无温差下得到的导热系数定义为真导热系数; (2)样品大温差下测量得到的导热系数定义为有效导热系数。 以往有效导热系数的定义多根据被测样品的均质性和组分结构的多样性来定义,并没有明确的按照测试温差大小(或使用过程中的温差大小)来定义。现在明确采用温差大小来定义和区分有效导热系数和真导热系数的不同,一方面是便于今后对耐火隔热材料测试方法选择和耐火隔热材料热性能的准确描述,另一方面也是依据标准测试方法所做的规定。 在国内外所有稳态法导热系数标准测试方法中,都指出:“通过测量热流、温差及样品厚度尺寸,利用稳态傅立叶导热公式计算得到的材料传热性质(导热系数或有效导热系数),可能并不是材料自身固有特性,因为它很大程度上可能取决于具体测试条件,例如试验过程中样品上的冷热面温差大小”。这句话指出了两个基本事实,可以理解为有两个含义: (1)一个事实就是材料的固有特性,即材料的固有特性是不受测试条件影响而本身存在的。所以在测试过程中要明确了解到底测量的是不受测试条件影响的材料固有特性,还是测量与测试或使用环境有关的特定环境特性。 (2)材料的固有特性,很大程度取决于具体测试条件,即取决于样品上的冷热面温差大小。温差小时测量得到则是固有特性,温差大时测量得到的则不是固有特性。 根据标准测试方法中的这些规定,就可以很容易进一步明确耐火隔热材料导热系数的定义: (1)样品小温差下,或无温差下得到的导热系数定义为真导热系数,即样品材料的固有导热系数; (2)样品大温差下测量得到的导热系数定义为有效导热系数,即样品材料的环境导热系数。 由此可见,一旦材料制成,其真导热系数就会固定不变,真导热系数就是这材料的固有特性。而这种材料在不同使用温度环境下,则会有相应的有效导热系数,这主要是因为在大温差条件下,有效导热系数会包含除真导热系数之外,还包括与辐射和对流传热相对应的辐射导热系数和对流导热系数。 由此可见,在小温差条件下,假设不考虑辐射传热和对流传热形式,同时假设也忽略气体导热传热,那么所谓的真导热系数,基本就代表了材料的固相导热系数。因此,为了对样品材料的真导热系数进行准确测量,很多标准测试方法对导热系数测试中的小温差进行了规定:GJB 329规定测试温差应控制在10~50℃,GB/T 10295建议温差控制在5~10℃,ASTM相关标准规定该温差应不大于25℃。由此可见,在最大温差不超过50℃条件下,就可以忽略稳态法测量中辐射和对流传热的影响,稳态法测量得到的样品导热系数,就是真导热系数。需要注意的是:耐火隔热材料由于低密度和高孔隙率,材料内部有大量孔隙,由此这个真导热系数,包括了材料的固体导热系数和气体导热系数。 根据上述小温差的定义,温差小于50℃的导热系数测试都是真导热系数测试。那么对于样品温度均匀无温差的测试,所得到的导热系数更是真导热系数。完成了两种导热系数定义后,就可以很明确知道不同测试方法测量得到不同类型的导热系数,即: (1)真导热系数测试方法:保护热板法、瞬态热线法、瞬态闪光法。 (2)有效导热系数测试方法:热流计法、准稳态法。[color=#ff0000][b]4. 真导热系数与有效导热系数的关系及其转换4.1. 问题的提出[/b][/color] 对于耐火隔热材料的性能测试,国内外都处于非常混乱的局面,有些测试得到的有效导热系数,有些测试得到的则是真导热系数,这些不同导热系数往往会引起隔热材料选择和隔热结构设计的混乱,特别是在耐火隔热材料高温性能测试中,测试方法的混乱使用很容易造成对隔热性能的高估,从而造成隔热效果不佳,甚至出现漏热事故和爆炸。因此,针对耐火隔热材料,如何才能准确测试和描述导热系数才能准确和实用呢,下面将从理论分析方面来对这个问题进行求解。[b][color=#ff0000]4.2. 真导热系数与有效导热系数的关系[/color][/b] 按照上述小温差和大温差形式分别定义真导热系数和有效导热系数,我们选择小温差的保护热板法法和大温差的热流计法来研究真导热系数与有效导热系数的关系。对于大温差的热流计法导热系数测量,有效导热系数的测量公式为: 式中表示流经样品厚度方向上的热流密度,表示样品厚度,表示样品热面温度,表示样品冷面温度。在热流计法大温差测量过程中,样品冷面温度的变化一般较小,基本都控制在50℃以下,而热面温度则较大(1000℃)。大温差下得到的有效导热系数的描述,都需要明确热面温度和冷面温度,并可用平均温度来表达。对于小温差的保护热板法导热系数测量,真导热系数的测量公式为: 式中同样表示流经样品厚度方向上的热流密度,表示样品厚度,表示被测样品冷热面之间的温度差。在保护热板法小温差测量过程中,冷热面温差很小,基本都控制在50℃以下。小温差下得到的真导热系数的描述,由于温差小,则可以直接用平均温度来描述,而无需标明热面温度和冷面温度。 尽管大温差和小温差所对应的两种测试方法不同,但这两种方法都是基于稳态傅立叶传热定律,公式和中各个参量的物理意义是相同的。因此,大温差的热流计法导热系数测量,可以在测试模型和数学上假设是由多个相同厚度的小温差保护热板法多层叠加而成,即和。这个假设的前题是: (1)样品材料在测试温度范围内没有化学反应或相变。 (2)在小的温度和气压区间内,真导热系数或保持不变、或呈线性关系。 (3)耐火隔热材料中的热传递形式一般由固相介质导热、[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]介质导热及辐射传热三部分构成,如果材料内部不存在通孔形式的孔隙,可忽略辐射传热对整体热传递的贡献。 这样,大温差的热流计法导热系数测试模型数学表达式,就可以用小温差的保护热板法导热系数测试模型数学表达式的积分形式来描述,由此得出有效导热系数与真导热系数关系式为: 式中的和代表温度和气压变量。通过公式所定义的真导热系数与有效导热系数的关系,就可以进行这两种导热系数之间的转换,即通过大温差的有效导热系数测量推导出相应的小温差时的真导热系数,或根据小温差真导热系数测量推导出大温差时的有效导热系数。[b][color=#ff0000]4.3. 由真导热系数推导有效导热系数[/color][/b] 由真导热系数测试结果推导出大温差条件下的有效导热系数,即据根真导热系数测试结果推算出在温度~范围内的大温差有效导热系数,具体实施方法就是在温度~范围内选择一系列温度点进行保护热板法或瞬态热线法导热系数测试,得到一系列不同温度下的真导热系数测试结果。这里的在保护热板法测试中代表样品的平均温度,在瞬态热线法和瞬态闪光法中代表样品温度。然后将测试结果(,)进行最小二乘法拟合得到一个多项式表达式: 式中的、、和是与样品材料自身特性有关的多项式常数。大多数耐火隔热材料的真导热系数与温度的非线性关系一般都可以用一元三次多项式描述。 将得到的真导热系数随温度变化多项式代入公式,然后进行积分求解就可以得到相应的有效导热系数。针对气压变量的真导热系数推导有效导热系数也是如此操作。[b][color=#ff0000]4.4. 由有效导热系数推导真导热系数[/color][/b] 同样,在有效导热系数推导真导热系数过程中,假设真导热系数随温度变化关系是一个三元一次多项式,即: 式中的、、和是与材料自身特性有关的待定常数。将式直接代入与式可得: 在式中只有、、和四个未知数,理论上可以通过4个式的联立方程就可求解出这四个未知数。即在理论上通过4次值调整,即进行4个不同热面温度下的稳态热流计法导热系数测试试验,同时保持样品冷面温度基本不变,由此得出4组相应的、值,就可建立这4个联立方程,从而求出4个待定常数、、和的值,最终得到真导热系数与温度的关系表达式。 从式中可以看出,式对温差大小没有任何限制。因此可以在容易实现的大温差测试条件下进行相应测试和测算。为了提高这种方法的推导计算准确性,在选取值时应尽可能接近所需要的温度值。例如需求1000℃的材料真导热系数,选取的4个值中至少应有一个值为1000℃或大于1000℃。如果需要某一特定温度段的真导热系数,比如需要500~1000℃之间的材料真导热系数,那么4个值建议选取为500℃、l 000℃以及介于500℃与1000℃之间的2个温度点数据。同时,需要说明的是本方法不是利用低温段真导热系数进行高温真导热系数简单外推,而是在掌握大温差测试条件下有效导热系数相关数据的基础上,通过确定所假设的函数待定常数来最终获取耐火隔热材料高温真导热系数,并且假设的函数形式是统计分析得出的结论以及ASTM相关标准认可的。[b][color=#ff0000]5. 结论[/color][/b] 通过以上的理论分析和计算,针对耐火隔热材料导热系数测试中常用的小温差和大温差两类测试方法,明确了有效导热系数和真导热系数的定义,首次详细描述了这两个参数之间的关系、区别和详细转换方法,明确了这两类主流测试方法的适应范围,,从而便于在耐火隔热材料性能评价中选择合适的测试方法,有利于对耐火隔热材料的隔热性能做出准确测试评价,从而保证对隔热材料及结构的正确的选择和设计。 下一部工作将针对各种耐火隔热材料的有效导热系数和真导热系数测试数据,对上述的真导热系数和有效导热系数之间的关系和转换方式进行试验验证,由此来对测试方法、测试设备和两种导热系数相互关系及其转换进行评价。[b][color=#ff0000]6. 参考资料[/color][/b] (1) Gembarovic, J., and Taylor, R. E., “A Method for Thermal DiffusivityDetermination of Thermal Insulators,” International Journal of Thermophysics,Vol. 28, No. 6, 2007, pp. 2164-2175.[align=center][img=上海依阳公司热流计法高温导热系数测试系统,690,499]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142040536176_2249_3384_3.png!w690x499.jpg[/img][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 试验验证:纤维类隔热材料有效导热系数与真导热系数相互关系

    试验验证:纤维类隔热材料有效导热系数与真导热系数相互关系

    [quote][color=#ff0000]摘要:本文针对二氧化硅Q纤维、氧化铝Saffil纤维、APA纤维、氧化锆ZYF纤维和OFI纤维五种纤维类隔热材料,分别采用大温差的高温热流计法和小温差的瞬态步进加热法进行高温和不同气压条件下测试,通过试验得到的真导热系数和有效导热系数测试结果数据,验证真导热系数与有效导热系数之间的关系以及相互转换方法,证明了这种相互关系和转换方法的有效性。[/color][/quote]关键词:耐火材料、隔热材料、有效导热系数、真导热系数、导热系数、大温差、测试方法[align=center][b][color=#3333ff]注:文中有大量公式,但不便在网页中进行完整显示。本文的PDF格式完整版本,已在本文的结尾处附上。[/color][/b][/align][b][color=#FF0000]1. 引言[/color][/b] 对于各种耐火隔热材料的高温导热系数测量,目前常用的测试方法如图 1‑ 1所示。这些测试方法一般分为稳态法和瞬态法,但这种分类方法在实际应用中并没有多少实际意义。[align=center][img=,500,156]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181530195080_6467_3384_3.png!w690x216.jpg[/img][/align][align=center][color=#FF0000]图 1‑ 1 耐火隔热材料高温导热系数测试方法分类[/color][/align] 为了便于对耐火隔热材料的导热系数进行正确的描述和理解,便于对上述各种测试方法进行比较,我们对测试方法按照测试过程中样品材料上的温度梯度大小进行分类,大温度梯度归类为大温差测试方法,如热流计法和准稳态法;小温度梯度或无温度梯度归类为小温差测试方法,如保护热板法、热线法和闪光法。由此可以很容易确定出以下导热系数实际物理意义及其定义: (1)小温差或无温差(50℃)测试方法测量得到的是“真导热系数”。 (2)大温差测试方法测量得到是“有效导热系数”。 由于测试中所形成的温差不同,使得热量在样品中的热传递形式也不同,因此在不同温差下进行测量所得到的“真导热系数”与“有效导热系数”并不相同,这在对耐火隔热材料测试方法选择和测量结果数据的应用中要特别注意,否则会出现严重问题。 关于不同温差下测量得到的真导热系数和有效导热系数两者之间的转换关系,本司已发布研究报告进行过专门的理论分析论述。本文将特别针对五种不同的纤维类隔热材料,分别采用大温差的高温热流计法和小温差的瞬态步进加热法进行了高温和不同气压条件下的测试,用试验数据来验证真导热系数与有效导热系数之间的关系以及相互转换方法。[b][color=#FF0000]2. 纤维类隔热材料样品[/color][/b] 针对以下五种纤维隔热材料分别测量了真导热系数和有效导热系数,这五种纤维隔热材料参数和相应的测试结果数据来自文献。 Q纤维:Q纤维是硅基隔热材料,具有很好的隔热性能。纤维平均直径为1.3 um,Q纤维隔热材料一般密度为48.6、68.8和95.6 kg/m3,与之对应材料厚度分别为13.3、19.1和13.3 mm。 Saffil纤维:Saffil纤维是氧化铝基隔热材料,平均纤维直径为4.5 um,一般密度在24.2~96.1 kg/m3范围内,所对应的样品厚度在13.3~39.3 mm之间。 APA纤维:APA纤维也是一种氧化铝基纤维隔热材料,平均纤维直径为4.5 um、密度为107 kg/m3,APA隔热材料为大约1 mm厚的板材,而25.4 mm厚的样品被用于有效导热系数测量。 ZYF氧化锆纤维:还采用了氧化钇稳定氧化锆(ZYF)纤维隔热材料,其纤维平均直径为6 um、密度为 267 kg/m3。ZYF隔热材料为厚度大约为2.5 mm厚的薄板,在工程应用中可多层叠加使用。 OFI纤维:OFI是一类高效乳白色纤维隔热材料,是在各种纤维毡中嵌入陶瓷遮光颗粒而得到,纤维基体和陶瓷遮光剂的比例可以量身定做为特定飞行轨道/空间气动加热载荷提供一个优化的隔热效果。在纤维隔热垫中嵌入高效陶瓷遮光剂颗粒可以显著降低纤维隔热材料热传递中的辐射分量,从而使OFI成为低气压应用中非常好的隔热性能。本研究中所采用的OFI纤维隔热材料是通过在Saffil纤维隔热材料中嵌入遮光剂,总密度为202.4 kg/m3。[b][color=#FF0000]3. 测试方法及其相互关系[/color][color=#FF0000]3.1. 测试方法[/color][/b] 针对上述五种纤维隔热材料,测试方法分别选用了瞬态步进加热法和高温热流计法,这两种方法都是测量片状或板状样品厚度方向上的导热系数。 高温热流计法测试中样品的冷面温度基本保持在50℃以下,而样品热面温度则根据设定不断变化,样品热面与冷面之间的温差可以达到100~1400℃,样品尺寸为300×300×(10~70 mm)左右,测量原理如图 3‑ 1所示,其它详细内容可参考上海依阳实业有限公司官网TC-HFM-1000 型高温热流计法导热仪介绍以及美国NASA Langley研究中心热真空试验装置的相关报道。[align=center][img=,690,195]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181537268969_3588_3384_3.png!w690x195.jpg[/img][/align][align=center][color=#FF0000]图 3‑ 1 稳态热流计法高温导热系数测量原理图[/color][/align] 瞬态步进加热法测试中样品上的温差小于10℃,采用相对较小的样品(φ50mm×3~5mm)进行温度高达1500℃下的高温热扩散系数测量,其基本原理如图 3‑ 2所示,其它详细内容可参考相关文献报道。[align=center][img=,690,418]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181537448898_2666_3384_3.png!w690x418.jpg[/img][/align][align=center][color=#FF0000]图 3‑ 2 瞬态步进加热三点测温法高温热扩散系数测量原理图[/color][/align][b][color=#FF0000]3.2. 真导热系数和有效导热系数相互关系[/color][/b] 根据瞬态步进加热法和稳态热流计法法分别得到的真导热系数和有效导热系数及其相互关系,在上海依阳的研究报告“耐火隔热材料测试中有效导热系数与真导热系数的相互关系研究”中进行了详细论述。这里仅给出相对于温度变量的最终关系式,即有效导热系数λeff与真导热系数λtrue关系式为:[align=center][img=,500,65]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181538415798_7481_3384_3.png!w690x90.jpg[/img][/align] 式中的TH和TC分别代表大温差有效导热系数测量中样品的热面温度和冷面温度,T代表小温差真导热系数测量中的样品平均温度。通过公式(3.2.1)所定义的真导热系数与有效导热系数的关系,就可以进行这两种导热系数之间的转换,即通过大温差的有效导热系数测量推导出相应的小温差时的真导热系数,或根据小温差真导热系数测量推导出大温差时的有效导热系数。[b][color=#FF0000]4. 真导热系数与有效导热系数关系的试验验证[/color][/b] 以上介绍了真导热系数与有效导热系数的关系以及相互推导的具体方法,但这些只是根据一些假设进行的理论计算,关系和推导方法的正确性和准确性还需通过试验进行验证。 为了进行试验验证,选择了相同的耐火隔热材料进行取样。对于大温差的有效导热系数测量选择了高温热流计法导热系数测试方法和测量装置,对于小温差的真导热系数测量选择了步进加热三点测温测试方法和高温热扩散系数测量装置,对于无温差的真导热系数测量选择了热线法和高温导热系数测量装置。由于没有实际进行过对相同耐火隔热材料导热系数大温差和小温差的对比测试,因此选择了目前仅有的公开报道的国外文献报道数据进行计算对比。[b][color=#FF0000]4.1. 二氧化硅(Silica)Q纤维隔热材料[/color][/b] 密度为48.6kg/m^3的Q纤维在0.001 Torr氮气气压环境下进行测试,稳态热流计法有效导热系数测量结果如图 4‑ 1中的红线所示,瞬态步进加热法真导热系数测试结果如图 4‑ 2中的红线所示。[align=center][img=,690,404]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181539095327_6858_3384_3.png!w690x404.jpg[/img][/align][align=center][color=#FF0000]图 4-1 在0.001 Torr氮气气压下48 kg/m3密度Q纤维样品有效导热系数测量结果与真导[/color][/align][align=center][img=,690,415]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181539230128_5966_3384_3.png!w690x415.jpg[/img][/align][align=center][color=#FF0000]图 4-2 在0.001 Torr氮气气压下48 kg/m3密度Q纤维样品真导热系数测量结果与有效导[/color][/align] 有效导热系数λeff随样品热面温度TH变化的拟合公式为:[align=center][img=,600,41]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181539395786_4790_3384_3.png!w690x48.jpg[/img][/align] 真导热系数λtrue随样品平均温度T变化的拟合公式为:[align=center][img=,600,40]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181540044886_2962_3384_3.png!w690x46.jpg[/img][/align][color=#FF0000](1)真导热系数转换为有效导热系数[/color] 将公式(4.1.2)代入公式(3.2.1),然后进行积分求解就可以得到相应的有效导热系数,其中设置样品冷面温度为TC= 20.5℃。得到由有效导热系数拟合公式:[align=center][img=,600,39]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181540571338_7312_3384_3.png!w690x45.jpg[/img][/align] 将真导热系数测量结果转换成有效导热系数的公式以样品热面温度为横坐标绘制有效导热系数曲线,并与有效导热系数大温差测量结果进行比较,如图 4‑ 1所示中的蓝线所示。由图 4‑ 1所示的对比结果可以看出,小温差法测试结果转换为大温差有效导热系数后,与大温差测试结果吻合的很好,只是在热面温度为26℃时两者相差较大为18.6%,这主要是因为在大温差热流计法测量过程中的冷面温度为20.5℃,温差较小使得热流密度较小所带来的误差。而在其它所有热面温度下(100℃以上)有效导热系数相比,偏差百分比都小于2%。由此可见,对于Q纤维这种材料,在高真空条件下,小温差真导热系数测试结果转换为大温差有效导热系数测试结果后,与大温差有效导热系数实际测试结果吻合的很好。[color=#FF0000](2)有效导热系数转换为真导热系数[/color] 假设真导热系数随温度变化关系是一个一元三次多项式,即:[align=center][img=,500,44]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181541199078_3032_3384_3.png!w669x60.jpg[/img][/align] 式中的B0、B1、B2和B3是与材料自身特性有关的待定常数。 将式(4.1.4)直接代入与式(3.2.1)可得:[align=center][img=,600,64]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181541368044_1154_3384_3.png!w690x74.jpg[/img][/align] 将图 4‑ 1中红线所示的一系列热面温度TH和冷面温度TC下测量得到的对应有效导热系数测试数据代入公式(4.1.5)中,得到一系列有关四个未知数B0、B1、B2和B3的关系式。通过多元回归分析,就可以得到这四个未知数,由此得到转换后的真导热系数表达式:[align=center][img=,600,33]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181541566218_1668_3384_3.png!w690x38.jpg[/img][/align] 将有效导热系数测量结果转换成真导热系数的计算公式(4.1.6)以样品平均温度为横坐标绘制真导热系数曲线,并与真导热系数小温差测量结果进行比较,如图4-2中的蓝线所示。由图4-2所示的对比结果可以看出,大温差法测试结果转换为小温差的真效导热系数后,与小温差测试结果吻合的很好,全温度范围内偏差百分比都小于2.6%。由此可见,对于Q纤维这种材料,在高真空条件下,大温差有效导热系数测试结果转换为小温差真导热系数测试结果后,与小温差真导热系数实际测试结果吻合的很好。[b][color=#FF0000]4.2. 氧化铝(Alumina)Saffil纤维隔热材料(高真空下测试)[/color][/b] 密度为48kg/m^3的Saffil纤维在0.001 Torr氮气气压环境下进行测试,稳态热流计法有效导热系数测量结果如图 4‑ 3中的红线所示,瞬态步进加热法真导热系数测试结果如图 4‑ 4中的红线所示。[align=center][img=,690,427]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181542233158_5453_3384_3.png!w690x427.jpg[/img][/align][align=center][color=#FF0000]图 4-3 在0.001 Torr氮气气压下48 kg/m3密度Saffil纤维样品有效导热系数测量[/color][/align][align=center][img=,690,423]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181542412398_5020_3384_3.png!w690x423.jpg[/img][/align][align=center][color=#FF0000]图 4-4 在0.001 Torr氮气气压下48 kg/m3密度Saffil纤维样品真导热系数测量[/color][/align] 在0.001 Torr氮气气压下48 kg/m3密度Saffil纤维在有效导热系数λeff随样品热面温度TH变化测量值的拟合公式为: 在0.001 Torr氮气气压下48 kg/m3密度Saffil纤维真导热系数λtrue随样品平均温度T变化测量值的拟合公式为:[color=#FF0000](1)真导热系数转换为有效导热系数[/color] 将Saffil纤维真导热系数拟合公式代入公式,然后进行积分求解就可以得到相应的有效导热系数,其中设置样品冷面温度为TC=20.8℃。得到由有效导热系数拟合公式: 将真导热系数测量结果转换成有效导热系数的公式以样品热面温度为横坐标绘制有效导热系数曲线,并与有效导热系数大温差测量结果进行比较,如图 4‑ 3中的红线所示。由图 4‑ 3所示的对比结果可以看出,小温差法测试结果转换为大温差有效导热系数后,比大温差测试结果大出很多,最大偏差百分比为74%,并随着热面温度升高,偏差百分比逐渐减小至9%左右。具体原因不详,有可能是两种方法测试结果有问题。[color=#FF0000](2)有效导热系数转换为真导热系数[/color] 假设真导热系数随温度变化关系是一个一元三次多项式,即: 式中的B0、B1、B2和B3是与材料自身特性有关的待定常数。将式直接代入与式可得: 将图 4‑ 3中红线所示的一系列热面温度TH和冷面温度TC下测量得到的对应有效导热系数测试数据代入公式中,得到一系列有关四个未知数B0、B1、B2和B3的关系式。通过多元回归分析,就可以得到这四个未知数,由此得到转换后的真导热系数表达式: 将有效导热系数测量结果转换成真导热系数的计算公式以样品平均温度为横坐标绘制真导热系数曲线,并与真导热系数小温差测量结果进行比较,如图 4‑ 4中的蓝线所示。由图 4‑ 4所示的对比结果可以看出,大温差法有效导热系数测试结果转换为小温差的真效导热系数后,要比小温差测试结果小很多,最大偏差百分比为311%,并随着热面温度升高,偏差百分比逐渐减小至3%左右。这个规律与上述真导热系数转换为有效导热系数的规律基本一致,就是与有效导热系数相关的数据总是比真导热系数相关数据低很多。具体原因不详,有可能是某种方法测试结果有问题。[b][color=#FF0000]4.3. 氧化铝(Alumina)Saffil纤维隔热材料(大气压下测试)[/color][/b] 密度为48kg/m^3的Saffil纤维在760 Torr和100 Torr氮气气压环境下进行测试,稳态热流计法有效导热系数测量结果如图 4‑ 5中的红线所示,瞬态步进加热法真导热系数测试结果如图 4‑ 6中的红线所示。[align=center][img=,690,388]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181542549828_1222_3384_3.png!w690x388.jpg[/img][/align][align=center][color=#FF0000]图 4-5 48 kg/m3密度Saffil纤维样品在100 Torr氮气气压下有效导热系数测量结果[/color][/align][align=center][img=,690,426]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181543092530_4622_3384_3.png!w690x426.jpg[/img][/align][align=center][color=#FF0000]图 4-6 48 kg/m3密度Saffil纤维样品在760 Torr氮气气压下真导热系数测量结果[/color][/align] 在100 Torr氮气气压下48 kg/m3密度Saffil纤维在有效导热系数λeff随样品热面温度TH变化测量值的拟合公式为: 在700 Torr氮气气压下48 kg/m3密度Saffil纤维真导热系数λtrue随样品平均温度T变化测量值的拟合公式为:[color=#FF0000](1)真导热系数转换为有效导热系数[/color] 将Saffil纤维真导热系数拟合公式代入公式,然后进行积分求解就可以得到相应的有效导热系数,其中设置样品冷面温度为TC=20.8℃。得到由有效导热系数拟合公式: 将真导热系数测量结果转换成有效导热系数的公式以样品热面温度为横坐标绘制有效导热系数曲线,并与有效导热系数大温差测量结果进行比较,如图 4‑ 5中的蓝线所示。由图 4‑ 5所示的对比结果可以看出,小温差真导热系数测试结果转换为大温差有效导热系数后,与大温差测试结果吻合的很好,只是在热面温度为23.6℃时两者相差略微偏大为5.2%,这主要是因为在大温差热流计法测量过程中的冷面温度为24.35±10.4℃,温差较小使得热流密度较小所带来的误差。而在其它所有热面温度下(100℃以上)有效导热系数相比,偏差百分比都小于5%。由此可见,对于Saffil纤维这种材料,在低真空条件接近一个大气压环境下,小温差真导热系数测试结果转换为大温差有效导热系数测试结果后,与大温差有效导热系数实际测试结果吻合的很好。[color=#FF0000](2)有效导热系数转换为真导热系数[/color] 假设真导热系数随温度变化关系是一个一元三次多项式,即: 式中的B0、B1、B2和B3是与材料自身特性有关的待定常数。将式直接代入与式可得: 将图 4‑ 5中红线所示的一系列热面温度TH和冷面温度TC下测量得到的对应有效导热系数测试数据代入公式中,得到一系列有关四个未知数B0、B1、B2和B3的关系式。通过多元回归分析,就可以得到这四个未知数,由此得到转换后的真导热系数表达式: 将有效导热系数测量结果转换成真导热系数的计算公式以样品平均温度为横坐标绘制真导热系数曲线,并与真导热系数小温差测量结果进行比较,如图 4‑ 6中的蓝线所示。由图 4‑ 6所示的对比结果可以看出,大温差法测试结果转换为小温差的真效导热系数后,与小温差测试结果吻合的较好,全温度范围内偏差百分比都小于5%,只是在最低温度和最高温度处偏差分别为9%和6.4%。由此可见,对于Saffil纤维这种材料,在低真空条件接近一个大气压环境下,大温差有效导热系数测试结果转换为小温差真导热系数测试结果后,与小温差真导热系数实际测试结果吻合的很好。[color=#FF0000][b]4.4. APA纤维隔热材料[/b][/color] 密度为107kg/m^3的APA纤维隔热材料在0.001 Torr氮气气压环境下进行测试,稳态热流计法有效导热系数测量结果如图 4‑ 7中的红线所示,瞬态步进加热法真导热系数测试结果如图 4‑ 8中的红线所示。[align=center][img=,690,388]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181543266391_5463_3384_3.png!w690x388.jpg[/img][/align][align=center][color=#FF0000]图 4-7 氮气气压0.001 Torr下107 kg/m3密度APA纤维样品在有效导热系数测量结果[/color][/align][align=center][img=,690,425]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181543387494_7814_3384_3.png!w690x425.jpg[/img][/align][align=center][color=#FF0000]图 4-8 氮气气压0.001 Torr下107 kg/m3密度APA纤维样品在真导热系数测量结果[/color][/align] 在0.001 Torr氮气气压下107kg/m^3的APA纤维隔热材料有效导热系数λeff随样品热面温度TH变化测量值的拟合公式为: 在0.001 Torr氮气气压下107kg/m^3的APA纤维隔热材料真导热系数λtrue随样品平均温度T变化测量值的拟合公式为:[color=#FF0000](1)真导热系数转换为有效导热系数[/color] 将APA纤维真导热系数拟合公式代入公式,然后进行积分求解就可以得到相应的有效导热系数,其中设置样品冷面温度为TC=19.05℃。得到由有效导热系数拟合公式: 将真导热系数测量结果转换成有效导热系数的公式以样品热面温度为横坐标绘制有效导热系数曲线,并与有效导热系数大温差测量结果进行比较,如图 4‑ 7中的蓝线所示。由图 4‑ 7所示的对比结果可以看出,小温差真导热系数测试结果转换为大温差有效导热系数后,与大温差测试结果吻合的较好,只是在热面温度为26.8℃时两者相差略微偏大为22.1%,这主要是因为在大温差热流计法测量过程中的冷面温度为19.05±13.6℃,温差较小使得热流密度较小所带来的误差。而在其它所有热面温度下(100℃以上)有效导热系数相比,偏差百分比随着热面温度升高而变大,在最高热面温度1128℃是偏差为14.6%。由此可见,对于APA纤维这种材料,在高真空条件0.001 Torr氮气气氛下,小温差真导热系数测试结果转换为大温差有效导热系数测试结果后,与大温差有效导热系数实际测试结果吻合的较好。[color=#FF0000](2)有效导热系数转换为真导热系数[/color] 假设真导热系数随温度变化关系是一个一元三次多项式,即: 式中的B0、B1、B2和B3是与材料自身特性有关的待定常数。将式直接代入与式可得: 将图 4‑ 7中红线所示的一系列热面温度TH和冷面温度TC下测量得到的对应有效导热系数测试数据代入公式中,得到一系列有关四个未知数B0、B1、B2和B3的关系式。通过多元回归分析,就可以得到这四个未知数,由此得到转换后的真导热系数表达式: 将有效导热系数测量结果转换成真导热系数的计算公式以样品平均温度为横坐标绘制真导热系数曲线,并与真导热系数小温差测量结果进行比较,如图 4‑ 8中的蓝线所示。由图 4‑ 8所示的对比结果可以看出,大温差法测试结果转换为小温差的真效导热系数后,与小温差测试结果吻合的很好,全温度范围内偏差百分比都小于6%,只是在常温23.6℃处偏差最大为8%。由此可见,对于APA纤维这种材料,在高真空条件0.001 Torr氮气环境下,大温差有效导热系数测试结果转换为小温差真导热系数测试结果后,与小温差真导热系数实际测试结果吻合的很好。[b][color=#FF0000]4.5. 氧化锆ZYF纤维隔热材料[/color][/b] 氧化锆ZYF纤维隔热材料在0.001 Torr氮气气压环境下进行测试,稳态热流计法有效导热系数测量结果如图 4‑ 9中的红线所示,瞬态步进加热法真导热系数测试结果如图 4‑ 10中的红线所示。[align=center][img=,690,382]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181543521992_3974_3384_3.png!w690x382.jpg[/img][/align][align=center][color=#FF0000]图 4-9 氮气气压0.001 Torr下ZYF纤维样品在有效导热系数测量结果与真导热系数测量结果转[/color][/align][align=center][img=,690,414]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181544043755_4332_3384_3.png!w690x414.jpg[/img][/align][align=center][color=#FF0000]图 4-10 氮气气压0.001 Torr下ZYF纤维样品在真导热系数测量结果与有效导热系数测量结[/color][/align] 在0.001 Torr氮气气压下ZYF纤维隔热材料有效导热系数λeff随样品热面温度TH变化测量值的拟合公式为: 在0.001 Torr氮气气压下ZYF纤维隔热材料真导热系数λtrue随样品平均温度T变化测量值的拟合公式为:[color=#FF0000](1)真导热系数转换为有效导热系数[/color] 将氧化锆ZYF纤维真导热系数拟合公式代入公式,然后进行积分求解就可以得到相应的有效导热系数,其中设置样品冷面温度为TC=22.05℃。得到由有效导热系数拟合公式: 将真导热系数测量结果转换成有效导热系数的公式以样品热面温度为横坐标绘制有效导热系数曲线,并与有效导热系数大温差测量结果进行比较,如图 4‑ 9中的蓝线所示。由图 4‑ 9所示的对比结果可以看出,小温差真导热系数测试结果转换为大温差有效导热系数后,与大温差测试结果吻合的较好,只是在热面温度为25.9℃时两者相差略微偏大为83.5%,这主要是因为在大温差热流计法测量过程中的冷面温度为22.05±0.5℃,温差较小使得热流密度较小所带来的误差。而在其它所有热面温度下(100℃以上)有效导热系数相比,最大偏差为6%。由此可见,对于ZYF纤维这种材料,在高真空条件0.001 Torr氮气气氛下,小温差真导热系数测试结果转换为大温差有效导热系数测试结果后,与大温差有效导热系数实际测试结果吻合的很好。[color=#FF0000](2)有效导热系数转换为真导热系数[/color] 假设真导热系数随温度变化关系是一个一元三次多项式,即: 式中的B0、B1、B2和B3是与材料自身特性有关的待定常数。将式直接代入与式可得: 将图 4‑ 9中红线所示的一系列热面温度TH和冷面温度TC下测量得到的对应有效导热系数测试数据代入公式中,得到一系列有关四个未知数B0、B1、B2和B3的关系式。通过多元回归分析,就可以得到这四个未知数,由此得到转换后的真导热系数表达式: 将有效导热系数测量结果转换成真导热系数的计算公式以样品平均温度为横坐标绘制真导热系数曲线,并与真导热系数小温差测量结果进行比较,如图 4‑ 10中的蓝线所示。由图 4‑ 10所示的对比结果可以看出,大温差法测试结果转换为小温差的真效导热系数后,与小温差测试结果吻合的很好,全温度范围内偏差百分比都小于7.3%。由此可见,对于ZYF纤维这种材料,在高真空条件0.001 Torr氮气环境下,大温差有效导热系数测试结果转换为小温差真导热系数测试结果后,与小温差真导热系数实际测试结果吻合的很好。[b][color=#FF0000]4.6. OFI纤维隔热材料[/color][/b] 密度为202.4kg/m^3的OFI纤维隔热材料在0.001 Torr氮气气压环境下进行测试,稳态热流计法有效导热系数测量结果如图 4‑ 11中的红线所示,瞬态步进加热法真导热系数测试结果如图 4‑ 12中的红线所示。[align=center][img=,690,380]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181544213688_4307_3384_3.png!w690x380.jpg[/img][/align][align=center][color=#FF0000]图 4-11 氮气气压0.001 Torr下OFI纤维样品在有效导热系数测量结果与真导热系数测量结果[/color][/align][align=center][img=,690,416]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181544329578_5158_3384_3.png!w690x416.jpg[/img][/align][align=center][color=#FF0000]图 4-12 氮气气压0.001 Torr下OFI纤维样品在真导热系数测量结果与有效导热系数测量结[/color][/align] 在0.001 Torr氮气气压下OFI纤维隔热材料有效导热系数λeff随样品热面温度TH变化测量值的拟合公式为: 在0.001 Torr氮气气压下OFI纤维隔热材料真导热系数λtrue随样品平均温度T变化测量值的拟合公式为:[color=#FF0000](1)真导热系数转换为有效导热系数[/color] 将OFI纤维真导热系数拟合公式代入公式,然后进行积分求解就可以得到相应的有效导热系数,其中设置样品冷面温度为TC=22.05℃。得到由有效导热系数拟合公式: 将真导热系数测量结果转换成有效导热系数的公式以样品热面温度为横坐标绘制有效导热系数曲线,并与有效导热系数大温差测量结果进行比较,如图 4‑ 11中的蓝线所示。由图 4‑ 11所示的对比结果可以看出,小温差真导热系数测试结果转换为大温差有效导热系数后,与大温差测试结果吻合的非常好,只是在热面温度为24.1℃时两者相差略微偏大为10.8%,这主要是因为在大温差热流计法测量过程中的冷面温度为22.05±0.5℃,温差较小使得热流密度较小所带来的误差。而在其它所有热面温度下(100℃以上)有效导热系数相比,最大偏差为7%,而且随着热面温度的上升,两者相差百分比越来越小。由此可见,对于OFI纤维这种材料,在高真空条件0.001 Torr氮气气氛下,小温差真导热系数测试结果转换为大温差有效导热系数测试结果后,与大温差有效导热系数实际测试结果吻合的非常好。[color=#FF0000](2)有效导热系数转换为真导热系数[/color] 假设真导热系数随温度变化关系是一个一元三次多项式,即: 式中的B0、B1、B2和B3是与材料自身特性有关的待定常数。将式直接代入与式可得: 将图 4‑ 11中红线所示的一系列热面温度TH和冷面温度TC下测量得到的对应有效导热系数测试数据代入公式中,得到一系列有关四个未知数B0、B1、B2和B3的关系式。通过多元回归分析,就可以得到这四个未知数,即: 将有效导热系数测量结果转换成真导热系数的计算公式以样品平均温度为横坐标绘制真导热系数曲线,并与真导热系数小温差测量结果进行比较,如图 4‑ 12中的蓝线所示。由图 4‑ 12所示的对比结果可以看出,大温差法测试结果转换为小温差的真效导热系数后,与小温差测试结果吻合的非常好,全温度范围内偏差百分比都小于4%,只是在较低热面温度(100℃以下)时偏差最大为8.9%。由此可见,对于这种OFI纤维隔热材料,在高真空条件0.001 Torr氮气环境下,大温差有效导热系数测试结果转换为小温差真导热系数测试结果后,与小温差真导热系数实际测试结果吻合的非常好。[b][color=#FF0000]5. 结论[/color][/b] 通过对五种纤维类隔热材料的六组大温差和小温差测试试验结果可以看出,尽管做了一些假设,并忽略了辐射传热对整体热传递的影响,但所建立的有效导热系数与真导热系数关系式成立,并且对这五种纤维类隔热材料应用这种关系是有效的。[b][color=#FF0000]6. 参考资料[/color][/b](1)Daryabeigi K. Heat transfer modeling and validation for optically thick alumina fibrous insulation//Proceedings of the 30th International Thermal Conductivity Conference and the 18th International Thermal Expansion Symposium. USA: NASA Langley Research Center, 2009: 23681.(2)Daryabeigi K, Cunnington GR, Knutson JR. Combined heat transfer in high-porosity high-temperature fibrous insulation: Theory and experimental validation. Journal of thermophysics and heat transfer. 2011 Oct 25 (4):536-46.(3) Gembarovic, J., and Taylor, R. E., “A Method for Thermal Diffusivity Determination of Thermal Insulators,” International Journal of Thermophysics, Vol. 28, No. 6, 2007, pp. 2164-2175.[hr/]

  • AFM在接触模式下探针的选择问题

    大家好,我是新手,最近在准备实验的过程中遇到了一些问题,在网上一直找不到答案,特向各位请教。 最近在做一个测量弹性系数的实验,需要用到原子力显微镜的接触模式,同时对探针的弹性系数要求比较大,约为1~5N/m。接触式探针的弹性系数一般小于1N/m,不能满足实验要求,请问弹性系数较大的轻敲式探针可以用于AFM的接触模式吗? 另外,厂家提供的探针弹性系数为一个范围值,需要怎样测定探针的准确弹性系数,可以用共振法测得共振频率,再结合探针的外形尺寸来测得弹性系数吗?

  • AFM液相实验的探针问题

    大家做液相实验,轻敲模式下用的是什么探针,以前实验室一直用的是Vecco的那个NP-20的那个弹性系数0.58N/m的那个探针针,不过现在那个新的NP的针好像比以前的薄了不少,反正液相下的轻敲模式总是不稳定,大家分享一下经验

  • 四探针电阻率测试仪

    四探针电阻率测试仪。XH-KDY-1BS 型四探针电阻率测试仪是严格按照硅材料电阻率测量的国际标准(ASTM F84)及国家标准设计制造,并针对目前常用的四探针电阻率测试仪存在的问题加以改进。整套仪器有如下特点:1、 配有双数字表: 一块数字表在测量显示硅片电阻率的同时,另一块数字表(以万分之几的精度)适时监测全过程中的电流变化,使操作更简便,测量更精确。数字电压表量程:0—199.99mV 灵敏度:10μV输入阻抗:1000ΜΩ基本误差±(0.04-0.05%读数+0.01%满度)2、可测电阻率范围:10—4 —1.9×104Ω·cm可测方块电阻范围:10—3 —1.9×105Ω/□。2、 设有电压表自动复零功能,当四探针头1、4 探针间未有测量电流流过时,电压表指零,只有1、4 探针接触到硅片,测量电流渡过单晶时,电压表才指示2、3 探针间的电压(即电阻率)值,避免空间杂散电波对测量的干扰。3、 流经硅料的测量电流由高度稳定(万分之五精度)的特制恒流源提供,不受气候条件的影响,整机测量精度10 万次),在绝缘电阻、电流容量方面留有更大的安全系数,提高了测试仪的可靠性和使用寿命。5、 加配软件配电脑使用,实现自动换向测量、求平均值,计算并打印电阻率最大值、最小值、最大百分变化率、平均百分变化率等内容。6、 四探针头采用国际上先进的红宝石轴套导向结构,使探针的游移率减小,测量重复性提高(国家知识产权局已于2005.02.02 授予专利权,专利号:ZL03274755.1)。

  • 【分享】了解荧光探针

    在紫外-可见-近红外区有特征荧光,并且其荧光性质(激发和发射波长、强度、寿命、偏振等)可随所处环境的性质,如极性、折射率、黏度等改变而灵敏地改变的一类荧光性分子,包括有机试剂或金属螯合物。   最常用于荧光免疫法中标记抗原或抗体,亦可用于微环境,如表面活性剂胶束、双分子膜、蛋白质活性点位等处微观特性的探测。通常要求探针的摩尔吸光系数大,荧光量子产率高;荧光发射波长处于长波且有较大的斯托克斯位移;用于免疫分析时,与抗原或抗体的结合不应影响它们的活性。  也可用于标记待定的核苷酸片断,用与特异性地、定量地检测核酸的量。如Ca2+荧光探针:钙黄绿素(Calcein),Fluo-3,Fura-2/AM Mg2+荧光探针:Mag-Fura-2,[Dy-Mn]聚合物

  • 表观导热系数,导热系数和热阻

    表观导热系数,导热系数和热阻1.表观导热系数 Apparent thermal conductivity ASTM C177 C518 or C1114 -4℃, 24℃, 38℃, 93℃, 149℃, 204℃, 260℃, 316℃ ,371℃,427℃ 样品量:300×300mm, 2pcs 厚度25~51mm工作周期:10个工作日2. 导热系数和热阻 Thermal Conductivity& thermal resistance ASTM C518EN 12667 / EN 12664ISO 8301GB/T 10295(-20℃~-10℃), (-9℃~0℃) , (1-10℃), (11-70℃)样品量:300x300x5~80mm 2pcs 工作周期:10个工作日

  • 【分享】关于布鲁克台阶仪探针、原子力显微镜AFM/SPM探针

    提供实验室整体解决方案......BRUKER探针 -AFM探针原子力显微镜AFM探针: 探针的工作模式:主要分为 扫描(接触)模式和轻敲模式探针的结构:悬臂梁+针尖探针针尖曲率半径Tip Radius:一般为10nm到几十nm。制作工艺:半导体工艺制作常见的探针类型:(1)、导电探针(电学):金刚石镀层针尖,性能比较稳定(2)、压痕探针:金刚石探针针尖(分为套装和非套装的)(3)、氮化硅探针:接触式 (分为普通的和锐化的)(4)、磁性探针:应用于MFM,通过在普通tapping和contact模式的探针上镀Co、Fe[/siz

  • 导热系数仪求助

    实验室准备购买一台导热系数仪,主要测陶瓷纤维,能测高温600℃以上,导热系数精度在0.001W/K.M的,哪位大神有用过的,求指教,谢谢。

  • 【分享】AFM探针分类及各探针优缺点

    AFM探针分类及各探针优缺点   AFM探针基本都是由MEMS技术加工 Si 或者 Si3N4来制备. 探针针尖半径一般为10到几十 nm。微悬臂通常由一个一般100~500μm长和大约500nm~5μm厚的硅片或氮化硅片制成。典型的硅微悬臂大约100μm长、10μm宽、数微米厚。   利用探针与样品之间各种不同的相互作用的力而开发了各种不同应用领域的显微镜,如AFM(范德法力),静电力显微镜EFM(静电力)磁力显微镜MFM(静磁力)侧向力显微镜LFM(探针侧向偏转力)等, 因此有对应不同种类显微镜的相应探针。   原子力显微镜的探针主要有以下几种:   (1)、 非接触/轻敲模式针尖以及接触模式探针:最常用的产品,分辨率高,使用寿命一般。使用过程中探针不断磨损,分辨率很容易下降。主要应用与表面形貌观察。   (2)、 导电探针:通过对普通探针镀10-50纳米厚的Pt(以及别的提高镀层结合力的金属,如Cr,Ti,Pt和Ir等)得到。导电探针应用于EFM,KFM,SCM等。导电探针分辨率比tapping和contact模式的探针差,使用时导电镀层容易脱落,导电性难以长期保持。导电针尖的新产品有碳纳米管针尖,金刚石镀层针尖,全金刚石针尖,全金属丝针尖,这些新技术克服了普通导电针尖的短寿命和分辨率不高的缺点。   (3)、磁性探针:应用于MFM,通过在普通tapping和contact模式的探针上镀Co、Fe等铁磁性层制备,分辨率比普通探针差,使用时导电镀层容易脱落。   (4)、大长径比探针:大长径比针尖是专为测量深的沟槽以及近似铅垂的侧面而设计生产的。特点:不太常用的产品,分辨率很高,使用寿命一般。技术参数:针尖高度 9μm;长径比5:1;针尖半径 10 nm。   (5)、类金刚石碳AFM探针/全金刚石探针:一种是在硅探针的针尖部分上加一层类金刚石碳膜,另外一种是全金刚石材料制备(价格很高)。这两种金刚石碳探针具有很大的耐久性,减少了针尖的磨损从而增加了使用寿命。   还有生物探针(分子功能化),力调制探针,压痕仪探针

  • 树脂基复合材料低导热系数测试时稳态法和激光脉冲法的选择

    树脂基复合材料低导热系数测试时稳态法和激光脉冲法的选择

    最近有朋友对导热系数测试方法如何选择想进行一些讨论,这里就我们在导热系数测试中的经验,以及导热系数测试设备研制和测试方法研究中的体会谈一些感受,欢迎大家批评指正。 材料的导热系数一般采用两类测试方法,一类是稳态法,主要包括护热板法、护热板热流计法和护热式圆筒法等;另一是非稳态法,主要包括激光脉冲法、热线法、热探针法和平面热源法等。这些方法国内外都有相应的测试标准,是比较成熟和经典测试方法。 对于稳态护热板法和激光脉冲法来说,这两种测试方法基本上属于互补性关系,即分别覆盖不同导热系数范围的测量。通常,稳态法的导热系数测试范围为0.005~1 W/mK;非稳态激光脉冲法的导热系数测试范围为1~400 W/mK。在满足测试条件的前提下,稳态法的测量精度可以达到±3%以内,激光脉冲法的测量精度可以达到±5%以内。 材料的导热系数一般采用两类测试方法,一类是稳态法,主要包括护热板法、护热板热流计法和护热式圆筒法等;另一是非稳态法,主要包括激光脉冲法、热线法、热探针法和平面热源法等。这些方法国内外都有相应的测试标准,是比较成熟和经典测试方法。 低导热材料一般泛指导热系数在0.1~1W/mK 范围的隔热材料。这类材料由于导热系数低常被用作工程隔热材料,如各种玻璃钢类材料、树脂基类复合材料和陶瓷材料等。在这类低导热材料的导热系数测量中,测试方法的选择常常容易出现偏差,很多测量机构由于只有激光脉冲法测试设备,而就用激光脉冲法测量这类低导热材料,测量结果往往出现比稳态法准确测量值低15%~20%的现象。采用氟塑料(导热系数0.2 W/mK 左右)和纯聚酰亚氨树脂材料Vespel SP1(导热系数0.4W/mK 左右),用稳态法和瞬态激光脉冲法进行的比对试验也证明激光脉冲法的测试结果确实偏低。有些材料研制机构也利用这种现象来证明研制的材料达到了验收标准,这样很容易误导材料设计和使用部门的正常使用。 对于低导热材料的测试,造成激光脉冲法测量结果总是要低于稳态法测量结果的主要原因是由测量装置的固有因素造成,主要体现在以下两个方面:一、激光脉冲法测量装置的影响 激光脉冲法测试设备的试样支架,一般都是采用导热系数较低的陶瓷材料做成,其目的是在固定试样的同时尽可能减少传导热损失,以保证激光脉冲加热试样后,试样内的热流沿着试样厚度方向以一维形式传递。如果被测试样的导热系数小于1W/mK,基本上与陶瓷支架相近,这样必然会引起较大的侧面热失,破坏一维传热模型。如图 1 所示,侧面热损会使得试样背面的最大温升Tm 降低,从而造成较大的测量误差。而这些热损情况在稳态测量方法中不会出现。 如图 1 所示,采用激光脉冲法测量材料热扩散时,导热系数越大,背面温升达到一半最高点的时间t0.5 越短,背面温升采集时间10t0.5 也越短。一般金属材料背面温升达到一般最大值的时间t0.5 大约在50 毫秒以内,而对低热导率材料,背面温升达到一半最大值时间t0.5 就需要上百毫秒以上,同时总的采集时间10t0.5 也将相应的增大很多,如此长的传热时间,必然会引起强烈的侧面热损。http://ng1.17img.cn/bbsfiles/images/2015/03/201503202143_539038_3384_3.png图1 激光脉冲法典型背面温升曲线 激光脉冲法一般都是采用间接测量方式获得被测材料的导热系数,即激光脉冲法测量材料的热扩散率,然后与其它方法测得的密度和比热容数据相乘后得到被测材料的导热系数。这样得到的导热系数数据势必会叠加上其它方法测量误差,特别是比热容的测试误差一般较大。这样获得的导热系数测量精度就势必要比稳态法直接测量的热导率误差偏大。二、激光脉冲法试验参数的影响 如图 1 所示,激光脉冲法在测试过程中,试样在激光脉冲加热后,试样背面温升快速升高,最大温升也仅1 ~ 5℃之间。但对于低导热材料,由于材料导热系数比较低,要使背面温度达到可探测的幅度很困难。为了解决背面温升的可探测性,必须通过两种途径:一是采用很薄的试样,约为1mm 厚,否则很难探测到有效信号;二是在采用薄试样的同时增大激光脉冲的能量,也就是提高脉冲加热试样的功率,使得试样前表面达到更高的温度。这两种途径都会对低导热材料的测量结果带来影响: (1)低导热材料多为复合材料,密度一般都很小。激光脉冲法的试样直径(10mm ~ 12mm)本来就很小,如果试样厚度再很薄,对于复合材料来说很难具有代表性。并且密度分布的不均匀,会使得测量结果的离散性比较大。而稳态法测量所用的试样一般较大,代表性强。 (2)激光脉冲法认为激光脉冲加热试样前表面时,前表面热量的吸收层相比试样总体厚度越小越好。而一般低导热材料的热分解温度和熔点较低,高功率脉冲激光很容易使得试样表面产生高温加热而带来化学反应,反应层厚度相比试样总体厚度较大,破坏了激光脉冲法测试模型的要求,带来测量结果的不真实性。而在稳态法测量过程中,测试过程中的温度变化都严格控制在被测材料热分解温度点以下,就是为了避免热分解现象的产生带来测量结果的不真实性。 (3)一般导热系数测量过程都带有温度变化和一定的温度梯度。激光脉冲法测量如果在静止气氛中进行,背面温升的变化会受到辐射和对流的影响。所以,激光脉冲法在测量过程中,一般需要抽真空测试,以消除对流影响。而对一般复合材料来说,密度越低,在真空下发生真空质量损失的现象也越强烈。如果被测材料密度较低,真空质量损失会使得试样厚度和质量发生变化,如果再加上激光脉冲加热更会加剧质量损失过程,对测量结果带来影响。 (4)由于低密度材料内部容易存在着空隙和气孔,如果在真空中测量这类材料,真空环境将严重的改变试样内部的传热方式,基本上不再有对流传热。因此真空下测量的热导率会比在常压大气环境的测量值明显偏低。而稳态法测试设备绝大多数是在常压大气下进行,通过特别的护热装置使得在试样外部不存在温度梯度以消除对流,传热现象只发生在试样内部,因此稳态法测量结果代表的是常压大气环境下材料的热导率。个别变真空稳态法测量装置,也是专门用来测量评价材料在不同真空度下的热导率,以用于准确表征材料在不同真空度下的隔热性能。 因此,对于低导热材料热导率的测量,如果条件允许,尽量采用稳态测量方法,并明确试验条件,建议不采用激光脉冲法测量低导热材料热导率。 目前在国内的军工系统中都普遍采用稳态的保护热流计法导热系数测定仪来进行树脂基复合材料的导热系数测试,并已经做为工艺考核标准。多数采用的是美国TA公司的MODEL 2022导热仪,圆片状试样直径有1英寸(25.4mm)和2英寸(50.8mm)两种规格,最高测试温度为300℃。同时,美国TA公司的MODEL 2022导热仪也是该公司的主流产品,由此也可以看出这种稳态测试方法的应用十分广泛。

  • 隔热材料等效导热系数与导热系数的区别以及高温大温差条件下的试验验证

    隔热材料等效导热系数与导热系数的区别以及高温大温差条件下的试验验证

    [color=#ff0000]摘要:针对目前隔热材料导热系数测试中存在的使用条件和测试条件不一致,以及隔热材料导热系数测试方法选择不合理的问题,本文对低密度隔热材料导热系数测试技术进行了分析,介绍了等效导热系数和导热系数基本概念,介绍了如何选择合理的测试方法,并用试验测试数据验证了不同测试方法所得的等效导热系数和导热系数之间的差异。[/color][align=center][color=#ff0000]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/align][size=18px][color=#ff0000]一、问题的提出[/color][/size]在高低温隔热防护领域中,经常会听到防热结构设计人员和隔热材料使用机构提出隔热材料无法满足使用要求的问题,经常会出现隔热性能样品测试结果与实际隔热考核试验效果相差巨大的现象。在隔热材料实际应用中,如果按照隔热材料导热系数测试结果进行设计,经常会出现防隔热系统根本无法达到隔热设计要求的现象。出现这种现象主要是由于以下几方面的原因:(1)隔热材料使用条件和测试条件出现严重偏离。(2)隔热材料导热系数测试方法选择不合理。为解决上述问题,本文将针对当前低密度隔热材料导热系数测试技术进行分析,介绍合理的测试方法选择,并用试验测试演示不同测试方法所得的等效导热系数和导热系数之间的差异。[size=18px][color=#ff0000]二、等效导热系数、导热系数及其测试方法分析[/color][/size]各种隔热材料在实际应用中,一般都会在材料的隔热厚度方向上形成较大温差,即隔热材料的一面面对高温热源或低温冷源,隔热材料另一面经隔热后的温度越接近于环境温度(如室温)越好。在高温防隔热系统中,这种温差往往有几百至上千度;在低温绝热系统中,这种温差也会有200~300℃左右(如液氮和液氦冷源)。另外在隔热过程中,隔热材料内部的传热形式主要有导热、辐射和对流三种传热形式,特别是对于低密度多孔隙的隔热材料,冷热面之间的温差越大,辐射和对流的作用越明显。因此,为了准确测试表征隔热材料的实际隔热性能,需要在隔热材料厚度方向上模拟出与实际应用接近的大温差后再进行测试,这种大温差条件下测试得到的导热系数包含了导热、辐射和对流三种传热形式的综合作用,这种包含了复杂综合传热效果的导热系数称之为等效导热系数(effective thermal conductivity),或表观导热系数(apparent thermal conductivity)。目前大多数隔热材料导热系数测试过程中,并未在隔热材料厚度方向上形成较大温差,一般是将温差控制在10~40℃范围内,此时获得的测试结果为导热系数(thermal conductivity),也称之为真导热系数(ture thermal conductivity),主要包括隔热材料内的固体材质和气体的导热系数之和,这种较小温差使得隔热材料内存在的辐射和对流热传递可以忽略不计。真导热系数的另外一个显著特点是与被测样品的厚度无关,即测试不同厚度的相同隔热材料样品应得到相同的真导热系数,此特点常用于考核导热系数测试仪器的准确性。由此可见,由于小温差测试中不包含辐射和对流传热,这使得测试相同隔热材料测试时,大温差下测试得到的等效导热系数数值往往会普遍大于小温差下测试得到的真导热系数。因此,如果用真导热系数来进行防隔热系统的设计,自然无法得到合理的隔热设计效果。总之,为了得到隔热材料的真实准确数据,隔热材料的导热系数测试条件必须尽可能的与实际隔热温差接近。依上所述,在隔热材料导热系数测试过程中,要根据隔热材料实际应用情况,导热系数测试设备要在被测样品厚度方向上建立相应的大温差或小温差,并在所建立的温差条件下进行测试。因此必须对测试方法和测试设备进行合理的选择,这样才能得到合理的隔热性能测试结果。以下为几种常用于低密度隔热材料导热系数表征的测试方法以及它们的相应温差条件说明。(1)稳态保护热板法:稳态保护热板法是目前导热系数测量精度最高的一种稳态测试方法,也是一种绝对测试方法,其典型标准为GB/T 10294和ASTM C177,测试温度范围可以覆盖-160℃~600℃。由于这种方法在被测样品厚度方向上只能形成20~30℃的小温差,所以测试得到的是真导热系数。保护热板法适合测试导热系数小于1W/mK的各种低导热防隔热材料,但对于超低导热系数(0.01W/mK)测试中,准稳态法的表现显着尤为突出,这主要是因为准稳态法具有从低温至高温的很宽泛测试温度范围,并能测试大温差下的等效导热系数,同时配套的校准技术相对简单,并具备多参数(导热系数、热扩散系数和比热容)测试能力和和更快的测试效率,另外准稳态法测试设备具有相对较低的造价。(2)对于具有超低导热系数(0.01W/mK)的绝热材料,其常温至低温下导热系数测试推荐采用蒸发量热计法,一方面是因为这种方法灵敏度和准确度都非常高,另一方面是可以测试大温差下的等效导热系数。[size=18px][color=#ff0000]三、等效导热系数和导热系数测试对比[/color][/size]为了更直观的说明和了解等效导热系数与导热系数之间的区别,我们分别对石墨毡隔热材料在高温和真空下分别采用不同稳态热流法法和稳态防护热板法进行了测试验证。样品:石墨毡,样品尺寸300mm×300mm×30mm,密度91.7kg/m3。测试环境:真空环境,真空度始终控制在100Pa左右。测试方法和设备:(1)稳态保护热板法(ASTM C177),测试设备为德国耐驰公司的GHP 456,如图1所示。样品热面最高温度为620℃,样品厚度方向上的温差为20℃。(2)稳态热流计法(ASTM C518),测试设备为上海依阳公司的TC-HFM-1000,如图2所示。样品热面最高温度为1000℃,冷面温度控制在50℃以上,最大温差980℃。[align=center][img=大温差下测试等效导热系数,500,333]https://ng1.17img.cn/bbsfiles/images/2022/05/202205171059034061_2954_3384_3.jpg!w690x460.jpg[/img][/align][align=center]图1 德国耐驰公司GHP 456导热测试设备[/align][align=center][/align][align=center][img=大温差下测试等效导热系数,500,388]https://ng1.17img.cn/bbsfiles/images/2022/05/202205171059379893_798_3384_3.jpg!w500x388.jpg[/img][/align][align=center]图2 上海依阳公司TC-HFM-1000导热测试设备[/align]采用热流计法和保护热板法得到的测试结果如表1所示,绘制成拟合曲线如图3所示。[align=center]表1 采用热流计法和保护热板法测试石墨毡导热系数结果[/align][align=center][img=大温差下测试等效导热系数,690,220]https://ng1.17img.cn/bbsfiles/images/2022/05/202205171059504021_3983_3384_3.png!w690x220.jpg[/img][/align][align=center][img=大温差下测试等效导热系数,690,421]https://ng1.17img.cn/bbsfiles/images/2022/05/202205171100113433_2123_3384_3.png!w690x421.jpg[/img]图3 石墨毡等效导热系数和导热系数测试结果对比图[/align]从上述测试结果可以明显看出,保护热板法在20℃小温差下测得的导热系数随温度变化基本呈线性关系。热流计法在大温差下测得的等效导热系数随温度变化呈曲线关系,并随着温差增大,导热系数快速增大,其中的热辐射传热效应非常明显。在500℃平均温度下,等效导热系数要比真导热系数增大了将近60%多。由此可见,如果在防隔热系统中采用的是导热系数而非等效导热系数进行设计,则会出现严重错误。[size=18px][color=#ff0000]四、总结[/color][/size]为了满足实际工程应用中对隔热材料的隔热性能准确测试表征,需特别注意以下内容:(1)根据隔热材料的设计和应用场景,选择合理的测试方法,相应测试方法和测试设备要求具备模拟隔热材料实际应用中高温下的大温差能力。(2)为同时实现大温差和尽可能高的测试温度,推荐的测试方法为热流计法和准稳态法。(3)对于超低导热系数绝热材料(如气凝胶类隔热材料)的测试,要仔细考量和解决热流计的校准问题和准稳态法中量热计的漏热问题。(4)稳态保护热板法是目前热流计校准唯一较准确的方法,为了实现对超低导热系数测试中更小热流的准确测量,势必要大幅度降低保护热板法校准设备的微小漏热问题,但此问题的解决难度大,现有技术基本已经达到了极限,从而造成目前所有超低导热系数测试普遍偏高的现象。因此迫切需要在新技术上有所突破,解决微小漏热难题,特别是在高灵敏度热流计和微小热流精密校准方面取得突破。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【求助】有誰知道表中的气体导热系数

    下面的气体导热系数是不是对?知道者请帮忙告诉我,谢谢!  部分气体0℃时的导热系数 W/(m• ℃)气体导热系数 气体 导热系数氢气0.163 一氧化碳 0.0226氦气0.144 二氧化碳 0.0137氩气0.0173 甲烷 0.0300氖气0.0455 乙烷 0.0180氧气0.0240 丙烷 0.0148氮气0.0228 乙烯 0.0164空气0.0233 乙炔 0.0184

  • 导热系数仪

    公司实验室想买一台导热系数仪,主要用来测陶瓷纤维,要求精度最好是0.001W/K.m,高温能到600℃。请问各位大哥大姐谁有用过类似的导热系数仪啊,帮忙介绍下。感激不尽。

  • 碳纤维隔热保温材料:真空和惰性气体环境下高温导热系数测试技术

    碳纤维隔热保温材料:真空和惰性气体环境下高温导热系数测试技术

    [color=#990000]摘要:针对碳纤维隔热保温材料这种在高温真空和惰性气体环境下的唯一一类耐高温隔热保温材料,本文介绍了碳纤维隔热保温材料高温导热系数测试中的特点,以及国内外针对碳纤维隔热保温材料导热系数测试技术的发展现状,并详细介绍了国外碳纤维保温材料导热系数测试结果,以及上海依阳公司采用稳态热流计法对国产石墨硬毡导热系数的测试结果。[/color][align=center][img=,566,376]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061729597358_7316_3384_3.png!w566x376.jpg[/img][/align][align=center][color=#ff0000]硬质碳纤维隔热材料[/color][/align][b][color=#ff0000]一、碳纤维隔热保温材料及其导热系数测试特点[/color][/b]碳纤维隔热保温材料是一种碳纤维与一定比例粘结剂成型制得的软毡材料,在软毡材料基础上通过碳化、石墨化、机加工制成硬质碳纤维隔热保温材料。评价这类材料隔热保温性能的一个重要指标为导热系数,而在导热系数测试中存在着与其他类型隔热材料不同的特点:(1)测试温度高:最高至1000~2000℃以上;(2)惰性气体环境;真空、氮气、氩气、氦气等;(3)两种温度分布形式:温度均匀和大温度梯度;(4)两类材料形式:柔性和刚性;(5)材料导电性:导电材料。[color=#ff0000][b]二、隔热材料高温导热系数国内外常用测试方法[/b][/color]对于低导热系数的隔热材料,常用的导热系数测试方法主要分为以下三类:[align=center][img=00.隔热材料导热系数常用测试方法,690,176]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061731593097_6773_3384_3.png!w690x176.jpg[/img][/align][align=center][color=#ff0000]三类导热系数常用测试方法[/color][/align]从以上列表可以看出,目前国内外可满足碳纤维隔热保温材料导热系数测试的商品化设备只有德国耐驰公司的稳态保护热板法导热仪和上海依阳实业有限公司的稳态热流计法导热仪,可实现在真空和惰性气体环境下对碳纤维隔热败落材料导热系数进行测试,而美国NASA的稳态热流计法导热仪则是非标自制的非商品数测试仪器。[b][color=#ff0000]2.1 稳态保护热板法[/color][/b]依据的标准为:ASTM C177 和 GB/T 10294,测量原理如图1所示。[align=center][img=01.单样品防护热板法示意图,516,301]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061732313057_7803_3384_3.jpg!w516x301.jpg[/img][/align][align=center][color=#ff0000]图1 单样品形式稳态保护热板法测量原理图[/color][/align]对于稳态保护热板法导热系数测试仪器,目前国内外具有在高温和真空条件下进行导热系数测试能力的设备只有德国耐驰公司生产的商品化设备和美国NIST自制的标准化测试设备,如图2和图3所示。[align=center][img=02.德国耐驰公司保护热板法分析仪,500,333]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061732576517_3719_3384_3.jpg!w500x333.jpg[/img][/align][align=center][color=#ff0000]图2 德国耐驰公司的稳态保护热板法导热仪[/color][/align][align=center][img=03.美国NIST保护热板法导热仪,600,403]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061733230452_8623_3384_3.jpg!w600x403.jpg[/img][/align][align=center][color=#ff0000]图3 美国NIST稳态保护热板法导热仪[/color][/align][b][color=#ff0000]2.2 稳态热流计法[/color][/b]依据的标准为:ASTM C201、GB/T 10295和YBT 4130-2005。其中YBT 4130-2005完全照搬了ASTM C201,是一种采用水量热计法进行热流密度测量,也是一种热流计法。稳态热流计法的基本原理如图4所示。[align=center][img=04.热流计法高温导热仪测量原理图,690,389]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061733428187_8222_3384_3.png!w690x389.jpg[/img][/align][align=center][color=#ff0000]图4 稳态热流计法测量原理图[/color][/align]对于稳态热流计法导热系数测试仪器,目前国内外具有在高温条件下进行导热系数测试能力的设备有以下四家机构的设备,如图5和图6所示,但只有美国NASA和上海依阳实业有限公司具有自制的标准化测试设备,如图7和图8所示。[align=center][img=05.国产水流量平板法高温导热仪,500,365]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061734048203_1810_3384_3.jpg!w500x365.jpg[/img][/align][align=center][color=#ff0000]图5 国产水量热计法高温导热仪[/color][/align][align=center][img=,608,600]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061753072806_6516_3384_3.jpg!w608x600.jpg[/img][/align][align=center][color=#ff0000]图6 美国Orton公司水量热计法高温导热仪[/color][/align][align=center][img=07.美国NASA稳态热流计法高温导热仪,624,473]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061734509267_416_3384_3.png!w624x473.jpg[/img][/align][align=center][color=#ff0000]图7 美国NASA稳态热流计法高温导热系数测试系统[/color][/align][align=center][img=08.上海依阳公司热流计法高温导热仪,690,535]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061735204189_1658_3384_3.jpg!w690x535.jpg[/img][/align][align=center][color=#ff0000]图8 上海依阳实业有限公司稳态热流计法高温导热系数测试系统[/color][/align][b][color=#ff0000]2.3 瞬态热线法[/color][/b]依据的标准为:ASTM C1133 和 GB/T 5990。瞬态热线法的基本原理如图9所示。[align=center][img=09.热线法导热仪结构原理图(平行线法),475,359]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061735445173_2323_3384_3.jpg!w475x359.jpg[/img][/align][align=center][color=#ff0000]图9 瞬态热线法导热仪原理图(平行线法)[/color][/align][align=center]对于瞬态热线法导热系数测试仪器,目前国内外具有在高温条件下进行导热系数测试能力的设备有以下两家公司的设备,如图10和图11所示。[/align][align=center][img=10.美国TA公司热线法高温导热仪,690,555]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061736056747_5297_3384_3.jpg!w690x555.jpg[/img][/align][align=center][color=#ff0000]图10 美国TA公司热线法高温导热仪[/color][/align][align=center][img=11.德国耐驰公司热线法高温导热仪,401,600]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061736304489_8933_3384_3.jpg!w401x600.jpg[/img][/align][align=center][color=#ff0000]图11 德国Netzsch公司热线法高温导热仪[/color][/align][b][color=#ff0000]三、碳纤维隔热材料测试技术现状[/color][/b]从以上三类隔热材料测试方法和相关导热系数测试设备可以看出,商品化设备仅有德国耐驰的保护热板法和上海依阳的热流计法设备可以满足碳纤维隔热材料在惰性气体环境下的测试要求。国外对碳纤维隔热材料导热系数测试多为非标自制设备,文献和隔热材料厂家报道全部是热流计法和热线法设备。主要因为只有这两种方法可实现高温。除了上海依阳实业有限公司之外,还未见到国内其他机构具有碳纤维隔热材料导热系数测试设备,也未见到相应的测试结果文献报道。[b][color=#ff0000]四、碳纤维隔热保温材料导热系数的两种主要测试技术[/color][/b]从上述介绍可以看出,针对碳纤维隔热保温材料的导热系数测试,目前国内外只有稳态热流计法和瞬态热线法能实现高温条件下的测试。下面分别介绍这两种方法在导热系数具体测试中的特点。[b][color=#ff0000]4.1 稳态热流计法高温导热系数测试[/color][/b]这是一种国内外隔热材料高温导热系数测试的主流方法,除可实现高温外,主要特点是模拟实际隔热时的大温差环境,可测量复合材料构件,并可测试不同方向上的导热系数。可在真空和惰性气体控制气压环境下进行导热系数测试,美国NASA有过大量文献报道,技术非常成熟,几乎对所有航天用隔热材料都进行过测试评价。上海依阳也采用此技术,以满足国内航天高温隔热材料导热系数测试需求。国外碳纤维隔热材料生产厂家的柔性和刚性隔热毡产品资料中也能看出采用的是稳态热流计法。[b][color=#ff0000]4.2 瞬态热线法高温导热系数测试[/color][/b]在未出现稳态热流计法前,是隔热材料和碳纤维隔热材料的主流测试方法,以前多用于耐火材料导热系数测试中。热线法导热系数测试设备结构简单,较易实现高温测试。热线法导热系数测试设备特点之一是均温测试,得到的是真导热系数,而不是高温下具有大温差时辐射传热起主导作用的有效导热系数。但对于碳纤维隔热材料这种导电材料,要设法解决热线高温绝缘难题。同时整个测试过程十分漫长,需要整个样品温度恒定。[b][color=#ff0000]4.3 稳态热流计法与瞬态热线法测量结果的区别[/color][/b]稳态热流计法导热系数测试过程中,样品厚度方向上存在较大温差,在高温下会存在导热、对流和辐射传热等多种传热 形式,这时所测试得到的导热系数对应于等效导热系数。瞬态热线法导热系数测试过程中,被测样品温度均匀无温差,测试过程中只存在固体和气体导热传热形式, 这时所测试得到的导热系数对应于真导热系数。图12所示为两种不同低密度隔热材料中导热、对流和辐射传热时的相应导热系数随温度变化曲线,从曲线中可以明细看出,由于辐射传热的影响,会使得整体导热系数明细的增加。[align=center][img=,667,412]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061750302779_5461_3384_3.png!w667x412.jpg[/img][/align][align=center][color=#ff0000]图12 固体、气体和辐射传热对应的导热系数分量随温度变化曲线[/color][/align]另外,对同一样品用热流计法测试得到的等效导热系数都比瞬态法热线法测试得到的真导热系数大,如图13所示。[align=center][img=13.等效导热系数与真导热系数对比,690,392]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061737172107_4763_3384_3.png!w690x392.jpg[/img][/align][align=center][color=#ff0000]图13 有效导热系数与真导热系数对比[/color][/align][b][color=#ff0000]五、国外碳纤维隔热材料测试典型报道[/color][color=#ff0000]5.1 美国 NASA Langley Research Center 工作[/color][/b]美国 NASA Langley Research Center研制的热流计法高温导热系数测试系统技术指标如下:(1)被测对象:刚性和柔性片状材料;(2)样品热面温度最高:1800℉;(3)气压控制范围:0.0001 ~ 760 torr。美国 NASA Langley Research Center研制的热流计法高温导热系数测试系统结构如图14所示。[align=center][img=,537,374]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061754362037_9065_3384_3.png!w537x374.jpg[/img][/align][align=center][color=#ff0000]图14 美国NASA和上海依阳稳态热流计法高温导热系数测试系统结构示意图[/color][/align]相关报道可参考以下文献:(1) Daryabeigi, Kamran. "Effective thermal conductivity of high temperature insulations for reusable launch vehicles." NASA/TM-1999-208972 (1999).(2) Daryabeigi, Kamran, George R. Cunnington, and Jeffrey R. Knutson. "Combined heat transfer in high-porosity high-temperature fibrous insulation: Theory and experimental validation." Journal of thermophysics and heat transfer 25, no. 4 (2011): 536-546.[color=#ff0000]5.2 日本 NIPPON CARBON 公司产品性能[/color]日本 NIPPON CARBON 公司的碳纤维隔热保温材料主要有GF-F软毡系列和FGL多层复合硬毡系列,如图15和图16所示。[align=center][img=15.GF-F软毡系列,345,290]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061738366157_2988_3384_3.png!w345x290.jpg[/img][/align][align=center][color=#ff0000]图15 Soft Felt GF-F Series[/color][/align][align=center][img=16.FGL多层复合硬毡系列,315,250]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061738596568_157_3384_3.png!w315x250.jpg[/img][/align][align=center][color=#ff0000]图16 Felt Laminated FGL Series[/color][/align]对于这两类碳纤维隔热保温材料,日本 NIPPON CARBON 公司在其官网分别给出了高温导热系数测试结果,如图17和图18所示。[align=center][img=17.日本碳公司软毡导热系数测试结果,599,515]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061739203059_8251_3384_3.png!w599x515.jpg[/img][/align][align=center][color=#ff0000]图17 日本碳公司软毡高温导热系数测试结果[/color][/align][align=center][img=18.日本碳公司多层硬毡导热系数测试结果,576,510]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061739426081_5945_3384_3.png!w576x510.jpg[/img][/align][align=center][color=#ff0000]图18 日本碳公司多层硬毡高温导热系数测试结果[/color][/align]从上述 NIPPON CARBON 公司给出的软毡和硬毡高温导热系数测试结果可以看出,导热系数测试是在20Pa的真空环境下进行,而且声明测试的是垂直于样品表面方向,这就代表了高温导热系数测试采用的稳态热流计法,因为只有稳态热流计法才有明确的方向性。[b][color=#ff0000]5.3 日本吴羽株式会社 KRECA FR石墨硬毡产品性能[/color][/b]日本吴羽株式会社的碳纤维隔热保温材料主要有KRECA FR石墨硬毡系列,如图19所示。[align=center][img=19.日本吴羽公司石墨硬毡,566,376]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061740320551_5825_3384_3.png!w566x376.jpg[/img][/align][align=center][color=#ff0000]图19 日本吴羽株式会社的KRECA FR石墨硬毡系列[/color][/align]对于KRECA FR石墨硬毡系列,日本吴羽株式会社在其中文官网上颁布的高温导热系数测试结果如图20所示。[align=center][img=20.日本吴羽公司硬毡导热系数测试结果,499,477]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061740533317_6109_3384_3.png!w499x477.jpg[/img][/align][align=center][color=#ff0000]图20.日本吴羽公司硬毡高温导热系数测试结果[/color][/align]从图20中可以看出,高温导热系数测试是在1.33Pa的真空环境下进行,样品厚度为50mm。尽管日本吴羽株式会社并未标注导热系数测试方法,但从样品厚度来判断应该是稳态热流计法,因为热线法导热系数测试中样品厚度较大。[b][color=#ff0000]5.4 美国 Carbon Composites公司产品导热性能[/color][/b]美国 Carbon Composites公司在其官网上颁布了其碳纤维隔热保温材料产品的高温导热系数在氩气和真空环境下的测量结果,如图21和图22所示。[align=center][img=,690,436]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061755145297_131_3384_3.png!w690x436.jpg[/img][/align][align=center][color=#ff0000]图21 美国CCI公司碳纤维保温隔热材料产品导热性能对比-氩气气氛[/color][/align][align=center][img=,690,436]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061755269885_9003_3384_3.png!w690x436.jpg[/img][/align][align=center][color=#ff0000]图22 美国CCI公司碳纤维保温隔热材料产品导热性能对比-真空环境[/color][/align]另外,从美国CCI公司官网的产品技术指标文件中,可以看到以上导热系数测量结果都有明显的导热系数方向性标识。尽管没有明确方向性标识,但只要是方向性标识就代表了采用的稳态热流计法。[b][color=#ff0000]5.5 瞬态热线法石墨毡高温导热系数测试文献报道[/color][/b]澳大利亚Chahine等人在2005年报道了采用瞬态热线法对石墨毡高温导热系数进行了测量:Chahine, Khaled, Mark Ballico, John Reizes, and Jafar Madadnia. "Thermal Conductivity of Graphite Felt at High Temperatures." In Australasian Heat & Mass Transfer Conference. Curtin University of Technology, 2005.文中报道了采用热线法对WDF级石墨毡导热系数进行的测试,石墨毡的密度为80 kg/m^3,石墨纤维直径在7.0 ~12.5 μm 范围,平均直径为10.5 ± 3.2 μm。测试分别在真空和氩气条件下进行,测量结果如图23所示。[align=center][img=,690,445]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061755436092_3412_3384_3.png!w690x445.jpg[/img][/align][align=center][color=#ff0000]图23 瞬态热线法在不同气氛环境下测量石墨毡高温导热系数结果[/color][/align][b][color=#ff0000]六、上海依阳实业有限公司所做的工作[/color][color=#ff0000]6.1 测试仪器[/color][/b]针对碳纤维隔热保温材料,上海依阳实业有限公司采用自制的商品化热流计法高温导热仪(型号TC-HFM-1000)和瞬态平面热源法导热仪(型号TC-TPS 1010)分别进行了常温和高温下的导热系数测试,在国内首次得到了碳纤维隔热保温材料在不同真空度下室温~1000℃范围内的导热系数测试结果。瞬态平面热源法导热仪(型号TC-TPS 1010)以及样品安装如图24和图25所示,热流计法高温导热仪(型号TC-HFM-1000)和样品安装如图26和图27所示。[align=center][img=24.瞬态平面热源法导热仪,600,399]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061742257237_5181_3384_3.jpg!w600x399.jpg[/img][/align][align=center][color=#ff0000]图24 上海依阳公司瞬态平面热源法导热仪[/color][/align][align=center][color=#ff0000][img=25.瞬态平面热源法导热仪样品安装,690,196]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061742566835_5032_3384_3.jpg!w690x196.jpg[/img][/color][/align][align=center][color=#ff0000]图25 瞬态平面热源法导热仪测试样品安装[/color][/align][align=center][img=26.上海依阳公司热流计法高温导热仪,690,535]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061743276756_2316_3384_3.jpg!w690x535.jpg[/img][/align][align=center][color=#ff0000]图26 上海依阳公司真空型热流计法高温导热仪[/color][/align][align=center][img=27.热流计法高温导热仪试样安装,690,425]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061743534172_2846_3384_3.jpg!w690x425.jpg[/img][/align][align=center][color=#ff0000]图27 热流计法高温导热仪样品安装[/color][/align][b][color=#ff0000]6.2 真空型温热流计法高温导热仪技术指标[/color][/b](1) 被测对象:刚性和柔性片状材料;(2) 温度范围:100℃~1000℃(最高1500℃) ;(3) 气压范围:10 Pa ~ 1 atm;(4) 导热系数测试范围:5 W/mK;(5) 试样尺寸:正方形 300 × 300 mm;(6) 试样厚度范围:10 ~ 100 mm;(7) 温度测量精度:±1%;(8) 气压测量精度:±1%;(9) 导热系数测量精度:±5%。[b][color=#ff0000]6.3 碳纤维隔热保温材料样品(石墨硬毡)[/color][/b]对国内厂家提供的碳纤维隔热保温材料样品(石墨硬毡)进行导热系数测试,厂家提供了两种尺寸规格但相同材料的石墨硬毡样品分别用于瞬态平面热源法和稳态热流计法测试,材料密度为156 kg/m^3。其中一种样品规格为50mm×50mm×40mm,如图28所示;另一种样品规格为310mm×310mm×44.5mm,如图29所示。[align=center][img=28.平面热源法测试试样,690,391]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061744214427_5030_3384_3.jpg!w690x391.jpg[/img][/align][align=center][color=#ff0000]图28 石墨硬毡样品 50mm×50mm×40mm[/color][/align][align=center][img=29.四川创越炭材料公司石墨硬毡大样品,690,446]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061744478427_2043_3384_3.jpg!w690x446.jpg[/img][/align][align=center][color=#ff0000]图29 石墨硬毡样品 310mm×310mm×44.5mm[/color][/align][b][color=#ff0000]6.4 常温常压大气环境下瞬态平面热源法导热系数测试结果[/color][/b]采用瞬态平面热源法导热仪对石墨硬毡样品在常温常压大气环境下进行了15次的导热系数重复测量,测试结果如图30所示,导热系数测量平均值为0.112±0.002 W/mK。[align=center][img=,690,401]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061756110777_6506_3384_3.png!w690x401.jpg[/img][/align][align=center][color=#ff0000]图30 瞬态平面热源法常温常压下石墨硬毡导热系数多次测量结果[/color][/align][b][color=#ff0000]6.5 常压氮气环境下采用热流计法导热仪测量石墨硬毡高温导热系数结果[/color][/b]针对碳纤维隔热保温材料的高温导热系数测量,首先在常压惰性气体(氮气)环境下进行了不同温度点下的高温导热系数测量,不同温度下导热系数测量数值如图31所示,用横坐标为样品热面温度、纵坐标为有效导热系数的图形表示如图32所示。[align=center][img=31.热流计法高温导热系数测量数值,690,250]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061745380347_78_3384_3.png!w690x250.jpg[/img][/align][align=center][color=#ff0000]图31 石墨硬毡样品测试参数和结果数值[/color][/align][align=center][img=32.热流计法高温导热系数测量结果曲线,690,388]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061745567597_5912_3384_3.png!w690x388.jpg[/img][/align][align=center][color=#ff0000]图32 石墨硬毡有效导热系数随样品热面温度变化测量结果和拟合曲线[/color][/align]从图31所示的测量结果可以看出,拟合曲线为一条三次多项式公式,随着热面温度的增大曲线向上弯曲,这说明随着温度的升高,辐射传热的作用变得更加明显。[b][color=#ff0000]6.6 不同氮气气压(真空度)下采用热流计法导热仪测量石墨硬毡高温导热系数结果[/color][/b]为了测量不同氮气气压(真空度)下石墨硬毡样品的高温导热系数,分别将样品热面温度控制在200、600和1000℃,如图33所示。在每个热面温度恒定控制过程中,再分别控制氮气气压(真空度)的变化,真空度设定值分别为10、100、1000、5000和10000Pa,由此测量不同温度下和不同真空度下的有效导热系数,有效导热系数测量结果数值如图34所示。[align=center][img=,690,371]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061756353244_4739_3384_3.png!w690x371.jpg[/img][/align][align=center][color=#ff0000]图33 变真空测试过程中的样品热面温度变化曲线[/color][/align][align=center][img=,690,401]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061756457394_5389_3384_3.png!w690x401.jpg[/img][/align][align=center][color=#ff0000]图34 石墨硬毡在不同温度和不同真空度下的有效导热系数测量结果数值[/color][/align]将图34得到的有效导热系数测量结果数值绘制成图形,如图35所示。从图中可以看出,在每个恒定温度下,有效导热系数都会随着气压的增大而增大,并在接近常压时导热系数变化趋于稳定,这完全符合低密度隔热材料导热系数随气压增大的变化规律。[align=center][img=,690,383]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061757054144_6566_3384_3.png!w690x383.jpg[/img][/align][align=center][color=#ff0000]图35 不同温度下石墨硬毡导热系数随真空度变化测量结果[/color][/align]通过以上采用上海依阳实业有限公司的导热系数测试设备进行的石墨硬毡高温变真空条件下的测试,首次在国内得到了石墨硬毡完整的隔热性能测试评价结果,这将有助于碳纤维隔热保温材料的研究、生产、质量控制和性能评价等方面的需要。[b][color=#ff0000]七、稳态热流计法法导热系数测试更高温度(1500℃)测试系统方案[/color][/b]上海依阳实业有限公司现有测试设备已经证明完全可以满足1000℃以下碳纤维隔热材料的导热系数测试,若需要将测试温度提升到1500℃,需要进行以下改动,但不存在技术难度。(1) 更换加热方式,将金属发热体更换为石墨或碳/碳材料发热体,采用更大功率的低压大电流直流电源;(2) 碳纤维隔热材料导热系数一般偏高,样品冷面温度控制需更换为更大制冷功率的高精度冷却循环系统。(3) 温度测量采用更高使用温度的 S 型热电偶;(4) 加厚高温热防护装置以保证最高运行温度下的安全性;(5) 真空抽取根据真空度要求配备相应的真空系统。[align=center][img=,573,573]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061757151027_2570_3384_3.png!w573x573.jpg[/img][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center][/align][align=center][/align]

  • 建筑材料保温砂浆导热系数测试方法对比以及测试方法选择注意事项

    建筑材料保温砂浆导热系数测试方法对比以及测试方法选择注意事项

    [color=#cc0000]摘要:本文介绍了葡萄牙里斯本大学Gomes等人2018年发表的研究工作来说明隔热砂浆导热系数测试方法选择和正确使用的重要性,讨论和指出了测试中存在的问题,并提出了更合理的测试方法和测试过程建议,以期实现更有效和准确的砂浆材料热物理性能测试。[/color][color=#cc0000]关键词:导热系数、隔热砂浆、稳态法、瞬态法、气凝胶[/color][align=center][color=#cc0000][img=保温砂浆导热系数测试方法,690,519]https://ng1.17img.cn/bbsfiles/images/2019/01/201901152125464573_7771_3384_3.png!w690x519.jpg[/img][/color][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#cc0000][b]1. 概述[/b][/color]  为了满足建筑物对室内舒适性和能源效率要求日益增长的需求,已经开发出各种具有良好热性能的新型材料,例如结合了轻质骨料和纳米材料的隔热砂浆,以及添加了相变微胶囊的同时具有隔热和蓄热功能的隔热砂浆。  评价这些隔热砂浆隔热性能的重要物理性能参数是导热系数,而隔热砂浆导热系数会受到砂浆温度、硬化状态、干燥状态和水分含量的影响,同时还有多种测试方法可以用来测量砂浆的导热系数,这使得隔热砂浆导热系数的测试评价非常混乱,很多测试结果千差万别。为了评估各种因素对砂浆导热系数的影响以及各种测试方法在砂浆导热系数测试中的准确性,我们特别选取了葡萄牙里斯本大学Gomes等人在2018年发表的研究工作来说明测试方法选择和正确使用的重要性。  葡萄牙里斯本大学Gomes等人针对添加了发泡聚苯乙烯颗粒和二氧化硅气凝胶的隔热砂浆,在其硬化状态(固化28天)、干燥状态和不同水分含量条件下,测试了砂浆的导热系数。测试方法分别采用了两种稳态法和两种瞬态法。为了对这些测试方法进行比较,将所有测试结果都转换23℃下的导热系数。  本文将对Gomes等人的对比测试工作进行简要介绍,讨论和指出测试中存在的问题,并提出了更合理的测试方法和测试过程建议,以期实现更有效和准确的砂浆材料热物理性能测试。[b][color=#cc0000]2. 隔热砂浆以及样品制作[/color][/b]  在该测试对比研究中评估了两种隔热砂浆:  (1)具有发泡聚苯乙烯颗粒(EPS)()的工业隔热砂浆;  (2)在先前的工业隔热砂浆中掺入二氧化硅气凝胶(Ag)配方()。  砂浆是市售的保温砂浆,由矿物粘合剂(水泥和石灰)和轻质骨料(100%的EPS颗粒,直径小于3 mm)组成。此外,它还含有颜料、流变剂、树脂、空气夹带剂和疏水剂。另一种研究的砂浆配方是在砂浆中加入二氧化硅气凝胶,质量百分比为100%,即二氧化硅气凝胶质量与工业砂浆总质量的比值。  这种二氧化硅气凝胶具有非常低的导热系数(0.018~0.020 W/mK),堆积密度范围为60~100,并且是无定形半透明的,不具有反应性且具有良好的耐火性。  图2-1示出了混合后的砂浆,以及用于不同后续试验测量方法的各种模具(立方体,板材和圆柱形)。[align=center][img=2-01.隔热砂浆及其模具,690,333]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151936059557_5449_3384_3.png!w690x333.jpg[/img][/align][align=center][color=#cc0000]图2-1 隔热砂浆及其模具[/color][/align]  在生产两种砂浆之后,固化过程包括:(1)将样品放入聚乙烯袋中7天,进行湿固化;(2)从袋子中取出样品;(3)根据ISO 1015-11干燥固化21天。该程序在环境条件受控的室内进行:空气温度为20±5℃,相对湿度为50%。[b][color=#cc0000]3. 测试方法[/color][/b]  在这项研究中,和的导热系数采用了稳态和瞬态两类方法:  (1)两种稳态方法——热流计法(HFM),两种不同的设备,编号为1和2,以及Lee盘法。  (2)两种瞬态方法——改进型瞬态平面源法(MTPS)和瞬态热线法(TLS)。  表3-1显示了每种砂浆配方和试验评估的样品数量。[align=center][color=#cc0000]表3-1 被测样品数量和形状尺寸[/color][/align][align=center][color=#cc0000][img=表3-1 被测样品数量和形状尺寸,690,305]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151936425198_2929_3384_3.png!w690x305.jpg[/img][/color][/align][color=#cc0000]3.1. 导热系数稳态测试方法[/color]  稳态法导热系数测量是在已知厚度的样品上建立稳定的温度梯度,并测量从一侧到另一侧的热流。这些方法被认为是导热系数测量中最准确的方法,但另一方面,可能有一些缺点,例如在样品上达到稳态温度梯度需要很长时间,在某些情况下,需要校准样品,导致测量耗时很高。  在Gomes等人的研究中,根据EN ISO 8301应用了热流计法。对于这些测试,选择两种设备,一种是来自Holometrix的Rapid K(HFM1)和Senff等人描述的热流计法测量装置(HFM2),并使用不同尺寸的样品。在热流计方法中,样品位于两个等温加热板,热板和冷板的中间,一旦通过应用一维的傅里叶定律得到稳态,则可根据公式(1)确定导热系数。图3-1是该方法的示意图,图3-2表示该测试装置。[align=center][img=3-01.热流计法测量原理图,500,414]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151937304248_9888_3384_3.png!w690x572.jpg[/img][/align][align=center][color=#cc0000]图3-1 热流计法测量原理图[/color][/align][align=center][color=#cc0000][img=3-02.热流计法导热仪,690,459]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151937563278_2363_3384_3.png!w690x459.jpg[/img][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-2 热流计法导热仪[/color][/align]  在Gomes等人的研究中,还采用了一种Lee式圆盘稳态测试方法,这种方法的测试仪器如图3-3所示。[align=center][color=#cc0000][img=3-03.Lee热盘稳态法测量装置,690,558]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151938151927_4397_3384_3.png!w690x558.jpg[/img][/color][/align][align=center][color=#cc0000]图3-3 Lee式热盘稳态法测量装置[/color][/align][color=#cc0000]3.2. 导热系数瞬态测试方法[/color]  瞬态方法是动态方法,是对由源发送的电热脉冲响应的测量,通过对所定义时间间隔测量的温度的数学模型进行计算。这些方法具有一些优点,例如测试过程简单快速,可同时测量不同热性能参数以及无需校准样品,但只有当样品与环境达到热平衡时才能发挥作用。  在Gomes等人的研究中,使用了改进型瞬态平面源(MTPS)和瞬态热线法(TLS),使用Applied Precision公司的设备ISOMET 2114,分别使用平面和线源探针。这些测量符合ASTM D5334、ASTM D5930和EN ISO 22007-2标准。所有测试均在20±3℃的平均参考温度下进行。图3-4和图3-5显示了用两种探头对样品的测量。  必须指出的是,使用MTPS测量时,将样品置于隔热材料板上以防止样品和工作台之间的热传导。通过TLS测量样品时用针头探针进行穿孔,使探针(100 mm)完全穿透到样品中并与砂浆完全接触。[align=center][color=#cc0000][img=,690,458]https://ng1.17img.cn/bbsfiles/images/2019/01/201901152126392089_727_3384_3.png!w690x458.jpg[/img][/color][/align][align=center][color=#cc0000]图3-4 改进型瞬态平面热源法装置 ISOMET[/color][/align][align=center][color=#cc0000][img=图3-5 瞬态热线法装置 ISOMET,690,718]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151938546587_9416_3384_3.png!w690x718.jpg[/img][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-5 瞬态热线法装置 ISOMET[/color][/align][b][color=#cc0000]4. 导热系数测试方法的对比分析[/color][/b]  在Gomes等人的研究中采用五种不同的设备来评估隔热砂浆的导热系数,每种都具有鲜明的特征和方法。  通过稳态方法(HFM1,HFM2和Lee式圆盘)评估导热系数需要很长时间才能达到测试样品的稳态温度梯度。此外,在某些情况下,需要进行初始校准测量(使用具有已知导热系数的样品),从而为该过程增加了更多时间。由于所选择的稳态测量程序中的步骤数量增加,这些方法也比采用的瞬态方法更依赖于操作员,例如,操作员的数据记录直到达到稳定状态(HFM1,HFM2和Lee式圆盘)和/或设备和样品操作(Lee式圆盘)。  HFM1方法需要最大的样品,在研究工作中,由于材料的稀缺性,并不总是可以生产。然而,它是许多已发表研究中使用的标准方法,允许与其他类型的材料直接比较。  HFM2方法需要比HFM1更小的样品,更容易生产,并且具有更高的测量范围,但其准确性和再现性很差,限制了其与其他方法测量结果的比较。  另一方面,Lee式圆盘法非常耗时,在测量过程中需要遵循许多步骤,这会导致相关错误的增加。尽管Lee式圆盘法的精度和重现性值很差,但它所用的样品尺寸最小。如果材料数量有限制,这种方法在开发新产品时非常有利。  通过瞬态方法(MTPS和TLS)评估导热系数比稳态方法花费的时间少得多,并且由于操作简单,并且测量程序的步骤减少,因此也不易发生操作错误。这两种方法都具有特定的准确性和可重复性。  MTPS方法需要比TLS和HFM更小的样本。但是,作为限制因素,它的阈值下限测量范围为0.04 W/mK,高于砂浆的某些导热系数值。  TLS方法是样本大小要求方面的排列第二的方法,样品尺寸要求仅次于HFM1方法,但它更快更容易操作,阈值下限测量范围为0.015 W/mK,这使得它非常有效评估低导热系数新型隔热砂浆的方法。  表4-1显示了所研究的导热率方法的定性比较分析。可以得出结论,在创新型隔热砂浆的开发的初始阶段,由于需要小样品,Lee式圆盘是一种有趣的评估方法。对于第二个开发阶段,它可以使用HFM2或MTPS和TLS方法,后者更快,更容易并且具有已知的准确性和再现性。HFM1方法仅适用于最终发展阶段,当有材料可用时,可以将获得的结果与其他研究进行比较。[align=center][color=#cc0000]表4-1 不同测试方法比较[/color][/align][align=center][color=#cc0000][img=表4-1 不同测试方法比较,690,351]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151939209178_5457_3384_3.png!w690x351.jpg[/img][/color][/align]  所有方法的导热系数均有显著变化,为0.056(平均值)±0.008 W/mK,为0.034(平均值)±0.007 W/mK(28天固化,转化温度为23℃),其对应于高达14%的偏差和21%的偏差。因此,导热系数测量方法的影响在新型隔热砂浆研究中至关重要。[b][color=#cc0000]5. 结论[/color][/b]  在Gomes等人的研究中,主要关注两种隔热砂浆(EPS和EPS+二氧化硅气凝胶)的导热性,采用了四种不同的测量方法——两种稳态方法和两种瞬态方法——使用了5种不同的设备和样品几何形状进行了测试。此外,还讨论了引入气凝胶和水分含量的影响。  与EPS基砂浆相比,以质量百分比为100%的工业砂浆引入二氧化硅气凝胶降低了砂浆的导热系数高达55%,对于干堆积密度观察到相同的趋势。  两种隔热砂浆对水分含量具有高度敏感性,具有指数趋势,这在掺入气凝胶后并未明显受到影响。值得一提的是,研究砂浆的脆性本身可能会误导水分含量带来的影响。  考虑到用于分析砂浆导热系数的所有方法及其不同的操作温度,所有结果都转换为23℃,由此可以直接比较所有方法的测试结果。观察到所有方法测试结果之间存在显著差异,在28天固化以及转化温度为23℃时,EPS基砂浆高达14%(0.056±0.008 W/mK),EPS+气凝胶砂浆高达21%(0.034±0.007 W/mK),而且通常用稳态法比用瞬态法得到更低的导热系数值。  每种方法的适用性以及它们之间的差异严格与设备的特性(量程、准确性和再现性)、样品大小、测试时间和操作的简便性(设备操作员的依赖性和测量过程中的复杂性)相关。  结果还表明,瞬态方法(MTPS和TLS)适用于小样品,与稳态方法(HFM1,HFM2和Lee的磁盘)相比,需要更少的测试时间、操作员依赖性和测量程序的复杂性。然而,标准中提到了稳态方法可以用来与其他公布的结果进行比较,特别是当新型材料的数量较多而不受限制时。  研究还证实,EPS基砂浆导热系数的所有测量结果均高于工业砂浆制造商的标称值(0.042 W/mK)。但是,制造商的技术文件缺乏关于测试条件的信息(例如测试温度或转换程序、水分含量、方法/设备的准确度、样品大小和测量范围),这使得测量结果很难进行比较。  通过此项研究所获得的结果,强调了对于具有低导热系数值材料的评估,指定导热系数测试条件和选择测试方法的重要性,否则材料性能和测试条件的变化规律很容易被测试方法和测试仪器的误差所掩盖。  [b][color=#cc0000]6. 评述[/color][/b]  通过上述对葡萄牙里斯本大学Gomes等人研究工作的介绍,可以详细了解保温砂浆从样品制备、处理、测试方法选择和导热系数测试的全过程,了解不同测试方法进行比对的具体步骤,对认识和掌握保温砂浆热物理性能的测试评价技术很有帮助。但他们的研究工作还存在一些不足,研究还停留在实验室检测的探索阶段,特别是在测试技术方面还需要进一步开展更深入的工作以真正满足新型保温砂浆的研制和生产需要。存在的不足和还需开展的工作主要体现以下几个方面:  (1)在多种测试方法对比测试过程中,通常会采用标准参考材料来进行对比测试,通过热物理性能稳定的标准参考材料来最大限度降低样品性能波动的影响,真正实现对测试方法自身测量精度的考核和对比。而在葡萄牙里斯本大学Gomes等人所进行的多种测试方法对比测试中,并未采用导热系数为0.03 W/mK附近的相应标准参考材料,如ASTM SRM 1450d,所以他们的对比测试误差中很大一部分是自制保温砂浆样品带来的影响,并不能对各种测试方法做出非常客观的评价。  (2)葡萄牙里斯本大学Gomes等人研究工作中所采用的测试方法没有问题,尽管论文发表时间为2018年,但文中所采用的测试设备普遍都比较陈旧,测量精度也相应的较差。以文中所提到的EPS基砂浆高达14%(0.056±0.008 W/mK),EPS+气凝胶砂浆高达21%(0.034±0.007 W/mK)的测试误差,在实际工程应用中对保温砂浆进行导热系数测试,就显着测量太差,这往往会造成实际建筑材料成本的无法准确控制,或实际隔热效果无法达到设计效果。以近些年来的导热系数测试技术发展水平,采用标准化的瞬态平面热源法(TPS)导热系数测试仪器完全可以在测量范围和精度方面满足要求,而且样品尺寸也非常小。  (3)综上所述,针对保温砂浆类材料导热系数等热物理性能参数的测试,稳态法保留热流计法,而瞬态法则建议采用精度更高的瞬态平面热源法。  [b][color=#cc0000]7. 参考文献[/color][/b]  (1) Gomes, M. Glória, et al. "Thermal conductivity measurement of thermal insulating mortars with EPS and silica aerogel by steady-state and transient methods." Construction and Building Materials 172 (2018): 696-705.  (2)ISO 8301 - Thermal insulation - determination of steady-state thermal resistance and related properties - Heat flow meter apparatus.  (3) L. Senff, G. Ascens?o, D. Hotza, V.M. Ferreira, J.A. Labrincha, Assessment of the single and combined effect of superabsorbent particles and porogenic agents in nanotitania-containing mortars, Energy Build. 127 (2016) 980-990.   (4)Applied Precision Ltd., Isomet 2114 Thermal properties analyzer user’s guide, Version 120712, USA, n.d.  (5) American Society for Testing and Materials, ASTM D5334 - standard test method for determination of thermal conductivity of soil and soft rock by thermal needle probe procedure.   (6)American Society for Testing and Materials, ASTM D5930 - Standard Test Method for Thermal Conductivity of Plastics by Means of a Transient Line-Source Technique.   (7)ISO 22007-2 - Plastics - Determination of thermal conductivity and thermal diffusivity - Part 2: Transient plane heat source (hot disc) method, Switzerland, 2015.[align=center]=======================================================================[/align]

  • 酚醛树脂防热材料烧蚀碳化过程中的高温导热系数测试解决方案

    酚醛树脂防热材料烧蚀碳化过程中的高温导热系数测试解决方案

    [b]摘要:针对酚醛树脂这类烧蚀型防热材料导热系数测试中多年来存在的稳态法测试温度不高、闪光法测量误差大和无法测量烧蚀过程中的导热系数,本文提出了一种新型测试方法——恒定加热速率法,以期测试树脂类防热材料的高温导热系数,由此得到整个烧蚀过程中导热系数随表面温度线性变化的测试结果,以对烧蚀型防热材料的隔热性能做出更准确的测试评价。[/b][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [b][size=18px]一、问题的提出[/size][/b]酚醛树脂复合材料做为一种轻质强韧化防热材料,由于其具有防隔热一体化、抗剪切能力强、线烧蚀率和导热系数小及成炭率高等优点,被广泛地应用于飞行器的热防护系统(TPS)。而热防护系统占飞行器较大的比重,是飞行器安全性和可靠性的重要保证。因此,对酚醛树脂防热复合材料导热系数的准确测量,是合理设计和优化热防护系统的前提条件,也是解决过度冗余或防热设计可靠性不足等问题的有效途径。酚醛树脂防热材料的防热机理是主动式防热。如图1所示,一方面,树脂基高分子材料在高温下发生吸热的碳化反应,从而吸收外界热量。另一方面,碳化反应分解释放的气体可以被用来实现阻隔散热,同时形成的多孔结构的碳化层也具有较为优良的隔热性能。在三者协同作用下,飞行器在高热流环境下的使用和运行变得安全可靠。[align=center][img=01.酚醛树脂防热材料烧蚀过程中的复杂物理和化学变化,550,330]https://ng1.17img.cn/bbsfiles/images/2022/10/202210200945412753_9630_3221506_3.png!w690x414.jpg[/img][/align][align=center]图1 酚醛树脂防热材料烧蚀过程中的复杂物理和化学变化[/align]由此可见,如此复杂的防热过程,使得准确测量防热材料的导热系数变得十分困难,用传统方法进行导热系数测试会出现巨大偏差。针对酚醛树脂这类烧蚀型防热材料,传统测试方法存在以下几方面的问题:(1)无法测量烧蚀材料物理和化学变化过程中的导热系数,只能测试烧蚀前(原材料)和烧蚀碳化后(多孔炭层)的取样样品。(2)烧蚀前样品的导热系数测试普遍采用稳态法,此方法目前多用于防热材料质量控制中的导热系数监控,但测试温度不超过300℃。(3)烧蚀后的多孔碳层导热系数,目前国内外普遍还都采用激光闪光法进行测试,主要原因是这种方法可以达到2000℃以上的高温。但由于多孔碳层导热系数较低,取样必须很薄(厚度一般小于1mm),由此容易造成加热激光脉冲透过被测样品带来严重误差。如果对样品前后表面进行遮光处理(如喷涂石墨或镀金),而高温下表面涂层会脱落而无法实现高温测试。另外,闪光法只能测试热扩散系数,还需采用其他高温设备测试相应的比热容和密度随温度变化数据。针对上述树脂基防热材料导热系数测试中多年来存在的问题,本文将提出一种新型测试方法——恒定加热速率法,以期测试树脂类防热材料的高温导热系数,由此得到烧蚀型防热材料在整个烧蚀过程中导热系数随表面温度线性变化的测试结果,以对烧蚀型防热材料的隔热性能做出更准确的测试评价。[size=18px][b]二、恒定加热速率测试方法[/b][/size]测试方法基于热物理性能测试中一般都需要测量热流和温度的基本理念,由此提出了如图2所示的测试模型,即对被测样品表面进行恒定速率加热,样品表面温度呈线性变化,样品背面布置一用来测量流经样品厚度方向上热流的金属板,样品四周和金属板背面为绝热边界条件,使得整个测试过程保持一维热流形态。[align=center][img=02.恒定加热速率法测试模型,300,320]https://ng1.17img.cn/bbsfiles/images/2022/10/202210200946219228_6669_3221506_3.png!w615x658.jpg[/img][/align][align=center]图2 恒定加热速率测试模型[/align]在图2所示的一维热流测试模型中,根据傅里叶传热定律,样品厚度方向上的传热方程为:[align=center][img=,400,168]https://ng1.17img.cn/bbsfiles/images/2022/10/202210200947004183_313_3221506_3.png!w503x212.jpg[/img][/align]式中: ρ为样品密度, C为样品比热容, λ为样品热导率,T为温度,t 为时间 ,T0 是 t=0 时的样品初始温度, b是加热速率。当加热速率b为一常数时,通过测试样品前后两个表面温度,并求解上述传热方程,可得到被测样品的等效导热系数随温度的变化曲线。在这种恒定加热速率测试方法中,金属板起到量热计的作用,即在线性升温过程中测量金属板温度(即样品背面温度),并结合金属板的已知热物理性能参数,可计算得到金属板所吸收的热量,由此间接获得流经被测样品的热流密度。通过测量得到的热流密度,结合测量得到的被测样品两个表面温度,求解上述传热方程,可得到被测样品的等效导热系数随温度的实时变化曲线。对于上述恒定加热速率法测试模型,我们采用有限元进行了热仿真模拟和计算,证明了此方法对于低导热材料导热系数测量的有效性。[b][size=18px]三、结论[/size][/b]这种恒定加热速率测试方法,是一种动态测试方法,准确的说是一种准稳态测试方法,即在样品热面温度线性升温过程中,样品中的各个位置处的温度在经历初期的非线性升温后,也会逐渐演变为相同速率的线性变化。恒定加热速率导热系数测试方法的最大特点是可以测量样品相变和热解过程中的导热系数,由此可见,采用此方法,完全可以测量酚醛树脂防热材料在整个烧蚀过程中的导热系数变化。当然,此方法也非常适合单独测量高温下碳化层导热系数随温度的变化。对于烧蚀型低密度的酚醛树脂防热材料,其特征之一是烧蚀后表面层会发生烧蚀退后现象,即样品厚度会发生变小现象。对于这种样品边界发生移动的条件,会对恒定加热速率测试方法的准确性带来影响,在测试方法中还需进一步的深入研究。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 关于平板导热系数仪校准,高手求救!

    准备购买导热系数标准板和精密温度计校准平板导热系数仪,但是看校准规范说把温度计放在导热板里,5个点,这怎么放啊,买什么样的温度计啊,有对校准导热系数测试仪校准懂得吗,教教我呗,求教啊!

  • 如何清洗探针?

    探针压过细胞等生物样品以后,针尖总是会沾上一些脏东西,导致用于别处时会影响成像。在测定力曲线的时候也明显发现被污染的针尖带有粘性。在网上看到一篇讨论How can we wash functionalized AFM tip after coated it with chemical substance?,里面也给出了一些方法。比如Piranha solution。有几个问题想请教:请问关于Piranha solution,有使用过这种方法的朋友吗?效果如何?如何判断探针已经被洗干净了呢?如果是表面被修饰了某些化学物质的探针,该如何清洗使得能把污染物洗干净并且不破坏那些化学物质呢?各位通常都是用什么方法清洗探针的呢?非常感谢!

  • 电子探针分析仪

    本公司需做黄金检测的无损检测 需要 电子探针分析仪 请问那个牌子的比较好 ?? 大概是什么价位??

  • 【求购】有谁对导热系数仪了解的?

    有谁对导热系数仪了解的? 单位有意购买一台快速导热仪和一台平板导热仪?市场体格大约多少?有谁了解国内外都有那些品牌?用的住,准确度好?指导一下,谢谢。[em09511]

  • 导热系数测试原理及方法

    《导热系数测试原理及方法》的微课从课程内容设计上:一方面从浅入深,层层揭开传热现象背后的原理,傅立叶导热方程的由来和导热系数的定义;另一方面知识面宽,从各个角度来介绍导热系数的测试的核心价值,涉及到导

  • 【求助】求助:寻找一种不要太尖的探针

    我现在用AFM测量一种薄膜的力学性质,由于目前所用的探针都比较尖,所以薄膜特别容易破,请教各位高手,有没有知道那里有卖不太尖的探针,比如说曲率半径是200~400nm的探针。多谢了!

  • 探针磨损与损坏问题

    有没有哪位大神,总结过关于探针磨损的注意事项以及损坏掉的探针的特征之类的问题,求分享一下。最近试验总是出现测出的图像很奇怪的现象,拉长,斜向拉长,或者图形轮廓不明显,以及波形不匹配等等问题,求教哪些是参数引起的,那些可能是探针已经损坏了。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制