长尾绿猴肾细胞

仪器信息网长尾绿猴肾细胞专题为您提供2024年最新长尾绿猴肾细胞价格报价、厂家品牌的相关信息, 包括长尾绿猴肾细胞参数、型号等,不管是国产,还是进口品牌的长尾绿猴肾细胞您都可以在这里找到。 除此之外,仪器信息网还免费为您整合长尾绿猴肾细胞相关的耗材配件、试剂标物,还有长尾绿猴肾细胞相关的最新资讯、资料,以及长尾绿猴肾细胞相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

长尾绿猴肾细胞相关的资料

长尾绿猴肾细胞相关的论坛

  • 293T/17(人胚肾细胞)

    293T/17(人胚肾细胞)

    293T/17(人胚肾细胞)293T/17(人胚肾细胞)培养条件:DMEM(PM150210)+10% FBS (164210-500)+1% P/S (PB180120)由衷地感谢您对我们公司的信任与支持! [img=,557,423]http://ng1.17img.cn/bbsfiles/images/2017/07/201707311556_01_3250905_3.png[/img]注意事项:1、首先,观察细胞培养瓶是否完好,培养液是否有漏液、浑浊等现象。若有,请拍照,并及时与技术支持联系(所拍照片将作为后续服务依据)。2、用75%酒精擦拭细胞培养瓶表面,显微镜下观察细胞状态。因运输问题,部分贴壁细胞会有少量从瓶壁脱落;先不要打开培养瓶盖,将细胞置于细胞培养箱内静置培养2-4小时,以便稳定细胞状态。3、仔细阅读细胞说明书,了解细胞相关信息,如贴壁特性(贴壁/悬浮)、细胞形态、所用基础培养基、血清比例、所需细胞因子、传代比例、换液频率等。4、静置完成后,取出细胞培养瓶,镜检、拍照,记录细胞状态(所拍照片将作为后续服务依据);建议细胞传代培养后,定期拍照、记录细胞生长状态。5、贴壁细胞:若细胞生长密度超过80%,可正常传代;若未超过80%,移除细胞培养瓶内培养基,预留5ml左右继续培养,直至细胞密度达80%左右再进行传代操作,瓶盖可稍微拧松。6、悬浮细胞:将细胞培养瓶内液体全部转移至50ml无菌离心管内,1200rpm离心5min,离心后上清培养基可收集备用,管底细胞沉淀加入5ml培养基吹打、重悬。镜检时,若细胞密度超过80%,可将细胞悬液分至2个细胞培养瓶内培养,补加培养基至5ml;若细胞密度未超过80%,将细胞悬液移至原瓶继续培养,直至细胞密度达80%左右时再进行传代操作。 [img=,557,425]http://ng1.17img.cn/bbsfiles/images/2017/07/201707311556_02_3250905_3.png[/img]温馨提醒:1、可将培养瓶内多余的培养基转移至50ml无菌离心管中,备用;细胞首次传代时,可以将该培养基按照一定比例和客户自备的培养基混合使用,让细胞逐渐适应培养条件。2、确认细胞状态良好后,应及时将部分细胞冻存,再进行后续的实验,避免后期实验失误可能发生细胞污染或死亡而导致的细胞丢失,影响后续实验。3、建议客户收到细胞后前3天,100X、200X、400X各拍3张细胞照片,记录细胞状态,便于后续和技术支持沟通交流。 更多咨询中国微生物菌种查询网 网址:www.biobw.org

  • 【转帖】日本利用诱导多功能干细胞让瘫痪绒猴重新蹦跳

    TAG: ips 冈野荣之 干细胞 绒猴 http://img.antpedia.com/attachments/2010/12/27501_201012101146281.jpg  据物理学家组织网12月8日报道,日本研究人员称,他们利用诱导多功能干细胞(iPS)使一只瘫痪小猴的运动能力恢复到接近正常水平,这只小猴因为脖子以下脊椎受伤而不能正常运动。  日本东京庆应义塾大学冈野荣之教授称,这是世界上第一个在小型灵长类动物身上用干细胞修复脊椎损伤的例子。此前,他和研究小组曾用相似方法,帮一只小鼠恢复了运动能力。  研究人员移植了四种基因到人体皮肤细胞,生成诱导多功能干细胞,然后再把诱导多功能干细胞注射到一只瘫痪的绒猴(美洲产小型长尾猴)体内。冈野荣之说,考虑到治疗最佳时机,研究人员在绒猴受伤后第九天进行了注射,这是最有效的时机。在随后的两到三周内,绒猴开始活动它的四肢。“6周以后,它恢复到了又能到处蹦跳的水平,这已经非常接近于正常水平。它用前肢抓住物体的力量也恢复到了80%。”  但冈野荣之说,虽然用人类胚胎干细胞作为治疗癌症和其他疾病具有很大潜力,但要取得能发育成几乎所有组织的细胞,就要破坏人类胚胎,因此胚胎干细胞研究面临诸多争议,并受到宗教保守人士的反对。而日本研究人员的新研究为在人类身上使用类似医疗技术开拓了道路。

  • 光片照明显微镜——细胞级分辨率3D成像

    虽然经过几个世纪的研究,人类的生长于发育过程中仍遗留有很多的未解之谜。人类胚胎发育的研究始于20世纪,一般以观察胚胎的组织图像的方式来研究如器官发生的机制等,传统的方式如切片一直使用至今。现今,对于胚胎3D图像的数字化构建也已经开始,使用核磁共振、X光摄影等方法均可获得胚胎的3D图像,但分辨率仍无法达到细胞水平。本研究使用了妊娠期6-14周的胚胎和胎儿共36个,结合免疫染色、3DISCO组织透明技术和光片照明技术,获得了人类胚胎细胞级分辨率的3D图像,清晰地显示了胚胎的外周神经、肌肉、血管、心、肺和泌尿系统。通过这种方法,我们可以建立人类生长发育的图库,研究人类胚胎发育的分子机制。[b]3D图像示例:1) 周围神经系统3D成像(使用中间纤维外周蛋白(Prph)的抗体标记Prph): [/b][align=center][img=,450,317]http://www.qd-china.com/uploads/Mandy/LaVision%20Application/2.jpg[/img] [/align][align=center](A)7周龄胚胎的表面造影图像(左);对Prph进行标记所得图像。[/align][align=center](B)8周龄胚胎的表面造影图像(灰色)和标记Prph所得图像(绿色)的叠加图像。[/align][align=center](C)8周龄胚胎的面部神经分布。表面造影图像和标记Prph所得图像的叠加(中)(右)。 [/align][align=center]感觉神经轴突和运动神经轴突在手脚的分布:分别使用胆碱乙酰转移酶(ChAT)和瞬态粘附糖蛋白-1(Tag-1)的抗体来标记。[/align][align=center](D)在外周神经,染色产生重叠现象,但在末端Tag-1(绿色)更为明显。(D-F)ChAT染色与Prph和Tag-1均无重叠。 [/align][align=center][img=,550,177]http://www.qd-china.com/uploads/Mandy/LaVision%20Application/3.jpg[/img] [/align][align=center](D)9.5周龄的拇指,标记Prph和Tag-1。染色发生重叠,但在末端区域Tag-1更显著。[/align][align=center](E)9.5周龄的左手,ChAT与Prph表达区域不同。[/align][align=center](F)9周龄的右脚,ChAT与Tag-1表达区域不同。 [/align][align=center] [img=,550,177]http://www.qd-china.com/uploads/Mandy/LaVision%20Application/4.jpg[/img][/align][align=center](G)7周龄的头部,标记Prph显示颅神经。(右)对颅神经分布使用Imaris软件进行3D虚拟解剖、区分并着色。 [/align][b]2) 手足的神经分布的3D成像:对Prph和Tag-1进行免疫染色以建立胚胎和胎儿手部的感觉神经及其分支的3D图像,并可观察感觉神经随时间推移的发育情况。 [/b] [align=center] [img=,450,362]http://www.qd-china.com/uploads/Mandy/LaVision%20Application/5-1.jpg[/img][/align][align=center](A)8周龄标记Prph的右手,感觉神经分为尺骨神经、正中神经和桡神经。[/align][align=center](B)右手从7周龄到11周龄的神经分布随时间的变化。肌皮神经(指针处)很快便延长深入手部。 [/align][align=center] 之后分别对ChAT和Tag-1标记,建立了运动和感觉神经的分布的图像,以确定两种神经在何处以何种方式分离。 [/align][align=center][img=,550,286]http://www.qd-china.com/uploads/Mandy/LaVision%20Application/5-2.jpg[/img] [/align][align=center](C)(D)9周龄的右脚和8周龄的左手的感觉神经和运动神经的3D图像。 [/align][b]3) 对肌肉生长进行3D成像分析:[/b]转录因子Pax7是有颌下门动物的肌肉干细胞标记物,是肌肉生成的关键启动因子。在肌肉的生长中,表达Pax7的细胞均匀分布于生长中的肌肉,表达肌细胞生成素(Myog)的细胞成簇分布于运动神经末端。生长中的肌肉表达了双皮质素(Dcx),可能影响神经肌肉接点的发育。 [align=center][img=,550,259]http://www.qd-china.com/uploads/Mandy/LaVision%20Application/7-1.jpg[/img] [/align][align=center](A)9.5周龄标记Pax7的右脚和右手。[/align][align=center](B)10.5周龄标记Pax7与ChAT的右脚。[/align][align=center](C)9周龄标记Myog、ChAT和Tag-1的右脚。[/align][align=center]表达Myog的细胞成簇分布于运动神经分支末端。[/align][align=center](D)9.5周龄的左脚标记Dcx与ChAT。[/align][align=center]Dcx在肌肉(*号)和感觉神经中检测到,但在运动神经轴突中未检测到。 [/align][align=center] [img=,450,334]http://www.qd-china.com/uploads/Mandy/LaVision%20Application/7-2.jpg[/img][/align][align=center](E)8周龄标记MHC与Tag-1的胚胎。[/align][align=center](中上)动眼肌肉的图像。[/align][align=center]点状线标示出了肌肉的分界线,此处照明被色素上皮所减弱。[/align][align=center](中下)肌肉与感觉神经。(右)左臂的肌肉与感觉神经。[/align][align=center](F)9.5周龄标记MHC与ChAT的左手,显示了肌肉与运动神经。[/align][align=center]使用不同颜色对肌肉进行了区分,同时能够观察到正在发育的骨骼。 [/align][b]4) 人类胚胎脉管系统的3D成像分析:[/b]质膜膜泡关联蛋白(Plvap)是一种由网状微血管内皮细胞表达的跨膜糖蛋白。对整个胚胎标记Plvap并成像,可以观察到致密的血管网络。对平滑肌表达的α肌动蛋白(SMA)进行免疫染色可以观察到生长中的动脉的3D结构。 [align=center][img=,450,414]http://www.qd-china.com/uploads/Mandy/LaVision%20Application/9.jpg[/img] [/align][align=center](A)(B)8周龄标记Plvap的胚胎。[/align][align=center]Plvap在整个胚胎中形成了致密的网络。[/align][align=center](A中、右)右臂与右手。(B左)左腿的Z轴投射图像。[/align][align=center](*号)血管网络穿过了除了骨骼的所有组织。[/align][align=center](B右)面部图像。(箭头)角膜处没有血管。[/align][align=center](C)11周龄胎儿,标记胶原IV的肋骨表面。[/align][align=center](D左)11.5周龄胎儿的右腿和右膝,标记MyoSM的动脉。[/align][align=center](D右)11.5周龄胎儿的右脚,标记SMA的动脉。[/align][align=center] 对胃肠道的淋巴细胞表达的Podoplanin进行标记以研究淋巴管形成,表达Podoplanin的细胞覆盖了肠胃,[/align][align=center]而含Podoplanin的微管数量较少,说明人类淋巴系统成熟可能晚于血管系统。[img=,550,181]http://www.qd-china.com/uploads/Mandy/LaVision%20Application/10.jpg[/img][/align][align=center](E)14周龄标记Podoplanin的消化道。表达Podoplanin的细胞位于肠胃上方。 [/align][align=center](右)表达Podoplanin的细胞尚未发育形成淋巴管。[/align][b]5) 肺的生长发育的3D分析:[/b]标记鼠的性别决定基因Sox9转录因子和Dcx,观察到Sox9在人的末端支气管芽处表达,Dcx在每个气道的近端上皮部分表达。用Plvap标记肺部的血管,发现肺间质内微血管和大血管形成了连续的网络。肺部气道的分支方式是高度保守的,包括域分支、水平分支和垂直分支,使用Sox9/Dcx标记小支气管,可以观察到3种分支方式,并发现了不对称分支现象。 [align=center][img=,550,329]http://www.qd-china.com/uploads/Mandy/LaVision%20Application/11.jpg[/img] [/align][align=center](A)9.5周龄标记Sox9、Dcx和Plvap的胎儿的肺部。Sox9在上皮小管的末端表达,Dcx在近端表达。Plvap在整个肺的血管中表达。[/align][align=center](B)肺上皮小管Z轴光学切面。[/align][align=center](C)末端的微血管网络。[/align][align=center](D)气道分支的3D图像。肺叶(蓝绿),支气管(红)。[/align][align=center](E)支气管的3D图像。(右)三种分支方式。[/align][align=center] 标记SMA和平滑肌肌凝蛋白(MyoSM),两者均于围绕支气管和气道上皮小管的平滑肌处表达。标记Sox9显示出末端没有平滑肌。[/align][align=center]对平滑肌进行染色同时可以显示动脉和微动脉。可以使用SMA和酪氨酸羟化酶(TH)标记心脏来观察血管和神经分布。 [/align][align=center][img=,550,289]http://www.qd-china.com/uploads/Mandy/LaVision%20Application/12.jpg[/img] [/align][align=center](F)9.5周龄的标记MyoSM的肌凝蛋白平滑肌的染色。(箭头)支气管及分支。[/align][align=center](G)11.5周龄的左肺标记SMA显示出气道平滑肌的分支方式。(箭头)动脉周围肌肉和(指针)近端气道周围肌肉。[/align][align=center](H)10周龄的肺的分支图像。末端芽部用Sox9标记。表达SMA的平滑肌分布于不表达Sox9的近端区域。[/align][align=center](I-K)心脏的光片显微图像。 [/align][b]6) 泌尿生殖系统发育的3D分析:[/b]人类生殖道分为两种结构:由中肾分化而来的中肾管(WD)和由中肾管诱导分化而来的副中肾管(MD)。性别决定伴随着生殖道的重构。Pax2转录因子可用于标记中肾和WD。8周龄的雄性胚胎中,MD尖端与WD紧密接触但并未完全生长。肾处于腹侧位置邻接生殖嵴。9.5周龄时MD继续沿WD延伸但并未连接。10周龄时两条MD连接,从两侧WD的中间延伸至泌尿生殖窦,同时开始降解,融合的剩余MD分化为前列腺囊。14周龄时,WD的中肾肾小管退化,附睾与输精管出现。Sox9是睾丸分化的必需因子,在睾丸索中表达,对Sox9使用免疫染色可以观察到睾丸索。[align=center][img=,350,415]http://www.qd-china.com/uploads/Mandy/LaVision%20Application/13.jpg[/img][/align][align=center](A)8周龄标记Pax2的胚胎。[/align][align=center](B)(箭头)MD/WD连接。[/align][align=center](C)(D)9.5周龄的泌尿生殖系统。(箭头)MD尾端沿WD延长但仍未融合。[/align][align=center](E)10周龄的泌尿生殖系统。MD在底端融合(指针)并开始降解(箭头)。[/align][align=center](F)降解的继续。[/align][align=center](G)14周龄的泌尿生殖系统。输精管进一步发育(指针)。[/align][align=center](H)10周龄标记Pax2和Sox9的睾丸。[/align][align=center](I)10周龄标记Pax2的睾丸。[/align][align=center](J)14周龄的睾丸。[/align][align=center][img=,350,452]http://www.qd-china.com/uploads/Mandy/LaVision%20Application/14.jpg[/img][/align][align=center](A)10.5周龄标记Pax2的泌尿生殖系统。WD连续,MD已融合。(B)11.5周龄标记Pax2的生殖系统。(箭头)WD开始降解。(C)13周龄,标记Pax2的生殖系统。(箭头)子宫大小增加,WD显著降解。(右)MD顶端发育中的输卵管纤毛。(D)8周龄标记Pax2和Plvap的睾丸。(指针)微血管覆盖了睾丸和WD。而MD却没有血管形成。(E)10周龄的雄性胎儿中,MD没有微血管形成。(F)(G)10.5和13周龄标记Pax2和Plvap的卵巢。WD和MD均有致密的血管覆盖。 [/align][align=center][/align][b]总结:[/b]将免疫标记与3D成像技术结合,能够完好地保存器官的3D结构并使分辨率达到细胞水平,简单、快速、稳定、可重复,以上这些优势适合其应用于胚胎学,可用于研究遗传疾病或畸胎。此方法的限制条件主要在材料的获得,同时使用得抗体最大数量,抗体与实验方法的兼容性和大容量数据的存储。然而其应用的广泛程度依然不可限量。以后甚至可用于建立人类生长发育的3D图库。

长尾绿猴肾细胞相关的方案

长尾绿猴肾细胞相关的资讯

  • 急性早幼粒细胞白血病治愈率高达90% 我国学者再获国际大奖
    p style=" text-indent: 2em " 2月5日晚,瑞典皇家科学院宣布将2018舍贝里奖授予中国上海交通大学医学院附属瑞金医院陈竺教授、法国巴黎巴斯德研究院安娜.德让(Anne Dejean)、法国巴黎法兰西学院修格.德.特(Hugues ?De The),表彰三位科学家发现白血病的分子机制和急性早幼粒细胞白血病(APL)的革命性治疗方法。 /p p style=" text-align: center " img width=" 600" height=" 331" title=" 1.jpg" style=" width: 600px height: 331px " src=" http://img1.17img.cn/17img/images/201802/insimg/b384673d-def3-4d61-8922-0e9e07105e56.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   该奖是由瑞典皇家科学院评选并宣布,奖金由舍贝里基金会提供。此基金会由瑞典商人班特· 舍贝里于2016年创立,他捐献了20亿瑞典克朗用于推动聚焦于癌症、健康和环境的科学研究。该奖100万美元,直追举世闻名的诺贝尔奖。负责颁发该奖项的瑞典皇家科学院也是诺贝尔物理学、化学以及经济学奖的评选机构。 /p p   瑞典皇家科学院表示,这三位科学家获奖的原因是他们用全反式维甲酸(ATRA)和三氧化二砷(ATO)对急性早幼粒细胞白血病进行联合靶向治疗,使得这一疾病的五年无病生存率跃升至90%以上,达到基本“治愈”标准。同时,从分子机理上揭示了ATRA和砷剂是如何将白血病细胞诱导分化和凋亡,从而达到疾病治疗的目的。 /p p   使用砷剂的理念起源于传统医药,但在该疗法中为科学实验加以证实。获奖者有条不紊地揭示了导致此种疾病的分子机理,从而使其科学治疗成为可能。他们识别了该型白血病细胞中的一种特异基因突变,并对其错误蛋白质加以摧毁,从而阻断了导致病人死亡的过程。该疗法使得癌症细胞失去自我更新能力而被清除。在许多国家,此种联合疗法已成为急性早幼粒细胞白血病的首选治疗。 /p p   瑞典皇家科学院舍贝里奖秘书长托福高德在接受记者电话采访时说,该治疗方法是在确认了得病基因的情况下再用药,因此治疗效果十分明显,治愈率高达90%。 /p p   陈竺教授在发表获奖感言时说:“与两位博士分享负有盛名的2018舍贝里奖是我的莫大荣誉,因为该奖是对癌症研究重要贡献的认可”,他认为,“获得此奖并不仅仅意味着荣耀,更重要的是一种责任。这种责任促使我和我的团队以及合作者们要继续努力破解其他类型血液癌症的发病机理,通过与其他伙伴的合作来发展针对这些疾患的创新、有效治疗策略。” /p p   现在,三位获奖者依然活跃于癌症研究领域。安娜.德让主要致力于继续她在肝癌领域的工作,研究癌症发展进程中蛋白质修饰的意义 修格.德.特主要在研究刺激癌症细胞成熟及阻断其自我更新的潜在治疗方法 陈竺则正从事其他类型白血病遗传和分子学改变的研究。 /p p    strong 陈竺简介 /strong /p p style=" text-align: center " img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201802/insimg/3d532f47-e507-4e86-aa1c-7b045604e1e0.jpg" /    /p p   陈竺,研究员,研究生学历,医学博士学位。中国科学院院士,现任全国人大常委会副委员长、中国农工民主党中央主席、中国红十字会会长、欧美同学会(中国留学人员联谊会)会长、上海交通大学医学院附属瑞金医院终身教授。 br/ /p
  • 活细胞超分辨率显微技术研究获进展
    2016年12月31日,中国科学院生物物理研究所徐平勇课题组、中国科学院计算技术研究所张法课题组以及美国科学院院士HHMI研究员Jennifer Lippincott-Schwartz合作在《细胞研究》(Cell Research)在线发表了题为Live-cell single molecule-guided Bayesian localization super-resolution microscopy 的文章,介绍了一种新型活细胞超分辨率显微技术及其独特优势。  超分辨率荧光显微技术由于打破了传统光学衍射的限制,使得人们能够更深入地理解细胞生物学,获得了2014年诺贝尔化学奖。但是由于设备和时空分辨率的影响,活细胞超分辨率技术仍面临诸多挑战。近年来,贝叶斯定位显微技术(Bayesian analysis of the blinking and bleaching,3B)利用荧光蛋白漂白和闪烁的特性,通过分析整个图像序列的变化得到荧光蛋白的概率分布图,该方法用简单的光学设备就能实现活细胞动态结构的超分辨率成像,成为活细胞超分辨率成像的重要工具之一。作为细胞成像新的重要工具,它仍然有三个关键的问题没有解决:1)在精度方面,存在严重的结构缺失,定位精度不高 2)在速度方面,该方法极其耗时,为了得到1.5μ m的超分辨率结构,大约需要6小时,并且随着图像尺寸的增加,计算时间急剧增长 3)在分析尺度方面,由于速度的限制,该方法很难获得全细胞大尺度长时间的动态变化。针对以上问题,实验人员通过将单分子定位和贝叶斯技术相结合,开发了一种新型活细胞超分辨率显微技术(single molecule guided Bayesian localization microscopy,SIMBA),该技术有以下优点:1)适用范围广,不需要任何额外的硬件设备,就能与主流TIRFM、PALM、STROM和light-sheet显微镜相结合,便于推广和使用 2)时空分辨率高,减少了结构伪迹的同时实现了50nm的空间分辨率和0.5-2s的时间分辨率 3)运行速度快,相比3B,加速比超过100倍,并且随着图像尺度的增大,加速效果更加明显 4)分析尺度大,实现了全细胞大尺度长时间动态变化分析。  活细胞超分辨率显微技术是当前研究的热点,开发新型活细胞超分辨率成像探针和新方法是中科院生物物理所徐平勇课题组的重要研究方向。徐平勇、张法、Jennifer Lippincott-Schwartz为本文的通讯作者 徐帆、张名姝为共同第一作者。该工作受到国家“973”计划 、国家自然科学基金、北京市自然科学基金、中科院基金先导项目等的资助,并申请专利“一种贝叶斯显微成像方法”。SIMBA对于固定细胞actin和活细胞CLC重构结果展示
  • 【报关干货】流式细胞仪进口如何清关申报?
    本文介绍流式细胞仪进口国内收货人资质|进口流式细胞仪报关注意事项|进口流式细胞仪清关单证|进口流式细胞仪报关流程手续|进口流式细胞仪海运清关换单要求。进口流式细胞仪报关代理手续下面我们来简单分析下上海港进口流式细胞仪的大致通关流程:一般进口流式细胞仪远洋线的靠上海洋山港,近洋线的靠上海外高桥港。目前海运的货物有舱单后可以提前申报清关。进口流式细胞仪一般需要收货人需要以下资质:A.进出口权(对外贸易经营者备案表)B.海关注册登记证C.用电子口岸法人卡签约通关无纸化进口流式细胞仪申报一般需要提供以下文件:A、海运提单B、INVIOCEC、装箱单D、贸易合同E、申报要素F、协定产地证(如享受协定税率)G、其他需要的文件(具体货物具体分析)进口流式细胞仪报关代理手续进口流式细胞仪海运换单一般所需资料如下:①海运提单(如电放则电放提单打印)盖章②电放保函(如提单为电放,有些船公司有固定格式,需要提前落实)③对外贸易经营者备案表(提单上的收货人英文名称与对外贸易经营者备案表上保持一致)④国外收货人章+国内通知人章(如提单收货人显示为TO ORDER)⑤其他所需文件海运进口流式细胞仪清关的一般流程:落实国外资料——查询是否有舱单——进口申报缴税——查验(如发生)——进口换单——送货——目的地查验(如有)【知识拓展】国际海运中集装箱拼箱运费的一般计算方式LCL运费计算主要采用“W/M”方式。通常货物运费吨分重量吨(W)和尺码吨(M)。按商品的毛重以1000千克为1重量吨 以1立方米为1尺码吨 计费标准“W/M”是指按商品的重量吨和尺码吨二者择大计费。在理论上一般默认单位费率是固定的,求解时更多只考虑运费吨单个变量的比较。但在实际业务中,不同货代给出的拼箱费率按重量吨和尺码吨往往是不相同的,在这种情况下就要考虑双重变量,根据不同费率、运费吨组合计算后再行比较。比如说,某商品重量5吨、体积8立方米,“W/M”费率是USD100/60,那么最后的运费总额就不能只看W和M的比较,而是5×100和8×60的比较,最后按总额高者重量吨的标准收取500美元。在计算FCL包厢费率时,要根据体积大小按照(40尺-20尺-拼箱)的先后比较顺序。同时有两方面一定要注意:一是涉及到LCL时,要注意“W/M”是将运费吨和费率的乘积进行比较,按拼箱运费高者计价 二是总运费计算时,不管是FCL还是FCL+LCL,一定要按总运费最低价来核算。低硫附加费LSS的含义低硫附加费(Low Sulphur Fuel Surcharge,缩写为LSS)是众多航运附加费中的一种,是指为弥补在新的硫氧化物排放控制区域航行船舶使用低硫燃油所增加的成本而收取的附加费。为支持全球节能减排,国际航运业、国际海事组织等先后出台船舶排放标准,要求在排放控制区严格控制船舶燃油排放物中硫化物的含量。航运中常规燃油为重质燃油,硫含量通常高于前述标准。为符合排放控制区含硫量要求,航运公司必须使用不同类型纯度更高的燃料,往往就多出的这部分额外成本向收货人征收低硫附加费。

长尾绿猴肾细胞相关的仪器

  • 细胞机械刺激培养系统(细胞拉伸仪)细胞牵张是细胞动态培养方法之一,旨在人体内部的动态环境并对体外培养的细胞施加应力刺激。通过自定义程序的机械应力刺激后,可以观察到在常规静态细胞培养中无法获得的细胞变化及反馈。 celltank03细胞应力加载系统CellTank是杭州表面力科技有限公司生产的应用于该领域的科研仪器,公司在产品生产和研发方面拥有完全自主知识产权。celltank细胞牵张培养系统celltank03细胞应力加载系统产品简介celltank03细胞应力加载系统研究表明,不同种类的外界应力刺激对不同种类的细胞以及细胞内表达均产生显著影响。CellTank可在培养细胞的同时,模拟细胞在身体内所受的张应力,给细胞带来外界刺激。模拟中的拉伸应力,几乎可以应用于所有学科中研究的细胞,特别是体内受到周期性拉伸刺激的细胞。了解细胞力学刺激后发生的改变。用于细胞组织再生,疾病原理的解析等研究领域。产品参数说明1. 机器规格 1.1 重量:3kg 1.2 尺寸:350*330*110mm 1.2 供电:输入 AC 100-220V/50-60Hz;输出 DC 15V 3A(max) 2. 拉伸加载 2.1 伸长范围:0~30% 2.2 加载速度:≤30mm/s 2.3 拉伸频率:≤2Hz 3. 运行控制 3.1 波形:正弦波、方波、三角波及其组合celltank细胞牵张培养系统产品配件柔性拉伸培养腔轴向受力均匀,可在长时间连续机械牵拉中表现出良好的再现性。材质:PDMS,高生物相容性; 耐热:180℃; 耐湿:完全; 耐用:20%拉伸比例下约900000次循环; 高透明度,便于进行细胞固定、荧光成像等操作。可选择的多规格固定托架,同时满足对多个细胞培养腔进行加载:4组,底面积32*32mm;8组,底面积20*20mm。产品应用范围例如膀胱细胞、骨细胞、成纤维细胞、角质形成细胞、小球细胞、韧带细胞、肝细胞、肺泡细胞、神经元细胞、星形胶质细胞、骨骼肌细胞、平滑肌细胞、干/祖细胞、肌腱细胞等研究。产品CellTank在提品质道路上永无止境,使广大客户收获的使用体验。一体式设计,操作不连接电脑; 触控屏幕,可直接对幅值、频率、间隔时间等参数进行修改; 优化设计,培养箱环境中(37°C,相对湿度≥90%)也能防潮散热,长时间工作。产品使用流程用细胞外基质对拉伸腔进行预处理,接种细胞; 待细胞粘附在基底上,开始培养过程; 细胞增殖后,选择牵张模式并开始刺激; 进行细胞观察; 根据实验目标收获/处理细胞,分析凋亡率、表达情况等。相关研究 1.中医 仿生针灸 揉眼 视网膜眼部修复 2.机械信号转导,通道表达,piezo1通道3.骨细胞牵张成骨 软骨在生、 骨密度 骨质疏松 4.牵张之后胶原的分泌量 5.肺部仿生,仿呼吸机,体外肺部模型 6.心肌仿生,心肌肥大 7.肌肉收缩 细胞调节分化 脑损伤 8.在自己基底水凝胶,组织膜,纤维,组织工程 微流控芯片 9.组织修复 机械感受 10.药物在机械应变的抗炎和促炎作用 11.3D培养 不同基地牵张 12.肿瘤微环境 蛋白表达标签: 牵张力细胞实验培养仪细胞拉力装置细胞拉伸细胞牵张拉伸细胞拉伸实验细胞牵张细胞牵张实验牵张拉伸培养牵张力细胞拉伸仪如果您感兴趣的话,我们可以为您提供试样服务,请联系:
    留言咨询
  • 细胞机械刺激培养系统(细胞拉伸仪)细胞牵张是细胞动态培养方法之一,旨在人体内部的动态环境并对体外培养的细胞施加应力刺激。通过自定义程序的机械应力刺激后,可以观察到在常规静态细胞培养中无法获得的细胞变化及反馈。 celltank03细胞应力加载系统CellTank是杭州表面力科技有限公司生产的应用于该领域的科研仪器,公司在产品生产和研发方面拥有完全自主知识产权。celltank细胞牵张培养系统celltank03细胞应力加载系统产品简介celltank03细胞应力加载系统研究表明,不同种类的外界应力刺激对不同种类的细胞以及细胞内表达均产生显著影响。CellTank可在培养细胞的同时,模拟细胞在身体内所受的张应力,给细胞带来外界刺激。模拟中的拉伸应力,几乎可以应用于所有学科中研究的细胞,特别是体内受到周期性拉伸刺激的细胞。了解细胞力学刺激后发生的改变。用于细胞组织再生,疾病原理的解析等研究领域。如您对此感兴趣,请联系:(微信同号)产品参数说明1. 机器规格 1.1 重量:3kg 1.2 尺寸:350*330*110mm 1.2 供电:输入 AC 100-220V/50-60Hz;输出 DC 15V 3A(max) 2. 拉伸加载 2.1 伸长范围:0~30% 2.2 加载速度:≤30mm/s 2.3 拉伸频率:≤2Hz 3. 运行控制 3.1 波形:正弦波、方波、三角波及其组合celltank细胞牵张培养系统产品配件柔性拉伸培养腔轴向受力均匀,可在长时间连续机械牵拉中表现出良好的再现性。材质:PDMS,高生物相容性; 耐热:180℃; 耐湿:完全; 耐用:20%拉伸比例下约900000次循环; 高透明度,便于进行细胞固定、荧光成像等操作。可选择的多规格固定托架,同时满足对多个细胞培养腔进行加载:4组,底面积32*32mm;8组,底面积20*20mm。产品应用范围例如膀胱细胞、骨细胞、成纤维细胞、角质形成细胞、小球细胞、韧带细胞、肝细胞、肺泡细胞、神经元细胞、星形胶质细胞、骨骼肌细胞、平滑肌细胞、干/祖细胞、肌腱细胞等研究。国产flexcell产品CellTank在提品质道路上永无止境,使广大客户收获的使用体验。一体式设计,操作不连接电脑; 触控屏幕,可直接对幅值、频率、间隔时间等参数进行修改; 优化设计,培养箱环境中(37°C,相对湿度≥90%)也能防潮散热,长时间工作。产品使用流程用细胞外基质对拉伸腔进行预处理,接种细胞; 待细胞粘附在基底上,开始培养过程; 细胞增殖后,选择牵张模式并开始刺激; 进行细胞观察; 根据实验目标收获/处理细胞,分析凋亡率、表达情况等。
    留言咨询
  • 细胞机械刺激培养系统(细胞拉伸仪)细胞牵张是细胞动态培养方法之一,旨在人体内部的动态环境并对体外培养的细胞施加应力刺激。通过自定义程序的机械应力刺激后,可以观察到在常规静态细胞培养中无法获得的细胞变化及反馈。 celltank03细胞应力加载系统CellTank是杭州表面力科技有限公司生产的应用于该领域的科研仪器,公司在产品生产和研发方面拥有完全自主知识产权。celltank细胞牵张培养系统celltank03细胞应力加载系统产品简介celltank03细胞应力加载系统研究表明,不同种类的外界应力刺激对不同种类的细胞以及细胞内表达均产生显著影响。CellTank可在培养细胞的同时,模拟细胞在身体内所受的张应力,给细胞带来外界刺激。模拟中的拉伸应力,几乎可以应用于所有学科中研究的细胞,特别是体内受到周期性拉伸刺激的细胞。了解细胞力学刺激后发生的改变。用于细胞组织再生,疾病原理的解析等研究领域。产品参数说明1. 机器规格 1.1 重量:3kg 1.2 尺寸:350*330*110mm 1.2 供电:输入 AC 100-220V/50-60Hz;输出 DC 15V 3A(max) 2. 拉伸加载 2.1 伸长范围:0~30% 2.2 加载速度:≤30mm/s 2.3 拉伸频率:≤2Hz 3. 运行控制 3.1 波形:正弦波、方波、三角波及其组合celltank细胞牵张培养系统产品配件柔性拉伸培养腔轴向受力均匀,可在长时间连续机械牵拉中表现出良好的再现性。材质:PDMS,高生物相容性; 耐热:180℃; 耐湿:完全; 耐用:20%拉伸比例下约900000次循环; 高透明度,便于进行细胞固定、荧光成像等操作。可选择的多规格固定托架,同时满足对多个细胞培养腔进行加载:4组,底面积32*32mm;8组,底面积20*20mm。产品应用范围例如膀胱细胞、骨细胞、成纤维细胞、角质形成细胞、小球细胞、韧带细胞、肝细胞、肺泡细胞、神经元细胞、星形胶质细胞、骨骼肌细胞、平滑肌细胞、干/祖细胞、肌腱细胞等研究。国产flexcell产品CellTank在提品质道路上永无止境,使广大客户收获的使用体验。一体式设计,操作不连接电脑; 触控屏幕,可直接对幅值、频率、间隔时间等参数进行修改; 优化设计,培养箱环境中(37°C,相对湿度≥90%)也能防潮散热,长时间工作。产品使用流程用细胞外基质对拉伸腔进行预处理,接种细胞; 待细胞粘附在基底上,开始培养过程; 细胞增殖后,选择牵张模式并开始刺激; 进行细胞观察; 根据实验目标收获/处理细胞,分析凋亡率、表达情况等。
    留言咨询

长尾绿猴肾细胞相关的耗材

  • TU212(人喉癌细胞)的培养步骤及方法!
    TU212(人喉癌细胞)的培养步骤及方法! 一、细胞简介平台编号:bio-106163a规格:1*10 6拉丁属名:TU212(人喉癌细胞)型号:HTX2130细胞名称:TU212人喉癌细胞生长特性:贴壁组织来源:人喉癌细胞培养基:89%1640+10%FBS+1%双抗物种:人规格:2X10^6 cells培养温度:37℃引种来源:BioSample传代:1:2~1:4传代,两天左右换液。冻存液:92%完全培养基+8%DMSO(可以根据实验室条件自行选择)。包装:专业的无菌保温运输包装。细胞用途:仅供科研使用。注意事项:仅用于科学研究或者工业应用等非医疗目的,不可用于人类或动物的临床诊断或治疗,非药用,非食用。 二、细胞特性1)来源:头颈鳞癌2)形态:上皮细胞样,贴壁生长3)含量:1x1064)污染:支原体、细菌、酵母和真菌检测为阴性5)规格:T25瓶或者1mL冻存管包装 三、细胞接收后的处理方法1)收到细胞后,请检查发货培养瓶的状况,若发现培养瓶破损、有液溢出及细胞有污染,请拍照后及时联系我们。2)在显微镜下确认细胞生长状态时,最好在低倍镜(4或5X物镜)下进行,能准确判断细胞的传代密度。看细胞的形态请在10X和20×物镜下,同时给刚收到的细胞拍照,(10×,20×)各2-3张以及培养瓶外观照片一张留存,作为细胞需要售后时提供收到细胞时细胞状态的依据。3)观察好细胞状态后,75%酒精消毒瓶壁将T25瓶置于37℃培养箱放置约2-3h。4)贴壁细胞:在运输过程中贴壁细胞会有脱落的现象,如发现贴壁细胞有脱落或者脱落后抱团生长,可将T25瓶置于37℃培养箱放置约2-3h,然后抽出瓶中的培养基和未贴壁细胞1000rpm离心5分钟,弃去上清重悬后接种到加有按照说明书细胞培养条件新配制的完全培养基的原培养瓶中(或新的培养瓶中)。5)悬浮细胞:T25瓶置于37℃培养箱放置约2-3h,然后抽出瓶中的培养基和细胞1000rpm离心5分钟,弃去上清重悬后接种到新的培养瓶中(加入按照说明书细胞培养条件新配制的完全培养基)。6)备注:运输用的培养基(灌液培养基)不能再用来培养细胞,请换用按照说明书细胞培养条件新配制的完全培养基来培养细胞。收到细胞后第一次传代建议1:2传代。 四、细胞培养步骤1、培养基及培养冻存条件准备: 1)准备IMDM培养基;优质胎牛血清,10%;双抗,1%。2)培养条件: 气相:空气,95%;二氧化碳,5%。 温度:37摄氏度,培养箱湿度为70%-80%。3)冻存液:90%血清,10%DMSO,现用现配。2、细胞处理:1)复苏细胞:将含有1mL细胞悬液的冻存管在37℃水浴中迅速摇晃解冻,加入4mL培养基混合均匀。在1000RPM条件下离心4分钟,弃去上清液,补加1-2mL培养基后吹匀。然后将所有细胞悬液加入培养瓶中培养过夜(或将细胞悬液加入250px皿中,加入约8ml培养基,培养过夜)。第二天换液并检查细胞密度。2)细胞传代:如果细胞密度达80%-90%,即可进行传代培养。3)细胞冻存:待细胞生长状态良好时,可进行细胞冻存。 对于贴壁细胞,传代可参考以下方法:1、弃去培养上清,用不含钙、镁离子的PBS润洗细胞1-2次。2、加2ml消化液(0.25%Trypsin-0.53mM EDTA)于培养瓶中,置于37℃培养箱中消化1-2分钟,然后在显微镜下观察细胞消化情况,若细胞大部分变圆并脱落,迅速拿回操作台,轻敲几下培养瓶后加少量培养基终止消化。3、按6-8ml/瓶补加培养基,轻轻打匀后吸出,在1000RPM条件下离心4分钟,弃去上清液,补加1-2mL培养液后吹匀。4、将细胞悬液按1:2到1:5的比例分到新的含8ml培养基的新皿中或者瓶中。注:第一次传代推荐传代比例为1:2,以后传代比例可根据客户需要自己决定。 五、TU212(人喉癌细胞)的注意事项1、收到细胞后,若发现干冰已挥发干净、冻存管瓶盖脱落、破损及细胞有污染,请立即与我们联系。2、收到细胞先不开瓶盖,瓶身擦拭酒精后放在培养箱静置2-4小时(视细胞密度而定)稳定细胞状态。接着在倒置显微镜下观察细胞生长情况,并对细胞进行不同倍数拍照(建议收细胞时就整体外观拍一张照片,观察培养基的颜色和是否有漏液情况,随后在显微镜下拍下细胞状态,100*,200*各一张),观察记录细胞在运输过程中是否有污染情况。作为我方进行销售依据。3、由于细胞状态受环境、操作和运输等多方面因素影响,故本公司只保证客户收到细胞后一周内的细胞状态,故客户需要售后时需出示收到细胞的时间证明及客户提供收货时间和发现问题后客服人员沟通的时间证明,期间间隔时间不能大于7天。4、所有动物细胞均视为有潜在的生物危害性,必须在二级生物安全台内操作,并请注意防护,所有废液及接触过此细胞的器皿需要灭菌后方能丢弃。 六、TU212(人喉癌细胞)的运输和保存可选择干冰运输及发送复苏存活细胞方式(1)干冰运输,收到后立即转入液氮或者-80度冰箱冻存或直接复苏;(2)存活细胞,收到后应继续生长,传代达到细胞生长状态良好时,再进行冻存。具体操作见细胞培养步骤。(3)收到细胞后请拍照,3天内如果发现污染,请及时拍照与我们联系。 中国微生物菌种查询网自设细胞系板块,是细胞株提供中心,专业提供代次低、周期短、活性好的细胞株。与国内外多家研制单位,生物医药,第三方检测机构,科研院所有着良好稳定的长期合作关系!欢迎广大客户来询!
  • 爱必信 100um细胞过滤器(160目,黄色) 细胞筛网
    "公告提醒:爱必信所有产品和服务仅用于科学研究,不用于临床应用及其他用途提供产品和服务(也不为任何个人提供产品和服务)! 产品描述:产品名称:100um细胞过滤器(160目,黄色)描述: 本产品经过伽马射线灭菌,过滤快速,使用简便,用于从组织中分离原代细胞,持续获得形状性能一致的单细胞悬液。常用于器官培养、组织转运或移植。本产品使用坚固的尼龙网制作,常用三种规格可选:100um(黄色),70um(白色),40um(紫色)。产品特性:1、坚固尼龙网,常用100μm(黄色)、70μm(白色)、40μm(紫色),其他孔径可以定制。2、平均分布的网孔可以提供一致可靠的结果。3、顶端延伸边缘可用手术钳无菌操作。4、模塑着色标记的聚丙烯框易于操作和分辨。5、经伽马射线灭菌,无DNA酶、无RNA酶、无热源。包装: 100个/箱应用: 本产品尤其适用于干细胞和原代细胞过滤,常与流式细胞仪配套使用,是六式细胞分选实验最佳选择。1、从骨髓、胰腺、胸腺、扁桃体和淋巴结中分离的血细胞过滤获得单一细胞悬液。2、制备样品用于原代细胞培养和免疫。 3、过滤灭活血清中的胶蛋白。4、制备冷冻原种产品信息订购: 产品货号 产品名称 规格价格大包装及货期 abs7009 100um细胞过滤器(160目,黄色) 100个/箱 1800.00 立即咨询产品更多信息请进入爱必信网站咨询 "
  • 爱必信 70um细胞过滤器(200目,白色) 细胞筛网
    "公告提醒:爱必信所有产品和服务仅用于科学研究,不用于临床应用及其他用途提供产品和服务(也不为任何个人提供产品和服务)! 产品描述:产品名称:70um细胞过滤器(200目,白色)描述: 本产品经过伽马射线灭菌,过滤快速,使用简便,用于从组织中分离原代细胞,持续获得形状性能一致的单细胞悬液。常用于器官培养、组织转运或移植。本产品使用坚固的尼龙网制作,常用三种规格可选:100um(黄色),70um(白色),40um(紫色)。产品特性:1、坚固尼龙网,常用100μm(黄色)、70μm(白色)、40μm(紫色),其他孔径可以定制。2、平均分布的网孔可以提供一致可靠的结果。3、顶端延伸边缘可用手术钳无菌操作。4、模塑着色标记的聚丙烯框易于操作和分辨。5、经伽马射线灭菌,无DNA酶、无RNA酶、无热源。包装: 100个/箱应用: 本产品尤其适用于干细胞和原代细胞过滤,常与流式细胞仪配套使用,是六式细胞分选实验最佳选择。1、从骨髓、胰腺、胸腺、扁桃体和淋巴结中分离的血细胞过滤获得单一细胞悬液。2、制备样品用于原代细胞培养和免疫。 3、过滤灭活血清中的胶蛋白。4、制备冷冻原种产品信息订购: 产品货号 产品名称 规格价格大包装及货期 abs7008 70um细胞过滤器(200目,白色) 100个/箱 1800.00 立即咨询产品更多信息请进入爱必信网站咨询 "

长尾绿猴肾细胞相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制