当前位置: 仪器信息网 > 行业主题 > >

太赫兹透射系统

仪器信息网太赫兹透射系统专题为您提供2024年最新太赫兹透射系统价格报价、厂家品牌的相关信息, 包括太赫兹透射系统参数、型号等,不管是国产,还是进口品牌的太赫兹透射系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合太赫兹透射系统相关的耗材配件、试剂标物,还有太赫兹透射系统相关的最新资讯、资料,以及太赫兹透射系统相关的解决方案。

太赫兹透射系统相关的论坛

  • 集成太赫兹收发器问世

    美国科研人员开发出了首个集成太赫兹(THz)固态收发器,新设备比目前使用的太赫兹波设备更小,功能更强大。相关研究成果发表在最新一期的《自然·光子学》杂志上。  太赫兹技术是近年来十分热门的一个研究领域,2004年被评为影响世界未来的十大科技之一。美国能源部桑迪亚国家实验室的研究人员将同一块芯片上的探测器和激光器结合在一起,制造出了该接收设备。在实验中,研究人员将一个小的肖特基二极管嵌入一个量子级联激光器(QCL)的脊峰波导空腔中,让能量能够从量子级联激光器内部的磁场直接到达二极管的阴极,而不需要光耦合通路。这样,研究人员就不需要再为制造这些收发器等设备所需要的光学“零件”如何定位而“抓耳挠腮”了。  新的固态系统利用了太赫兹波发出的频率。太赫兹波是指频率在0.1THz—10THz范围的电磁波,介于微波与红外之间,它能够穿透非金属材料,从而为安检、医学成像提供新的手段,在物体成像、医疗诊断、环境检测、通讯等方面具有广阔的应用前景。  量子级联激光器是产生太赫兹辐射的重要器件之一,科学家于2002年演示了半导体太赫兹量子级联激光器。太赫兹量子级联激光器的一个优势在于其能够同其他组件一起被整合在同一个芯片上。然而,此前要想装配出灵敏的相干收发器系统,研究人员需要将零散的、并且常常是巨大的组件组合到一起。而现在,研究人员只是将太赫兹量子级联激光器和二极管混频器整合在一个芯片上,就可以组成一个简单实用的微电子太赫兹收发器。  研究人员也证明,新的太赫兹集成设备能够执行以前组件零散的太赫兹系统的所有基本功能,例如传输相干载波、接受外部信号、锁频等。

  • 科学家开发出石墨烯太赫兹设备样机

    为研制太赫兹设备与操控系统开辟了广阔舞台 中国科技网讯 在电磁波谱中,太赫兹波段是当前最热的研究范围之一。据美国物理学家组织网5月2日报道,美国圣母大学通过实验证明了利用石墨烯原子层可以有效操控太赫兹电磁波,并制作了一台基于石墨烯材料的太赫兹调制器样机,为开发紧密高效且经济的太赫兹设备与操作系统开辟了广阔舞台。相关论文近日发表在《自然·通讯》杂志上。 人们每天都在用着电磁能量,看电视、听广播、用微波炉做爆米花、用手机通话、拍X光片等,电子产品和无线电设备中的能量大部分是以电磁波形式传输的。太赫兹波处于微波和可见光频率之间,在日常生活中有着重要应用。比如在通讯设备中,用太赫兹波能携带比无线电波或微波更多的信息;在拍X光片的时候造成的潜在伤害更小,所提供的医学和生物图像分辨率也比微波更高。 “太赫兹技术前景光明,但一个最大的瓶颈问题是缺乏有效的材料和设备来操控这些能量波。如果有一种天然二维材料能对太赫兹波产生明显反应,而且可以调节,就给我们设计高性能太赫兹设备带来了希望。而石墨烯正是理想的材料。”圣母大学电学工程系研究生贝拉迪·森赛尔-罗德里格斯说,石墨烯是仅有一个原子厚度的半导体材料,具有独特的电学、机械力学和热学性质,在诸多领域都有着潜在的应用价值,如最近开发的快速晶体管、柔性透明电子产品、光学设备,以及目前正在开发的太赫兹主动元件。 研究小组演示了他们用于概念论证而制作的第一台样机,这台基于石墨烯材料的调制器,可在石墨烯内部实现带内跃迁,是目前唯一能做到这一点的太赫兹设备。 该校电学工程系副教授邢慧丽(音译)指出,石墨烯自发现以来,一直被当作新研究的理想平台,但至今它在现实中还很少应用,操控太赫兹波就是其应用之一。在2006年时,他们曾想用二维电子气体来操控太赫兹波,去年他们论证了基于石墨烯的高性能设备,今年是首次通过实验证明了这种设备,并将进一步开展研究。(记者 常丽君) 《科技日报》(2012-05-04 二版)

  • 2000万美元的太赫兹光谱市场到底在哪里?

    2000万美元的太赫兹光谱市场到底在哪里?

    太赫兹波介于微波与红外之间,波长大概在0.1mm(100um)到1mm范围。太赫兹光谱和其他光谱技术形成互补,许多化合物(毒品、炸药和各种形态的原料药)在太赫兹波段具有独特的指纹特征谱。太赫兹波不会引起生物组织的光致电离,人类可以安全接触。各种各样的商业太赫兹光谱仪已经在市场上销售,包括传统的频域系统、时域系统、成像系统和便携式仪器。2012年的全球实验室太赫兹光谱的需求约为2000万美元,并且至少有六个主要的竞争对手能够提供商业化太赫兹光谱仪器。尽管2013年太赫兹光谱市场面临一个具有挑战性的环境,但是仍然会获得中等个位数的增长。而且到2014年这一市场预期会达到两位数的强劲增长。http://ng1.17img.cn/bbsfiles/images/2013/10/201310142026_470848_2063536_3.png

  • 太赫兹时域光谱

    [color=#444444]求助!我最近测试了太赫兹时域光谱,只得到了时间和电场强度的数据,请问如何处理成折射光谱和吸收光谱的数据?[/color]

  • 【Sunny看新闻】-2012.2.7:新安检技术,太赫兹

    昨晚的北京经历了过年最后的疯狂,烟花爆竹不断,仿佛回到了年三十。今天的天气依然不错,进入新闻短评,欢迎大家讨论!  从太赫兹安检技术延伸看安检技术  新闻链接:http://www.instrument.com.cn/news/20120206/073687.shtml  今天看到一条新闻“我国太赫兹安检技术研究取得进展”,新闻中提到“说该项技术样机将于年内面世,快速准确地检测出是否有人携带武器、毒品、爆炸物等违禁品,并且该技术对人体更加安全。”  对于太赫兹技术,我不是专家,没有发言权。但作为一名每天都要接受安检检测的普通人,我希望安检技术能够更简便,同时更快速,当然对人体安全是首要的。不知道这种太赫兹安检技术能否能满足我这样的需求。  目前,我们接触到最多的安检技术就是基于X射线技术的安检机,这种技术通过对包内物成像后,再由工作人员来进行判断。对我而言,我觉得他最大的缺点就是太慢了,太繁琐,特别在地铁口,导致很多人不愿意按规则接受安检。  其次是金属探测器,在飞机场安检时,手持的,在人体上移动的仪器就是金属探测器。这类仪器故名思议只能对金属危险品可以检测。对我而言,这个速度还是比较快的。  第三是Smiths Detection的基于离子迁移谱技术的毒品痕量检测仪,我在成都机场曾经接受过此检测。这项技术进行检测,是通过一个与仪器匹配的试纸现在行李上进行触碰,而后将试纸放入仪器中进行检测。我对这项安检技术体验较好,第一速度很快,第二受检者基本不需要有任何的配合。  第四是基于拉曼光谱的安检技术。前三种技术,我在生活中都切身体验过,而唯独这项技术我只在仪器展会上看到过演示。测量是通过探头对可疑的物品(如粉末或瓶装液体)的触碰,然后通过与数据库中的毒品物谱图相对比而进行判断,速度也比较快。  以上四种技术都有各自所专注的一方面,新的太赫兹技术据报道看可以满足现有技术的所有能满足的各种需求,不知道是否如此,欢迎大家讨论?另大家有没有亲身经历过别的或了解到别的技术?也欢迎提供。

  • 中国科学院精密测量院关于液体中激光诱导太赫兹辐射的实验研究方面获进展

    [align=center][img=,500,109]https://img1.17img.cn/17img/images/202403/uepic/1bf362c7-d04f-4598-abef-b156b7517a65.jpg[/img][/align]太赫兹波在通讯和成像等方面颇具应用价值。强场超快激光与物质非线性相互作用是产生太赫兹波的重要方式之一。等离子体、气体、晶体等太赫兹产生介质相关的实验与理论研究较为充分。然而,液体水是很强的太赫兹波吸收介质,尚未有其产生太赫兹波的报道。2017年,实验发现,液体薄膜厚度或液体束直径降到微米量级时,太赫兹波的辐射大于吸收。这开启了液体太赫兹波研究的新方向。近年来,液体太赫兹波领域有实验报道,但实验观测到的较多现象均与其他介质的结果不同。例如:单色激光场可以有效地产生液体太赫兹波,而气体介质需要特定相位差的双色激光;液体太赫兹波的产率与驱动激光的能量是正比关系,而气体介质中是平方关系;在一定范围内液体太赫兹波的产率随激光的脉冲宽度的增加而增加,而气体介质相反;在双色激光的驱动下,液体太赫兹波出现非调制信号,在气体介质中却未见类似信号。复杂无序的[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]体系的理论研究一直是难题,以上现象难以用已有理论来解释。科研人员只能基于之前的等离子体模型和界面效应等,来解释一些高光强下的宏观实验结果。近日,中国科学院精密测量科学与技术创新研究院研究员卞学滨和博士研究生李正亮,提出了产生液体太赫兹波的位移电流模型,可以系统解释上述实验观测到的系列反常现象。该微观机制模型的物理图像如图所示:液体的无序结构使得电子波包局域化,同时不同分子的外层电子的能量受到环境的影响而发生移动,在强场激光的作用下不同分子的外层电子发生跃迁,产生非对称体系的位移电流。这些跃迁的能量差在太赫兹能量区域,进而辐射出太赫兹波。同时,该工作表明原子核的量子效应起到关键作用,并预言太赫兹辐射可以研究液体的同位素效应。[align=center][img=,500,140]https://img1.17img.cn/17img/images/202403/uepic/ab7bd8de-a34e-46d4-8c18-af8e57f38952.jpg[/img][/align]关于液体中激光诱导太赫兹(THz)辐射的实验研究取得了长足进展。液体太赫兹显示出许多不同于气体和等离子体太赫兹的独特特征。例如,液体太赫兹可以通过单色激光有效产生。驱动脉冲持续时间越长,产生率越高。它还与激发脉冲能量成线性关系。在双色激光场中,测量到了意想不到的未调制太赫兹场,其对驱动激光能量的依赖性与调制太赫兹波完全不同。然而,由于难以描述复杂无序液体中的超快动力学,其潜在的微观机制仍不清楚。在此,提出了一个位移电流模型并且理论成功地再现了实验观测结果。此外,理论上还可进一步用于研究太赫兹辐射在 H[font=等线][sub][size=13px]2[/size][/sub][/font]O 和 D[font=等线][sub][size=13px]2[/size][/sub][/font]O 中的核量子效应。这项工作为研究块状液体中太赫兹辐射的起源提供了基本见解。上述成果是卞学滨团队在[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]强场超快动力学研究领域继高次谐波统计涨落模型之后的又一理论进展。相关研究成果以Terahertz radiation induced by shift currents in liquids为题,发表在《美国国家科学院院刊》(PNAS)上。研究工作得到国家重点研发计划、国家自然科学基金、中国科学院稳定支持基础研究领域青年团队计划等的支持。[align=center][img=,500,407]https://img1.17img.cn/17img/images/202403/uepic/abaa2b75-02df-446e-b97d-f1ac0f39ce5b.jpg[/img][/align][align=center]液体太赫兹波产生的原理图[/align][来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 太赫兹技术——“改变未来世界的十大技术”之一

    太赫兹技术——“改变未来世界的十大技术”之一

    太赫兹(Terahertz,1THz=1,000,000,000,000Hz)泛指频率在0.1~10THz波段内的电磁波,位于红外和微波之间,处于宏观电子学向微观光子学的过渡阶段。早期太赫兹在不同的领域有不同的名称,在光学领域被称为远红外,而在电子学领域,则称其为亚毫米波、超微波等。在20世纪80年代中期之前,太赫兹波段两侧的红外和微波技术发展相对比较成熟,但是人们对太赫兹波段的认识仍然非常有限,形成了所谓的“THz Gap”。http://ng1.17img.cn/bbsfiles/images/2012/02/201202141622_349255_1798788_3.jpg  2004年,美国政府将THz科技评为“改变未来世界的十大技术”之一,而日本于2005年1月8日更是将THz技术列为“国家支柱十大重点战略目标”之首,举全国之力进行研发。我国政府在2005年11月专门召开了“香山科技会议”,邀请国内多位在THz研究领域有影响的院士专门讨论我国THz事业的发展方向,并制定了我国THz技术的发展规划。另外,美国、欧洲、亚洲、澳大利亚等许多国家和地区政府、机构、企业、大学和研究机构纷纷投入到THz的研发热潮之中。    关注太赫兹技术的最新仪器研究成果、应用进展及相关科研成果,太赫兹技术领域的实验室动态及会展新闻,请关注仪器信息网技术专题:太赫兹技术——“改变未来世界的十大技术”之一。http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_646122_1798788_3.jpg  专题链接:http://www.instrument.com.cn/news/subject/201003/?SubjectID=161  该专题对于您了解太赫兹技术有哪些帮助?您认为该专题中还应该包含哪些内容,以便对太赫兹技术有更好的了解?欢迎广大网友讨论,我们会根据您的建议不断改进,希望今后能够推出内容更丰富的技术专题,对广大网友的学习工作带来更多的帮助。

  • 【分享】H德国物理学家 赫兹

    中文名称: 赫兹   外文名: H.R.——Heinrich Rudolf Hertz   生卒年: 公元1857-1894   洲: 欧洲   国别: 德国   省: 汉堡   赫兹,德国物理学家。1857年2月22日生于汉堡。父亲为律师,后任参议员,家庭富有。赫兹在少年时期就表现出对实验的兴趣,12岁时便有了木工工具和工作台,以后又有了车床,常常用以制作简单的实验仪器。1876年赫兹入德累斯顿工学院学习工程,由于对自然科学的爱好,转入慕尼黑大学学习数学和物理,第二年又转入柏林大学,在H.von亥姆霍兹指导下学习并进行研究工作。在随赫尔姆霍兹学习物理时,受赫尔姆霍兹的鼓励研究麦克斯韦电磁理论。赫兹决定以实验来证实韦伯与麦克斯韦理论谁的正确。依照麦克斯韦理论,电扰动能辐射电磁波。赫兹根据电容器经由电火花隙会产生振荡原理,设计了一套电磁波发生器,赫兹将一感应线圈的两端接于产生器二铜棒上。当感应线圈的电流突然中断时,其感应高电压使电火花隙之间产生火花。瞬间后,电荷便经由电火花隙在锌板间振荡,频率高达数百万周。由麦克斯韦理论,此火花应产生电磁波,于是赫兹设计了一简单的检波器来探测此电磁波。他将一小段导线弯成圆形,线的两端点间留有小电火花隙。因电磁波应在此小线圈上产生感应电压,而使电火花隙产生火花。所以他坐在一暗室内,检波器距振荡器10米远,结果他发现检波器的电火花隙间确有小火花产生。赫兹在暗室远端的墙壁上覆有可反射电波的锌板,入射波与反射波重迭应产生驻波,他也以检波器在距振荡器不同距离处侦测加以证实。赫兹先求出振荡器的频率,又以检波器量得驻波的波长,二者乘积即电磁波的传播速度。正如麦克斯韦预测的一样。电磁波传播的速度等于光速。1887年11月5日,赫兹在寄给亥姆霍兹一篇题为《论在绝缘体中电过程引起的感应现象》的论文中,总结了这个重要发现。1888年,赫兹的实验成功了,麦克斯韦理论也因此获得了无上的光彩。在发现电磁波不到6年,意大利的马可尼、俄国的波波夫分别实现厂无线电传播,并很快投人实际使用。其他利用电磁波的技术,也像雨后春笋般相继问世。无线电报(1894年)、无线电广播(1906年)、无线电导航(1911年)、无线电话(1916年)、短波通讯(1921年)、无线电传真(1923年)、电视(1929年)、微波通讯(1933年)、雷达(1935年),以及遥控、遥感、卫星通讯、射电天文学……它们使整个世界面貌发生了深刻的变化。1880年他以纯理论性工作的《旋转导体电磁感应》论文获得博士学位,成为亥姆霍兹的助手。1883年到基尔大学任教。1885~1889年任卡尔斯鲁厄大学物理学教授。赫兹还通过实验确认了电磁波是横波,具有与光类似的特性,如反射、折射、衍射等,并且实验了两列电磁波的干涉,同时证实了在直线传播时,电磁波的传播速度与光速相同,从而全面验证了麦克斯韦的电磁理论的正确性。并且进一步完善了麦克斯韦方程组,使它更加优美、对称,得出了麦克斯韦方程组的现代形式。此外,赫兹又做了一系列实验。他研究了紫外光对火花放电的影响,发现了光电效应,即在光的照射下物体会释放出电子的现象。这一发现,后来成了爱因斯坦建立光量子理论的基础。1889~1894年接替R.克劳修斯的席位任波恩大学物理学教授。1894年1月1日因血液中毒在波恩逝世,年仅36岁。为了纪念他在电磁波发现中的卓越贡献,后人将频率的单位命名为赫兹。相关研究领域:数学、物理学,特别是在电磁学方面。在赫兹以前,由法拉第发现、麦克斯韦完成的电磁理论,因为未经系统的科学实验证明,始终处于“预想”阶段。把天才的预想变成世人公认的真理,是赫兹的功劳。同时,赫兹在人类历史上首先捕捉到电磁波,使假说变成现实。相关作品:1、《论在绝缘体中电过程引起的感应现象》2、《论动电效应的传播速度》3、《论电力射线》

  • 【原创大赛】超快太赫兹-扫描隧道显微镜(THz-STM)—调控单原子隧道电流

    【原创大赛】超快太赫兹-扫描隧道显微镜(THz-STM)—调控单原子隧道电流

    原子级上电流的超快控制对纳米电子未来的创新至关重要。之前相关研究表明,将皮秒级太赫兹脉冲耦合到金属纳米结构可以实现纳米尺度上极度局部的瞬态电场。 近期,加拿大阿尔伯塔大学(University of Alberta)Frank A. Hegmann教授研究组在美国RHK Technology公司生产的商用超高真空扫描隧道显微镜(RHK-UHV-SPM 3000)系统上自主研发了太赫兹-扫描隧道显微镜(THz-STM),首次在超高真空中对Si(111)-(7×7)样品表面执行原子分辨率THz-STM测量,展示了超高真空中的THz-STM探索原子精度的超快非平衡隧道动力学的超强能力。[align=center][img=,500,264]http://ng1.17img.cn/bbsfiles/images/2018/07/201807311403502131_145_981_3.jpg!w500x264.jpg[/img][/align][align=center]图1:利用THz-STM在超高真空中控制极端隧道电流[/align] 在图1(a)中可以看到,超快太赫兹(THz)脉冲通过反向视窗上的透镜(左侧)聚焦到超高真空(中间)的STM探针上,在隧道结(插图)处产生隧道电流。图1(c)中展示了耦合到STM针尖的太赫兹脉冲引发随时间变化的偏压(VTHz(t),红色实线),驱动超快太赫兹感应电流(ITHz(t),蓝色实线),从而产生整流的平均隧道电流。太赫兹脉冲极性(0°, 90°, 180°)可用于控制太赫兹脉冲引起的整流隧道电流,如图1(e)所示。电子从样品向尖端流动,产生负的太赫兹极性,从尖端到样品具有正的太赫兹极性。[align=center][img=,500,358]http://ng1.17img.cn/bbsfiles/images/2018/07/201807311405019168_3214_981_3.jpg!w500x358.jpg[/img][/align][align=center]图2:Si(111)- (7×7)上的单个原子非平衡隧穿的超快控制[/align] 极限太赫兹脉冲驱动的隧道电流高达常规STM中稳态电流的107倍,实现了以0.3nm的空间分辨率对硅表面上的单个原子成像,由此确定在高电流水平下的超快太赫兹脉冲驱动隧道确实可以局域化为单一原子。此外,测试结果表明解释Si(111)-(7×7)上的太赫兹驱动的STM(TD-STM)图像的原子波纹(其中数百个电子在亚皮秒时间尺度内隧穿),需要理解非平衡充电动力学由硅表面的太赫兹脉冲引起。同时,单个原子的太赫兹驱动隧道电流的方向可以通过太赫兹脉冲电场的极性来控制。在太赫兹频率下,类金属Si(111)-(7×7)表面不能从体电子屏蔽电场,导致太赫兹隧道电导与稳态隧道电导基本机制的不同。很显然,这样一个极端的瞬态电流密度并不会影响所研究的单原子STM针尖或样品表面原子,如同在传统STM测试中具有如此大小隧道电流的Si(111)-(7×7)一样。[align=center][img=,500,214]http://ng1.17img.cn/bbsfiles/images/2018/07/201807311405376531_6859_981_3.jpg!w500x214.jpg[/img][/align][align=center]图3:太赫兹感应电流中的热电子[/align] 在高太赫兹场中观察到了来自热电子的隧道电流的额外贡献。超快太赫兹诱导的带状弯曲和表面状态的非平衡充电打开了新的传导通路,使极端瞬态隧道电流在尖端和样品之间流动。半导体表面的THz-STM为原子尺度上的超快隧穿动力学提供了新的见解,这对于开发新型硅纳米电子学和以太赫兹频率工作的原子级器件至关重要。[b]参考文献:[/b]1. Tyler L. Cocker, Frank A. Hegmann et al. An ultrafast terahertz scanning tunneling microscope. Nature Photonics, 151(2013).2. Vedran Jelic, Frank A. Hegmann et al. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface. Nature Physics, 4047(2017).

  • 近红外光谱与太赫兹光谱相比,各有哪些技术优势?

    [font=宋体][font=宋体]太赫兹泛指频率在[/font][font=Times New Roman]0.1THz[/font][font=宋体]到[/font][font=Times New Roman]10THz[/font][font=宋体]波段内的电磁波,位于红外和微波之间。[/font][/font][font='Times New Roman'][font=宋体]太赫兹光谱具有很宽的带宽[/font][/font][font=宋体]([/font][font='Times New Roman']0.1 ~10TH[/font][font=宋体][font=Times New Roman]z[/font][font=宋体]),动态范围大,具有大于[/font][font=Times New Roman]10[/font][/font][sup][font=宋体][font=Times New Roman]5[/font][/font][/sup][font=宋体]的高信噪比;具有瞬态性,可以进行时间分辨光谱的研究;[/font][font='Times New Roman'][font=宋体]太赫兹光谱[/font][/font][font=宋体]光子能量低,穿透性强,适合于生物组织的活体检查。但存在仪器价格非常昂贵,分析检测环境要求高等缺点。而[/font][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]则对分析环境要求较低,受环境因素影响小;此外,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器价格便宜,尤其是[/font][font=Times New Roman]CCD[/font][font=宋体]型微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url],且仪器性能稳定,具有较好的环境抗干扰能力,适用于工业生产场景的检测应用。[/font][/font]

  • 科学家研发出太赫兹地沟油检测仪

    科学家研发出太赫兹地沟油检测仪

    http://ng1.17img.cn/bbsfiles/images/2012/08/201208022150_381350_1641058_3.jpg该项技术通过先进的太赫兹电磁波技术来辨别地沟油。http://ng1.17img.cn/bbsfiles/images/2012/08/201208022150_381352_1641058_3.jpg简单版检测仪长宽约为1米,适合固定在车辆后备箱内。  上海科学家研发地沟油检测仪:电磁波一秒"振"出地沟油  利用电磁波,一秒钟“振”出地沟油,这就是上海理工大学上海市现代光学系统重点实验室地沟油检测仪的“本领”。

  • 新疆理化所潘世烈团队利用高分辨率太赫兹光谱方法为氟化学晶体结构研究提供新途径

    氟在化学世界中具有重要地位。氟在所有原子中电负性最高、极化率最低。同时,氟是所有非惰性气体和非氢元素中半径最小的元素。通常,氟的引入使得有机化合物和无机化合物产生独特的物理性能、化学性能和生物性能。地壳中氟元素的丰度排在第13位,是自然界中含量最丰富的卤素。当前,氟已应用于制药、催化、生物、农业和材料等领域。在无机氧化物体系中,氟和氧的离子半径相似,具有较好的可替代性。因此,利用氟替代氧/羟基成为增强氧化物/羟基氧化物物化性质的有效途径之一。尽管氟化策略已在无机氧化物/羟基氧化物结构和性能改性中受到重视,但反应产物的结构分析仍是化学表征的难题。由于氟和氧对X射线和电子束的散射能力相近,致使准确区分和鉴别这两类元素变得困难。更复杂的是,X射线和电子束几乎不和氢原子相互作用,故X射线和电子束方法难以区分氟和羟基。因此,氟化产物中氟和氧/羟基的准确区分是确定取代位点、研究氟化反应规律以及明晰反应路径等课题的研究基础。[color=#ff0000]近日,中国科学院新疆理化技术研究所潘世烈团队与内蒙古医科大学教授额尔[/color][color=#ff0000]敦[/color][color=#ff0000]、台湾大学教授Hayashi [/color][color=#ff0000]Michitoshi[/color][color=#ff0000]、日本静冈大学教授Tetsuo Sasaki、日本神户大学教授Keisuke Tominaga,以水溶液中硼酸的氟化反应为研究对象,发展了基于高分辨率太赫兹光谱的结构解析方法。[/color]在本研究中,我们展示了太赫兹(THz)光谱为应对这一挑战提供的强大工具。该团队利用这一方法测定了反应产物中功能基元上氟和羟基的位点。结果表明,该反应体系中氟原子只出现在BO[font=等线][sub][size=13px]2[/size][/sub][/font]F[font=等线][sub][size=13px]2[/size][/sub][/font]阴离子功能基元上。在结构测定的基础上,该研究推导了水溶液中硼酸的氟化机理,提出了两步氟化历程。第一步是氟离子和硼酸分子B(OH)[font=等线][sub][size=13px]3[/size][/sub][/font]形成配位共价键,促使硼的电子轨道经历从sp[font=等线][sup][size=13px]2[/size][/sup][/font]到sp[font=等线][sup][size=13px]3[/size][/sup][/font]的转变,形成B(OH)[font=等线][sub][size=13px]3[/size][/sub][/font]F中间体。第二步是氟化剂产生的酸性环境使该中间体上的一个OH质子化,形成OH[font=等线][sub][size=13px]2[/size][/sub][/font][font=等线][sup][size=13px]+[/size][/sup][/font]优势离去基团。进而,氟离子通过亲核取代路径取代OH[font=等线][sub][size=13px]2[/size][/sub][/font][font=等线][sup][size=13px]+[/size][/sup][/font]基团,完成第二步氟化。基于高分辨率太赫兹光谱的结构分析方法,适应于含氟/氧、铍/硼、碳/氮等X射线难以识别元素对的结构体系以及用于研究其他羟基氧化物/氧化物氟化反应机理。[align=center][img=,500,256]https://img1.17img.cn/17img/images/202403/uepic/9cc47a87-9e7a-44a3-a144-71e69f2e9a0d.jpg[/img][/align][align=center]水溶液中硼酸的氟化路径示意图[/align]该方法为无机氟化学晶体结构基元精确解析和反应理论研究提供了新途径,而这一过程以前由于结构不明确而受到阻碍。在太赫兹光谱学的启发下,这项工作标志着我们在深入了解氧化物/氢氧化物氟化过程中的精确结构和反应机制方面又向前迈进了一步。。相关研究成果发表在《德国应用化学》上。新疆理化所为第一完成单位。研究工作得到科学技术部、国家自然科学基金委员会、中国科学院和新疆维吾尔自治区等的支持。[align=center][img=,500,205]https://img1.17img.cn/17img/images/202403/uepic/6715a417-4887-42ca-a47c-044234041f99.jpg[/img][/align][来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 透射电镜市场概况

    [align=left][font='宋体'][size=16px][color=#626262]2020年至2024年全球透射电子显微镜(TEM)市场规模预计将增长3.597亿美元,复合年增长率接近10%。2020年的同比增长为8.31%,2020年预计为3.509亿美元。亚太地区[/color][/size][/font][font='宋体'][size=16px][color=#626262]将贡献[/color][/size][/font][font='宋体'][size=16px][color=#626262]63%的市场份额。但随着COVID-19业务影响的扩散,预计2020-2024年全球透射电子显微镜市场可能将出现负增长。[/color][/size][/font][/align][align=left][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2022/05/202205241659041982_1731_5604207_3.jpeg[/img][/align][align=left][/align][align=left][font='宋体'][size=16px][color=#626262]透射电子显微镜市场是一种利用电子而不是光来观察标本的显微镜。电子的使用允许更高的放大率和样品图像的分辨率。由于样品要求非常薄,因此电子显微镜主要由三部分组成,即电子枪加冷凝器系统、图像产生系统和图像记录系[/color][/size][/font][font='宋体'][size=16px][color=#626262]统。电子枪和冷凝器系统的主要功能是将电子束聚焦到样品表面。[/color][/size][/font][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2022/05/202205241659045683_6692_5604207_3.jpeg[/img][/align][align=left][font='宋体'][size=16px][color=#626262]光束的焦点直径一般为英寸。图像产生系统由多个透镜和样品台组成,它们共同起显影作用。通常有四种透镜,即聚光透镜、物镜、中间透镜和投影透镜。透镜用于产生电子束的锐利焦点,而样品台则容纳样品。[/color][/size][/font][/align][align=left][font='宋体'][size=16px][color=#626262]图像记录系统可由荧光屏组成,用于观察和聚焦产生的图像。它也可以通过一系列传感系统直接捕捉到计算机上。所有这三个组成部分串联在一起,产生电子束聚焦的样品部分的放大图像。透射电子显微镜的其他主要部件是真空系统和功率元件。真空的维持非常重要,因为在空气中电子会被气体或碳氢化合物分子偏转。真空是通过使用主要是旋转和扩散型[/color][/size][/font][font='宋体'][size=16px][color=#626262]的泵来产生[/color][/size][/font][font='宋体'][size=16px][color=#626262]的。[/color][/size][/font][/align][align=left][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2022/05/202205241659047148_223_5604207_3.jpeg[/img][/align][align=left][/align][align=left][font='宋体'][size=16px][color=#626262]应用市场[/color][/size][/font][/align][align=left][font='宋体'][size=16px][color=#626262]二维图像无法显示三维结构和纳米物体功能之间的关系。对理解物体结构和功能之间关系的需求与日俱增,推动了对三维结构分析技术的需求,如中子能谱、电子显微镜成像和X射线衍射。透射电子显微镜广泛应用于物理和生物科[/color][/size][/font][font='宋体'][size=16px][color=#626262]学的结构分析,包括三维物体到二维图像的投影。未来五年,对先进材料和生物样品的三维分析需求的不断增长将推动对透射电子显微镜的需求。从高级材料到生物样品的3D分析需求不断增长是推动透射电镜市场增长的主要趋势。[/color][/size][/font][/align][align=left][font='宋体'][size=16px][color=#626262]透射电镜的应用市场比较分散,在预测期内分散的程度还将加快。对新型透射电子显微镜的需求将提供巨大的增长机会。为了充分利用这些机会,市场供应商将更多的精力放在快速增长的细分市场的增长前景上,同时保持其在缓慢增长的细分市场中的地位。[/color][/size][/font][/align][align=left][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2022/05/202205241659048504_4310_5604207_3.jpeg[/img][/align][align=left][/align][align=left][font='宋体'][size=16px][color=#626262]新型透射电子显微镜的发展将是透射电子显微镜市场的关键趋势之一。市场供[/color][/size][/font][font='宋体'][size=16px][color=#626262]应商越来越关注于开发新型的透射电子显微镜,例如反射电子显微镜(REM),扫描透射电子显微镜(STEM),低压电子显微镜(LVEM),冷冻电子显微镜(Cryo-EM)和[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]电子显微镜(LP-TEM)。[/color][/size][/font][/align][align=left][font='宋体'][size=16px][color=#626262]REM被广泛用于查找样本的表面信息。STEM无需解释即可直接产生图像或结果的能力[/color][/size][/font][font='宋体'][size=16px][color=#626262]已促进[/color][/size][/font][font='宋体'][size=16px][color=#626262]了其在研究实验室中的采用。LVEM结合了透射电子显微镜,扫描电子显微镜和STEM的功能,可提供高对比度的图像。Cryo-EM有助于克服与生物分子有关的挑战,例如与高真空条件的相容性差以及传统透射电子显微镜中使用的强电子束。LP-TEM确保在受控环境中以最高的时空分辨率原位观察液体中材料的动态行为。结合了透射电子显微镜和扫描电子显微镜功能的新型透射电子显微镜的发展将在预测期内推动市场的增长。[/color][/size][/font][/align][align=left][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2022/05/202205241659050888_6398_5604207_3.jpeg[/img][/align][align=left][/align][align=left][font='宋体'][size=16px][color=#626262]主要的透射电子显微镜市场增长来自材料科学领域。研究人员利用透射电子显[/color][/size][/font][font='宋体'][size=16px][color=#626262]微镜研究材料的固态、化学和物理结构,以及它们在外界作用下的行为。对新型工程合成材料和高质量聚合物[/color][/size][/font][font='宋体'][size=16px][color=#626262]基结构[/color][/size][/font][font='宋体'][size=16px][color=#626262]的不断增长的需求以及汽车工业用新型合金的发展是推动材料科学应用对透射电子显微镜需求的一些因素。然而,这一领域的市场增长将慢于生命科学、纳米技术和半导体领域的市场增长。[/color][/size][/font][/align][align=left][/align][align=left][font='宋体'][size=16px][color=#626262]亚太地区是2019年最大的透射电子显微镜市场,亚太地区[/color][/size][/font][font='宋体'][size=16px][color=#626262]将贡献[/color][/size][/font][font='宋体'][size=16px][color=#626262]63%的市场份额;在预测期内,该地区将继续为市场供应商提供最大的增长机会。半导体工业数量的增加、纳米技术的发展、广泛的工业化以及研发投资的增加等因素是该地区透射电子显微镜市场增长的原因。中国、日本和韩国是亚太地区透射电子显微镜的关键市场。这些地区的市场增长将快于其他地区的市场增长。[/color][/size][/font][/align][align=left][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2022/05/202205241659051639_9812_5604207_3.jpeg[/img][/align][align=left][/align][align=left][font='宋体'][size=16px][color=#626262]由于医疗研究需求的不断增长,透射电子显微镜市场一直在稳步增长。这种显微镜提供了高磁离子和高分辨率的图像,在鉴定各种微生物和细胞结构方面受到高度重视。它们也被用于分子和细胞生物学。此外,材料科学需求的增长也对市场的增长产生了积极影响。开发更轻、更强的金属、用于皮革、能源生产和机械等领域的需求越来越大。这种需求导致了透射电子显微镜的广泛应用,因为它对新开发材料的结构和成分有更高的可见性,还可观察结构中任何可能的缺陷。[/color][/size][/font][/align][align=left][font='宋体'][size=16px][color=#626262]苏州正衡检测成立于2008年,是一家国家认可的第三方检测试验机构,实验室通过国家质检总局认可CMA资质,严格按照ISO/IEC 17025体系要求运行,能够独立的向社会出具有公信力的报告。公司检测能力丰富,涵盖可靠性、电磁兼容、材料、化学及安[/color][/size][/font][font='宋体'][size=16px][color=#626262]规[/color][/size][/font][font='宋体'][size=16px][color=#626262]电学测试。[/color][/size][/font][/align]

  • 【讨论】紫外分光透射比偏差大的原因

    遇到一台紫外可见分光光度计,在用[u][color=#800080]透射比标准滤光片[/color][/u]计量时候发现投射比的偏差大于国家规定的2%,检查仪器的波长准确度 和稳定性都是正常的,饿光斑也正常灯也是正常的。滤光片和反射镜也是正常的。不知道这种情况主要出在哪里,有没有知道的啊。

  • 透射选型

    大家好。单位考虑买一台场发射的透射电镜。要带stem和eels,最好还带能量过滤。请朋友们推荐。基本在jeol和fei之间选。由于没有用过场发射的透射。请大家提供参考意见。还有就是要买哪些附件。比如等离子清洗。低温双倾台。特别请用过的朋友发表高见。因为看厂家的广告不太好判别。如果可能的话,我们可能会到贵单位调研一下。谢谢大家了!

  • 招操作扫描电镜以及透射电镜样品制样员

    西安交通大学电信学院国际电介质中心透射电镜实验室是正在建设的世界一流电镜实验室,负责人为“千人计划”学者贾春林教授。实验室所配置的透射电镜有一台FEI Titan G2物镜球差校正电镜,一台JEOL ARM200F聚光镜球差校正电镜,以及一台JEOL2100常规电镜,另外扫描电镜有FEI Helios600i FIB,FEI Quanta250FEG ESEM以及全套的透射电镜,扫描电镜样品制备系统。目前我们希望招两名技术人员一名会制备透射电镜样品,以及可以熟练使用Gatan公司样品制备系统;一名会使用扫描电镜,负责两台电镜的日常维护,使用以及学生的培训。本科学位,并有相关经验者优先考虑。请发送简历至tem@mail.xjtu.edu.cn请注意,目前两个岗位是劳务派遣,合同3年一签。

  • 【分享】德国Zahner推出测试电致变色动态透射和反射DTR技术

    【分享】德国Zahner推出测试电致变色动态透射和反射DTR技术

    http://ng1.17img.cn/bbsfiles/images/2011/04/201104111741_288260_2193245_3.jpg 电致变色(Electrochromic, EC)是指材料的光学属性(透射率、反射率或吸收率)在外加电场作用下产生稳定的可逆变化的现象,在外观上表现为颜色和透明度的可逆变化。具有电致变色性能的材料称为电致变色材料。用电致变色材料做成的器件称为电致变色器件。 例如电致变色智能玻璃在电场作用下具有光吸收透过的可调节性,可选择性地吸收或反射外界的热辐射和内部的热的扩散,减少办公大楼和民用住宅在夏季保持凉爽和冬季保持温暖而必须消耗的大量能源。 德国Zahner公司作为著名的电化学工作站生产厂家,在其著名的CIMPS基础上,推出了测试电致变色动态透射和反射DTR技术。 CIMPS-DTR系统可以在样品上施加可调制的电压信号,同时接受不同波长的光照射射,样品前面或后面有一个静态光强校准计,记录透射光、反射光信号,并反馈给电化学工作站。DTR技术可以测试以下几种特性:- 动态透射和反射和频率的关系- 静态透射和反射和电流的关系- 静态透射和反射和电压的关系- 静态透射和反射和时间的关系

  • 【分享】透射电镜实验讲义(1)

    透射电子显微镜实验课讲义第一部分:仪器介绍透射电子显微镜用高能电子束作为照明源。利用从样品下表面透出的电子束来成像。原理上及结构上与透射式光学显微镜一样。世界上第一台透射电子显微镜是德国人鲁斯卡1936年发明的。他与发明扫描隧道显微镜的一起获得1982 年的诺贝尔物理奖。目前透射电子显微镜的生产厂家有日本的日立(HITACHI)、日本电子(JEOL)、美国的(FEI)、德国的(LEO)。我校的这台是1985年购买的。型号是日本电子的JEM—2000EX。透射电子显微镜主要由电子光学系统、真空系统、电源系统(包括高压系统)、附件系统组成。电子光学系统一般就是指镜筒。从上到下依次为电子枪、聚光镜、样品台、物镜、中间镜、投影镜、荧光屏、照相室。电子枪的功能是产生高速电子。它由灯丝(阴极,处于负高压,即加速电压)、栅极(电位比灯丝还要负几百到几千伏,数值可调)、阳极(处于0电位)组成。根据加速电压的数值,透射电子显微镜一般分为低压电镜(小于120KV)、中压电镜(200~300KV)、高压电镜(大于400KV)。低压电镜主要用在医学和生物学方面。后面的两种主要用在材料科学上。电子枪发出的电子束的亮度和尺寸与灯丝的类型有关。从钨灯丝到六硼化镧单晶灯丝再到场发射电子枪,电子束的质量越来越好。但价格及使用成本也同样越来越高。由电子枪发出的电子束接着进入聚光镜系统。它包括两个聚光镜和一个活动聚光镜光阑。它们的作用是调节即将照到样品上的电子束的尺寸和亮度。聚光镜是电磁透镜。简单地讲,它的构造就是在铁筒外面绕线圈,线圈中有电流。于是在筒内产生磁场。该磁场能使电子偏转并聚焦,好比光学中的凸透镜。光阑是在中央有小孔的钼片。根据小孔的直径(100微米、200微米、400微米),从小到大依次称为小号、中号、大号。现代高性能电镜可以将电子束斑最小聚到小于1nm。电镜的样品台是用来放置装有样品的样品杆的。为了不破坏镜筒的真空。样品台都带有进样间。它有内门和外门。装样品杆时,内门关闭,外门开。样品杆到一定位置时,关外门。对样品间抽气。待样品间抽完气,再开内门,把样品杆送到底。电镜的样品台和样品杆是非常精密的装置。因为电镜的放大倍数很高,外界对样品杆的微小干扰反映到荧光屏上就会很可观。所以使用时要非常小心。电镜的样品杆有单倾和双倾之分。所谓单倾是指样品只能绕X轴旋转,双倾则既可绕X轴又可绕Y轴旋转。双倾杆是非常有用的东西,因为它可以让你从不同的方向观察样品。另外还有加热台、低温台、拉伸台。关于透射电子显微镜样品的制备见下一章。现在假设样品已制备好并已装入电镜中。从聚光镜来的电子束打到样品上。与样品发生相互作用。如果样品薄到一定程度,电子就可以透过样品。透过去的电子分成两类。一类是继续按照原来的方向前进,能量几乎没有改变。我们称之为直进电子。另一类是方向偏离原来的方向。我们称之为散射电子。这些电子中有的能量有比较大的改变。我们称之为非弹性散射电子。有的电子能量几乎没有改变。我们称之为弹性散射电子。所有这些电子通过物镜后在物镜的后焦面上会形成一种特殊的图象。我们称之为夫琅禾费衍射花样。如果被电子束照射的区域是非晶,则花样的特点是中央亮斑加从中央到外围越来越暗的光晕。如果被电子束照射的区域是一块单晶,则花样的特点是中中央亮斑加周围其它离散分布、强弱不等的衍射斑。如果被电子束照射的区域包括许多单晶,则花样的特点是中央亮斑加周围半径不等的一圈圈亮环。至于为什么会形成这些花样。可以从入射电子的散射来解释。对非晶样品,从不同原子上散射出的同一方向上的电子波之间没有固定的相位差,且随着散射角的增大,散射的电子数量少,能量损失大,它们通过物镜后,直进的电子形成中央亮斑。散射的电子形成周围的光晕。越往外,光晕越来越弱。对晶体样品,由于原子排列的规律性,不同原子的同一方向的散射波之间存在固定的相位差。某些方向上相位差为2π的整数倍。根据波的理论,在这些方向上的散射波会发生加强干涉。我们称之为衍射。同一方向的衍射波在物镜后焦面上形成一个亮斑。我们称之为衍射斑。直进的电子形成中央的透射斑。整个后焦面的图象称之为电子衍射花样。至于哪些方向上会出现衍射波,这可由布拉格公式决定。详细内容见教材。由于电子衍射花样与晶体的结构之间存在对应关系,如果我们记录下衍射花样,就可以对晶体结构进行分析。这正是透射电子显微镜能够进行晶体结构分析的原因之一。对多晶样品,每个单晶形成自己的衍射花样。由于各个单晶的取向不同,每个单晶上相同指数的衍射波出现在以入射电子方向为中心线的圆锥上,它们通过物镜后形成衍射圈。通过分析这些衍射圈的半径和亮度,也可以对多晶样品进行结构分析。把透射电镜的工作方式切换到衍射模式,则在物镜后焦面上形成的花样在荧光屏上可以观察到,也可以用底片或相机记录下来。仪器在物镜的后焦面位置有一个活动光阑。我们称之为物镜光阑。它是上面开有不同直径小孔的钼皮。小孔的直径从小到大依次是50微米、100微米、200微米。这个光阑的作用是控制到物镜像平面参与成像的电子束。我们可以不插入物镜光阑,让所有电子束到像平面成像。也可以插入光阑,让一束或多束电子到像平面成像。这里就涉及到透射电子显微镜的两种成像模式。只让一束电子通过物镜后焦面进而到像平面成像的模式称为衍射衬度(又称振幅衬度)模式。让一束以上通过物镜后焦面进而到像平面成像的模式称为高分辨模式(也称相位模式)。在衍射衬度模式中,如果让透射束到像平面成像,则称为明场像。如果让衍射束到像平面成像,则称为暗场像。对非晶样品,由于没有衍射束,所以一般也只有明场像之说。对晶体样品,不但有暗场,根据光路的不同,还有中心暗场与弱束暗场之分。中心暗场是让强衍射束通过。弱束暗场是让弱衍射束通过。通常观察样品的形貌、颗粒大小、组织结构、晶体缺陷等采用衍射衬度模式。如果需要观察晶体的原子排列特征,如晶格像、原子结构像等,就要采用高分辨模式。在衍射衬度模式中,像平面上图象的衬度来源于两个方面。一是质量、厚度因素;一是衍射因素。所谓质量因素,是指由于样品的不同部位的密度不同(其它都相同),同样强度的电子束打到该样品后,密度高的区域透过去的直进电子束弱于密度低的区域。于是到达荧光屏上的效果是密度高的区域暗,密度低的区域亮。这就形成了衬度。所谓厚度因素,是指由于样品的不同部位的厚度不同(其它都相同),同样强度的电子束打到该样品后,厚区域透过去的直进电子束弱于薄的区域。于是到达荧光屏上的效果是厚区暗,薄区亮。这也形成了衬度。所谓衍射因素,是指由于样品上不同的部位产生电子衍射的情况不同(其它都相同),同样强度的电子束打到该样品后,产生强衍射的区域透过去的直进电子束弱于产生弱衍射的区域。于是到达荧光屏上时,产生强衍射的区域暗,弱衍射的区域亮(明场像)。利用衍射因素,加上电子衍射花样,可以对材料中的许多内容进行研究,如晶界、位错、层错、孪晶、相界、反相畴界、析出相、取向关系等。

  • 固体紫外什么情况下测透射率和反射率?

    固体紫外在什么情况下测试透射率呢? 和在什么情况下测试反射率呢 在cary300里,即使是测透射也可以转换成反射的(自带软件可以相互转换的。。。。) 在论坛里,很多帖子都在强调测试的是固体透射还是反射? 所以搞不清楚,到底什么情况下测透射呢?什么情况下测反射?

  • 【原创大赛】透射电子显微镜-小析

    【原创大赛】透射电子显微镜-小析

    随着现代信息的不断发展,作为三大支柱产业之一的材料越发显得重要。而材料的结构分析是决定材料性能的关键因素。众所周知,光学显微镜及扫描电镜均只能观察物质表面的微观形貌,无法获得物质内部的信息。而透射电镜可以根据透射电子图象所获得的信息来了解试样内部的结构。鉴于此,现阶段透射电子显微镜(TEM)已经广泛应用在各个学科领域和技术部门,并且已经成为联系和沟通材料性能和内在结构的一个最重要的“桥梁”。1 TEM的概念 透射电子显微镜(TEM)是以波长极短高能电子作为照明源,利用电子透镜使电子与固体样品作用产生的弹性散射电子聚焦成像的一种高分辨率、高放大倍数显微分析仪器。图1为JEM-2100高分辨透射电子显微镜。http://ng1.17img.cn/bbsfiles/images/2012/08/201208211425_385009_2105598_3.jpg图1 JEM-2100高分辨透射电子显微镜2 TEM的发展历程 1924年,德国科学家德布洛依(Brogliel.De)提出了微观粒子具有二象性的假设,后来这种假设得到了证实。1932年,德国学者诺尔(Knoll)和鲁卡斯(Ruska)获得了放大12~17倍的电子光学系统中的光阑的像,证明可用电子束和电磁透镜得到电子像,但是这一装置还不是真正的电子显微镜,因为它没有样品台。1932~1933年间,鲁卡斯等对以上装置进行了改进,做出了世界上第一台透射电子显微镜。1934年,电子显微镜的分辨率已达到500Å。1939年德国西门子公司造出了世界第一台商品透射电子显微镜,分辨率优于100Å。1947年,莱保尔发展了TEM的选区衍射模式,把电子显微像和电子衍射对应起来。1956年,赫什用衍射动力学法说明衍射衬度,在不锈钢和铝中观察到位错和层错。目前世界上生产透射电镜的主要是这三家电镜制造商:日本的日本电子(JEOL)和日立(Hitachi)以及美国的FEI。3 TEM的特点 TEM可以进行组织形貌与晶体结构同位分析;具有高的分辨率,可以达到1Å;能够在原子和分子尺度直接观察材料的内部结构;能方便地研究材料内部的相组成和分布以及晶体中的位错、层错、晶界和空位团等缺陷,是研究材料微观组织结构最有力的工具;能同时进行材料晶体结构的电子衍射分析,并能同时配置X线能谱、电子能损谱等测定微区成分仪器。目前,它已经是兼有分析微相、观察图像、测定成分、鉴定结构四个功能结合、对照分析的仪器。4 TEM的三个主要指标 TEM的三个主要指标如下: (1)加速电压(一般在80~3000千伏之间); (2)分辨率(一般点分辨率在2~3.5 Å之间); (3)放大倍数(一般在30~80万倍之间)。5 TEM的结构 TEM结构如图2所示。http://ng1.17img.cn/bbsfiles/images/2012/08/201208211426_385010_2105598_3.jpg图2 TEM结构 照明系统主要由电子枪和聚光镜组成。电子枪是发射电子的照明光源。聚光镜是把电子枪发射出来的电子会聚而成的交叉点进一步会聚后照射到样品上。照明系统的作用就是提供一束亮度高、照明孔径角小、平行度好、束流稳定的照明源。 成像系统主要由物镜、中间镜和投影镜组成。物镜是用来形成第一幅高分辨率电子显微图像或电子衍射花样的透镜。透射电子显微镜分辨本领的高低主要取决于物镜。因为物镜的任何缺陷都被成像系统中其它透镜进一步放大。欲获得物镜的高分辨率,必须尽可能降低像差。通常采用强激磁,短焦距的物镜。物镜是一个强激磁短焦距的透镜,它的放大倍数较高,一般为100~300倍。目前,高质量的物镜其分辨率可达0.1nm左右。中间镜是一个弱激磁的长焦距变倍透镜,可在0-20倍范围调节。当M1时,用来进一步放大物镜的像;当M1时,用来缩小物镜的像。在电镜操作过程中,主要是利用中间镜的可变倍率来控制电镜的放大倍数。投影镜的作用是把经中间镜放大(或缩小)的像(电子衍射花样)进一步放大,并投影到荧光屏上,它和物镜一样,是一个短焦距的强磁透镜。投影镜的激磁电流是固定的。因为成像电子束进入投影镜时孔镜角很小(约10~3rad),因此它的景深和焦距都非常大。即使改变中间镜的放大倍数,使显微镜的总放大倍数有很大的变化,也不会影响图像的清晰度。有时,中间镜的像平面还会出现一定的位移,由于这个位移距离仍处于投影镜的景深范围之内,因此,在荧光屏上的图像仍旧是清晰的。 观察和记录装置包括荧光屏和照相机构,在荧光屏下面放置一下可以自动换片的照相暗盒。照相时只要把荧光屏竖起,电子束即可使照相底片曝光。由于透射电子显微镜的焦长很大,虽然荧光屏和底片之间有数十厘米的间距,仍能得到清晰的图像。6 TEM成像原理http://ng1.17img.cn/bbsfiles/images/2012/08/201208211427_385011_2105598_3.jpg6.1高斯成像原理 如图3所示,电子枪产生的电子束经1~2级聚光镜会聚后均匀照射到试样上的某一待观察微小区域,入射电子与试样物质相互作用,由于试样很薄,绝大部分电子穿透试样,其强度分布与所观察试样区的形貌、组织、结构一一对应,透射出试样的电子经物镜、中间镜、投影镜的三级磁透镜放大投射到观察图形的荧光屏上,荧光屏把电子强度分布转变为人眼可见的光强分布,于是在荧光屏上显出与试样形貌、组织、结构相应的图像。即当一束发射角在透镜孔径角以内的入射电子穿过样品,并通过样品下方的物镜后,样品上的每个物点必然在透镜的像平面上有一一对应的像点。6.2阿贝成像原理 当平行入射束与晶体样品作用,除了形成透射束之外,还会产生各级衍射束,通过物镜的聚焦作用在其后焦面上形成衍射振幅的极大值,每个振幅极大值又视为次级光源互相干涉,再于透镜像平面上形成显微放大像。如图4所示。7 TEM的样品及其制备7.1 TEM样品的基本要求 TEM样品的基本要求包括以下: (1)形状尺寸:Φ3,薄区厚度﹤100nm; (2)不失真:无变形,无氧化,不晶化和相变等。7.2 TEM样品的种类和用途 TEM样品的种类和用途包括以下

  • 如何去除透射样品腔长期累积的碳氢化合污染物?(透射等离子清洗机和等离子清洗透射样品杆的应用)

    如何去除透射样品腔长期累积的碳氢化合污染物?(透射等离子清洗机和等离子清洗透射样品杆的应用)

    透射系统拍高分辨,或者进行EELS等高端分析工作经常会遇到很麻烦的污染物,这些一部分是样品本身带有的可通过外置的等离子清洗机处理,另一部分也是现在比较难处理的就是透射系统样品腔内本身长期的碳氢化合物。等离子透射样品杆可以达到清洗效果,同时对样品以及透射系统本身没有任何的影响。 而非传统意义上等离子清洗用的是高能量的离子对样品特别是脆弱样品的破坏损伤,加热损伤等。http://ng1.17img.cn/bbsfiles/images/2011/07/201107062250_303575_1757238_3.jpg而透射使用的外置式等离子清洗机不但可以对市场上不同透射样品杆进行清洁外,还可以进行特殊样品的真空储存。这样怕氧化的样品或特殊样品不但可以进行等离子清洁外还可以进行真空保存。http://ng1.17img.cn/bbsfiles/images/2011/07/201107062257_303576_1757238_3.jpg

  • 【求助】测量NaCl 的不同浓度的吸光度和透射比出现问题了?

    我要做的实验要用到分光光度计!但我觉的我们学校实验室的仪器有点问题!我测量NaCl的不同浓度的吸光度和透射比时!发现了问题!比如说:水是参照的,2号比色皿中的浓度0.1摩尔的,3号的是0.2摩尔的,4号的是0.3摩尔的,把水的吸光度调0,透射比100%,那么2.3.4号的透射比和吸光度应该是呈现递增或递减的数据,可是我得到的确实混乱的,我想知道为什么这样,是否仪器坏了? 具体怎么回事有知道的谢谢解答!波长是默认的580的,比色皿是配套的一个盒子里的,氯化钠在此波长下应该吸收,要不数据也不会变化,在具体的就不知道了!!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制