当前位置: 仪器信息网 > 行业主题 > >

双筒斜管显微镜

仪器信息网双筒斜管显微镜专题为您提供2024年最新双筒斜管显微镜价格报价、厂家品牌的相关信息, 包括双筒斜管显微镜参数、型号等,不管是国产,还是进口品牌的双筒斜管显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合双筒斜管显微镜相关的耗材配件、试剂标物,还有双筒斜管显微镜相关的最新资讯、资料,以及双筒斜管显微镜相关的解决方案。

双筒斜管显微镜相关的资讯

  • 关于数码显微镜最困扰您的 9 个问题
    James DeRose 博士 Georg Schlaffer徕卡显微系统数码显微系统是显微镜学的流行语之一,此外,还有一些非常有用的常识。徕卡显微系统的产品经理 Georg Schlaffer 常常会被客户和同仁问及有关数码显微系统方面的问题。为了答疑解惑,他与科学作家 Jim DeRose 共同合作,对最重要的几个问题进行了全方位解答。到底什么是数码显微系统?数码显微镜属于带数码相机的光学显微镜,无需配备目镜。电子监控器显示屏会直接显示观察和分析的样品图像。数码显微镜还可以是常规体视或复式显微镜,它们同时配备目镜和相机,能够保存显微镜状态和相机设定值的反馈信息。在本文的接下来部分中,我们提到的“数码显微镜”是指不带目镜的显微镜,例如,Leica DVM6、Leica DMS1000,和 Leica DMS300,而不是配备相机的体视或复式显微镜。左:Leica DVM6 数码显微镜右:镀金焊盘,汽车用电子设备,总放大倍率:120:1。图像由 Leica DVM6 获取。哪些应用领域可以使用数码显微镜?在研发、生产和检测、质量控制和保证,以及失效分析过程中,数码显微镜是分析部件和样品并生成检测报告的理想仪器。左:镀金焊盘,汽车用电子设备,总放大倍率:360:1。图像由 Leica DVM6 获取。右:通过 Leica DVM6 倾斜显示屏予以显示。数码显微镜的优势何在?数码显微镜最显著的优势在于仪器的人机工程学设计。由于监控器会直接显示样品图像,用户可以在保持舒适、放松的直立坐姿的同时,还能即时观察样品,并利用软件分析样品图像,保证用户能以舒适的姿态高效地完成工作。在需要处理高通量样品,或每天需要在显微镜上花费较长时间的情况下,数码显微镜的人机工程学设计就显得意义非凡了。此外,很多数码显微镜还提供允许存储多个用户配置文件的软件。在多人共用一台显微镜时,这项功能非常有用,凭借这项功能,每个用户只需选择自己的显微镜配置文件,几乎无需调节显微镜工作台,即可轻松开始工作。左:纸上印刷图案,总放大倍率:750:1,环形光照明。图像由 Leica DVM6 获取。右:纸上印刷图案,总放大倍率:750:1,起偏镜开启时的同轴照明。图像由 Leica DVM6 获取。数码显微镜有哪些限制条件?相比体视或复式显微镜,数码显微镜存在一个明显的限制条件,即需要电源连接,因为数码显微镜未配备目镜,而样品图像却始终需要显示在监控器上。因此,至少需要一根电源线。通常情况下,数码显微镜还需要连接 PC,或至少需要连接显微镜的显示屏。通过传统的显微镜,用户仍可以选择使用目镜获取样品图像。左:Leica DMS1000 数码显微镜右:金属部件上的一个孔;自动更新每项变焦设置比例,实现快速测量。图像由 Leica DMS1000 获取。通过数码显微镜和目镜分别观察到的样品图像相比,结果如何?原则上,图像是相同的。视场角可能存在差别,这主要取决于我们正在讨论的数码相机和目镜的类型。但是,还有一个重要差别:采用体视显微镜的双筒目镜观察样品,将为您带来数码显微镜的二维图像无法达到的深度。左:表壳,通过环形光照明 (Leica LED3000 RL) 和入射光座捕捉。图像由 Leica DMS1000 获取。右:Leica DMS1000 B 图像:利用透射光座捕捉的秀丽隐杆线虫图像;因不断编码变焦,从而保证快速、简单地测量,即使在不配备电脑的单机模式下亦可实现。数码显微镜操作上比带目镜的显微镜要简单吗?尤其对于无经验的用户而言,利用数码显微镜,他们也能够更简单、更快速地获取样品图像。造成上述差别的主要原因是,熟悉设置和调整传统型显微镜,并透过目镜观察样品,这些操作需要花费较长时间。左:果蝇属筛查。图像由 Leica DMS1000 B 获取。右:利用固定在摇臂机架上的 Leica DMS300 观察印刷电路板样品“编码”的含义是什么?当显微镜硬件可直接与计算机软件进行通信,且能够利用图像数据完成对特定参数值的追踪和保存时,表示显微镜已完成“编码”。这些特定参数将得以被设定,并因此被称之为已编码参数值。正常情况下,触摸相关按钮,即可调用这些已编码参数,令重复工作和报告变得更轻松。必须成为显微系统的专家,才能操作数码显微镜吗?当然不需要。无论是显微系统的新手还是专家,都可以轻松使用数码显微镜。徕卡显微系统提供的数码显微镜,其设计宗旨就是简单易用、开箱即用,最大程度地减少培训时间。它们配备已编码的功能,能够轻松生成分析报告,令重复工作更加高效。数码显微镜需要配备哪些部件?所需配件依据应用领域而定。例如,可以根据所需的放大倍率范围,选择物镜透镜。您还可以在一系列主机和照明系统中进行选择。以下这些问题会帮助您决定需要哪些部件或功能: 是否需要快速获取高质量数字图像?如果需要,您可以选择高分辨率数码相机。 是否需要高通量样品的快速、实时图像显示?如果需要,您可以将相机速度设置为每秒 30 帧或更快。 是否需要从不同角度观察样品?如果需要,倾斜显微镜镜头或转动样品载物台,实现工作过程或物体的动态观测。 是否需要定性或定量分析样品?如果需要,必须认真选择软件功能。 是否需要平衡图像,同时清晰展示明亮和暗色部分?如果需要,您可以选择 HDR(高动态范围)功能,它能够为您精确提供所需的图像类型。了解更多:https://www.leica-microsystems.com/?nlc=20191231-SFDC-008340
  • 探索微观世界:从光学显微镜到电子显微镜
    人的肉眼分辨本领在0.1毫米左右,我们是怎么一步步地看见细菌、病毒,乃至蛋白质结构的呢?这背后离不开这群“强迫症”。采访专家:张德添(军事医学科学院国家生物医学分析中心教授)“我非常惊奇地看到水中有许多极小的活体微生物,它们如此漂亮而动人,有的如长矛穿水而过,有的像陀螺原地打转,还有的灵巧地徘徊前进,成群结队。你简直可以将它们想象成一群飞行的蚊虫。”1675年,一名荷兰代尔夫特市政厅的小公务员给英国皇家学会写了这样一封信,向学会的会员们描述自己用自制的显微镜观察到的奇妙景象。作为给当时欧洲最富盛名的学术组织寄去的一封学术讨论信件,这名公务员并没有进行大篇幅严谨却枯燥的科学论证,而是用朴实的语言,在字里行间留下了自己发现新事物时那种孩童般的惊奇与喜悦。这位当时默默无闻的小公务员,正是大名鼎鼎的微生物学和显微镜学先驱者—安东尼范列文虎克。在50年的时间里,列文虎克用制作的显微镜观察到了细菌、肌纤维和精细胞等微观生物,并先后给英国皇家学会寄去了300多封信件来讨论他的新发现。正是在列文虎克的不懈坚持下,人类观察世界的眼睛终于来到了微生物层面。初代显微镜:拨开微生物世界的迷雾列文虎克能发现色彩斑斓的微生物世界,主要得益于他在透镜制作方面的天赋。他一生中制作了多达400多台显微镜,与今日我们熟知的显微镜存在很大不同,列文虎克的显微镜绝大多数属于单透镜显微镜,仅由一个小黄铜板构成,使用时需要仰身将这个铜板面向阳光进行观察。列文虎克凭借他的一系列惊人发现迅速成为当时科学界的“网红级”人物。然而真正奠定显微镜学理论基础的,则是同时期的英国科学家罗伯特胡克。在列文虎克还在钻研透镜制作技艺时的1665年,在英国皇家学会负责科学试验的胡克,就制作了一台显微镜,与列文虎克使用的单透镜显微镜不同,这是一台复式显微镜,其工作原理和外形已经很接近现代的光学显微镜了。胡克用这台显微镜观察一片软木薄片,发现了密密麻麻的格子状结构,酷似当时僧侣居住的单人房间,因此胡克就用英语中单人间一词“cell”来命名这种结构,而这个单词在当代被翻译为“细胞”。不久,胡克写就了《显微图谱》一书,将这一重要观察成果写入书中。胡克的研究成果很快引起了列文虎克的注意,他曾研究过胡克的显微镜,但最后还是使用了自制的单透镜显微镜来进行观察。原因就在于胡克显微镜存在严重的色差问题。所谓色差,就是在光线经过透镜时,不同颜色的光因折射率不同,会聚焦于不同的点上,使得样品的成像被一层色彩光斑所包围,严重影响清晰度。列文虎克提出的解决方案也很简单,就是在透镜研磨的精细程度上下功夫,将单透镜制成小玻璃珠,并将之嵌入黄铜板的细孔内,这样在放大倍数不低于胡克显微镜的基础上,最大程度避免色差对成像的干扰。但代价是,由于观察时是需要对着阳光,对观测者的眼睛伤害很大。除了色差,早期显微镜还存在着球面像差问题,即光线在经过透镜折射时,接近中心与靠近边缘的光线不能将影像聚集在一点上,使得成像模糊不清。自显微镜诞生之日起,色差和球面像差就成为“与生俱来的顽疾”,一直制约着人们向微观世界进军的步伐。直到19世纪,光学显微技术才在工业革命的助力下完成了一次实质性蜕变,从而在根本上解决了这两个难题。挑战色差与球面像差:逐渐清晰的微观视角首先是1830年,一个名为李斯特的英国业余显微镜学爱好者首先向球面像差发起挑战,他创造性地用几个特定间距的透镜组,成功减小了球面像差影响。此后,改进显微镜的主阵地很快转移到了德国,其中1846年成立的蔡司光学工厂,更是在此后一个世纪里成为领头羊。1857年蔡司工厂研制出第一台现代复式显微镜,并成功打入市场。不过在研制和生产过程中,蔡司也深受色差之苦:当时通行的增加透镜数量的做法,虽能提升显微镜的放大倍数,却仍无法消除色差对成像清晰度的干扰。1872年,德国耶拿大学的恩斯特阿贝教授提出了完善的显微镜学理论,详细说明了光学显微镜的成像原理、数值孔径等科学问题。蔡司也迅速邀请阿贝教授加盟,并研制出一批划时代的光学部件,其中就包括复消色差透镜,一举消除了色差的影响。在阿贝教授的技术加持下,蔡司工厂的显微镜成为同类产品中的佼佼者,很快成为欧美各大实验室的抢手货,并奠定了现代光学显微镜的基本形态。不久,蔡司又拉来了著名化学家奥托肖特入伙,将其研制的具有全新光学特性的锂玻璃应用在自家产品上。1884年,蔡司更是联合阿贝与肖特,成立了“耶拿玻璃厂”,专为显微镜生产专业透镜。显微镜技术的突飞猛进也让各种现代生物学理论不断完善,透过高分辨率的透镜,微观世界中各种复杂的结构逐步以具象的形式呈现在人类眼前。由于微观层面的生物结构大多是无色透明的,为了让他们在镜头下变得清晰可见,当时的科学家普遍将生物样品染色,以此提高对比度方便观察。这一方法最大的局限在于,染料本身的毒性往往会破坏微生物的组织结构,这一时期染剂落后的材质,也无法实现对某些特定组织的染色。直到1935年荷兰学者泽尼克发现了相衬原理,并将之成功应有于显微镜上。这种相衬显微技术,利用光线穿过透明物体产生的极细微的相位差来成像,使得显微镜能够清晰地观察到无色透明的生物样品。泽尼克本人则凭借此次发现斩获了1953年的诺贝尔物理学奖。军事医学科学院国家生物医学分析中心教授,长期致力于电子显微镜领域研究的张德添向记者介绍道:“人的肉眼分辨本领在0.1毫米左右,而光学显微镜的分辨本领可以达到0.2微米(1毫米=1000微米)的水平,能够看到细菌和细胞。但由于光具有波动性,衍射现象限制了光学显微镜分辨本领的进一步提高。”二战结束后,随着各种新理论新技术的不断应用,光学显微镜得到了长足进步,但也是在这一时期,光学显微镜的潜力已经被发掘到了极限。为蔡司工厂乃至整个显微镜学立下汗马功劳的阿贝教授就提出了“分辨率极限理论”,认为普通光学显微镜的分辨率极限是0.2微米,再小的物体就无能为力了—这一理论又被称为“阿贝极限”,这就好像一层屏障将人类的探索目光阻隔在更深度的微观世界大门之前,迫使科学家们另寻他途。电子显微镜:另辟蹊径,重新发现既然可见光存在这样的短板,那么能否利用其他波长较短的光束来实现分辨率的突破呢?张德添进一步介绍道:“1924年后,人们从物质领域内找到了波长更短的媒质—电子,从而发明了电子显微镜,其分辨本领达到了0.1纳米的水平。”1931年,德国科学家克诺尔和他的学生鲁斯卡在一台高压示波器上加装了一个放电电子源和三个电子透镜,制成了世界首台电子显微镜,就此为人类探索微观世界开拓了一条全新的思路。电子显微镜完全不受阿贝极限的桎梏,在分辨率上要远远超越当时的光学显微镜。鲁斯卡在次年对电子显微镜进行了改进,分辨率一举达到纳米级别(1微米=1000纳米)。在这个观测深度,人类终于亲眼看到了比细菌还要小的微生物—病毒。1938年,鲁斯卡用电子显微镜看到了烟草花叶病毒的真身,而此时距离病毒被证实存在已经过去了40年时间。对于电子显微镜技术的发明,张德添这样评价道:“电子显微镜是人们认识超微观世界的钥匙和工具,它解决了光学显微镜受自然光波长限制的问题,将人们对世界的认识从细胞水平提高到了分子水平。” 从肉眼只能观察到的毫米尺度,到光学显微镜能够达到的微米尺度,再到电子显微镜能进一步下探到纳米尺度,显微成像技术正在迅速突破人类对微观世界的认知极限。不过电子显微镜本身的缺憾也愈加明显。由于电子加速只能在真空条件下实现,在真空环境之下,生物样品往往要经过脱水与干燥,这意味着电子显微镜根本无法观测到活体状态下的生物样品,此外电子束本身又容易破坏样品表面的生物分子结构,这就导致样品本身会丢失很多关键信息。这一顽疾在此后又困扰了科学家多年。直到1981年,IBM苏黎世实验室的两位研究员宾尼希与罗雷尔,用一种当时看起来颇有些“离经叛道”的方法,首先解决了电子束损害样品结构的问题。他们利用量子物理学中的“隧道效应”,制作了一台扫描隧道显微镜。与传统的光学和电子显微镜不同,这种显微镜连镜头都没有。在工作时,用一根探针接近样品,并在两者之间施加电压,当探针距离样品只有纳米级时就会产生隧道效应—电子从这细微的缝隙中穿过,形成微弱的电流,这股电流会随着探针与样品距离的变化而变化,通过测量电流的变化人们就能间接得到样品的大致形状。由于全程没有电子束参与,扫描隧道显微镜从根本上避免了加速电子对生物样品表面的破坏。扫描隧道显微镜在今天也被称为“原子力显微镜”,“在微米甚至纳米水平,动态观察生物样品表面形貌结构的变化规律,原子力显微镜是有其独特优势的”,张德添向记者解释说,“如果条件允许,还可以检测生物大分子间相互作用力的大小,为结构与功能关系研究提供便利。”1986年,宾尼希和罗雷尔凭借扫描隧道显微镜,获得当年的诺贝尔物理学奖,有趣的是,与他们一起分享荣誉的,还有当初发明电子显微镜的鲁斯卡,当时的他已是耄耋老人,而他的恩师克诺尔也早已作古。新老两代电子显微镜技术的里程碑人物同台领奖,成为当时物理学界的一段佳话。老树新芽:突破“阿贝极限”的光学显微镜电子显微镜在问世之后的几十年间,极大拓展了人类对生物、化学、材料和物理等领域认知疆界。而无论是鲁斯卡,还是宾尼希和罗雷尔,他们所作的贡献不仅让自己享誉世界,还助力其他领域的学者登上荣誉之巅。比如英国化学家艾伦克鲁格凭借对核酸与蛋白复杂体系的研究获得1982年度诺贝尔化学奖,而他的科研成果正式依靠高分辨电子显微镜技术和X光衍射分析技术而取得的。在克鲁格获奖的当年,以色列化学家达尼埃尔谢赫特曼更是使用一台电子显微镜,发现了准晶体的存在,并独享了2011年的诺贝尔化学奖。目前,电子显微镜已经成为金属、半导体和超导体领域研究的主力军。但在生物和医学领域,电子显微镜本身对生物样品的损害,依旧是难以逾越的技术难题。于是不少科学家开始从两条路径上寻求解决之道:一条是研发冷冻电镜技术,这种技术并不改变电子显微镜整体的工作模式,而是从生物样品本身入手,对其进行超低温冷冻处理。这样状态下,即使处在真空环境中,样品也能保持原有的形态特征与生物活性。“由于观测温度低,生物样品也处于含水状态,分子也处于天然状态,样品对辐射的耐受能力得以提高。我们可以将样品冻结在不同状态,观测分子结构的变化。”张德添向记者解释道。瑞士物理学家雅克杜波切特、美国生物学家乔基姆弗兰克和英国生物学家理查德亨德森凭借这项技术分享了2017年度诺贝尔化学奖。新冠疫情暴发后,冷冻电镜技术又为人类研究和抗击疫情做出了突出贡献。2020年,西湖大学周强实验室就利用这种技术,首次成功解析了此次新冠病毒的受体—ACE2的全长结构,让人类对新冠病毒的认识向前迈出了关键性一步。另一条路径是从传统的光学显微镜入手。在电子显微镜的黄金时代,不少科学家就开始着手研制超高分辨率光学显微镜,甚至开始尝试突破一直以来困扰光学显微镜的“阿贝极限”,而“荧光技术”就成为实现这一切的关键。早在19世纪中叶,科学家们就发现:某些物质在吸收波长较短而能量较高的光线(比如紫外光)时,能将光源转化为波长较长的可见光。这种现象后来被定义为“荧光现象”。荧光现象在自然界是普遍存在的,这一现象背后的原理也在20世纪迅速被应用在光学显微镜上。1911年,德国科学家首次研制出荧光显微镜装置,用荧光色素对样品进行荧光染色处理,并以紫外光激发样品的荧光物质发光,但成像效果不佳,而且把荧光物质当作染色剂,和早期的染色剂一样,本身的毒性会伤害活体样品。直到1974年,日本科学家下村修发现了绿色荧光蛋白,其毒性远弱于以往的荧光物质,是对活体标本进行荧光标记的理想材料——这一发现成为日后科学家突破“阿贝极限”的有力武器。时间来到1989年,供职于美国IBM研究中心的科学家莫尔纳首次进行了单分子荧光检测,使得光学显微镜的检测尺度精确到纳米量级成为可能。随后在莫尔纳的基础上,美国科学家贝齐格开发出一套新的显微成像方法:控制样品内的荧光分子,让少量分子发光,借此确定分子中心和每个分子的位置,通过多次观察呈现出纳米尺度的图像。通过这种方法,贝齐格轻而易举地突破了光学显微镜的阿贝极限。几乎在同时,德国科学家斯特凡赫尔在一次光学研究中突发奇想:根据荧光现象原理,如果用镭射光激发样品内的荧光物质发光,同时用另一束镭射光消除样品体内较大物体的荧光,这样就只剩下纳米尺度的分子发射荧光并被探测到,不就能在理论上得到分辨率大于0.2微米的微观成像了吗?他随即开始了试验,并制成了一台全新显微镜,将光学显微镜分辨率下探到了0.1微米的水平。困扰光学显微技术百年的阿贝极限难题,就这样历经几代科学家的呕心沥血,终于在本世纪初被成功攻克。莫尔纳、贝齐格和赫尔三位科学家更是凭借“超分辨率荧光显微技术”分享了2014年度的诺贝尔化学奖。时至今日,在探索微观世界的征途上,光学显微镜和电子显微镜互有长短、相得益彰。当然在实际应用中,科学家越来越依赖于将多种显微成像技术结合使用。比如今年5月,英国弗朗西斯克里克研究所就依托钙化成像技术、体积电子显微技术等多种显微成像技术,成功获得了人类大脑神经网络亚细胞图谱。在未来,多种显微成像技术相结合,各施所长,将进一步完善我们在生物、医学、化学和材料等领域的知识结构,把这个包罗万象的奇妙世界更完整地呈现在我们眼前。
  • 让微观变得直观——岛津原子力显微镜
    对极限微观的不断探索源于人们原始的求知欲。国际度量衡制度的确立为我们指引了探索的方向。从米到毫米,从毫米到微米,从微米到纳米。当物质被我们不断地“劈碎”。越来越多新性质,新现象,新功能被发现。人们对自然的认识越来越深刻,对物质的操纵也越来越得心应手。 从二十世纪末开始,人类对微观的探索延伸到了纳米领域。在这个从仅比原子高一个层级的尺度范围内,物质展现了一种和宏观截然不同的状态和性质。表面效应、小尺寸效应和宏观量子隧道效应带来的是超高强度、超高导电性、超流动性、超高催化活性等等无与伦比的属性。 碳纳米管作为第一种人工合成的纳米材料,甫一问世,其超高强度就惊艳世人。它的质量是相同体积钢的六分之一,强度却是铁的10倍。 单壁碳纳米管高度(直径)测量在碳纳米管被研制出来以后,双壁碳纳米管、掺杂碳纳米管、复合碳纳米管等多种材料被源源不断制作出来。极小的尺度和样品多样性,迫切需要一种合适的检测工具。 在纳米尺度下,光学显微镜的分辨率早已鞭长莫及,电子显微镜则因为严格复杂的制样过程使测试门槛令人高不可攀,激光粒度仪对长径比过大的样品测试误差极大也不适合。这时,较合适的观测工具就是原子力显微镜。 原子力显微镜作为专门的纳米材料表征工具,天然具有高分辨率、高环境兼容性、多属性分析种种优势。 原子力显微镜观察的不同碳纳米管形态在生产中,因工艺不同,会产生长短粗细不同的碳纤维。如何有效对这些样品进行归类分析是个大问题。 不同工艺下碳纳米管分散状态借助岛津原子力显微镜配备的颗粒分析软件,则可以自动分析筛选,并对纤维的各种尺度进行统计分析。 极长和极短碳纳米管的自动分类统计同样,对于常见到的纳米材料——纳米颗粒而言,也可以依靠该软件进行统计分析。 纳米颗粒的粒径统计而且,利用原子力显微镜,还可以有效观察同样粒径下颗粒的不同形貌。例如以下两个颗粒,粒径均在100nm左右,如果用激光粒度仪测试,会被归为一类。但是用原子力显微观察,则可以发现很大的不同。 粒径近似的纳米颗粒聚集形态左侧的颗粒是单个粒子,二右侧的则是多个颗粒聚集形成的,在原子力显微镜的小范围观察图像中可以清晰分辨二者的不同。 但是,通常的原子力显微镜很难兼顾大视野和高分辨。要想同时观察统计大量颗粒,就需要用大范围观察,这样一来每个颗粒的细节分辨就难以看清。如果聚焦到一个颗粒上细致观察,则无法从整体上评估样品。 解决的办法就是提高原子力显微镜图像的分辨率。岛津推出了8192*8192点阵的高扫描能力。可以在大范围观察的同时又看清每一个小细节。 兼顾大视野和小细节的超大点阵扫描图像原子力显微镜作为人类眼睛的延伸,像一个精细的触手,细致地捕获纳米材料的形貌、机械性能、电磁学性能等等属性,使这个微乎其微的领域直观地展现在我们眼前,为我们更深更广地认识纳米材料提供了有力帮助。 文中相关仪器介绍详见以下链接:https://www.shimadzu.com.cn/an/surface/spm/index.html 本文内容非商业广告,仅供专业人士参考。
  • 徕卡显微系统助力教学设备更新
    基础教育是教育事业发展、建设教育强国的重要基石,对提高国民素质、培养各级各类人才具有极其重要的基础地位和作用。国务院发函各省级教育主管单位发函徕卡显微系统作为百年光学品牌,在其175年的历程中致力于用显微镜帮助老师们在课堂上揭示各种物体的内部细微结构,从而让学生从微观了解自然的构成和运行规律。光学显微镜分为体视镜、复合显微镜两大类,其中复合显微镜因为用途又分为专门观察活细胞的倒置显微镜和切片观察为主的正置显微镜。体视显微镜又称之为立体显微镜,其的光路设计和人眼观察的角度类似,左右分离最后在观察目标处的交会让观察者可以立体的看到所观察的物体,而且不需要进行标本的制备处理就可以观察。放大倍率通常为几十倍也可以观察到百倍,所以非常适合做肉眼可见的标本物的教学,因为其目镜和物体之间的工作距离大,所以也可以用于手术解剖教学。EZ4教学用体视显微镜(最大35X放大),其中EZ4E可以进行有线组网,EZ4W版本还可以直接连接智能终端。Ivesta 3具有最大有55X的放大,其具有Leica在体视镜的独门绝技—融合光学,该技术可以兼顾景深和分辨率,打破传统光学固有限制。为了让老师能在狭窄的细胞间中对学生进行活细胞形态学教学,徕卡显微系统研发了Mateo TL数字倒置显微镜。其无目镜设计,机载15.6英寸的大屏幕可以方便多位学生同时观看。相差辅助功能能教会学生了解正确使用该观察方法。无线传图功能,让同学们手中的移动终端可以方便无线获取显微镜所拍摄的图片。此外,其自带的汇合度模块,可以辅助老师教指导学生对细胞生长的节点进行准确把握。(【客户之声】引路科学 协助教学)Leica DM300 单筒或双筒教育用显微镜专门用于高年级的生物学系学生或2-4年的大学生命科学课程,其复式显微镜结构紧凑。得益于坚固耐用的铜质聚焦核心零件免于维护,每天均能提供无故障运行。配备了机械台,从而使用方便。还有贴上标签的阿贝聚光镜,保证优异的光学质量。DM300可配置旋转式单镜筒或双镜筒,共享观看,便于储存。徕卡具有175年在显微镜设计和制造方面的经验,Leica DM300教学显微镜可以帮助学生探寻大自然的奥秘。DM500/750正置显微镜,得益于其无限远光路系统,可以方便连接相机,从而用于大教室多人互动教学。AgTreat™ – 为防止学生之间的细菌传播所设计的触点,EZStore™ 设计具有手柄和绳裹,便于搬运、方便提升且绳易于收藏。EZLite™ 提供寿命超过20年以上的LED照明和延时自动关闭功能,节约时间和能源。以上部分产品还可以在徕卡网上商城直接购买:徕卡显微咨询电话:400-630-7761关于徕卡显微系统徕卡显微系统的历史最早可追溯到19世纪,作为德国著名的光学制造企业,徕卡显微成像系统拥有170余年显微镜生产历史,逐步发展成为显微成像系统行业的领先的厂商之一。徕卡显微成像系统一贯注重产品研发和最新技术应用,并保证产品质量一直走在显微镜制造行业的前列。徕卡显微系统始终与科学界保持密切联系,不断推出为客户度身定制的显微解决方案。徕卡显微成像系统主要分为三个业务部门:生命科学与研究显微、工业显微与手术显微部门。徕卡在欧洲、亚洲与北美有7大产品研发中心与6大生产基地,在二十多个国家设有销售及服务分支机构,总部位于德国维兹拉(Wetzlar)。
  • 电镜博物馆|1959年刊:“神奇的电子显微镜”
    温故知新,从历史刊物文章中学习早期电镜产品技术历程,以下内容摘自《Popular Electronics》1959年11月刊(Vol. 11, No. 5),文章题目“The Amazing Electron Microscope”,作者Morris M. Rubin。(由“RF Cafe”网收录)光学显微镜的分辨率受到光波长的限制。天文学家William Dawes首先提出了一种量化的方法,这种方法基于视觉上分辨距离较近的恒星的能力。被称为道斯极限,4.56/D弧秒的值是由经验确定的(D是仪器的孔径,单位是英寸)。任何具有完美光学系统的光学系统的放大倍数的理论上限在2000左右。正如这篇1959年《Popular Electronics》上这篇文章所描述,电子显微镜通过发射一束半径远小于可见光波长的电子,并测量其反射,从而消除了这种分辨极限。图像必然是“假色”,因为我们无法感知到电子束所显示的表面的真实波长/颜色。《Popular Electronics》1959年11月刊封面与目录整理译文如下,以飨读者。“惊人的电子显微镜作者:Morris M. Rubin在光学显微镜分辨率达到极限后很久,电子显微镜的分辨率还在继续提高……高达 20万倍。从第一位伟大的显微镜设计师安东列文虎克(Antony van leeuwenhoek)时代起,科学家们就将显微镜作为他们的主要工具之一。年复一年,随着光学玻璃制造技术的改进,新的更好的显微镜使科学家能够看到越来越微小的物体。随后,大约在1890年,光学显微镜分辨率的提升似乎已经走到了尽头。超过大约 2000 倍的放大倍数,即使是最精细、设计最完美的显微镜也只能看到一个模糊的斑点。光本身的基本特征阻碍了更强大显微镜的发展。与声音类似,光以可测量长度的波传播。例如,在可见光谱的中,波的长度约为 6/250000 英寸。为了让光波区分物体上的两个点,两点之间的距离必须是光波长度的三分之一,即6/ 250000英寸以上,小于约半波长的物体无法被光学显微镜清晰放大,无论其透镜多么完美。科学家们推断,既然根本的瓶颈是“普通”光的波长相对较长造成,那么如果有可能使用某种波长较短的光,就可以实现更有效的放大。于是,人们探索了这种可能性,并利用紫外光(其波长约为可见光的三分之一),设计出可以放大到5000倍的显微镜,放大倍数达到可见光显微镜极限的两倍多。此时,光学显微镜达到了其设计能力的天花板。如果科学家想要更大的放大倍数,他们必须找到一种新的方法。电子的“营救”电子显微镜的理论在20世纪20 年代提出。实验表明,当电子受到高压场加速时,它们会获得可测量的特征波长。电压越高,电子速度越大,表观波长越短。此外,已经证明电子可以被磁场弯曲或折射,类似光可以被光学透镜弯曲和折射。因此,光学显微镜的分辨率极限,就可以通过使用更短波长电子流替代光,从而获得更高放大倍数,这似乎是合乎逻辑的。有了这样的重要概念,科学家们开始着手设计电子显微镜。到20世纪30年代后期,实验型的电镜已经在欧洲、加拿大和美国投入使用。随后,在1940年,RCA公司推出美国第一台商用电子显微镜。虽然按照目前的标准,这些最初的电镜产品设计还比较落后,但相比有史以来最好的光学显微镜则要优越的多。甚至紫外线显微镜的放大倍数也仅限于 5000 倍,而这些早期的电子显微镜却能够放大 10万 倍。今天的模型放大倍数超过 20万倍——足以看到人类头发直径百万分之一的物体——并且通过照相技术进一步放大图像,可以将直径放大至100万倍以上。电子取代光。与光学显微镜的原理类似,电子显微镜使用一系列镜头逐步放大样品。但是,虽然光学显微镜使用玻璃透镜来弯曲光线,而电子显微镜的“透镜”是线圈——类似于电视机的偏转线圈——可以弯曲和偏转电子流。电子显微镜与普通光学显微镜的比较。基本原理是一样的,但是电子显微镜使用线圈来磁偏转和聚焦电子束,而不是用玻璃透镜来弯曲和折射光线。电子枪发射的电子通过聚光透镜,聚光透镜将电子束集中在样品上。由于样本被制样切成部分透明的薄片,在任何一点上,电子通过它的数量都随标本的密度而变化。这样就产生了一种不同电子密度变化的图案。虽然这种图案肉眼是看不见的,但可以通过在标本下方放置荧光屏来显示。然而,在实际操作中,电子通过物镜,这是进行放大的第一步。就在它们到达投影镜头之前,一个“展开”的密度图案就形成了,中心区域随后被投影镜头进一步放大。放大的标本可以直接在荧光屏(其外观和工作方式类似于电视屏幕)上查看,或者可以通过特殊相机拍摄图像(通常内置于电子显微镜中)。放大所得照片可以进一步放大样品。关于价格。除了光学系统,电子显微镜还必须有超稳定的高压电源和高效率的真空系统。这种复杂性导致了当今电子显微镜的高昂价格——从 12000 美元到40000 美元不等,具体取决于所需的放大倍率、品牌等。以上展示了两种最广泛使用的电子显微镜。左边是RCA EMU-3,可以放大20万倍。右边是Norelco EM100B,放大到90000倍。Norelco(荷兰飞利浦)和 RCA(美国无线电公司)是这些装置的最大生产商。德国和日本的制造商也活跃在该领域。俄罗斯人也参与其中,生产了一种电子显微镜,该显微镜似乎是 1940 年 RCA 模型的改编版。首台RCA电子显微镜的共同发明者,James Hillier博士,左边显示的是RCA的EMB模型,在1940年上市。局限性。尽管电子显微镜可能有用,但它仍然有其局限性。由于高压电子对生物体是致命的,电子显微镜不能用于观察活的细菌、病毒等。另外,电子束不能穿透超过 1/25000 英寸,所以电子显微镜不能用于观察更厚的物体——例如苍蝇的翅膀。后一个问题的解决方案是开发特殊设备,这些设备可以切割出足够薄以允许电子通过的待观察物体的切片。这种“切片机”如何处理较软的材料我们很容易想到,但我们如何切下一层 1/25000 英寸厚的钢?这个问题的答案非常简单。钢材表面的“复制品”是在柔软的材料上制成的,例如蜡。复制品很容易切片,当它安装在非常薄的透明膜上时,它会取代显微镜中的原始物体。重要性。现在全国各地的实验室都在使用大约一千台电子显微镜。它们是寻找疾病(尤其是癌症)原因的研究中的宝贵工具,同时,它们在解决各种工业问题方面也很有用。例如,可以通过仔细检查电子显微镜照片来判断橡胶轮胎的磨损质量,从而无需进行漫长而繁琐的路试。最近在纽约举行的苏联展览上展出的一个1959年的俄罗斯电镜但是,电子显微镜最令人兴奋的应用是在细胞研究中。细胞通过蛋白质合成过程生长、滋养和再生。在电子显微镜的帮助下,科学家们第一次能够看到这些过程——这才是真正的“生命的秘密”。人类是一种永不满足的好奇生物。电子显微镜是满足人类求知欲和理解力的最有效手段之一。你能认出这些图片吗?所有这些都是在电子显微镜的帮助下拍摄的(答案在页面底部)。答案1. (a) 总放大倍数 160,000X;飞利浦电子公司提供2. (c) 总放大倍数 425,000X;由法兰西学院和 RCA 提供3. (c) 总放大倍数 112,000X;由麻省理工学院 CE Hall 博士提供4. (d);总放大倍数 68,000X;由 Esso Research & Engrg 公司提供5. (c) 总放大倍数 14,680X;由陶氏化学公司和 RCA 提供”
  • “慧眼”观微—成像质谱显微镜iMScope QT开箱测评
    成像质谱显微镜iMScope QT作为岛津近年来高端质谱领域发布的重磅新产品,融合光学显微镜、MALDI和Q-TOF的显微质谱成像技术很让人期待!成像质谱显微技术研究物质的空间分布具有显著优势,既可以对样品进行形态学上的细微观察,也可以得到样品上特定部位的化学信息,在医学、药学、农业食品、公共安全、资源环境、工业等领域有着广泛的应用前景。 下面小编就给大家带来一份iMScope QT的详细图文测评报告,相信大家看过之后,对这款产品一定有了更深入的了解。 开箱初见 坐着飞机悄然落地实验室的大家伙终于迎来了开箱时刻,百闻不如一见,一起来体验一下吧!iMScope QT和MS-9030合体过程 岛津的成像质谱显微镜(Imaging Mass Microscope, iMScope QT),前端是搭载高分辨光学显微镜的大气压基质辅助激光解吸电离源(Atmospheric Pressure -MALDI),后端配置四极杆飞行时间质谱仪(Q-TOF)。 将光学显微镜和质谱仪整合成一体,既可观察得到高分辨率的形态图像,又可以对特定分子进行鉴定和可视化分布分析,可将两种不同检测原理的图像进行重叠分析,为成像分析提供了全新的工具。 镜质合璧,还原真实 作为一台搭载了光学显微镜的质谱成像仪,两种不同检测原理的图像如何进行采集,图像重叠分析时又会碰撞出怎样的火花呢? 在下图中是从光学图像中选择肝门静脉进行质谱成像分析,可以清晰观察到肝门静脉周边的血脂和脂质的分布。 多角度测评环节正式开始 下面请随着小编从分辨率、扫描速度、灵敏度等几个角度进行测评。 空间分辨率“高清镜头”下的微观世界 作为一款搭载了光学成像镜头和质谱成像功能的仪器,iMScope QT的光学显微镜物镜最大可达到40倍率又结合质谱成像显微镜5μm空间分辨率,究竟能够将研究视野深入到什么样的微观水平呢?小编拿来了大家关注的亚细胞水平的组织器官,看看iMScope QT能观察到微观世界哪些变化。 以槲皮素为例,iMScope QT成功观察到其在肝脏部位的细胞水平分布,分析结果表明药物主要分布在细胞间质,充分显示了成像质谱显微镜分析亚细胞水平的可靠性。高空间分辨率对于药物动态分析、安全性评估和毒性机制的阐明,以及视网膜和皮肤等特殊组织的分析中都具有重要意义。 扫描速度快速制图“小能手” iMScope QT这款产品拥有超高质谱空间分辨率给细胞水平上的研究带来便利,但是小编担心如果没有快速的扫描速度作保障,在大面积样本成像时会消耗很长的时间才能完成分析。带着疑虑,小编准备了小鼠全脑切片(14ⅹ7mm),空间分辨率采用20 μm,扫描区域245000pix,2.6小时后我们获得一张高清晰度小鼠脑成像图。与同类质谱成像产品比,iMScope QT能够高速、高效地采集到高清晰度的质谱成像图。 小鼠脑成像质谱图 灵敏度“火眼金睛”看切片 质谱成像中高灵敏度分析也是至关重要的,尤其在药物代谢研究中对低浓度代谢物分布的研究。iMScope QT在硬件性能上较之前作了较大提升,后端Q-TOF型LCMS-9030的接入提高了质谱检测的灵敏度。在本次开机测评中,小编分析了给药后的大鼠肺中抗心律失常药物胺碘酮及其代谢物的分析,明确了药理学研究中的发现是胺碘酮副作用引起。给药后的大鼠肺部病理切片分析发现坏死区域质谱成像发现抗心律失常药物胺碘酮及其代谢物在坏死区域的分布,明确了药理学研究中的发现是胺碘酮副作用引起。 系统扩展性成像定位分析与液质分析的完美兼容 cope QT不仅局限在成像分析,成像单元支持移动分开和组装使用,小编实验室就是将已有LCMS-9030的Q-TOF单元与成像单元连接后使用,确实可以实现质谱成像分析和LCMS-9030的兼用系统,既可以用于准确定性定量分析,也可以完成可靠的定位分析。 结语 整体而言,成像质谱显微镜iMScope QT将光学显微镜和质谱仪整合成一体既可观察到高分辨率的形态图像,为成像分析提供了全新的工具。在拥有高空间分辨率同时,还能高速扫描,高效获得高质量成像数据。同时还能保持系统的拓展性,通过一台仪器即可获得LC-MS的定性、定量信息和质谱成像的位置信息。期待iMScope QT能够为国内相关科研工作者们的研究带来帮助,落地开花结出硕果。 撰稿人:宋玉玲
  • 引进德国技术,所有显微镜均可升级到三维超景深显微镜
    上海江文国际贸易有限公司公司引进德国技术和组件,结合自主研发的三维超景深显微镜软件,推出三维超景深显微镜升级方案UMS300-3D,可将几乎所有类型的光学显微镜升级为三维超景深显微镜。 UMS300-3D 三维超景深显微镜升级方案是超景深三维显微镜的最新一代产品。UMS300-3D 三维超景深显微镜升级方案三维引进德国进口高性能三维超景深显微镜组件和技术,结合本公司的三维超景深软件,可将显微镜的景深提高几百倍,UMS300-3D 三维超景深显微镜升级方案可获得样品的三维形貌,可进行三维重构和测量。UMS300-3D 三维超景深显微镜升级方案是三维光学数码显微镜的最新代表。 UMS300-3D 三维超景深显微镜升级方案可以将现有的显微镜,升级为三维超景深显微镜,可获得样品的三维形貌,并可进行三维重构和测量,可应用于半导体、微纳米器件、机械制造、材料研究等领域的实验研究;如微芯片三维形貌分析,刻蚀试样三维形貌,封装材料,二元光学器件数据分析,机械、光学、镀膜、热处理等表面精确测量、材料显微压痕的三维测量分析、磨损表面质量评定、薄膜厚度测量、材料断口分析、金属材料和复合材料、生物材料研究等。 UMS300-3D 三维超景深显微镜升级方案可以将现有的显微镜,升级为三维超景深显微镜,满足材料表面形貌的观察,平面或三维测量,可以用于材料实验室或生产现场观测;用于金属材料断口、裂纹,磨损,腐蚀情况的三维超景深金观测, 青铜器, 陶瓷,织物,木材,纤维,古字画,壁画等方面的研究.。 UMS300-3D 三维超景深显微镜升级方案可以将现有的显微镜,升级为三维超景深显微镜,可大大降低样品制样的要求,多数样品无须制样即可以获得三维超景深的三维观察,三维拍照,三维分析效果。对于颗粒赝品的三维超景深显微图像的颗粒三维分析,粉末三维超景深图像和三维分析都可以获得良好的三维超景深显微镜效果。 UMS300-3D 三维超景深显微镜升级方案还可以大大降低客户购买三维超景深显微镜的成本,使用UMS300-3D 三维超景深显微镜升级方案的成本,大约为新购买进口三维超景深显微镜成本的10%。 UMS300-3D 三维超景深显微镜升级方案还具备以下强大的显微测量功能: 1、 组织成分分析、相含量测量 自动识别组织成分、自动测量相含量、最后得出分析报告。常用于岩石、金相、孔隙分析、夹杂分析等。 例如:成分分析,根据相含量的分布,给出三角统计图形,根据三角形分布判别种类。 2、 全自动颗粒分析与统计 提供功能强大的颗粒分析、统计工具。 自动识别颗粒、自动测量颗粒面积、粒度、圆度、最大卡规直径、形态特征等大量参数。按照参数进行分类统计,给出统计柱状图和报告。 3、 强大的辅助探测工具 提供强大的颗粒探测工具(包括魔术棒和颜色吸管),方便用户进行手动识别颗粒,观察局部特征颗粒等应用。 能根据外形、颜色等特征,识别测量颗粒与组织。
  • 徕卡显微系统国产化成果斐然,积极响应设备更新政策
    近年来,随着国家对于设备国产化的重视和扶持力度的加大,为了满足中国市场的多样化需求,徕卡显微系统积极投入研发和生产,推出了一系列国产化产品。这些产品不仅继承了徕卡显微系统一贯的卓越品质和技术优势,还针对中国市场的特点进行了优化和改进,深受用户的喜爱和好评。徕卡显微系统已经成功实现从研发到生产的全面国产化能力。 随着国家政策的逐步推进,设备更新已成为推动产业升级和科技进步的重要动力。作为光学显微领域的领军企业,徕卡显微系统积极响应国家设备更新政策,推出了多项优惠政策和服务措施。针对老旧设备的更新,徕卡显微系统提供了专业的评估和咨询服务,帮助用户选择最适合自己的新产品。此外,徕卡显微系统还提供了完善的售后服务和技术支持,确保用户在使用过程中能够得到及时、有效的帮助和支持。 与小编一起感受徕卡在中国市场的深耕细作,看看国产化产品的魅力吧! Leica DM300 单筒或双筒教育用显微镜 结构紧凑,使用方便,配备了机械台以及贴上标签的阿贝聚光镜,DM300可配置旋转式单镜筒或双镜筒,共享观看,便于储存。适用于高年级的生物学系学生或2-4年的大学生命科学课程。该机型和DM500/750的主要接触部件上的Ag涂层有效防止使用者之间的感染。 Leica DM500 双目教学显微镜 无限远光学系统使其具有“即插即用”功能,是教师和学生在学院和大学初级生命科学课程教学中的一种方便有趣的理想工具。该机型有适合学生的各种功能,如预聚焦、预居中的聚光器和EZTube™预置屈光度,这些功能可以避免错误调整,为实践操作教学提供更多时间。此外,EZStore™具有一体化手柄及绳裹,便于搬运和提升,且防止显微镜部件损坏。 Leica DM750 双目教学显微镜 徕卡DM750除了支持无限远光学,还支持科勒照明。其适用于学院和大学高级生命科学课程和医学、兽医及牙科学校专业训练的各种需求。除了和DM500一样的EZStore™功能,该机型和DM500一样的圆边EZGuide允许单手滑动装载,减少滑动玻片,提供安全的课堂环境。 Leica DM1000 生物显微镜 符合人体工程学设计,具有多种可调功能且易于使用的控制装置,是所有临床实验室应用的理想选择,特别是细胞学、血液学和病理学。 Leica DM2000 & DM2000 LED 正置显微镜 具有高端的模块设计和高性能的荧光,人体工学设计,适用于复杂的临床应用,可用于病理学、细胞学,以及其它复杂工作领域。从该机型开始支持微分干涉功能。 Leica DM2500 & DM2500 LED 荧光显微镜 凭借强大的透射光照明、高品质的光学性能以及技术先进的附件,特别适合要求微分干涉相衬或高性能荧光等颇具挑战性的生命科学研究任务。 Leica DM3000 & DM3000 LED 生物显微镜 适用于病理学、细胞学与血液学研究,它具有电动物镜转盘、聚光顶镜、自动光线强度调节装置与可选脚踏开关,直观的显微镜改善了细胞学与病理学研究的操作流程。 Leica DMi1 倒置显微镜 操作直观,灵活自如,可以轻松添加必须的各种配件,支持细胞培养实验室中的日常工作。 Leica DM IL LED 倒置显微镜 高性能光学元件、人体工学设计和 5W LED 照明,是细胞培养、显微操作、免疫染色样本成像和活细胞常规检查的理想选择。 Mateo TL 数字透射光倒置显微镜 让所有实验室成员都能够舒适地检查和记录细胞生长状态,适合需要获得一致实验结果的研究人员。统一测量汇合度,从而增强对下游实验取得成功的信心。 Leica EZ4 用于高校教学的体视显微镜 Leica EZ4教学体视显微镜,带4.4:1变焦镜头,适用于入门级高等院校课程,如生物学、解剖学、化学,提供了超过20年寿命的高亮LED照明,从而节省时间和更换灯泡的成本。此外,7路LED照明系统提供了高品质照明的入射、斜射和透射光以及任何应用的对比。格里诺光学系统提供了样本的三维视图。 未来,徕卡显微系统将继续深耕中国市场,坚持技术创新和品质提升,不断推出更多符合中国用户需求的国产化产品,为用户创造更大的价值。我们坚信,在国家政策的支持和推动下,徕卡显微系统一定能够在光学显微领域取得更加辉煌的成就。 点击此处申请样机试用 徕卡显微咨询电话:400-630-7761 关于徕卡显微系统 徕卡显微系统的历史最早可追溯到19世纪,作为德国著名的光学制造企业,徕卡显微成像系统拥有170余年显微镜生产历史,逐步发展成为显微成像系统行业的领先的厂商之一。徕卡显微成像系统一贯注重产品研发和最新技术应用,并保证产品质量一直走在显微镜制造行业的前列。 徕卡显微系统始终与科学界保持密切联系,不断推出为客户度身定制的显微解决方案。徕卡显微成像系统主要分为三个业务部门:生命科学与研究显微、工业显微与手术显微部门。徕卡在欧洲、亚洲与北美有7大产品研发中心与6大生产基地,在二十多个国家设有销售及服务分支机构,总部位于德国维兹拉(Wetzlar)。
  • 手机摄像变全息显微镜,史上最小发光二极管问世
    新加坡—麻省理工学院研究与技术联盟的科学家开发了世界上最小的LED(发光二极管)。这种新型LED可用于构建迄今最小的全息显微镜,让现有手机上的摄像头仅通过修改硅芯片和软件即可转换为显微镜。相关研究发表在最近的《光学》杂志上。  这一突破得到了革命性神经网络算法的支持,该算法能够重建全息显微镜观察的物体,增强对细胞和细菌等微观物体的检查,而无须笨重的传统显微镜或额外的光学器件。  大多数光子芯片中的光都来自芯片外,这导致整体能源效率低下,从根本上限制了芯片的可扩展性。  团队此次开发的最小硅发射器,其光强度可与目前最先进的大面积硅发射器相媲美。新型LED在室温下表现出高空间强度(102±48毫瓦/平方厘米),并且在所有已知的硅发射器中具有最小的发射面积(0.09±0.04平方微米)。为了展示潜在的实际应用,研究人员随后将这种LED集成到一个不需要透镜或针孔的在线、厘米级全硅全息显微镜中。  他们还构建了一种新颖的、未经训练的深度神经网络架构,该架构能使全息显微镜重建图像并提高图像质量。与需要训练的传统方法不同,新的神经网络架构通过在算法中嵌入物理模型来消除训练的需要,允许研究人员在事先不了解光源光谱或光束轮廓的情况下使用新型光源。  这种微型LED和神经网络的协同组合,可用于其他计算成像,例如用于活细胞跟踪的紧凑型显微镜或活植物等生物组织的光谱成像。该研究还为光子学的重大进步铺平了道路。
  • 华中农业大学281.00万元采购发酵罐,荧光显微镜,凝胶成像系统,立体显微镜
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 华中农业大学产教融合平台建设项目设备采购第六批(倒置荧光显微镜等)采购项目公开招标公告 湖北省-武汉市-洪山区 状态:公告 更新时间: 2023-08-15 华中农业大学产教融合平台建设项目设备采购第六批(倒置荧光显微镜等)采购项目公开招标公告 2023年08月15日 15:42 公告信息: 采购项目名称 华中农业大学产教融合平台建设项目设备采购第六批(倒置荧光显微镜等)采购项目 品目 货物/专用设备/专用仪器仪表/教学专用仪器 采购单位 华中农业大学 行政区域 湖北省 公告时间 2023年08月15日 15:42 获取招标文件时间 2023年08月15日至2023年08月22日每日上午:8:00 至 12:00 下午:12:00 至 17:00(北京时间,法定节假日除外) 招标文件售价 ¥400 获取招标文件的地点 阳光招采电子招标投标交易平台(网址:https://www.yangguangzhaocai.com/) 开标时间 2023年09月05日 09:30 开标地点 湖北国华项目管理咨询有限公司(武昌区中北路109号中铁1818中心10楼)1号会议室。 凡是购买了招标文件但决定不参加投标的潜在投标人,请在开标截止3日前以书面形式通知采购代理机构。若该项目因参与投标的投标人不足3家而进行重新招标的,未予书面通知的潜在投标人将可能被限制重新参加该项目的投标。 说明:招标文件要求投标人现场递交投标文件或样品的,投标人应充分考虑到交通延误、进入办公场所的排队登记等因素,合理安排行程以保证按时抵达开标场所并递交投标文件。 预算金额 ¥281.000000万元(人民币) 联系人及联系方式: 项目联系人 周梦伊、宋黎明、王刚、汪树新、余轶菲 项目联系电话 027-87272718/669333446@qq.com 采购单位 华中农业大学 采购单位地址 武汉市洪山区狮子山街一号 采购单位联系方式 许老师027-87282631 代理机构名称 湖北国华项目管理咨询有限公司 代理机构地址 武汉市武昌区中北路109号中铁1818中心10楼 代理机构联系方式 周梦伊、宋黎明、王刚、汪树新、余轶菲027-87272718 项目概况 华中农业大学产教融合平台建设项目设备采购第六批(倒置荧光显微镜等)采购项目 招标项目的潜在投标人应在阳光招采电子招标投标交易平台(网址:https://www.yangguangzhaocai.com/)获取招标文件,并于2023年09月05日 09点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:ZB0101-202308-ZCHW1021 项目名称:华中农业大学产教融合平台建设项目设备采购第六批(倒置荧光显微镜等)采购项目 预算金额:281.0000000 万元(人民币) 最高限价(如有):281.0000000 万元(人民币)采购需求: 本项目01包预算165万元,02包20万元,03包96万元,各包各产品报价均不得超过各包各产品的预算金额,否则按无效投标处理。 包号 序号 货物名称 预算 (万元) 数量(套) 是否允许进口产品 是否核心产品 01 1 倒置荧光显微镜 25 1 是 否 2 显微操作仪 60 1 是 是 (同一品牌) 3 显微操作仪 60 1 4 显微注射泵 10 1 是 否 5 荧光体视显微镜 10 1 是 否 02 1 凝胶成像系统 10 1 否 是 (同一品牌) 2 化学发光成像系统 10 1 否 03 1 5L玻璃发酵罐 45 1套 否 是 2 50升不锈钢全自动发酵罐 20 1套 否 否 3 全自动微生物生长曲线分析仪 31 1套 是 否 投标人可对本次采购的各包进行选择性投标,也可同时投标;但评审时将以包为单位进行独立评审,分别确定中标人,投标人可中多包。投标人若同时响应多个包,则须分别编制投标文件、分别报价。 合同履行期限:01包:交货期:合同签订后100天内完成配送、安装、调试,并达到验收标准。质保期:验收合格后2年;质保期自采购人在货物质量验收单上签字之日起计算。质保期内出现任何非人为故意损坏的质量及缺陷问题,由中标人包换或包退,并承担调换或退货的全部费用。02包:交货期:合同签订之日起30天内完成配送、安装、调试,并达到验收标准。质保期:设备验收合格后不低于2年;质保期自采购人在货物质量验收单上签字之日起计算。质保期内出现任何非人为故意损坏的质量及缺陷问题,由中标人换或包退,并承担调换或退货的全部费用。03包:交货期:设备合同签订后,90天内完成配送、安装、调试,并达到验收标准。质保期:按验收报告签字日期算起为1年。在质保期内,由于仪器的质量所产生的维修、零件更换等一切均包含在本项目预算中。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本政府采购项目非专门面向中小企业,即小微企业参与本项目可享受政府采购中小企业扶持政策,本项目企业划分标准所属行业为 工业 (如投标人提供的货物全部由符合政策要求的小微企业制造,则需提供相应中小企业声明函)。 3.本项目的特定资格要求:3.1单位负责人为同一人或者存在直接控股、管理关系的不同投标人,不得参加本项目同一合同项下的政府采购活动。为本采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的,不得再参加本项目的其他招标采购活动;3.2投标人未被列入“信用中国”网站(www.creditchina.gov.cn)失信被执行人、重大税收违法失信主体、政府采购严重违法失信行为记录名单和“中国政府采购”网站(www.ccgp.gov.cn)政府采购严重违法失信行为记录名单(以评审现场查询结果为准); 3.3 若投标人提供的产品为进口产品,且投标人不是制造商,则须提供制造商/中国大陆地区总代理出具的针对本项目的有效授权书。 三、获取招标文件 时间:2023年08月15日 至 2023年08月22日,每天上午8:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外) 地点:阳光招采电子招标投标交易平台(网址:https://www.yangguangzhaocai.com/) 方式:3.1拟参加本项目的投标人须在阳光招采电子招标投标交易平台https://www.yangguangzhaocai.com/。点击 “新用户注册”免费注册(具体操作详见---帮助中心---投标人注册、投标人线上支付下载文件); 3.2完成注册后,通过互联网访问电子交易平台,点击“投标人”登录,在“公告信息—采购公告”菜单付费下载拟投标段招标文件(拟投多标段的,应按标段分别下载),400元/包,售后不退。 3.3本项目不是全流程电子标,投标人无需办理 CA 数字证书; 3.4使用电子交易平台时遇到的各类操作问题(登录、企业注册认证、报名购标等问题),可拨打咨询电话010-21362559(工作日:08:00-18:00;节假日:09:00-12:00,14:00-18:00); 3.5注册企业信息将在工作日2小时左右审核,审核进度问题咨询电话:027-87272708;对本项目的具体业务问题,请向采购代理机构项目经理进行咨询。 售价:¥400.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2023年09月05日 09点30分(北京时间) 开标时间:2023年09月05日 09点30分(北京时间) 地点:湖北国华项目管理咨询有限公司(武昌区中北路109号中铁1818中心10楼)1号会议室。凡是购买了招标文件但决定不参加投标的潜在投标人,请在开标截止3日前以书面形式通知采购代理机构。若该项目因参与投标的投标人不足3家而进行重新招标的,未予书面通知的潜在投标人将可能被限制重新参加该项目的投标。说明:招标文件要求投标人现场递交投标文件或样品的,投标人应充分考虑到交通延误、进入办公场所的排队登记等因素,合理安排行程以保证按时抵达开标场所并递交投标文件。 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.信息发布媒体1.1中国政府采购网(http://www.ccgp.gov.cn/)1.2湖北国华项目管理咨询有限公司网(http://www.hbghzb.com/)1.3阳光招采电子招标投标交易平台(https://www.yangguangzhaocai.com/)2.质疑:投标人认为招标文件、招标过程和中标结果使自己的权益受到损害的,可以在知道或者应知其权益受到损害之日起7个工作日内,针对同一环节一次性向采购人、采购代理机构提出质疑。质疑时请提交书面质疑函一份(法定代表人或其授权代表签名、加盖单位公章),并附相关证据材料。3.政府采购相关政策执行:落实政府采购强制、优先采购节能产品政策;政府采购优先采购环保产品政策;政府采购促进中小企业发展(监狱企业、残疾人福利性单位视同小微企业)等政策。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:华中农业大学 地址:武汉市洪山区狮子山街一号 联系方式:许老师027-87282631 2.采购代理机构信息 名 称:湖北国华项目管理咨询有限公司 地 址:武汉市武昌区中北路109号中铁1818中心10楼 联系方式:周梦伊、宋黎明、王刚、汪树新、余轶菲027-87272718 3.项目联系方式 项目联系人:周梦伊、宋黎明、王刚、汪树新、余轶菲 电 话: 027-87272718/669333446@qq.com × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:发酵罐,荧光显微镜,凝胶成像系统,立体显微镜 开标时间:2023-09-05 09:30预算金额:281.00万元 采购单位:华中农业大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:湖北国华项目管理咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 华中农业大学产教融合平台建设项目设备采购第六批(倒置荧光显微镜等)采购项目公开招标公告 湖北省-武汉市-洪山区 状态:公告 更新时间: 2023-08-15 华中农业大学产教融合平台建设项目设备采购第六批(倒置荧光显微镜等)采购项目公开招标公告 2023年08月15日 15:42 公告信息: 采购项目名称 华中农业大学产教融合平台建设项目设备采购第六批(倒置荧光显微镜等)采购项目 品目 货物/专用设备/专用仪器仪表/教学专用仪器 采购单位 华中农业大学 行政区域 湖北省 公告时间 2023年08月15日 15:42 获取招标文件时间 2023年08月15日至2023年08月22日每日上午:8:00 至 12:00 下午:12:00 至 17:00(北京时间,法定节假日除外) 招标文件售价 ¥400 获取招标文件的地点 阳光招采电子招标投标交易平台(网址:https://www.yangguangzhaocai.com/) 开标时间 2023年09月05日 09:30 开标地点 湖北国华项目管理咨询有限公司(武昌区中北路109号中铁1818中心10楼)1号会议室。 凡是购买了招标文件但决定不参加投标的潜在投标人,请在开标截止3日前以书面形式通知采购代理机构。若该项目因参与投标的投标人不足3家而进行重新招标的,未予书面通知的潜在投标人将可能被限制重新参加该项目的投标。 说明:招标文件要求投标人现场递交投标文件或样品的,投标人应充分考虑到交通延误、进入办公场所的排队登记等因素,合理安排行程以保证按时抵达开标场所并递交投标文件。 预算金额 ¥281.000000万元(人民币) 联系人及联系方式:项目联系人 周梦伊、宋黎明、王刚、汪树新、余轶菲 项目联系电话 027-87272718/669333446@qq.com 采购单位 华中农业大学 采购单位地址 武汉市洪山区狮子山街一号 采购单位联系方式 许老师027-87282631 代理机构名称 湖北国华项目管理咨询有限公司 代理机构地址 武汉市武昌区中北路109号中铁1818中心10楼 代理机构联系方式 周梦伊、宋黎明、王刚、汪树新、余轶菲027-87272718 项目概况 华中农业大学产教融合平台建设项目设备采购第六批(倒置荧光显微镜等)采购项目 招标项目的潜在投标人应在阳光招采电子招标投标交易平台(网址:https://www.yangguangzhaocai.com/)获取招标文件,并于2023年09月05日 09点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:ZB0101-202308-ZCHW1021 项目名称:华中农业大学产教融合平台建设项目设备采购第六批(倒置荧光显微镜等)采购项目 预算金额:281.0000000 万元(人民币) 最高限价(如有):281.0000000 万元(人民币) 采购需求: 本项目01包预算165万元,02包20万元,03包96万元,各包各产品报价均不得超过各包各产品的预算金额,否则按无效投标处理。 包号 序号 货物名称 预算 (万元) 数量(套) 是否允许进口产品 是否核心产品 01 1 倒置荧光显微镜 25 1是 否 2 显微操作仪 60 1 是 是 (同一品牌) 3 显微操作仪 60 1 4 显微注射泵 10 1 是 否 5 荧光体视显微镜 10 1 是 否 02 1 凝胶成像系统 10 1 否 是 (同一品牌) 2 化学发光成像系统 10 1 否 03 1 5L玻璃发酵罐 45 1套 否 是 2 50升不锈钢全自动发酵罐 20 1套 否 否 3 全自动微生物生长曲线分析仪 31 1套 是 否 投标人可对本次采购的各包进行选择性投标,也可同时投标;但评审时将以包为单位进行独立评审,分别确定中标人,投标人可中多包。投标人若同时响应多个包,则须分别编制投标文件、分别报价。 合同履行期限:01包:交货期:合同签订后100天内完成配送、安装、调试,并达到验收标准。质保期:验收合格后2年;质保期自采购人在货物质量验收单上签字之日起计算。质保期内出现任何非人为故意损坏的质量及缺陷问题,由中标人包换或包退,并承担调换或退货的全部费用。02包:交货期:合同签订之日起30天内完成配送、安装、调试,并达到验收标准。质保期:设备验收合格后不低于2年;质保期自采购人在货物质量验收单上签字之日起计算。质保期内出现任何非人为故意损坏的质量及缺陷问题,由中标人换或包退,并承担调换或退货的全部费用。03包:交货期:设备合同签订后,90天内完成配送、安装、调试,并达到验收标准。质保期:按验收报告签字日期算起为1年。在质保期内,由于仪器的质量所产生的维修、零件更换等一切均包含在本项目预算中。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本政府采购项目非专门面向中小企业,即小微企业参与本项目可享受政府采购中小企业扶持政策,本项目企业划分标准所属行业为 工业 (如投标人提供的货物全部由符合政策要求的小微企业制造,则需提供相应中小企业声明函)。 3.本项目的特定资格要求:3.1单位负责人为同一人或者存在直接控股、管理关系的不同投标人,不得参加本项目同一合同项下的政府采购活动。为本采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的,不得再参加本项目的其他招标采购活动;3.2投标人未被列入“信用中国”网站(www.creditchina.gov.cn)失信被执行人、重大税收违法失信主体、政府采购严重违法失信行为记录名单和“中国政府采购”网站(www.ccgp.gov.cn)政府采购严重违法失信行为记录名单(以评审现场查询结果为准); 3.3 若投标人提供的产品为进口产品,且投标人不是制造商,则须提供制造商/中国大陆地区总代理出具的针对本项目的有效授权书。 三、获取招标文件 时间:2023年08月15日 至 2023年08月22日,每天上午8:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外) 地点:阳光招采电子招标投标交易平台(网址:https://www.yangguangzhaocai.com/) 方式:3.1拟参加本项目的投标人须在阳光招采电子招标投标交易平台https://www.yangguangzhaocai.com/。点击 “新用户注册”免费注册(具体操作详见---帮助中心---投标人注册、投标人线上支付下载文件); 3.2完成注册后,通过互联网访问电子交易平台,点击“投标人”登录,在“公告信息—采购公告”菜单付费下载拟投标段招标文件(拟投多标段的,应按标段分别下载),400元/包,售后不退。 3.3本项目不是全流程电子标,投标人无需办理 CA 数字证书; 3.4使用电子交易平台时遇到的各类操作问题(登录、企业注册认证、报名购标等问题),可拨打咨询电话010-21362559(工作日:08:00-18:00;节假日:09:00-12:00,14:00-18:00); 3.5注册企业信息将在工作日2小时左右审核,审核进度问题咨询电话:027-87272708;对本项目的具体业务问题,请向采购代理机构项目经理进行咨询。 售价:¥400.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2023年09月05日 09点30分(北京时间) 开标时间:2023年09月05日 09点30分(北京时间) 地点:湖北国华项目管理咨询有限公司(武昌区中北路109号中铁1818中心10楼)1号会议室。凡是购买了招标文件但决定不参加投标的潜在投标人,请在开标截止3日前以书面形式通知采购代理机构。若该项目因参与投标的投标人不足3家而进行重新招标的,未予书面通知的潜在投标人将可能被限制重新参加该项目的投标。说明:招标文件要求投标人现场递交投标文件或样品的,投标人应充分考虑到交通延误、进入办公场所的排队登记等因素,合理安排行程以保证按时抵达开标场所并递交投标文件。 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.信息发布媒体1.1中国政府采购网(http://www.ccgp.gov.cn/)1.2湖北国华项目管理咨询有限公司网(http://www.hbghzb.com/)1.3阳光招采电子招标投标交易平台(https://www.yangguangzhaocai.com/)2.质疑:投标人认为招标文件、招标过程和中标结果使自己的权益受到损害的,可以在知道或者应知其权益受到损害之日起7个工作日内,针对同一环节一次性向采购人、采购代理机构提出质疑。质疑时请提交书面质疑函一份(法定代表人或其授权代表签名、加盖单位公章),并附相关证据材料。3.政府采购相关政策执行:落实政府采购强制、优先采购节能产品政策;政府采购优先采购环保产品政策;政府采购促进中小企业发展(监狱企业、残疾人福利性单位视同小微企业)等政策。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:华中农业大学 地址:武汉市洪山区狮子山街一号 联系方式:许老师027-87282631 2.采购代理机构信息 名 称:湖北国华项目管理咨询有限公司 地 址:武汉市武昌区中北路109号中铁1818中心10楼 联系方式:周梦伊、宋黎明、王刚、汪树新、余轶菲027-87272718 3.项目联系方式 项目联系人:周梦伊、宋黎明、王刚、汪树新、余轶菲 电 话: 027-87272718/669333446@qq.com
  • 磁力显微镜的魅力—纳米尺寸分子磁通漩涡中心极性反转
    磁学是物理学古老的研究领域之一,也是具生命力的发展领域,利用电子自旋的研究来推进数据的存储、传输和计算等多方面的应用进展一直是科研工作者执着追求且不断探索的方向。 在众多研究过程中,电子自旋结构的成像与可控操作成为磁学领域研究的巨大挑战。与之相关的电子自旋现象包括斯格明子、刺猬状自旋结构、磁通漩涡等,其中,磁通漩涡电子自旋结构是研究多位磁学存储介质的一个重要现象。以往关于磁通漩涡中心性反转的研究工作都是针对微米尺度开展的,纳米尺度的磁通漩涡中心性反转工作目前仍需进一步探索和研究。 Elena P. 等人利用德国attocube公司的低温强磁场磁力显微镜—attoMFM在实验中清晰的观测到了25nm尺寸单个分子中磁通漩涡中心性反转现象。为了实现纳米尺寸单分子中磁性研究,Elena等人选取的纳米尺寸磁性分子为K0.22Ni[Cr-(CN)6]0.74体系。该体系分子尺寸可控制调整,且具有易于制备的特点。研究单分子纳米尺度的磁性,具备低噪音、高灵敏度、以及较高的空间分辨率等特征的磁性表征技术就显得为重要。德国attocube公司的低温磁力显微镜attoMFM可提供可变磁场的环境,是实现纳米磁性分子在低温下磁通漩涡性质表征与操控的有力设备。如下图实验数据,只需通过施加很小的外加磁场(600 Oe左右),单分子中的磁通漩涡就可实现中心性反转。在4.2 K的低温环境中,通过施加连续变化的外加磁场与attoMFM成像的实验数据分析,可观察到纳米单分子磁通漩涡磁性随着外加磁场发生清晰的中心性反转。attoMFM实验观测到纳米分子中磁通漩涡中心性反转 下图为具有纳米别高分辨率的磁力成像结果。图中清晰显示了分子的磁力分布情况。原本分子磁通漩涡中心性导致在垂直方向磁力分布可被外加微小磁场改变(下图中的白色部分表明,经过磁场施加针样品由排斥力转变为吸引力)。另外,作者也详细分析研究了不同尺寸单个分子中的磁通漩涡中心性反转机制。attoMFM直接观察到NP4单分子磁通漩涡中心性反转 作者预见,该次实验结果中纳米尺寸单分子的磁通漩涡中心性转换的特性可能为未来数据存储开创新篇章,数据的读写可以通过很小的磁场来操纵。 相关产品:低温强磁场原子力/磁力/扫描霍尔显微镜 - attoAFM/attoMFM/attoSHPM系统:http://www.instrument.com.cn/netshow/C159542.htmAttocube低温强磁场扫描近场光学显微镜:http://www.instrument.com.cn/netshow/C81740.htm
  • 太原市中心医院148.30万元采购切片机,荧光显微镜,光源,液氮罐
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 太原市中心医院高质量发展全省免疫性皮肤病诊疗与预防管理中心建设项目荧光相差显微系统、快速组织脱水机等医疗设备公开招标采购的采购公告 山西省-太原市-小店区 状态:公告 更新时间: 2023-09-28 招标文件: 附件1 一、项目基本情况项目编号:1401992023AGK00985 项目名称:太原市中心医院高质量发展全省免疫性皮肤病诊疗与预防管理中心建设项目荧光相差显微系统、快速组织脱水机等医疗设备公开招标采购资金来源:财政资金预算金额:1,483,000元最高限价:1,483,000元采购需求:共一包,具体以第四部分采购需求为准。采购清单 序号 名称 数量 预算单价(元) 金额小计(元) 对应的中小企业划分标准所属行业 1 取材台 1台 80,000 80,000 工业 2 染色通风柜 1台 28,000 28,000 工业 3 标本柜 1台 25,000 25,000 工业 4 荧光相差显微系统 1台 500,000 500,000 工业 5 气相液氮罐 1套 250,000 250,000 工业 6 快速组织脱水机 1台 350,000 350,000 工业 7 石蜡切片机 1台 250,000 250,000 工业 总价(元) 1,483,000 产品描述 序号 名称 参数要求 1 取材台 1.1 支持取材工作站风量、风速、风压与实验室总通风系统(含排风及新风补充)风量、风速、风压的调节变化联锁互动。1.2材质及制造工艺:整体材质标准不低于SUS316L#不锈钢标准,台面及台顶厚度≥2mm的整张钢板一体成型,结构框架及柜体钢板厚度≥1.5mm。1.3结构设计:具有全不锈钢背板,及双侧面滑动式透明视窗,顶部双风幕系统,与背板下部侧吸风结合。1.4病理废气控制与排放方式: 背板下部后侧抽吸负压排气技术,通过背板内置空气导流装置将污染物吸入顶部排气管道,风量可调,能够排除组织异味及有毒有害气体,并可与实验室总排风系统互锁控制,实现三方多地操控管理(含远程操控设备废气排放方式)。1.5自动消毒功能:具备智能自动翻转紫外线消毒系统,工作时间自动翻转隐蔽,非工作时间自动切换翻转消毒。1.6辅助功能配置:配备≥三种台面冲洗装置;须配备骨组织粉碎装置;须配备标本图像采集系统专用通道、可调式万向成像光源、隐蔽式LED照明系统;中控台激光雕刻毫米级刻度尺、进口尼龙取材砧板,高度可调节;须配备双重用电安全防护装置。1.7内置骨组织粉碎装置,处理取材过程中废弃物。1.8取材工作站与通风防护系统主管道连接采用全不锈钢可伸缩管道,管道伸缩范围0mm-400mm,管道厚度≥1.0mm。1.9双人位操作。1.10腰部配备吸风系统,顶部配备出风系统。1.11照明装置,紫外线杀菌装置,组织观察射灯。1.12PP防腐风阀,耐强酸强碱,独立控制,互不影响,互不串风。1.13集成控制电路系统,在取材台下柜设置有电路控制箱。1.14标本取材板,方形铁木材质,底部安装不锈钢调节搁脚。1.15带负4℃-10℃恒冷系统。1.16数字式温度显示。1.17柜门采用铝合金或全钢门框和双层以上真空玻璃。1.18配置空气抽吸风机。1.19噪音≤50db。1.20标配:≥8道取材移液器、双屏显示器。 2 染色通风柜 1.1 通风柜采用全不锈钢材质。1.2 超强抽吸功能,排除组织异味及固定液挥发气体。1.3 设有日光照明和臭氧紫外线消毒双重功能,并独立控制。1.4其它要求可以根据需要定制。1.5尺寸范围:长1600mm -1800mm,宽750mm-800 mm,高2350 mm -2450 mm1.6 结构:顶部配备排风系统,下面配备操作台。 3 标本柜 1.1 标本柜采用全不锈钢材质。1.2 超强抽吸功能,排除组织异味及固定液挥发气体。1.3 设有日光照明和臭氧紫外线消毒双重功能,并独立控制。1.4其它要求可以根据需要定制。1.5尺寸范围:长1200mm -1500mm,宽750mm-800 mm,高1900 mm -2100 mm1.6 结构:顶部配备排风系统,双门对开结构。 4 荧光相差显微系统 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》1.1光学系统齐焦距离:必须为国际标准≤45mm。1.2 调焦:同轴粗微调模块化调焦管理装置,带聚焦粗调限位器,防止下滑,粗调旋钮扭矩可调,高灵敏微调旋钮最小调节精度≤1微米。可以设置调焦上下限。1.3 与显微镜同一品牌的明场照明装置:LED照明光源1.4 LED光源照明器强度=100W卤素灯的光强1.5 电动LIM系统切换物镜转盘1.6 配备中灰滤色片,无需工具即可更换滤色镜组,左右手都能控制的荧光照明光闸。1.7 配有白平衡的滤色片。1.7.1 载物台:右手低位置同轴驱动选钮的陶瓷覆盖层载物台,防尘,防玻片蜡污染,伸缩长度为≤15mm。1.7.2 观察镜筒。1.7.3 观察镜筒倾角为≥5°-35°可调,屈光度可调。1.7.4 必须为三目人机工程学镜筒,视场数26.5mm1.8 目镜1.8.1 瞳距:可调。1.8.2 10倍超宽视野目镜,视场数26mm;1.9 主机设备原厂物镜1.9.1 半复消色差物镜10×(NA≥0.30, WD≥10mmFN/FOV26.5)1.9.2 半复消色差物镜40×(NA≥ 0.75, WD≥0.71mmFN/FOV26.5)1.9.3 半复消色差物镜20×(NA≥0.5, WD≥2.1mmFN/FOV26.5)1.9.4 半复消色差 100XO(NA≥1.30FN/FOV26.5)1.10 物镜转换器:≥6孔位编码物镜转盘,模块化管理设计,带有光路稳定装置。1.11 聚光镜:万能非摆动式高分辨率多功能聚光镜:NA≥1.41.12 荧光系统:1.12.1 ≥三组荧光激发块1.12.2 荧光照明器:≥八孔编码荧光照明器1.12.3 荧光光源:≥100W光强的汞灯光源。1.13 高分辨率彩色制冷型显微专用数码相机1.13.1 芯片规格:≥1/1.2 英寸。1.13.2 最大图像分辨率:≥2000万,≥5760 X 3600(像素移动)1.13.3 感光灵敏度:(ISO 200 / 400 / 800 / 1600 / 3200 / 64001.13.4 像素混合:提供≥2×2像素混合1.13.5 图像速度:1≥920×1200 (1×1): 60 fps,1920×1080 (1×1): 60 fps 1.13.6 测光方式:全幅,30% ,1%,0.1%1.13.7 测光模式:手动,自动,超级荧光自动(SFL)1.13.8 曝光时间:39μsec~60sec1.13.9 制冷模式:Peltier制冷1.13.10 动态范围:12bit1.13.11 色彩模式:3CCD模式1.13.12 数据接口:PCI Express1.13.13 成像类型:具备明场和弱荧光高质量成像1.14 软件1.14.1 应用范围:用于多色荧光显微镜下FISH荧光的合成及分析,并且可以直接输出一体化的图文报告 1.14.2 具备荧光原位杂交功能,同一标本的多色荧光的叠加合成;具备荧光颜色根据各类染料的不同而进行选择及伪彩添加;1.14.3荧光图像处理:可以进行图像增强,对于目标荧光点进行增强,背景优化,杂质去除;可以进行单通道的荧光景深叠加,多通道的荧光合成;ROI区域图像选择处理及放大,自动信号识别计数;1.14.4在原始图上均可进行文字或符号注释,对分析图进行标准条带注释,且注释的文字符号颜色任意选择;1.14.5数据库固有的多应用数据管理,具备专家系统词库/模板,提供分级分类词库,包括所有常用探针种类等,并编辑对应的部位和内容的模板,避免重复录入。无需使用汉字输入方法,即可在专家系统的帮助下,迅速完成诊断报告。其中的专家词库和常用模板可以根据具体需要随时进行修改和补充;1.14.6病例统计功能:数据检索功能、统计、查询功能,可以根据已填的病人资料进行查询,也可以进行复合条件查询,同一条件内的分段查询,数据查询方式≥14种;如按年龄段进行查询统计,可按任意条件组合查询,自动分析客户需要范围内的数据,并打印统计结果;也可进行多病种查询统计,并可自定义。 5 气相液氮罐 1.1 兼容气相和液相两种储存方式。1.2 罐体总容量≥750升;冻存管存放支架平台下的液氮量≥80升。1.3 存储空间扇形排布,可容纳2ml冻存管≥35000支。1.4可锁定罐盖,并可记录追踪。1.6 温度均一性:真空隔热不锈钢罐体结构。1.7 样本存储温度≤-180℃。1.8 48小时内维持箱体内温度不高于-150℃。1.9 液氮静态消耗量≤8 L/天。1.10 温度监控系统,≥4个温度探头(底部,顶部,罐体3/4处和罐外热排位置),基于微处理器和铂金电阻温度探头(PT100)的监控系统可实时显示箱体内的高中低温度,精度为±1℃。可自行设置报警点,具有报警静音选项,可联网远程监控。1.11 辅助工作台。1.12 一体式折叠台阶。1.13 查找及取放样品的指示标。 1.14 内部旋转托盘备用开口。1.15 标配热气旁路,热气旁路可在液氮注入前,先排除管道中的室温氮气,确保只有深低温液氮注入罐中,避免了加液过程中液氮罐发生温度波动,同时也减少了额外的液氮消耗。1.16 液位监控系统实时显示液面高度,精度±1mm,测量误差为±8mm。1.17 手动+自动控制的液氮填充系统。自动填充系统由≥3个电磁阀控制,其中一个位于气液分离处,防止单电磁阀故障可能导致的液氮满溢和样品污染。1.18 一体化≥13英寸液晶触摸屏,可显示温度、液位高度及运行状态等参数。1.19 智能化管理系统,数据记录间隔时间可设定,本地存储量≥10万条,存储满后可自动覆盖。1.20 具有一键除雾功能。1.21 液氮补给罐有效容积≥240L。 6 快速组织脱水机 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》1.1 实现组织快速固定、脱水、透明、浸蜡。未固定新鲜小组织可直接上机,能处理全规格的各种组织。1.2 标本处理量:单缸可处理≥60个组织标本,双缸组织处理量≥120个组织标本。1.3≥12寸高清触摸液晶屏,系统设有专门的脂肪组织脱水程序,标本处理量记录、试剂使用量记录、石蜡的更换提醒都有智能设定。1.4 可定时开机融蜡,并在开始组织处理前对温度、压力、堵塞等进行自动检测,提醒换缸和完成脱水后会有呼吸灯带闪烁和轻音乐的提醒。1.5 样本处理工作方式为超声波和热效应,可以常压、负压、正压、正压/负压交替的方式进行脱水。1.6 一个试剂缸,可以实现三种试剂自动抽吸,试剂重复使用;一个蜡缸,可以自动抽吸实现三缸蜡的依次浸泡,储蜡缸可实现自动排蜡、换蜡功能。1.7 温度采用电脑程序实现精确加热控制,并自带降温系统。1.8 脱水盒、脱水篮框设计。 7 石蜡切片机 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》1.1切片厚度设定范围: 0.5μm-100μm。1.2修片设定范围: 1μm-600μm。1.3样本进样:以步进马达进样。1.4垂直距离: ≥70mm。1.5切片模式: ≥2种手动模式。1.6样本回缩: 5μm-100μm。1.7电动粗进: 300μm/s -900μm/s。1.8最大样本(长x高x宽): ≤ 50mm x 60mm x 40mm。1.9标本精确定位系统。 注:1.所有招标内容除特别标注为“进口产品”外,均采购国产产品,即非“通过中国海关报关验放进入中国境内且产自关境外的产品”,投标货物及服务各项技术标准应当符合国家强制性标准。2.招标内容标注为“进口产品”的,满足需求的国产产品和进口产品按照公平竞争原则实施采购。合同履行期限:签订合同之日起30日历天内完成。本项目不接受联合体投标。二、投标人资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定:(1)具有独立承担民事责任的能力;(2)具有良好的商业信誉和健全的财务会计制度;(3)具有履行合同所必需的设备和专业技术能力;(4)有依法缴纳税收和社会保障资金的良好记录;(5)参加政府采购活动前三年内,在经营活动中没有重大违法记录;(6)法律、行政法规规定的其他条件。2.落实政府采购政策需满足的资格要求:无3.本项目的特定资格要求:投标人投标时须提供投标人的《医疗器械经营许可证》或《第二类医疗器械经营备案凭证》。三、招标文件获取时间及方法 自公告发布之日起 5 个工作日,登录中国政府采购网山西分网(www.ccgp-shanxi.gov.cn),通过项目采购公告下方点击“潜在供应商”免费下载招标文件。四、提交投标文件截止时间、开标时间、地点和方式提交投标文件截止时间及开标时间:2023年10月23日09点30分(北京时间)方式:登录中国政府采购网山西分网上传投标文件。投标截止时间前未完成提交的,将拒收投标文件。开标时登录中国政府采购网山西分网在规定时间内解密电子投标文件,解密设备及网络环境由投标人自行准备。五、招标公告期限自本项目招标公告发布之日起5个工作日。六、其他补充事宜1.投标人应于开标前在中国政府采购网山西分网(www.ccgp-shanxi.gov.cn)进行供应商注册。 联系电话:957632.投标人参与项目遇到系统操作问题,请及时联系客服电话。联系电话:95763 七、对本次招标提出询问,请按以下方式联系1.采购人信息名称: 太原市中心医院 地址: 山西省太原市小店区汾东大街256号 联系人: 张玉梅 联系电话: 13835116510 2.集中采购代理机构信息名称:太原市公共资源交易中心 地址:太原市万柏林区南屯路1号太原市为民服务中心四层 联系人:才贺涛 联系电话:0351-2377096 附件信息: 公开招标文件.doc413.6K × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:切片机,荧光显微镜,光源,液氮罐 开标时间:2023-10-23 09:30 预算金额:148.30万元 采购单位:太原市中心医院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:太原市公共资源交易中心 代理联系人:点击查看 代理联系方式:点击查看 详细信息 太原市中心医院高质量发展全省免疫性皮肤病诊疗与预防管理中心建设项目荧光相差显微系统、快速组织脱水机等医疗设备公开招标采购的采购公告 山西省-太原市-小店区 状态:公告 更新时间: 2023-09-28 招标文件: 附件1 一、项目基本情况项目编号:1401992023AGK00985 项目名称:太原市中心医院高质量发展全省免疫性皮肤病诊疗与预防管理中心建设项目荧光相差显微系统、快速组织脱水机等医疗设备公开招标采购资金来源:财政资金预算金额:1,483,000元最高限价:1,483,000元采购需求:共一包,具体以第四部分采购需求为准。采购清单 序号 名称 数量 预算单价(元) 金额小计(元) 对应的中小企业划分标准所属行业 1 取材台 1台 80,000 80,000 工业 2 染色通风柜 1台28,000 28,000 工业 3 标本柜 1台 25,000 25,000 工业 4 荧光相差显微系统 1台 500,000 500,000 工业 5 气相液氮罐 1套 250,000 250,000 工业 6 快速组织脱水机 1台 350,000 350,000 工业 7 石蜡切片机 1台 250,000 250,000 工业 总价(元) 1,483,000 产品描述 序号 名称 参数要求 1 取材台 1.1 支持取材工作站风量、风速、风压与实验室总通风系统(含排风及新风补充)风量、风速、风压的调节变化联锁互动。1.2材质及制造工艺:整体材质标准不低于SUS316L#不锈钢标准,台面及台顶厚度≥2mm的整张钢板一体成型,结构框架及柜体钢板厚度≥1.5mm。1.3结构设计:具有全不锈钢背板,及双侧面滑动式透明视窗,顶部双风幕系统,与背板下部侧吸风结合。1.4病理废气控制与排放方式: 背板下部后侧抽吸负压排气技术,通过背板内置空气导流装置将污染物吸入顶部排气管道,风量可调,能够排除组织异味及有毒有害气体,并可与实验室总排风系统互锁控制,实现三方多地操控管理(含远程操控设备废气排放方式)。1.5自动消毒功能:具备智能自动翻转紫外线消毒系统,工作时间自动翻转隐蔽,非工作时间自动切换翻转消毒。1.6辅助功能配置:配备≥三种台面冲洗装置;须配备骨组织粉碎装置;须配备标本图像采集系统专用通道、可调式万向成像光源、隐蔽式LED照明系统;中控台激光雕刻毫米级刻度尺、进口尼龙取材砧板,高度可调节;须配备双重用电安全防护装置。1.7内置骨组织粉碎装置,处理取材过程中废弃物。1.8取材工作站与通风防护系统主管道连接采用全不锈钢可伸缩管道,管道伸缩范围0mm-400mm,管道厚名称: 太原市中心医院 地址: 山西省太原市小店区汾东大街256号 联系人: 张玉梅 联系电话: 13835116510 2.集中采购代理机构信息名称:太原市公共资源交易中心 地址:太原市万柏林区南屯路1号太原市为民服务中心四层 联系人:才贺涛 联系电话:0351-2377096 附件信息: 公开招标文件.doc413.6K
  • 图|44张显微镜下生物图片,走进令人惊叹的微观世界
    作者:Erin Kelly微观世界是一个无穷无尽的迷人之地,基于过去 90余 年的技术进步,我们现在可以通过电子显微镜等照片以极高的放大倍率去观察事物。扫描电子显微镜 (SEM) 通过组合各种信号向我们展示了微生物的微观世界,通过高能电子束对样品进行扫描,这种电子相互作用为我们提供了诸如形貌、纹理、化学成分等信息。这些信息信号组合成一张图像,可以提供二维的黑白照片,也可以通过后期人工渲染着色。一般放大倍率范围为 10 倍至 300,000 倍,甚至放大高达 500,000 倍。放大31倍的蚕蛾毛虫/Science Source来自各种常见植物的花粉,着色并放大 500 倍/Flickr一只黄螨/Wikimedia Commons螺旋虫蝇幼虫的尖端/Wikimedia Commons拟南芥叶子的图像,它在植物生物学研究中被用作模型生物,是第一种拥有完整基因组测序的植物/Wikimedia Commons蜜蜂天线的特写/Zeiss Microscopy/Flickr小鼠肺中巨噬细胞血细胞的薄切片,巨噬细胞是一种有助于消除异物的白细胞/Dartmouth.edu一种缓步动物或水熊,被广泛认为是地球上最顽强的生命形式/Imgur另一张感染霉菌孢子的小鼠肺部巨噬细胞的照片/Dartmouth.edu攻击细菌 MRSA 的白细胞/NIH/Wikimedia Commons苍蝇的腿/Wikimedia Commons显微幼虫头部/Wikimedia Commons苍蝇眼睛的内部结构/Wikimedia Commons衬在橡子壳内部的纤维可放大 300 倍/Wikimedia Commons热液蠕虫嘴上的特写/Photo Science Library/Twitter墨鱼皮肤的细节/Flickr鼠疫耶尔森菌,一种引起鼠疫的细菌,位于跳蚤的刺上/Wikimedia Commons图为臭虫的近距离照片/Centers for Disease control, via Wikimedia Commons蒲公英泡芙球,146 倍放大/Flickr藻类/Wikimedia CommonsEupolybothrus cavernicolus是一种蜈蚣,仅在克罗地亚希贝尼克-克宁县 Kistanje 村附近的两个洞穴中发现,图为它的生殖器/Wikimedia Commons果蝇的产卵器/Wikimedia Commons果蝇眼/Wikimedia Commons刚刚分裂的 HeLa 细胞,这是约翰霍普金斯大学研究员 George Gey 博士于 1951 年在治疗Henrietta Lacks 的癌症期间有争议地获得的一种耐用、多产的细胞/Wikimedia Commons人类红细胞和淋巴细胞/Dartmouth.edu青蝇的蛆或幼虫/Eye of Science/SPL/Barcroft Media花边虫的扫描电子显微镜图像/Wikimedia Commons如图所示,有孔虫是微观的单细胞生物,其化石记录跨越了过去 5 亿年,每个有孔虫都只是一个细胞,但它们用海水矿物质在自己周围建造复杂的贝壳,并在海底下方的沉积物层中积聚/Wikimedia Commons更多的 MRSA 细胞和一个曾经属于人类的死白细胞/Wikimedia Commons蜜蜂没有真正的眼睑,但这是欧洲蜜蜂眼睛与皮肤相遇的地方——放大倍数为 2856 倍/Flickr黑色氧化纳米花。纳米花是某些元素的化合物,这些元素在显微镜下看起来像花/Wikimedia Commons扁平的恒星状新雪/Dartmouth.edu从患者样本中分离出的被 SARS-COV-2 病毒颗粒(黄色)严重感染的细胞(红色)/Wikimedia Commons牵牛花中的一粒花粉/Dartmouth.edu高放大率图像显示花粉储存在花中的空腔内的花粉/Dartmouth.edu西番莲、平百合和雏菊花粉标本/Wikimedia Commons月见草的花粉/Wikimedia Commons飞蛾的轮廓/Wikimedia Commons彩色增强扫描电子显微照片显示鼠伤寒沙门氏菌(红色)侵入培养的人体细胞/Wikimedia Commons一种盐晶体/Flickr以 4,348 倍的放大倍数重新增长一美元/Flickr闪亮的花甲虫的 SEM 图像/Wikimedia Commons番茄植物叶子上的气孔(气体交换的孔)的彩色电子显微镜图像/Wikimedia Commons叶甲虫的爪子/Wikimedia Commons
  • 日光显微镜为何能独领风骚近百年
    在科学技术发展的历史上,出现过许多风靡一时、但如今只存在于博物馆的科学仪器,日光显微镜就是一例。现代显微镜大多使用人造光作光源,“日光”与“显微镜”的组合确实已经过时。但其实日光显微镜作为一种独特的光学仪器,其使用方式和实际效果远远超出现代人的想象——它从18世纪中期开始,独领风骚近百年,自有其独特之处。顾名思义,日光显微镜是以太阳光作为光源的显微镜,但它实际上可看作显微镜和投影仪的结合。日光显微镜有一块方形的木板 ,一边置反光镜,另一边固定一支镜筒,玻片安装在镜筒末端。日光显微镜必须在黑暗的房间里使用,操作者将它固定在窗户上,反光镜在室外,在室内调整反光镜的角度,阳光可反射进入镜筒,并通过镜筒内的聚光镜和凸透镜,将标本的图像放大,投射到墙上的屏幕供人观看。日光显微镜于18世纪40年代问世,发明者是德国的医生、解剖学家和物理学家约翰纳撒尼尔利伯库恩,除了研制日光显微镜,他最广为人知的工作还包括肠道研究——大肠黏膜中广泛分布的利氏肠腺窝(Crypts of lieberkuhn)就是以他的名字命名的。利伯库恩在1739年左右发明了日光显微镜,不过据说当时该装置还没有镜子,在它进入英国后,伦敦著名的光学仪器工匠约翰卡夫为它添加了镜子。倡导用显微镜开展科学研究的英国博物学家亨利贝克随后发表了关于日光显微镜使用的论文。日光显微镜开始在英国流行起来。亨利贝克明确指出“当使用这种显微镜时,房间必须尽可能黑暗,因为房间的黑暗和阳光的亮度决定了图像的清晰度和完美度”。可以说,借助自然的阳光和黑暗的房间,日光显微镜创造了一个场景,在此场景中,微观世界的物体从镜片之下被释放出来,它们的图像进入宏观世界——观众可以不直接通过显微镜,就能观看它们的样貌,欣赏它们的活动。1694年,荷兰数学和物理学教授尼古拉斯哈特索克发明了螺旋筒型显微镜,这种仪器便于携带到现场,易于使用,并且可以大规模生产。1702年,英国眼镜和仪器制造商詹姆斯威尔逊简化和推广了这种显微镜。大多数螺旋筒型显微镜由一个宽螺纹圆柱体组成,可以拧入或拧出镜筒,以便在固定于铜板之间的载玻片上聚焦。哈佛大学就收藏了一台用螺旋筒型显微镜改造的日光显微镜,其设计者爱德华布罗姆菲尔德是毕业于哈佛大学的一位发明家和艺术家。这台日光显微镜可能是美国殖民地时期制造的第一台显微镜,其制作拼接图纸现保存在哈佛医学院。日光显微镜及其技术在18世纪下半叶引起了特别关注,据印刷品描述和现存日光显微镜的数量可以推测其在当时非常流行。伦敦精密光学仪器制造商爱德华奈恩出售仪器所附的传单中有句话:“在所有类型的显微镜中,日光显微镜可以被认为是最有娱乐性的。”由此可窥见日光显微镜为何受欢迎。在18世纪一些自然哲学著作中,日光显微镜被认为是哲学仪器,与普通显微镜和望远镜处于同一类别。而到了19世纪,人们已经开始把日光显微镜当成玩具,专业的研究者甚至对日光显微镜持鄙视的态度,英国显微镜学家戈林曾这样评价日光显微镜:普通日光显微镜的图像可以被认为是一个单纯的影子,只适合于娱乐妇女和儿童……它最多只能给我们提供一个跳蚤的影子,或者一个像鹅或驴子一样大的虱子……无聊的庸人总是会对这种镜片感到满意,因为他们不知道显微镜除了能将物体的体积放大之外,还能做什么。在19世纪,光学仪器逐渐进入家庭生活和公共展览,成为非常受欢迎的一种娱乐仪器。伦敦的科学仪器制造商菲利普卡彭特1808年开始在伯明翰生产眼镜和显微镜,此后他积极投身万花筒和改良型幻影灯的研发和销售中,均取得了不俗的成绩,其研发的产品非常受消费大众的喜爱。1826年,卡彭特在伦敦威斯敏斯特摄政街24号开设了一家商店,策划了一个名为“微观世界”的展览,成为当地颇受欢迎的景点。这个展览最初就使用日光显微镜吸引顾客前来观看,观众们坐在提前准备的座位上,观看放大的图像。展览从早上11点持续到晚上8点,天黑后,卡彭特以燃烧可燃气体作为光源,后来在阴天时也如此操作,从而使图像更加明亮。可以说,在卡彭特这位19世纪的科学仪器制造商看来,科学和娱乐并没有明确的界限,他抓住了大众日益增长的娱乐需求,成功地将这种上个世纪中期的光学仪器转化成一种流行的新奇事物。如今我们去电影院看电影,其实也可以看作是这种科学+娱乐活动的延续。
  • 从世界名校收藏的显微镜,看科技发展的轨迹
    日前,“双校记:透过显微镜看哈佛与清华”线上展览正式开幕,该展览由清华大学科学史系、清华大学科学博物馆与哈佛大学科学史系、哈佛历史科学仪器收藏馆联合举办,是清华大学科学博物馆与国外著名大学博物馆合作举办的线上系列展览之一。显微镜是近代科学的标志仪器。1665年,伦敦大瘟疫暴发,胡克出版了《显微图谱》一书,他使用的显微镜可以把标本放大30多倍,此后,荷兰的列文虎克研制了独具风格的、可放大200多倍的单式显微镜。18世纪之后,显微镜逐渐流通到世界各地,满足了人们的好奇心,揭开了自然界隐藏的奥秘,极大地促进了现代科学的进步。显微镜也进入了大学的课堂、实验室和博物馆。该线上展览展示了哈佛大学与清华大学所使用、制造和收藏的众多类型的显微镜,从一个侧面折射了这两所世界著名大学在科学教育、科学研究以及历史收藏等方面的发展轨迹。两代哈佛人的显微镜本次展览展出了一套生产于1720年前后的威尔逊螺旋筒型和圆规型单式显微镜,开发这类仪器的初衷是为了满足人们对小型便携式仪器日益增长的需求。这套显微镜原属于哈佛大学第9任校长爱德华霍利奥克。他在任期间,加强了哈佛大学(当时还是哈佛学院)在数学和科学方面的学术课程,并进行了一系列的学术改革,将学术成就作为哈佛大学的录取标准。此外,他还建立了北美第一个物理学实验室。哈佛大学在他长达32年的任期内得到了蓬勃发展。1730年前后,英国科学仪器制造商、工匠埃德蒙卡尔佩珀设计和制造了一种安装在三角支架上的显微镜,此款显微镜很快成为18世纪上半叶最流行的复式显微镜,并且持续生产了大约一百年。此外,展览还展出了一台卡尔佩珀型显微镜,生产于18世纪50年代, 其所有者和使用者是爱德华奥古斯都霍利奥克。他是爱德华霍利奥克的儿子,1746年毕业于哈佛大学,后来投身医疗事业,成为美国治疗天花的先驱,为成百上千的人接种了天花疫苗。霍利奥克活了100岁,在他漫长而辉煌的职业生涯中,为人看病达25万次。他也是马萨诸塞州医学会和美国艺术与科学院的创始成员,并担任过美国艺术与科学院的主席。马克吐温与留美幼童展览还展出了美国著名作家马克吐温的一台单目复式显微镜。马克吐温1835年出生于美国密苏里州佛罗里达,他的原名是塞缪尔兰霍恩克莱门斯。马克吐温字面意思是指十二英尺水深,是当时密西西比河安全水上航行的最低深度。马克吐温因旅行叙事小说享誉国际,尤其是《傻子出国记》《苦行记》《密西西比河上的生活》,以及他关于童年的冒险故事,如《汤姆索亚历险记》和《哈克贝利费恩历险记》。1868年,马克吐温从巴法罗迁到康涅狄格州哈特福德。当时耶鲁大学毕业生、投身洋务运动的容闳也在四处奔走,倡议清廷实行留学计划,最终清政府在1872—1876年派遣4批共120名幼童赴美留学,他们主要住在哈特福德,所以马克吐温与这些幼童成为了邻居,有的幼童还与马克吐温的女儿成为同学,并一起跳过舞。马克吐温住在哈特福德时,把显微镜交给了他的秘书富兰克林惠特莫尔保管。惠特莫尔在马克吐温去世后,又将显微镜交给了他的孙子约翰富兰克林恩德斯。恩德斯于1922年获得哈佛大学博士学位,1939年,恩德斯把这台显微镜捐赠给哈佛大学。1954年,在波士顿儿童医院工作的恩德斯因“发现了脊髓灰质炎病毒在多种类型组织中培育生长的能力”,获得了当年的诺贝尔生理学或医学奖。这台显微镜在近80年的时间里,从与中国留美幼童交往过的一代文豪传至著名的科学家,最后回到哈佛大学,完成了一段传奇之旅。“新”“老”显微镜的接力20世纪50年代购自其他国家的显微镜工具,如苏联产的МИМ-7型显微镜和民主德国产的耶拿蔡司牌大型工具显微镜,也是展览展出的一部分。这些显微镜在清华大学“服役”超过50年,为机械、材料和精密仪器学科的科研教学发挥了重要作用。展览以新型冠状病毒SARS-CoV-2的三维结构高分辨率渲染图结尾,这是清华大学和浙江大学的研究人员在2020年利用高分辨冷冻电镜断层成像方法首次解析出的。遥想1665年伦敦暴发鼠疫时,列文虎克还未开始对显微镜的研究;而到2020年,新型冠状病毒感染疫情防控形势严峻,科学家则利用电子显微镜等现代科学仪器,迅速查明了病毒的真面目。从哈佛大学和清华大学所使用、制造和收藏的显微镜中,我们可以一瞥几百年来科技的迅猛发展,并且通过展览我们也能感受到,不同文明之间的交流互鉴、不同国家的沟通合作,会带来更大的希望与福祉。(作者系清华大学科学史系助理教授、“双校记:透过显微镜看哈佛与清华”展览策展人)
  • 从世界名校收藏的显微镜,看科技发展的轨迹
    日前,“双校记:透过显微镜看哈佛与清华”线上展览正式开幕,该展览由清华大学科学史系、清华大学科学博物馆与哈佛大学科学史系、哈佛历史科学仪器收藏馆联合举办,是清华大学科学博物馆与国外著名大学博物馆合作举办的线上系列展览之一。显微镜是近代科学的标志仪器。1665年,伦敦大瘟疫暴发,胡克出版了《显微图谱》一书,他使用的显微镜可以把标本放大30多倍,此后,荷兰的列文虎克研制了独具风格的、可放大200多倍的单式显微镜。18世纪之后,显微镜逐渐流通到世界各地,满足了人们的好奇心,揭开了自然界隐藏的奥秘,极大地促进了现代科学的进步。显微镜也进入了大学的课堂、实验室和博物馆。该线上展览展示了哈佛大学与清华大学所使用、制造和收藏的众多类型的显微镜,从一个侧面折射了这两所世界著名大学在科学教育、科学研究以及历史收藏等方面的发展轨迹。两代哈佛人的显微镜本次展览展出了一套生产于1720年前后的威尔逊螺旋筒型和圆规型单式显微镜,开发这类仪器的初衷是为了满足人们对小型便携式仪器日益增长的需求。这套显微镜原属于哈佛大学第9任校长爱德华霍利奥克。他在任期间,加强了哈佛大学(当时还是哈佛学院)在数学和科学方面的学术课程,并进行了一系列的学术改革,将学术成就作为哈佛大学的录取标准。此外,他还建立了北美第一个物理学实验室。哈佛大学在他长达32年的任期内得到了蓬勃发展。1730年前后,英国科学仪器制造商、工匠埃德蒙卡尔佩珀设计和制造了一种安装在三角支架上的显微镜,此款显微镜很快成为18世纪上半叶最流行的复式显微镜,并且持续生产了大约一百年。此外,展览还展出了一台卡尔佩珀型显微镜,生产于18世纪50年代, 其所有者和使用者是爱德华奥古斯都霍利奥克。他是爱德华霍利奥克的儿子,1746年毕业于哈佛大学,后来投身医疗事业,成为美国治疗天花的先驱,为成百上千的人接种了天花疫苗。霍利奥克活了100岁,在他漫长而辉煌的职业生涯中,为人看病达25万次。他也是马萨诸塞州医学会和美国艺术与科学院的创始成员,并担任过美国艺术与科学院的主席。马克吐温与留美幼童展览还展出了美国著名作家马克吐温的一台单目复式显微镜。马克吐温1835年出生于美国密苏里州佛罗里达,他的原名是塞缪尔兰霍恩克莱门斯。马克吐温字面意思是指十二英尺水深,是当时密西西比河安全水上航行的最低深度。马克吐温因旅行叙事小说享誉国际,尤其是《傻子出国记》《苦行记》《密西西比河上的生活》,以及他关于童年的冒险故事,如《汤姆索亚历险记》和《哈克贝利费恩历险记》。1868年,马克吐温从巴法罗迁到康涅狄格州哈特福德。当时耶鲁大学毕业生、投身洋务运动的容闳也在四处奔走,倡议清廷实行留学计划,最终清政府在1872—1876年派遣4批共120名幼童赴美留学,他们主要住在哈特福德,所以马克吐温与这些幼童成为了邻居,有的幼童还与马克吐温的女儿成为同学,并一起跳过舞。马克吐温住在哈特福德时,把显微镜交给了他的秘书富兰克林惠特莫尔保管。惠特莫尔在马克吐温去世后,又将显微镜交给了他的孙子约翰富兰克林恩德斯。恩德斯于1922年获得哈佛大学博士学位,1939年,恩德斯把这台显微镜捐赠给哈佛大学。1954年,在波士顿儿童医院工作的恩德斯因“发现了脊髓灰质炎病毒在多种类型组织中培育生长的能力”,获得了当年的诺贝尔生理学或医学奖。这台显微镜在近80年的时间里,从与中国留美幼童交往过的一代文豪传至著名的科学家,最后回到哈佛大学,完成了一段传奇之旅。“新”“老”显微镜的接力20世纪50年代购自其他国家的显微镜工具,如苏联产的МИМ-7型显微镜和民主德国产的耶拿蔡司牌大型工具显微镜,也是展览展出的一部分。这些显微镜在清华大学“服役”超过50年,为机械、材料和精密仪器学科的科研教学发挥了重要作用。展览以新型冠状病毒SARS-CoV-2的三维结构高分辨率渲染图结尾,这是清华大学和浙江大学的研究人员在2020年利用高分辨冷冻电镜断层成像方法首次解析出的。遥想1665年伦敦暴发鼠疫时,列文虎克还未开始对显微镜的研究;而到2020年,新型冠状病毒感染疫情防控形势严峻,科学家则利用电子显微镜等现代科学仪器,迅速查明了病毒的真面目。从哈佛大学和清华大学所使用、制造和收藏的显微镜中,我们可以一瞥几百年来科技的迅猛发展,并且通过展览我们也能感受到,不同文明之间的交流互鉴、不同国家的沟通合作,会带来更大的希望与福祉。
  • 谢晓亮院士Science子刊:开发SRS显微镜肿瘤检测技术
    p   来自哈佛大学、密歇根大学等处的研究人员证实,可以采用定量受激拉曼散射(Stimulated Raman Scattering, SRS)显微镜来检测人类脑肿瘤浸润。这一研究成果发布在10月14日的《科学转化医学》(Science Translational Medicine)杂志上。 /p p   哈佛大学谢晓亮(X. Sunney Xie) 教授和密歇根大学的Daniel Orringer博士是这篇论文的共同通讯作者。谢晓亮教授是单分子生物物理化学和相干拉曼散射显微成像的开拓者之一,其研究组在离体实验及活细胞内生物系统在单分子水平的动力学研究方面取得了不少重要的成果,尤其是单分子荧光显微技术,比如相干拉曼显微成像技术(CARS、SRS)等方面成果斐然。近年来,他又在单细胞测序技术上取得突破,发表了不少重要成果。 /p p   脑肿瘤是一类常见的病因不明、来源广泛的神经系统疾病。男性多于女性,任何年龄都可发生,最多见于20-40岁之间。由于脑组织结构和生理功能的特异性,颅内肿瘤多引起显著而特异的临床症状和体征,尤其是位于重要功能区的脑肿瘤常引起病人重要功能的受损或缺失。脑肿瘤的主要根治方法是手术切除肿瘤灶,其目的在于尽可能保留脑功能皮层的情况下最大限度地切除肿瘤。将肿瘤与正常脑组织区分开来是脑肿瘤手术取得最佳结果的一个主要障碍。当前迫切需要一些能够在手术过程中显像肿瘤边缘地带的新成像技术来改善手术疗效。 /p p   SRS显微镜是一种无损伤、免标记的光学方法,其能够检测原子间化学键的变化,敏感度高于红外显微镜和拉曼显微镜。谢晓亮教授曾表示,SRS显微镜是生物医学成像的一个巨大进步,开启了活细胞新陈代谢的实时监控研究。近年来,谢晓亮课题组一直在致力利用SRS显微镜来快速检测癌症组织,实现外科手术中的可视化。研究人员曾在动物模型中证实了SRS显微镜揭示神经胶质瘤浸润的能力。 /p p   在这篇新文章中,研究人员利用SRS揭示出了22个神经外科患者新鲜、未处理手术样本中的脑肿瘤浸润情况。证实SRS检测肿瘤浸润与标准苏木红-伊红染色、光学显微镜检测近乎一致。SRS显微镜独特的化学对比可揭示出肿瘤浸润组织的组织细胞构成、轴突密度和蛋白质/脂质比的量化改变实现肿瘤检测。 /p p   他们利用SRS生成了有关蛋白质和脂质的不同信号,并随后各自分配给它们一种颜色(蓝色和绿色),使得作者们能够将来自肿瘤的脑皮质与白质区分开来。采用SRS显微镜检测来自成人及儿童胶质母细胞瘤患者的活组织样本,不仅揭示出了显著的特征,还在组织中发现了采用传统染色看起来正常的浸润细胞。早期捕捉这样的浸润细胞至关重要,因为手术后遗留的浸润细胞几乎总是会导致癌症复发。 /p p   为了确保这种SRS显微镜方法可日常用于脑肿瘤手术中,且无需专家解读。研究人员还构建出了一个目标分类器,其将不同的成像特征,如蛋白/脂质比、轴突密度和细胞构成整合为一个输出信号按照从0至1这个尺度来衡量,提醒病理学家注意肿瘤浸润。这一分类器是利用来自胶质母细胞瘤和癫痫患者的1400多张图像建立起来的,能够以& gt 99%的准确度区分肿瘤浸润区域和非肿瘤区域。 /p p   因此,这一免标记的成像技术可用于补充现有的神经手术工作流程,帮助快速客观地确定脑组织的特征及制定临床决策。 /p
  • 神奇的微观世界丨电子显微镜下揭秘的葡萄酒酿造工艺!
    我们大多数人可能都喜欢在闲暇的时候约上三五好友“来两杯”,或在特殊的日子为自己的爱人精心准备一场浪漫的红酒晚餐,亦或只是“我自饮来我自醉”的消遣,但是我们却很少关注并意识到葡萄酒酿造及酿酒工艺的科学。一瓶葡萄酒,从开始种植到酿造装瓶,大约需要生长5年、发酵3个月、橡木桶存放6~18个月,有时甚至还需要在海上运输2~3个月,毫无疑问,这是一门需要时间和耐心的技艺。在葡萄培育和酿酒工艺中,科学培育出优良的葡萄品种、改进酿造工艺、提升质量都是至关重要的环节,而这需要借助先进的科学手段和工具,扫描电子显微镜(SEM)作为一种超高分辨率的微观观测和分析的工具,在葡萄酒酿造产业中也“大有用武之地”!扫描电镜可从细胞、亚细胞水平乃至生物大分子水平对各种样品进行深入细致的分析观察。通过观察研究葡萄树的叶片、花朵、果实等的形态结构,可对葡萄品种选育、种植管理、采摘储藏等生产环节提供重要参考;通过观察分析发酵过程中原料、菌种、发酵产物等的状态和性质,可以帮助研究人员改善发酵工艺,分析生产中遇到的实际问题。图:由TESCAN合作发布的利用电镜研究葡萄培育和葡萄酒酿造工艺的相关文章入选《Lab+Life Scientist》期刊封面为了培育出优良的葡萄品种,研究人员需要借助高分辨率的扫描电子显微镜观察不同组织、器官的形貌结构(如植物表皮细胞组织、维管组织、气孔等),寻找优良植株的内在原因,最终培育成需要的品种。图:葡萄藤死表皮组织细胞的表面形貌(注:使用TESCAN MIRA3 FE-SEM在高真空下观察)图:在显微镜下观察到淀粉颗粒(绿色)沉积在葡萄藤的维管组织中(注:研究使用了TESCAN FE-SEM与冷冻传输系统对样品进行冷冻固定、冷冻断裂并保持在冷冻下观察,以获取样品的真实形貌。冷冻电镜方案特别适用于脆嫩的植物组织及一些冷冻下才能稳定保存的样品,如冰激凌等。)在具有超高分辨率的电子显微镜下,还可以清晰地观察到葡萄叶的形态细节以及位于葡萄叶表面的气孔。气孔在植物碳同化、呼吸、蒸腾作用等气体代谢中,成为空气和水蒸气的通路,在生理上具有重要的意义。图:葡萄叶及其表面气孔的微观形貌细节(注:样品使用化学固定、脱水及临界点干燥处理)酵母菌在葡萄酒酿制中是不可缺少的。简单来说,酿酒酵母就是一种单细胞微生物,可以将葡萄中的糖分转变为酒精,也就是俗称的酒精发酵。为了培养、识别出优质的酵母,研究人员需要通过观察菌种的大小、形貌等细节来辨识不同菌种。酒香酵母(Brettanomyces),是一种在酿酒过程中随时可能出现的物质,它因为能够为葡萄酒增加“香味”,而被人铭记。适量的酒香酵母可以为葡萄酒增添风味,但过量存在时则会使葡萄酒散发出一种类似“臭袜子”或“马骚味”的气味,破坏酒的气味和口感。图:电子显微镜下观察到的酒香酵母细胞(注:样品使用化学固定、脱水及临界点干燥处理) 另外,在葡萄酒酿造中,还会产生一种副产品—酒石酸氢钾。这是一种无色至白色的斜方晶系结晶性粉末,无臭,有令人愉快的清凉酸味,通常被食品工业称作塔塔粉。但在酿酒过程中,产生的酒石酸氢钾会与酵母细胞结晶产生浑浊的细白色或淡黄色沉淀物,这些沉淀物虽然不会影响葡萄酒的味道或气味,但它会影响葡萄酒的美感。图:肉眼观察到的的酒石酸氢钾图:电子显微镜下的酒石酸氢钾与附着在其表面的酵母细胞(注:酒石酸氢钾易溶于水,样品不能用常规制样方法,例如化学固定,因此使用TESCAN MIRA3 FE-SEM低真空功能直接进行观察。TESCAN的低真空功能特别适用于不导电样品的直接观测及电子束下不稳定的生物样品。)在葡萄酒发酵成熟时,酒液中也会有残留的死酵母、杂质、葡萄残渣以及部分酒石酸结晶,这些物质会沉淀形成酒泥。因此,在装瓶前,酿造者通常会使用“倒桶”、过滤或下胶澄清、冷却结晶等方式去除这些沉淀物,来保证葡萄酒的“美感”。图:在电子显微镜下观察葡萄酒的澄清过滤(过滤孔筛的孔隙范围为0.45~1.2μm)(注:使用TESCAN水汽注入系统可直接观察样品,保持样品最原始的状态。水汽注入系统特别适用于易失水的生物样品及水汽参与反应的原位实验,如食盐溶解与重结晶、水泥固化等)以上图像及数据来自于由全球扫描电子显微镜的领先制造商TESCAN与捷克国家葡萄酒中心合作开展的一项研究,该项研究利用超高分辨扫描电子显微镜探究葡萄培育和葡萄酒的酿造工艺。这项研究工作在TESCAN MIRA3超高分辨场发射扫描电镜(FE-SEM)上完成,在本研究中使用的样品由位于布尔诺的孟德尔大学的葡萄培育和葡萄栽培部提供。目前,相关研究成果已在捷克国家葡萄酒中心公开展览,展览地设在著名的Valtice城堡的总部,该城堡也被联合国教科文组织列为世界遗产地。图:在捷克葡萄酒酒都Valtice城堡展出的“特殊展览” 该项研究的合作和技术支持—TESCAN公司的总部位于捷克布尔诺市,该地区被称为欧洲电子显微镜的摇篮。布尔诺也是捷克共和国南部与奥地利和斯洛伐克接壤的摩拉维亚地区的首府,这里是捷克主要的葡萄酒产区,占其国家总产能的96%。捷克国家葡萄酒中心主任Pavel Kr?ka谈到:“据我们所知,这个展览是同类型展览中的第一次,展览非常受欢迎。参观者们被这些图像所震撼,因为这个展览在吸引葡萄酒爱好者,传播葡萄酒文化的同时,还为参观者展示了葡萄酒种植及酿造相关的科学内容!“
  • 用显微镜带您看微观奇妙世界——生活中的仪器分析
    【生活中的仪器分析】开始于2011年,这个活动的宗旨是让实验室人员利用分析仪器,检测人们生活中最常见、最易接触到的物质,让仪器分析走进生活。不仅可以让坛友们相互交流分析仪器的使用技术,还可以提高对仪器分析的兴趣。   2013年10月一起论坛举办了一期【生活中的仪器分析】之【显微镜观察微观世界】活动,网友对此次活动产生了浓厚的兴趣,在短短的半个月时间里就有多篇作品发表到了论坛上,大家用各类型的显微镜观察了多种物质。   坛友们利用显微镜分别观察了蚊子、蜈蚣、蚂蚁。   上图只是&ldquo 冰山一角&rdquo 高清大图请点:http://bbs.instrument.com.cn/shtml/20131022/5021741/   除了直接用显微镜观察物质,还有坛友分享了基于显微镜的&ldquo 刻画&rdquo 技术:   这几张图片看似简单,其实是应用扫描探针显微镜的纳米蚀刻技术做出来的!   本期【微观看世界】截至到2013年11月18日,目前活动还在火热进行中,如果您也对此有兴趣,请赶快来参与吧!并且可同时参加【第六届原创大赛】,双重大奖等您来拿!   参与活动:http://bbs.instrument.com.cn/shtml/20131014/5009273/   十一月好戏不断!以下活动全部进行中!如有意向,素来参与!全部有奖!   1.【生活中的仪器分析】&mdash &mdash 办公用品中的有害物质检测之【纸张】篇   活动地址http://bbs.instrument.com.cn/shtml/20131104/5044097/   2.【生活中的仪器分析】食品安全&mdash &mdash 饮品卫生大检测   活动地址http://bbs.instrument.com.cn/shtml/20131102/5041701/   3. 【生活中的仪器分析】食品安全&mdash &mdash &ldquo 菜&rdquo 米油盐酱醋茶大检测   活动地址http://bbs.instrument.com.cn/shtml/20131102/5041900/   4. 【生活中的仪器分析】奶嘴中的化学物质检测   活动地址http://bbs.instrument.com.cn/shtml/20131012/5006229/   仪器论坛介绍:   仪器论坛(bbs.instrument.com.cn)是仪器信息网最早的一个栏目,也是仪器行业内从业人员最多的在线交流平台,每天都会接纳近30000用户访问。目前有40个版区,170多个版面,有近800的兼职队伍。在这里,无论您是提问还是学习,都可以得到满意的答案。目前论坛还有大量版面空缺版主,诚邀您的加盟(http://bbs.instrument.com.cn/resume/)
  • 围观:用乐高积木打造出的真正显微镜(图)
    艺术家Carl Merriman用他的行动表明,乐高不仅是简单的玩具,还可以是实用的工具。   Carl Merriman用乐高积木打造一款功能齐全的显微镜,虽然不能和专业的设备相提并论,不过已经能够实现常规的显微镜操作,还可以切换不同的镜头。   用积木打造显微镜的工作,对于研究乐高创作27年的Carl Merriman来说并不难。Carl Merriman表示&ldquo 虽然你没法用它来进行高端的研究,但放大效果仍旧不错,外部旋钮带动内部复杂的机械结构,用起来很趁手。&rdquo   制作这款乐高显微镜的灵感来自于已经停产的LEGO X-POD套装。他发现X-Pod的造型很像培养皿,因此在研究其用途的时候第一时间就想到了显微镜。   经过长时间的调整,对整个系统的调焦进行了改善,使用者能够通过切换三组镜头来达到实验观察的目的,可以说这已经不再是玩具,而是真正的显微镜。
  • 云南中医药大学277.00万元采购生物显微镜,切片机,荧光显微镜
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 基本信息 关键内容: 生物显微镜,切片机,荧光显微镜 开标时间: 2022-02-11 11:00 采购金额: 277.00万元 采购单位: 云南中医药大学 采购联系人: 张老师 采购联系方式: 立即查看 招标代理机构: 云南通拓招标有限公司 代理联系人: 任皓 代理联系方式: 立即查看 详细信息 云南中医药大学中医康养实训平台建设设备采购招标公告 云南省-昆明市-呈贡区 状态:公告 更新时间:2022-01-12 云南中医药大学中医康养实训平台建设设备采购招标公告 发布日期:2022-01-12 16:02:02 云南中医药大学中医康养实训平台建设设备采购招标公告 项目概况 云南中医药大学中医康养实训平台建设设备采购的潜在投标人应在云南省公共资源交易中心网、云南通拓招标有限公司(昆明市白云路与志强路交叉口同德昆明广场B区4栋501)获取招标文件,并于 2022年2 月 11日11点00分(北京时间)前递交投标文件。 2.项目名称:云南中医药大学中医康养实训平台建设设备采购 3.预算金额:2,770,000.00元。 4.最高限价:2,770,000.00元。 5.采购需求:本项目共划分为1个标段,投标人须对所有内容进行整体投标,不可缺项、漏项,否则投标文件将按无效处理。具体内容详见下表: 序号 项目(产品)名称 是否进口 数量 计量单位 是否是核心产品 采购标的对应的中小企业划分标准所属行业 1 12门更衣柜 否 2 台 否 工业 2 台式中医人工智能采集仪 (中医智能脉象仪) 否 1 台 否 3 开放式针灸辅助教学系统 否 1 套 否 4 45抽文件柜否 4 台 否 5 儿童PT训练床 (电动多功能理疗床) 否 1 张 否 6 儿童抚触台 否 2 台 否 7 儿童手平衡协调训练器 否 1 个 否 8 儿童平衡杠及附件 否 1 台 否 9 经颅超声 -神经肌肉刺激治疗仪 否 2 台 是 10 儿童专用水疗仪(高脚) 否 2 台 否 11 儿童冲淋池 否 2 台 否 12 上肢力反馈运动控制训练系统(儿童版)(上肢康复训练系统) 否 1 台 是 13 智能康复训练系统(矫姿型)(上下肢智能运动康复训练系统) 否 1 台是 14 痉挛肌治疗仪 否 2 套 否 15 实验凳 否 225 个 否 16 多媒体一体机 否 5 台 否 17 经脉宝中医人工智能一体机(桌面型一体机) 否 1 套 否 18 熏蒸箱 否 1 台 否 19 电针仪 否 3 台 否 20 中药离子导入治疗仪 否 4 台 否 21 假肢矫形实验设备 否 1 套 否 22 儿童感觉统合训练系统(训练室) 否 1 套 否 23 正置荧光显微镜 否 1 台 否 24 倒置生物显微镜 否 1 台 是 25 正置显微镜 否 1 台 否 26 冰冻切片机 否 1 台 是 具体要求等详见本招标文件第五章《采购需求》。 6.▲交货期:合同签订后30日内完成交货及安装调试,投标人可自报最短交货期。 7.交货地点:云南中医药大学呈贡校区。 8.本次招标不接受进口产品投标。进口产品是指通过中国海关报关验放进入中国境内且产自关境外的产品。 二、申请人的资格要求 1.1投标人须具有独立承担民事责任的能力,在中华人民共和国境内登记或注册,提供法人或其他组织的营业执照。 1.2投标人须具有良好的商业信誉和健全的财务会计制度: 1.2.1良好的商业信誉指:投标人在本项目投标文件提交截止时间前,在 中国政府采购网(www.ccgp.gov.cn) 政府采购严重违法失信行为记录名单内无不良信息记录、在 信用中国 网站(www.creditchina.gov.cn)下载的信用信息和信用信息查询栏查询的 失信被执行人、重大税收违法案件 中未出现不良信用信息记录(查询结果以采购人、采购代理机构查询结果为准)。 1.2.2健全的财务会计制度指:提供投标人2019年度或2020年度经第三方审计的财务报告及财务报表。如投标人成立时间不足一年的,提供自成立至今的财务报表或相关情况说明。 1.3投标人须具有履行合同所必需的设备和专业技术能力,提供书面声明或其他证明材料。 1.4投标人须具有依法缴纳税收和社会保障资金的良好记录: 1.4.1投标人须提供以下任一依法纳税的证明材料:投标人在投标截止之日前十二个月内(税款所属时期),任意连续3个月的税务局税收通用缴款书复印件、银行电子缴税(费)凭证复印件、税务局出具纳税情况的相关证明。依法免税的,应提供依法免税的相关证明文件。 1.4.2投标人须提供以下任一社会保险费缴费证明材料:投标人在投标截止之日前十二个月内(费款所属时期),任意连续3个月的社会保险费缴款书复印件、银行电子缴税(费)凭证复印件、社保管理部门出具的有效的缴款证明。依法免缴社会保险费的,应提供依法免缴的相关证明文件。 1.5提供投标人参加本项目政府采购活动前三年内,在经营活动中没有重大违法记录(重大违法记录是指投标人因违法经营受到刑事处罚或者责令停产停业、吊销许可证、吊销执照、较大数额罚款等行政处罚)的书面声明。成立未满三年的投标人提供成立以来在经营活动中没有重大违法记录的书面声明。 1.6法律、行政法规规定的其它条件:在 信用中国 网站没有失信被执行人记录和重大税收违法案件当事人名单记录;且在中国政府采购网没有政府采购严重违法失信行为记录(被禁止在一定期限内参加政府采购活动但期限届满的除外)。信用查询截止时间:本项目公告发布以后(含发布当日)至投标文件递交截止时间前(此项由采购代理机构进行查询,查询记录为上述网站信用信息查询结果的网页截图或网页打印稿)。 2.落实政府采购政策需满足的资格要求:本项目不属于专门面向中小企业采购的项目。 3.本项目的特定资格要求:无。 4.本项目不接受联合体投标。 三、获取招标文件 1.时间:2021年 1 月 13 日至2021年 1 月 20 日,每日上午9:00时至12:00时,下午13:30时至17:30时(北京时间,法定节假日除外)。 2.地点:云南省公共资源交易中心网、云南通拓招标有限公司(昆明市白云路与志强路交叉口同德昆明广场B区4栋501)。 3.方式:因本项目采用电子招标投标,所以投标人除网上登记外还须按要求提供纸质材料到采购代理机构完成线下登记。完成以下两种方式的登记后才算登记成功。 3.1网上登记: 在云南省公共资源交易中心网(www.ynggzy.com)进行注册以及企业数字证书(CA)的办理。注册及企业数字证书(CA)办理完成之后进入云南省政府采购交易系统(网址:https://www.ynggzy.com/zfcg-tb)凭企业数字证书(CA)登陆进行登记及下载招标文件。(招标文件格式为*.ZCZBJ ) 。(如有疑问可咨询24小时技术支持热线:010-86483801。) 注:如果投标人之前已经在云南省公共资源交易中心网进行过注册并办理过企业数字证书(CA),此次无需重复办理,可直接登录云南省政府采购交易系统(网址: 3.2线下登记: 持营业执照或事业单位法人证书或民办非企业登记证书或社会团体登记证(复印件加盖公章)、法定代表人身份证明书(原件)、法定代表人授权委托书(原件)、法定代表人或委托代理人居民身份证(原件及复印件加盖公章)、网上获取招标文件的截图至规定的获取文件地点获取招标文件。 4.售价:人民币500.00元/份(所有需要开具发票的,必须公对公汇款。户名:云南通拓招标有限公司;开户银行:中国银行昆明市莲花池支行;银行账号:135615364611)。 ▲5.未按招标公告规定时间及地点获取招标文件的不得参与本项目投标。 四、提交投标文件截止时间、开标时间和地点 1.提交投标文件截止时间、开标时间: 2022年 2月 11 日11点00分(北京时间)。 2.提交投标文件地点、开标地点:云南省昆明市高新区科发路269号(科发路与科高路交叉口)公共资源交易中心二楼开标厅 2 号。 投标人应根据招标文件要求,须登录云南省政府采购交易系统(网址:https://www.ynggzy.com/zfcg-tb),在投标截止时间前完成所有电子投标文件的提交,且完成电子签名确认,并打印 上传投标文件回执 ,以确保文件上传成功。投标文件在截止时间前未完成电子签名确认的,视为无效投标,不能进入开标阶段。 同时,投标人应自行下载已上传成功的投标文件,并进行查看、解密和核验投标文件,以确保上传投标文件的正确性。 2.2投标人应当在招标文件要求的提交电子投标文件截止时间前,将电子投标文件提交至云南省政府采购交易系统(网址:https://www.ynggzy.com/zfcg-tb)。逾期提交的电子投标文件为无效文件,采购人、采购代理机构将拒绝接收。 2.3根据《云南省公共资源交易中心关于加强疫情防控大力推行网上智能开标切实减少交易现场人员的通知》的相关要求,充分利用信息网络推行不见面办事,正式启用远程网上开标(不见面开标)系统。 3、电子开标及投标文件解密 投标人可以根据自身情况,选择以下任意一种方式参加开标: 方式一:网上智能开标及远程解密 (1)投标人登录云南省公共资源交易中心网站(网址:https://www.ynggzy.com),按照《网上智能开标远程解密操作指南(投标人)》完成远程解密、查看开标一览表等相关操作。本项目解密时间为30分钟,若投标人未在规定时间完成所有投标文件解密,则视为无效投标,不再进入评标阶段。 (2)因开标系统、开标现场网络、设备及其他特殊原因,导致不能正常解密投标文件的,经核实和上报相关部门同意后,可再次下达网上解密指令来延长解密时间。 (3)开标过程中如有问题,可以在线提出异议,由代理机构给予回复。在规定的异议询问时间内未提出异议的,则视为对开标结果无异议。方式二:现场开标现场解密 (1)投标人应在投标截止时间前持加密投标文件的CA数字证书到云南省公共资源交易中心(昆明市高新区科发路269号交易大厦)开标现场进行现场解密。招标文件其他要求不变。 (2)电子文件开标顺序:按照交易平台自动提取所有供应商的顺序在开标室进行开标。 (3)采购人宣布开启电子投标文件后,投标人按照电子文件的开标顺序上前,使用投标文件加密证书对投标文件进行解密。 (4)若投标人提交的投标文件不符合采购文件要求,或因投标人原因造成投标文件开标时无法完成读取、导入或解密的,该投标文件则视为无效投标,将被撤回,不再进入评标阶段。 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.发布公告的媒介:本次公开招标公告在《云南省政府采购网》、《云南公共资源交易中心网》和《云南中医药大学校务公开专栏》上发布。 2.本项目需要落实的政府采购政策:政府采购节能产品、环境标志产品政策,政府采购促进中小企业发展政策,政府采购支持监狱企业发展政策,政府采购促进残疾人就业等。 1.采购人信息 名 称:云南中医药大学 地 址:昆明市呈贡区雨花路1076号 联系方式:张老师0871-65919731 2.采购代理机构信息 名 称:云南通拓招标有限公司 地 址:昆明市白云路与志强路交叉口同德昆明广场B区4栋501 联系方式:任皓、杨士琦0871-65895558 3.项目联系方式 联 系 人:杨士琦 联系电话:0871-65895558 八、交易平台技术支持 1. 联系方式: 电子投标文件制作及上传技术支持电话:010-86483801 QQ:4009618998 地址:云南省公共资源交易中心五楼(昆明市高新区科发路269号交易大厦) 投标人可到云南省公共资源交易电子服务系统(http://ggzy.yn.gov.cn)点击【在线培训】按钮进行 电子投标文件制作及上传 的学习。 企业数字证书(CA)办理技术支持电话:0871-65385613 企业数字证书(CA)办理地址:云南省昆明市高新区科发路269号云南省公共资源交易中心1楼大厅 数字证书办理窗口。 2. 投标人办理数字证书相关资料及附件: 需提供的资料清单: 2.1公司营业执照 2.2法人身份证 2.3经办人身份证 2.4基本账户开户证 以上资料须提供复印件并加盖投标人公章。 2.5《企业证书申请表》; 2.6《企业电子公章申请表》; 2.7《个人证书申请表》; 2.8《法定代表人电子签名申请表》; × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:生物显微镜,切片机,荧光显微镜 开标时间:2022-02-11 11:00 预算金额:277.00万元 采购单位:云南中医药大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:云南通拓招标有限公司 代理联系人:点击查看代理联系方式:点击查看 详细信息 云南中医药大学中医康养实训平台建设设备采购招标公告 云南省-昆明市-呈贡区 状态:公告 更新时间: 2022-01-12 云南中医药大学中医康养实训平台建设设备采购招标公告 发布日期:2022-01-12 16:02:02 云南中医药大学中医康养实训平台建设设备采购招标公告 项目概况 云南中医药大学中医康养实训平台建设设备采购的潜在投标人应在云南省公共资源交易中心网、云南通拓招标有限公司(昆明市白云路与志强路交叉口同德昆明广场B区4栋501)获取招标文件,并于 2022年2 月 11日11点00分(北京时间)前递交投标文件。 2.项目名称:云南中医药大学中医康养实训平台建设设备采购 3.预算金额:2,770,000.00元。 4.最高限价:2,770,000.00元。 5.采购需求:本项目共划分为1个标段,投标人须对所有内容进行整体投标,不可缺项、漏项,否则投标文件将按无效处理。具体内容详见下表: 序号 项目(产品)名称 是否进口 数量 计量单位 是否是核心产品 采购标的对应的中小企业划分标准所属行业 1 12门更衣柜 否 2 台 否 工业 2 台式中医人工智能采集仪 (中医智能脉象仪) 否 1 台 否 3 开放式针灸辅助教学系统 否 1 套 否 4 45抽文件柜 否 4 台 否 5 儿童PT训练床 (电动多功能理疗床) 否 1 张 否 6 儿童抚触台 否 2 台 否 7 儿童手平衡协调训练器 否 1 个 否 8 儿童平衡杠及附件 否 1 台 否 9 经颅超声 -神经肌肉刺激治疗仪 否 2 台 是 10 儿童专用水疗仪(高脚) 否 2 台 否 11 儿童冲淋池 否 2 台 否 12 上肢力反馈运动控制训练系统(儿童版)(上肢康复训练系统) 否 1 台 是 13 智能康复训练系统(矫姿型)(上下肢智能运动康复训练系统) 否 1 台 是 14 痉挛肌治疗仪 否 2 套 否 15 实验凳 否 225 个 否 16 多媒体一体机 否 5 台 否 17经脉宝中医人工智能一体机(桌面型一体机) 否 1 套 否 18 熏蒸箱 否 1 台 否 19 电针仪 否 3 台 否 20 中药离子导入治疗仪 否 4 台 否 21 假肢矫形实验设备 否 1 套 否 22 儿童感觉统合训练系统(训练室) 否 1 套 否 23 正置荧光显微镜 否 1 台 否 24 倒置生物显微镜 否 1 台 是 25 正置显微镜 否 1 台 否 26 冰冻切片机 否 1 台 是 具体要求等详见本招标文件第五章《采购需求》。 6.▲交货期:合同签订后30日内完成交货及安装调试,投标人可自报最短交货期。 7.交货地点:云南中医药大学呈贡校区。 8.本次招标不接受进口产品投标。进口产品是指通过中国海关报关验放进入中国境内且产自关境外的产品。 二、申请人的资格要求 1.1投标人须具有独立承担民事责任的能力,在中华人民共和国境内登记或注册,提供法人或其他组织的营业执照。 1.2投标人须具有良好的商业信誉和健全的财务会计制度: 1.2.1良好的商业信誉指:投标人在本项目投标文件提交截止时间前,在 中国政府采购网(www.ccgp.gov.cn) 政府采购严重违法失信行为记录名单内无不良信息记录、在 信用中国 网站(www.creditchina.gov.cn)下载的信用信息和信用信息查询栏查询的 失信被执行人、重大税收违法案件 中未出现不良信用信息记录(查询结果以采购人、采购代理机构查询结果为准)。 1.2.2健全的财务会计制度指:提供投标人2019年度或2020年度经第三方审计的财务报告及财务报表。如投标人成立时间不足一年的,提供自成立至今的财务报表或相关情况说明。 1.3投标人须具有履行合同所必需的设备和专业技术能力,提供书面声明或其他证明材料。 1.4投标人须具有依法缴纳税收和社会保障资金的良好记录: 1.4.1投标人须提供以下任一依法纳税的证明材料:投标人在投标截止之日前十二个月内(税款所属时期),任意连续3个月的税务局税收通用缴款书复印件、银行电子缴税(费)凭证复印件、税务局出具纳税情况的相关证明。依法免税的,应提供依法免税的相关证明文件。 1.4.2投标人须提供以下任一社会保险费缴费证明材料:投标人在投标截止之日前十二个月内(费款所属时期),任意连续3个月的社会保险费缴款书复印件、银行电子缴税(费)凭证复印件、社保管理部门出具的有效的缴款证明。依法免缴社会保险费的,应提供依法免缴的相关证明文件。 1.5提供投标人参加本项目政府采购活动前三年内,在经营活动中没有重大违法记录(重大违法记录是指投标人因违法经营受到刑事处罚或者责令停产停业、吊销许可证、吊销执照、较大数额罚款等行政处罚)的书面声明。成立未满三年的投标人提供成立以来在经营活动中没有重大违法记录的书面声明。 1.6法律、行政法规规定的其它条件:在 信用中国 网站没有失信被执行人记录和重大税收违法案件当事人名单记录;且在中国政府采购网没有政府采购严重违法失信行为记录(被禁止在一定期限内参加政府采购活动但期限届满的除外)。信用查询截止时间:本项目公告发布以后(含发布当日)至投标文件递交截止时间前(此项由采购代理机构进行查询,查询记录为上述网站信用信息查询结果的网页截图或网页打印稿)。 2.落实政府采购政策需满足的资格要求:本项目不属于专门面向中小企业采购的项目。 3.本项目的特定资格要求:无。 4.本项目不接受联合体投标。 三、获取招标文件 1.时间:2021年 1 月 13 日至2021年 1 月 20 日,每日上午9:00时至12:00时,下午13:30时至17:30时(北京时间,法定节假日除外)。 2.地点:云南省公共资源交易中心网、云南通拓招标有限公司(昆明市白云路与志强路交叉口同德昆明广场B区4栋501)。 3.方式:因本项目采用电子招标投标,所以投标人除网上登记外还须按要求提供纸质材料到采购代理机构完成线下登记。完成以下两种方式的登记后才算登记成功。 3.1网上登记: 在云南省公共资源交易中心网(www.ynggzy.com)进行注册以及企业数字证书(CA)的办理。注册及企业数字证书(CA)办理完成之后进入云南省政府采购交易系统(网址:https://www.ynggzy.com/zfcg-tb)凭企业数字证书(CA)登陆进行登记及下载招标文件。(招标文件格式为*.ZCZBJ ) 。(如有疑问可咨询24小时技术支持热线:010-86483801。) 注:如果投标人之前已经在云南省公共资源交易中心网进行过注册并办理过企业数字证书(CA),此次无需重复办理,可直接登录云南省政府采购交易系统(网址: 3.2线下登记:
  • 体视显微镜的创新点及在大健康市场领域的应用
    体视显微镜显微镜有很多种,体视显微镜是其中的一种,比如还有生物显微镜、金相显微镜等。体视显微镜,又叫实体显微镜、立体显微镜或解剖镜。体视显微镜是一种常用的显微镜,具有正像立体感的目视仪器,不需要专门进行加工制作样品,可以直接放在体视显微镜镜头下进行观察,它能够通过放大和放映图像,使我们能够观察和研究微小的物体和细胞结构,从不同角度观察物体,使双眼引起立体感觉的双目显微镜,工作效率极高。体视显微镜创新点:1、双目镜筒中的左右两束光不是平行的,而是具有一定夹角的,一般为12度到15度,这个角称为体视角。因此成像会有三维立体感。观察者可以更加真实地感受到样品的立体形态,更好地理解样品的结构和特性。2、由于体视显微镜的棱镜把图像倒转过来,使观察者看到的图像是直立的,便于操作。3、虽然放大倍率不及其它光学显微镜的倍率大(如生物显微镜和金相显微镜的放大倍率可达1000倍甚至更大),但体视显微镜优点就是工作距离长,视场直径大。景深大,便于观察物体的全貌。4、体视显微镜操作简单,放大倍数一般在7X~45X、7X~63X。其他更高端科研级体视显微镜型号NSZ818,变焦倍率比达到 1:18 ,10X目镜能够实现7.5-135X的放大倍数。果蝇转基因 转基因育种体视显微镜用途上也最为广泛,主要用途如下:1、动物学、植物学、昆虫学、组织学、矿物学、考古学、地质学和皮肤病学等的研究。2、在纺织工业中,用于原料及棉毛织物的检验。3、在电子工业中,作为元器件检查,焊点检查等操作工具。4、各种材料的裂缝构成,气孔形状腐蚀情况等表面现象的检查。5、在制造小型精密零件时,用于机床工具的装置、工作过程的观察、精密零件的检查以及装配工具。MHZ-101/MHZ-201体视显微镜可将微小物体放大并形成正的立体像,具有工作距离长,成像清晰而平稳、视场宽阔、清晰度高、倍率连续可调和操作方便等特点。根据人机工程学要求设计,45度倾斜观察,长时间工作而不感觉颈肩不适。特别适用于科研、高教、农林地质、珠宝、医学卫生、公安部门作观察分析、生物解剖。近年来还广泛应用于电子工业和仪器仪表等行业作细小精密零件的检验、装配修理用。MHZ-201体视显微镜MHZ-201体视显微镜技术参数表:◆放大倍数: 标准配置:7X~63X 选配目镜及辅助物镜,连续变倍◆物镜: 标准配置:连续变倍物镜 变倍比9:1 确保像面齐焦性◆观察头: 45°倾斜,360°旋转◆目镜: 标准配置: 10X/20mm,宽视野,广角,高眼点,为佩带眼镜的观察者提供方便◆可选目镜: 10X、15X、 20X 、25X◆工作距离:标准配置110mm(有效距离)◆可选辅助物镜:0.5X工作距离165mm/1.5X/2X ◆显微镜摄像头:C接口的USB2.0和USB3.0相机可选◆荧光照明器:LED落射荧光照明器/环形荧光照明器NSZ818科研级平行光体视显微镜NSZ818科研级平行光体视显微镜在大健康市场领域的主要应用:1、用于蛋白质结晶过程和晶体的高对比度观察和成像。2、作为分子生物学、细胞生物学、神经生物学、发育生物学、胚胎学、系统生物学、结构生物学的从宏观到微观高分辨观察与成像研究工具。3、用于斑马鱼、小鼠、线虫等模式生物和各种透明样本、微观细胞组织、亚细胞结构的明场、浮雕相衬;可升级为荧光观察和成像系统。4、数码体视显微镜作文书纸币的真假判辨,大样品上的颜料残留物分析和鉴定,区分轻微的结构偏差和真实的色彩。5、广泛应用于纺织制品、化工化学、塑料制品、电子制造、机械制造、医药制造、食品加工、印刷业、高等院校、考古研究等众多领域。体视显微镜NSZ818技术参数:◆光学系统:平行光(伽利略型)复消色差光学系统◆变倍比:1:18,变倍范围0.75-13.5X◆物镜:PLAN APO 1X(NA 0.15, WD 60mm)◆放大率:7.5-135X◆目镜(F.O.V.mm):三目 20°固定倾角镜筒 可变倾角三目镜筒,范围为 0-30°◆可选目镜:10X(23) 10X(22)15X(16) 20X(12)◆底座:LED 立体照明底座(OIC 内置照明器)◆支持观察方式:明场,荧光,斜照明,简易偏光,暗场
  • 一起探索电子显微镜下的奇妙微观世界吧!(第五期)
    Micro-eye第5期 时尚~服装篇~01市场上有不同面料的衣服,消费者的选择也越来越多。使用电子显微镜观察这些面料有惊人的发现。那么,一起来看看吧!纤维我们观察了30%羊毛+70%聚酯纤维的面料。根据以下的500倍纤维SEM图像,羊毛的角质层结构类似于头发,聚酯纤维是扁平纤维。众所周知,羊毛具有良好的保暖性,是秋冬季节必不可少的保暖物品。但是日常生活中同样面临着羊毛衣物水洗后容易缩水的苦恼,这是由于羊毛角质层结构吸水膨胀张开,加剧羊毛鳞片层的缠绕。而聚酯纤维相对结实、抗皱,吸收水分少,不受蛀虫、霉菌等作用。因此,通过这两种纤维混纺,衣服既保暖又方便清洗。 纤维的SEM图像放大倍率:500倍荷叶表面 <防水结构>表面有小凸起荷叶表面防水结构SEM图像放大倍率:1,000倍凸起的放大图荷叶表面防水结构SEM图像放大倍率:13,000倍大家可能觉得荷叶表面与服装没有关系,但是像雨伞、运动服等防水衣物,其实是模拟荷叶结构制成的。在荷叶上,水被排斥,水滴滚来滚去。这种形成水滴,并能让水滴反弹的特性,叫做“防水性”。荷叶之所以能够“防水”,主要是其表面覆盖了一层蜡状物质,并有细小的凸起。这使得水滴难以接触到叶片本身,并且还能有效被反弹。这种功能在科学上很难实现,近年来随着纺织技术的发展,市场上推出了不但防水,还兼具透湿性和透气性的商品。了解不同面料的特点,还可以帮助我们选择更符合需求的衣服。好啦,今后让我们继续一起发掘那些肉眼看不到的奥妙吧!公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 光学显微镜的注意事项
    一、正确安装的问题使用显微镜前,首先要把显微镜的目镜和物镜安装上去。目镜的安装极为简单,主要的问题在于物镜的安装,由于物镜镜头较贵重,万一学生安装时螺纹没合好,易摔到地上,造成镜头损坏,所以为了保险起见,强调学生安装物镜时用左手食指合中指托住物镜,然后用右手将物镜装上去,这样即使没安装好,也不会摔到地上。二、正确对光的问题对光是使用显微镜时很重要的一步,有些学生在对光时,随便转一个物镜对着通光孔,而不是按要求一定用低倍镜对光。转动反光镜时喜欢用一只手,往往将反光镜扳了下来。所以教师在指导学生时,一定要强调用低倍镜对光,当光线较强时用小光圈,平面镜,而光线较弱时则用大光圈,凹面镜,反光镜要用双手转动,当看到均匀光亮的圆形视野为止。光对好后不要随便的移动显微镜,以免光线不能准确的通过反光镜进入通光孔。三、正确使用准焦螺旋的问题使用准焦螺旋调节焦距,找到物象可以说是显微镜使用中最重要的一步,也是学生感觉最为困难的一步。学生在操作中极易出现以下错误:一是在高倍镜下直接调焦 二是不管镜筒上升或下降,眼睛始终在目镜中看视野;三是不了解物距的临界值,物距调到2~3厘米时还在往上调,而且转动准焦螺旋的速度很快。前两种错误结果往往造成物镜镜头抵触到装片,损伤装片或镜头,而第三种错误则是学生使用显微镜时最常见的一种现象。针对以上错误,教师一定要向学生强调,调节焦距一定要在低倍镜下调,先转动粗准焦螺旋,使镜筒慢慢下降,物镜靠近载玻片,但注意不要让物镜碰到载玻片,在这个过程中眼睛要从侧面看物镜,然后用左眼朝目镜内注视,并慢慢反向调节粗准焦螺旋,使镜筒缓缓上升,直到看到物像为止,同时向学生说明一般显微镜的物距在1厘米左右,所以如果物距已远远超过1厘米,但仍未看到物象,那可能是标本未在视野内或转动粗准焦螺旋过快,此时应调整装片位置,然后再重复上述步骤,当视野中出现模糊的物象时,就要换用细准焦螺旋调节,只有这样,才能缩小寻找范围,提高找到物象的速度。四、物镜转换的问题使用低倍镜后换用高倍镜,学生往往喜欢用手指直接推转物镜,认为这样比较省力,但这样容易使物镜的光轴发生偏斜,原因是转换器的材料质地较软,精度较高,螺纹受力不均匀很容易松脱。一旦螺纹破坏,整个转换器就会报废。教师应指导学生手握转换器的下层转动扳转换物镜。五、光学玻璃清洗的问题光学玻璃用于仪器的镜头、棱镜、镜片等。在制造和使用中容易沾上油污、水湿性污物、指纹等,影响成像及透光率。清洗光学玻璃,应根据污垢的特点、不同结构,选用不同的清洗剂,使用不同的清洗工具,选用不同的清洗方法。清洗镀有增透膜的镜头,如照相机、幻灯机、显微镜的镜头,可用20%左右的酒精和80%左右的一种有机物,结构式为C2H5OC2H5的配置清洗剂进行清洗。清洗时应用软毛刷或棉球沾有少量清洗剂,从镜头中心向外做圆运动。切忌把这类镜头浸泡在清洗剂中清洗,清洗镜头时不要用力擦拭,否则会损伤增透膜,损坏镜头。清洗棱镜、平面镜的方法,可依照清洗镜头的方法进行。
  • 如何选择一台适合自己的显微镜——显微镜的种类选择
    2022年的春节已接近尾声,科研的小伙伴已经开始忙碌起来了,对于新学期是不是也有新的计划,发一篇sci的文章顺利毕业,脱单flag,头发多一点点,细胞养好,科研项目进展顺利,老师能给买台心仪已久的显微镜;你想知道选择什么种类的显微镜,正置还是倒置,宽场显微镜、超高分辨率显微镜、激光共焦显微镜等等,小本本备好,我们开始了。1不同成像原理,不同分辨率的显微镜如何选择显微镜作为生命科学领域研究的必须工具,其结构复杂,配置繁多,根据不同的配置和结构,相应的价格有很大的差异。那很多用户在实际采购过程中,看到长串的配置不知如何去选择,怎么用合理的价格去买到一个完全能够满足自己实验需求的显微镜呢?从今天这期推文开始,将会着重介绍选择显微镜的几个关键核心问题,目的是让用户能够在自己的预算范围内选择出符合自己实验需求的显微镜。首先要知道显微镜从开始诞生发展到现在,主要通过分辨率来划分,分为宽场显微镜、超高分辨率显微镜、激光共焦显微镜以及电镜。这一系列显微镜的分辨率从光镜的200纳米到超高与共聚焦的100多到几十纳米再到电镜的0.2纳米。并不是说显微镜的分辨率越高,就越适合我们的研究。分辨率越高,意味着其价格和操作的难度系数是逐级增长的。那我们如何去选择一个适合我们的显微镜呢?要根据老师和用户自己样品的大小去选择。2不同机型的选择我们在根据样品的大小和观察的实验需求,确定了某一类型的显微镜之后。我们需要根据实验样品去选择相对应的合适机型。显微镜的主要机型,根据其光路设计的不同,主要分为体视显微镜、正置显微镜和倒置显微镜。体视显微镜:体视显微镜,是一种具有正像立体感的显微镜,被广泛应用于材料宏观表面观察、失效分析、断口分析等工业领域。以及生物学、医学、农林、工业及海洋生物各部门。因为体视显微镜的光路设计,符合人体眼睛夹角的偏角,所以通过体视显微镜观察物体时,类似于我们眼睛的成像光路,这样会让我们看到立体的图像呈现。正是由于此设计,体视显微镜的分辨率要远低于传统的正置或倒置显微镜。体视显微镜更多的是观察小物体的宏观表象,而不是更为精细的细节。正置显微镜:正置显微镜作为最早诞生的机型它更多的是要配合玻片来对样品实现显微观察。如何来定义正置显微镜呢?显微镜物镜朝下,观察的样品在物镜的下方,这样的显微镜我们称之为正置显微镜。一般适用于的观察样品为:透明样品、薄的样片、生物切片、涂片等。但由于正置显微镜的机械设计,样品位于载物台与物镜中间。低倍物镜齐焦时,与载物台之间的距离大约为三厘米左右。像无法切割的厚样品,类似矿石、零件或者是在孔板、培养皿、培养瓶中培养的细胞,就无法在正置显微镜下进行观察,那由此人们设计了倒置显微镜。倒置显微镜:顾名思义,倒置显微镜与正置显微镜正好相反,那么定义也是相反的,物镜朝上,要观察的样品在物镜的上方,此类显微镜我们称之为倒置显微镜。我们可以看到倒置显微镜,物镜和载物台之间不再放观察的样品,样品是放于载物台的上面,所以样品的厚度就不会受到载物台与物镜之间距离的限制。因此倒置显微镜主要用于微生物、细胞、细菌、组织培养、悬浮体、沉淀物等的观察。介绍了三种不同形式的显微镜,相信我们的老师和用户对自己的样品适用于什么类型的显微镜已经有了一个大体的判断。当我们更多的去观察样品的立体结构,对细节和分辨率没有更高追求的时候,我们通常会选择体视显微镜。当我们的样品无法制成玻片或者不能放在玻片上时,我们就去选择倒置显微镜。如果能制成玻片就选择正置。为什么说能制成玻片就去选择正置呢?因为对于倒置显微镜来说,正置显微镜的高倍数观察更方便,比如60X和100X的油镜。同时,因为它的光路要比倒置更短,搭配高分辨率聚光器后分辨率更高,对比度更好。通过我们这期推文的介绍,老师对于选择哪种分辨率水平的显微镜,以及什么类型的显微镜会有一个较为清楚的了解。这些只是我们采购或选择显微镜的第一步,就是我们确定显微镜的类型。针对不同的观察样品,又会有其更为适应的观察方式,又有不同的光源,不同品质的物镜,供我们去选择。欲知后事如何,且听下回分解。|申请试用|ECHO 显微镜可以申请试用哦!关注“深蓝云生物科技”公众号,点击“云活动”→“试用中心”即可。
  • 用超低价显微镜拯救无数生命
    乔尼· 布莱切/文   显微镜是科研领域最典型的象征之一,提起它,很多人的脑海里都会浮现出身穿白大褂在实验室里寻求重大突破的科研人员。你或许还记得童年时期第一次透过显微镜观察池水中的草履虫,或洋葱上的细胞结构时的场景。数十年来,在显微镜的帮助下,我们诊断了无数的致命疾病,拯救了无数人的 生命 。然而,在世界的很多地方,这种设备却依然非常短缺。   但这种情形即将改变。科技正在发挥它应有的作用,它正在将智能手机、iPad甚至纸片变成耐用而便携的显微镜,而花费却只有区区几美元。   美国能源部太平洋西北国家实验室的科学家开发了一种小型设备,可以直接固定在智能手机或平板电脑上,将这些设备的摄像头变身为显微镜。他们使用3D打印机制作了这种配件,用它来固定价格低廉的玻璃珠,以此实现放大效果。      一旦安装了这种配件,你就可以使用它观察标准载玻片上的样本,效果可以直接显示在屏幕上。目前有100倍、350倍和1000倍3种规格:100倍可以观察盐晶或叶片结构,350倍可以观察血液中的寄生虫(疟疾)或饮用水中的原生动物(隐孢子虫),1000倍可以观察炭疽孢子。这种配件的设计图可以直接在网上查看,所以如果你也有3D打印机,大约只需使用1美元的打印材料即可自己制作一个这样的显微镜。   澳大利亚国立大学的史蒂夫· 李(Steve Lee)博士已经找到了一种方法,可以直接在烤炉上烘烤显微镜镜头,并将其固定在智能手机上。方法与Shrinky Dink很相似,只不过使用的是与隐形眼镜相同的材料。为了制作这样的镜头,史蒂夫· 李将一滴胶状的聚二甲硅氧烷滴在载玻片上,并在158华氏度(70摄氏度)的温度下烘烤至变硬为止。史蒂夫· 李把另外一滴聚二甲硅氧烷滴在底座上,将载玻片翻转后再次烘烤,利用重力作用来形成水滴的形状。还可以多加几滴来制作最佳的镜头形状。   制作完成后,便可将镜头直接嵌入3D打印机打印的框架内,从而制作智能手机镜头。尽管放大倍数不算高,大约只有160倍,但仍然可以用于诊断黑色素瘤等疾病。这种小镜头的成本大约只有几美元。      如果手头没有3D打印机和智能手机,还可以使用一些技术含量更低的方法:使用一张纸来制作,成本甚至不足1美元。斯坦福大学Prakash实验室的研究团队开发的Foldscope从折纸中获得了灵感,但却可以提供超过2000倍的放大效果。它看起来只是一张纸,把各个部位拆下来后便可以开始折叠了。研究人员并没有提供书面说明,但设计方案却很直观。一旦组装完成,便可使用这种显微镜观察常见的细菌和寄生虫。要制作Foldscope,只需要一张专门设计的聚丙烯纸、一个140倍的低倍数镜头或2180倍的高倍数镜头、一个3伏纽扣电池、一个白色LED灯泡、一个电滑块和一条铜带。   Foldscope的设计者表示,他们希望达成两大使命:通过&ldquo 让全世界的每个孩子都有一台显微镜&rdquo 来影响科学教育,通过开发坚固、易用的诊断设备来影响人们的健康。   这款产品已经提供给1万名用户进行测试,想要阅读测试者的故事,可以查看他们的官方博客Microcosmos。
  • 显微课堂 | 徕卡晶圆检测显微镜 令人信服的技术细节
    晶圆或 LCD 和 TFT 的检验、过程控制和缺陷分析必须快速、精确并符合人体工学。LeicaDM8000M和 DM12000M晶圆检测显微镜提供了一个创新而高性价的系统解决方案,帮助客户充满信心地应对现在和未来的检验挑战。除了大视野和高分辨率光学部件,系统还采用了高度人性化的设计和全内置的 LED 照明,可以从不同角度照亮样品。DM8000 M / DM12000 M 是一个模块化大型平台检测显微镜平台,可用于 8"/200 mm 和 12"/300 mm 样品检测。 手动检测版本 电动版本DM8000 M/DM12000 M01进入检测领域的第一步查看样品表面的更多信息,在更短的研究时间内改进产品质量决策。 宏观物镜(Plan APO 0.7x)4倍与常规扫描物镜的视野,用于快速浏览样品紫外照明可获得更高分辨率,可与斜照明技术相结合,从任意角度以高分辨率查看样品,获得更多样品表面信息,且检验结果精确符合人体工程学的设计和自动化功能可实现快速、低疲劳操作,避免在重复性样品检测过程中注意力不集中通过手动、编码和电动功能支持智能工作流程,加快样品检测速度02快速样品详览从用于快速浏览样本的微距物镜(Plan APO 0.7x)到用于观察最精细细节的微距物镜。 使用 25 mm (FOV) 目镜,可看到 35.7 毫米的样品表面一目了然地看到在高倍放大镜下 "看不见 "的宏观缺陷,如材料样品中的曝光缺失区域、鲨鱼齿结构或流动结构需要检测宏观结构时,无需对样品进行耗时的扫描只需切换到更高倍率(Obj. HC PL APO 150x/0.90 IVIS BD)即可看到最细微的细节03在更短时间内获得更多样品表面信息紫外照明可获得更高分辨率,可与斜照明技术相结合,获得更多样品表面信息。 以高倍率(150 倍)的彩色模式,通过明场、暗场或DIC模式检查样品,以发现样品缺陷通过激活紫外线照明来提高光学分辨率,以观察最精细的结构以高分辨率将对比度较低的表面转化为清晰的结构拓扑图,快速发现缺陷04通过智能功能支持工作流程通过手动、编码和电动功能支持智能工作流程,加快样品检测速度。 只需点击一下按钮,即可根据所选方法自动调整照明和对比度设置,从而节省时间并避免出错集成的 LED 可见光和紫外照明可在几秒钟内切换不同的照明技术,保证污染不会进入无尘间保持,确保洁净室的清洁内置聚焦探测器,用于检测高反射表面,可快速、轻松地找到正确的聚焦位置相关产品 DM8000 M DM12000M 徕卡显微咨询电话:400-877-0075 关于徕卡显微系统徕卡显微系统的历史最早可追溯到19世纪,作为德国著名的光学制造企业,徕卡显微成像系统拥有170余年显微镜生产历史,逐步发展成为显微成像系统行业的领先的厂商之一。徕卡显微成像系统一贯注重产品研发和最新技术应用,并保证产品质量一直走在显微镜制造行业的前列。徕卡显微系统始终与科学界保持密切联系,不断推出为客户度身定制的显微解决方案。徕卡显微成像系统主要分为三个业务部门:生命科学与研究显微、工业显微与手术显微部门。徕卡在欧洲、亚洲与北美有7大产品研发中心与6大生产基地,在二十多个国家设有销售及服务分支机构,总部位于德国维兹拉(Wetzlar)。
  • 光学显微镜技术和应用简介
    自然界中一些最基本的过程发生在微观尺度上,远远超出了我们肉眼所能看到的极限,这推动了技术的发展,使我们能够超越这个极限。早在公元4世纪,人们发现了光学透镜的基本概念,并在13世纪,人们已经在使用玻璃镜片,以提高他们的视力和放大植物和昆虫等对象以便更好地了解他们。随着时间的推移,这些简单的放大镜发展成为先进的光学系统,被称为光学显微镜,使我们能够看到和理解超越我们感知极限的微观世界。今天,光学显微镜是许多科学和技术领域的核心技术,包括生命科学、生物学、材料科学、纳米技术、工业检测、法医学等等。在这篇文章中,我们将首先探讨光学显微镜的基本工作原理。在此基础上,我们将讨论当今常用的一些更高级的光学显微镜形式,并比较它们在不同应用中的优缺点。    什么是光学显微镜?  光学显微镜用于通过提供它们如何与可见光相互作用(例如,它们的吸收、反射和散射)的放大图像来使小结构样品可见。这有助于了解样品的外观和组成,但也使我们能够看到微观世界的过程,例如物质如何跨细胞膜扩散。  显微镜的部件以及光学显微镜的工作原理  从根本上说,显微镜包括两个子系统:一个用于照亮样品的照明系统和一个成像系统,该系统产生与样品相互作用的光的放大图像,然后可以通过眼睛或使用相机系统进行观察。  早期的显微镜使用包含阳光的照明系统,阳光通过镜子收集并反射到样品上。今天,大多数显微镜使用人造光源,如灯泡、发光二极管(LED)或激光器来制造更可靠和可控的照明系统,可以根据给定的应用进行定制。在这些系统中,通常使用聚光透镜收集来自光源的光,然后在聚焦到样品上之前对其进行整形和光学过滤。塑造光线对于实现高分辨率和对比度至关重要,通常包括控制被照亮的样品区域和光线照射到它的角度。照明光的光学过滤,使用修改其光谱和偏振的光学过滤器,可用于突出样品的某些特征。图1:复合显微镜的基本构造:来自光源的光使用镜子和聚光镜聚焦到样品(物体)上。来自样品的光被物镜收集,形成中间图像,该图像由目镜再次成像并传递到眼睛,眼睛看到样品的放大图像。  成像系统收集与样品相互作用的照明光,并产生可以查看的放大图像(如上图1)。这是使用两组主要的光学元件来实现的:首先,物镜从样品中收集尽可能多的光,其次,目镜将收集的光中传递到观察者的眼睛或相机系统。成像系统还可包括诸如选择来自样品的光的某些部分的孔和滤光器之类的元件,例如仅看到已从样品散射的光,或仅看到特定颜色或波长的光。与照明系统的情况一样,这种类型的过滤对于挑出某些感兴趣的特征非常有用,这些特征在对来自样本的所有光进行成像时会保持隐藏。  总的来说,照明和成像系统在光学显微镜的性能方面起着关键作用。为了在您的应用中充分利用光学显微镜,必须充分了解基本光学显微镜的工作原理以及当今存在的变化。  简单复合显微镜  单个镜头可以用作放大镜,当它靠近镜头时,它会增加物体的外观尺寸。透过放大镜看物体,我们看到物体的放大和虚像。这种效果用于简单的显微镜,它由单个镜头组成,该镜头对夹在框架中并从下方照明的样品进行成像,如下图2所示。这种类型的显微镜通常可以实现2-6倍的放大倍率,这足以研究相对较大的样本。然而,实现更高的放大倍率和更好的图像质量需要使用更多的光学元件,这导致了复合显微镜的发展(如下图3)。图2:通过创建靠近它的物体的放大虚拟图像,将单个镜头用作放大镜。图3:左:简单显微镜。右:复合显微镜。  在复合显微镜中,从底部照射样品以观察透射光,或从顶部照射样品以观察反射光。来自样品的光由一个由两个主要透镜组组成的光学系统收集:物镜和目镜,它们各自的功率倍增,以实现比简单显微镜更高的放大倍率。物镜收集来自样品的光,通常放大倍数为40-100倍。一些复合显微镜在称为“换镜转盘(nose piece)”的旋转转台上配备多个物镜,允许用户在不同的放大倍数之间进行选择。来自物镜的图像被目镜拾取,它再次放大图像并将其传递给用户的眼睛,典型的目镜放大率为10倍。  可以用标准光学显微镜观察到的最小特征尺寸由所使用的光学波长(λ)和显微镜物镜的分辨率决定,由其孔径数值(NA)定义,最大值为NA =1空中目标。定义可区分的最小特征尺寸(r)的分辨率极限由瑞利准则给出:  r=0.61×(λ/NA)  例如,使用波长为550nm的绿光和典型NA为0.7的物镜,标准光学显微镜可以分辨低至0.61×(550nm)/0.7≈480nm的特征,这足以观察细胞(通常为10µm大小),但不足以观察较小生物的细节,例如病毒(通常为250-400nm)。要对更小的特征成像,可以使用具有更高NA和更短波长的更先进和更昂贵的物镜,但这可能不适用于所有应用。  在标准复合显微镜(如下图4a)中,样品(通常在载玻片上)被固定在一个可以手动或电子移动以获得更高精度的载物台上,照明系统位于显微镜的下部,而成像系统高于样本。然而,显微镜主体通常也可以适应特定用途。例如,立体显微镜(如下图4b)的特点是两个目镜相互成一个小角度,让用户可以看到一个略有立体感的图像。在许多生物学应用中,使用倒置显微镜设计(如下图4c),其中照明系统和成像光学器件都在样品台下方,以便于将细胞培养容器等放置在样品台上。最后,比较显微镜(如下图4d)常用于法医。图4:复合显微镜。a)标准直立显微镜指示(1)目镜,(2)物镜转台、左轮手枪或旋转鼻镜(用于固定多个物镜),(3)物镜、调焦旋钮(用于移动载物台)(4)粗调,(5)微调,(6)载物台(固定样品),(7)光源(灯或镜子),(8)光阑和聚光镜,(9)机械载物台。b)立体显微镜。c)倒置显微镜。  光学显微镜的类型  下面,我们将介绍一些当今可用的不同类型的光学显微镜技术,讨论它们的主要操作原理以及每种技术的优缺点。  亮视野显微镜  亮视野显微镜(Brightfield microscopy,BFM)是最简单的光学显微镜形式,从上方或下方照射样品,收集透射或反射的光以形成可以查看的图像。图像中的对比度和颜色是因为吸收和反射在样品区域内变化而形成的。BFM是第一种开发的光学显微镜,它使用相对简单的光学装置,使早期科学家能够研究传输中的微生物和细胞。今天,它对于相同的目的仍然非常有用,并且还广泛用于研究其他部分透明的样品,例如透射模式下的薄材料(如下图5),或反射模式下的微电子和其他小结构。图5:亮视野显微镜。左图:透射模式-在显微镜下看到的石墨(深灰色)和石墨烯(最浅灰色)薄片。在这里,图像上看到的亮度差异与石墨层的厚度成正比。右图:反射模式-SiO2表面上的石墨烯和石墨薄片,小的表面污染物也是可见的。  暗视野显微镜  暗视野显微镜是一种仅收集被样品散射的光的技术。这是通过添加阻挡照明光直接成像的孔来实现的,这样只能看到被样品散射的照明光。通过这种方式,暗场显微镜突出显示散射光的小结构(如下图6),并且对于揭示BFM中不可见的特征非常有用,而无需以任何方式修改样品。然而,由于在最终图像中看到的唯一光是被散射的光,因此暗场图像可能非常暗并且需要高照明功率,这可能会损坏样品。  图6:亮视野和暗视野成像。a)亮视野照明下的聚合物微结构。b)与a)中结构相同的暗视野图像,突出显示边缘散射和表面污染。c)与a)和b)相似的结构,被直径为100-300nm的纳米晶体覆盖。仅观察到纳米晶体散射的光,而背景光被强烈抑制。  相差显微镜  相差显微技术(Brightfield microscopy,PCM)是一种可视化由样品光路长度变化引起的光学相位变化的技术.这可以对在BFM中产生很少或没有对比度的透明样品进行成像,例如细胞(如下图7)。由于肉眼不易观察到光学相移,因此相差显微镜需要额外的光学组件,将样品引起的相移转换为最终图像中可见的亮度变化。这需要使用孔径和滤光片来操纵照明系统和成像系统。这些形状和选择性地相移来自样品的光(携带感兴趣的相位信息)和照明光,以便它们建设性地干涉眼睛或检测器以创建可见图像。图7:人类胚胎干细胞群落的相差显微图像。  微分干涉显微镜  与PCM类似,微分干涉显微镜(differential interference contrast microscopy,DICM)通过将由于样品光路长度变化引起的光学相位转换为可见对比度,从而使透明样品(例如活的未染色细胞)可视化。然而,与PCM相比,DICM可以实现更高分辨率的图像,并且减少了由PCM所需的光学器件引入的清晰度和图像伪影。在DICM ,照明光束被线性偏振器偏振,其偏振旋转,使其分裂成两个偏振光束,它们具有垂直偏振和小(通常低于1µm)间隔。穿过样品后,两束光束重新组合,从而相互干扰。这将创建一个对比度与图像成正比的图像差在两个偏振光束之间的光相位,因此命名为“差”干涉显微镜。DICM产生的图像出现与采样光束之间的位移方向相关的三维图像,这导致样品边缘具有亮区或暗区,具体取决于两者之间的光学相位差的符号(如下图8)。图8:微分干涉对比显微镜。左:DICM的原理图。右图:通过DICM成像的活体成年秀丽隐杆线虫(C.elegans)。  偏光显微镜  在偏振光显微镜中,样品用偏振光照射,光的检测也对偏振敏感。为了实现这一点,偏振器用于控制照明光偏振并将成像系统检测到的偏振限制为仅一种特定的偏振。通常,照明和检测偏振设置为垂直,以便强烈抑制不与样品相互作用的不需要的背景照明光。这种配置需要一个双折射样品,它引入了照明光偏振角的旋转,以便它可以被成像系统检测到,例如,观察晶体的双折射以及它们的厚度和折射率的变化(如下图9)。图9:偏光显微镜。橄榄石堆积物的显微照片,由具有不同双折射的晶体堆积而成。整个样品的厚度和折射率的变化会导致不同的颜色。  荧光显微镜  荧光显微镜用于对发出荧光的样品进行成像,也就是说,当用较短波长的光照射时,它们会发出长波长的光。示例包括固有荧光或已用荧光标记物标记的生物样品,以及单分子和其他纳米级荧光团。该技术采用了滤光片的组合,可阻挡短波长照明光,但让较长波长的样品荧光通过,因此最终图像仅显示样品的荧光部分(如下图10)。这允许从由许多其他非荧光颗粒组成的样品中挑出和可视化荧光颗粒或已被染料染色的感兴趣细胞的分布。同时,荧光显微镜还可以通过标记小于此限制的粒子来克服传统光学显微镜的分辨率限制。例如,可以用荧光标记标记病毒以显示其位置在生物样品的情况下,可以表达荧光蛋白,例如绿色荧光蛋白。结合各种新颖形式的样品照明,荧光显微镜的这一优势实现了“超分辨率”显微镜技术,打破了传统光学显微镜的分辨率限制。荧光显微镜的主要限制之一是光漂白,其中标记物或颗粒停止发出荧光,因为吸收照明光的过程最终会改变它们的结构,使它们不再发光。图10:荧光显微镜。左:工作原理-照明光由短通激发滤光片过滤,并由二向色镜反射到样品。来自样品的荧光通过二向色镜,并被发射滤光片额外过滤以去除图像中残留的激发光。右图:有机晶体中分子的荧光图像(晶体轮廓显示为黄色虚线)。由于来自其他分子和晶体材料的荧光,背景并不完全黑暗。  免疫荧光显微镜  免疫荧光显微镜是主要用于在微生物的细胞内的生物分子可视化的位置荧光显微镜的具体变化。在这里,用荧光标记物标记或固有荧光的抗体与感兴趣的生物分子结合,揭示它们的位置。(如下图11)图11:免疫荧光显微镜。肌动蛋白丝(紫色)、微管(黄色)和细胞核(绿色)的免疫荧光标记的两个间期细胞。  共聚焦显微镜  共聚焦显微镜是一种显微镜技术,它可以逐点成像来自样品的散射或荧光。不是一次对整个样品进行照明和成像,而是在样品区域上扫描源自点状光源的照明点,敏感检测器仅检测来自该点的光,从而产生2D图像。这种方法允许以高分辨率对弱信号样本进行成像,因为来自采样点之外的不需要的背景信号被有效抑制。在这里,所使用的波长和物镜在所有三个维度上都限制了成像光斑的大小。这允许通过将物镜移动到距样品不同的距离,在样品内的不同深度处制作2D图像。然后可以组合这些2D图像“切片”以创建样本的3D图像,这是所讨论的其他宽视场显微镜技术无法实现的,并且还允许以3D方式测量样品尺寸。这些优势的代价是无法一次性拍摄图像,而是必须逐点构建图像,这可能非常耗时并阻碍样本的实时成像(如下图12)。图12:单分子荧光的共聚焦荧光图像。小点对应于单个分子的荧光,而较大的点对应于分子簇。此处的荧光背景比简单的荧光显微镜图像弱得多,如亮点之间的暗区所见。  双光子显微镜  双光子显微镜(Two-photonmicroscopy,TPM)是荧光显微镜的一种变体,它使用双光子吸收来激发荧光,而不是单光子激发。在这里,通过吸收两个光子的组合来激发荧光,其能量大约是单个光子激发所需能量的一半。例如,在该方案中,通常由单个蓝色光子激发的荧光团可以被两个近红外光子激发。在TPM中,图像是逐点建立的,就像在共聚焦显微镜中一样,也就是说,双光子激发点在样品上扫描,样品荧光由灵敏的检测器检测。与传统荧光显微镜相比,激发和荧光能量的巨大差异导致了多重优势:首先,它允许使用更长的激发波长,在样品内散射较少,因此穿透更深,以允许在其表面下方对样品进行成像并创建3D样品图像。同时,由于激发能量低得多,光漂白大大减少,这对易碎样品很有用。激发点周围的荧光背景也大大减少,因为有效的双光子吸收仅发生在激发光束的焦点处,因此可以观察到来自样品小部分的荧光(如下图13)。  TPM的一个缺点是双光子吸收的概率远低于单光子吸收,因此需要高强度照明,如脉冲激光,才能达到实用的荧光信号强度。图13:双光子显微镜。花粉的薄光学切片,显示荧光主要来自外层。  光片显微镜  光片显微技术是荧光显微术的一种形式,其中样品被垂直于观察方向的薄“片”光照射,从而仅对样品的薄切片(通常为几微米)进行成像。通过在样品在光片中旋转的同时拍摄一系列图像,可以形成3D图像。这要求样品大部分是透明的,这就是为什么这种技术通常用于形成小型透明生物结构的3D图像,例如细胞、胚胎和生物体。(如下图14)图14:光片显微镜。左:工作原理。右:通过荧光成像用光片显微镜拍摄的小鼠大脑的荧光图像。  全内反射荧光显微镜  全内反射荧光(Totalinternal reflectionfluorescence microscopy ,TIRF)是一种荧光显微技术,可通过极薄(约100nm厚)的样品切片制作2D荧光图像。这是通过照明光的渐逝场激发样品的荧光来实现的,当它在两种不同折射率(n)的材料之间的边界处经历全内反射时就会发生这种情况。消逝场具有与照明光相同的波长,但与界面紧密结合。在TIRF显微镜中,激发光通常在载玻片(n=1.52)和样品分散的水介质(n=1.35)之间的界面处发生全内反射。渐逝场的强度随距离呈指数下降来自界面,这样在最终图像中只能观察到靠近界面的荧光团。这也导致来自切片外区域的荧光背景的强烈抑制,这允许拾取微弱的荧光信号,例如在定位单个分子时。这使得TIRF非常适用于观察参与细胞间相互作用的荧光蛋白(如下图15)的微弱信号,但也需要将样品分散在水性介质中,这可能会限制可以测量的样品类型。图15:TIRF图像显示培养的视网膜色素上皮细胞中的蛋白质荧光。每个像素对应67nm。  膨胀显微镜  膨胀显微镜背后的基本概念是增加通常需要高分辨率显微镜的样品尺寸,以便可以使用标准显微镜技术(尤其是荧光显微镜)对其进行成像。这适用于保存的标本,例如生物分子、细胞、细菌和组织切片,可以使用下图16中所示的化学过程在所有维度(各向同性)均匀扩展多达50倍。扩展样本可以隔离感兴趣的个别特征通常是隐藏的,可以使它们透明,从而可以对它们的内部进行成像。图16:膨胀显微镜的样品制备。细胞首先被染色,然后连接到聚合物凝胶基质上。然后细胞结构本身被溶解(消化),使染色的部分随着凝胶各向同性地膨胀,从而使染色的结构更详细地成像。  光学显微镜中的卷积  除了使光学系统适应特定用例之外,现代光学显微镜还利用了数字图像处理,例如图像去卷积。该技术通过补偿光学系统本身固有的模糊,可以提高空间分辨率以及光学显微镜拍摄图像的定位精度。这种模糊可以在校准步骤中测量,然后可以用于对图像进行去卷积,从而减少模糊。通过将高性能光学元件与先进的图像处理相结合,数字显微镜可以突破分辨率的极限,以更深入地观察微观世界。(如下图17)图17:图像解卷积。左:原始荧光图像。右:解卷积后的图像,显示细节增加。  光学显微镜与电子显微镜  光学显微术通常使用可见光谱中的光波长,由于瑞利准则,其空间分辨率固有地限制为所用波长的大约一半(最多约为200nm)。然而,即使使用具有高NA和高级图像处理的物镜,也无法克服这一基本限制。相反,观察较小的结构需要使用较短波长的电磁辐射。这是电子显微镜的基本原理,其中使用电子而不是可见光照亮样品。电子具有比可见光短得多的相关波长,因此可以实现高达10000000倍的放大倍数,甚至可以分辨单个原子。(如下图18)  图18:同心聚合物结构中纳米晶体放大15000倍的扫描电子显微镜图像,即使是细微的细节,例如基材的孔隙,也能分辨出来。  总结与结论  光学显微镜是一种强大的工具,可用于检查各种应用中的小样本。通过调整用于特定用例的照明和成像技术,可以获得高分辨率图像,从而深入了解样品中的微观结构和过程。文中,我们讨论了各种光学显微镜技术的特点、优势和劣势,这些技术在光线照射和收集方式上有所不同。显微镜种类优点技术限制典型应用亮视野显微镜结构相对简单,光学元件很少低对比度、完全透明的物体不能直接成像,可能需要染色对彩色或染色样品和部分透明材料进行成像暗视野显微镜显示小结构和表面粗糙度,允许对未染色样品进行成像所需的高照明功率会损坏样品,只能看到散射图像特征细胞内颗粒成像,表面检测相差显微镜实现透明样品的成像复杂的光学设置,需要的高照明功率会损坏样品,通常图像较暗跟踪细胞运动,成像幼虫微分干涉对比显微镜比PCM更高的分辨率复杂的光学设置,需要的高照明功率会损坏样品,通常图像较暗活的、未染色的细胞和纳米颗粒的高分辨率成像偏光显微镜来自样品非双折射区域的强背景抑制,允许测量样品厚度和双折射需要双折射样品成像胶原蛋白,揭示晶体中的晶界荧光显微镜允许挑出样品中的单个荧光团和特定的感兴趣区域,可以克服分辨率限制需要荧光样品和灵敏的检测器,光漂白会减弱信号成像细胞成分、单分子、蛋白质免疫荧光显微镜使用抗体靶向可视化特定的生物分子大量样品制备,需要荧光样品,光漂白识别和跟踪细胞和蛋白质共聚焦显微镜低背景信号,可以创建3D图像成像速度慢,需要复杂的光学系统3D细胞成像,荧光信号较弱的成像样品,表面分析双光子显微镜样品穿透深度、背景信号低、光漂白少成像速度慢,需要复杂的光学系统和大功率照明神经科学,深层组织成像光片显微镜图像仅样品的极薄切片,可通过旋转样品创建3D图像成像速度慢,需要复杂的光学系统细胞和生物体的3D成像全内反射荧光显微镜强大的背景抑制,极精细的垂直切片成像仅限于样品的薄区域,需要复杂的光学系统,样品需要在水介质中单分子成像,成像分子运输膨胀显微镜提高标准荧光显微镜的有效分辨率需要对样品进行化学处理,不适用于活体样品生物样品的高分辨率成像  参考:  1. Rochow TG, Tucker PA. A Brief History of Microscopy. In: Introduction to Microscopy by Means of Light, Electrons, X Rays, or Acoustics. Springer US 1994:1-21. doi:10.1007/978-1-4899-1513-9_1  2. Smith WJ. Modern Optical Engineering: The Design of Optical Systems.
  • 一起探索电子显微镜下的奇妙微观世界吧!(第六期)
    Micro-eye第6期 ~食物篇~01使用电子显微镜观察不同刀具切割的食物横截面。那么,一起来看看吧!金枪鱼背肉你是否有过这样的经历,在家里切生鱼片时,鱼肉被切碎,看起来就不好吃。为了探究此原因,此次我们使用3种不同类型的刀具切割金枪鱼背肉,进行观察对比。 使用锋利的生鱼片专用刀切割面的SEM图像(放大倍率:250倍)使用锋利的万能菜刀切割面的SEM图像(放大倍率:250倍)使用粗钝的万能菜刀切割面的SEM图像(放大倍率:250倍)锋利的生鱼片专用刀切出来的表面是光滑的,粗钝的万能菜刀切出来的表面是粗糙的。使用扫描电镜放大观察,可以看出明显的差异。我们知道,刀具一般分为西式和日式两种。家庭中经常使用的西式刀属于双刃刀,两侧研磨开刃,而日式刀属于单刃刀,单侧研磨开刃。与西式刀相比,日式刀切出来的鱼更完美,但日式刀价格昂贵,保养麻烦,因此没有被普及。所以,厨师能切出来美味的刺身,其秘诀也在于他们所使用的刀具。洋葱使用锋利的万能菜刀表面的SEM图像(放大倍率:250倍)使用粗钝的万能菜刀表面的SEM图像(放大倍率:250倍)切割道具同样会影响蔬菜、水果的口感,以洋葱为例。由SEM图像可以了解到,锋利的刀具可以将组织形状切割完整,粗钝的刀具会破坏组织形状。蔬菜的细胞被破坏后,营养物质就会流失,新鲜度也会降低。当然,同时也会失去脆脆的口感。所以,做一道美味的食物,一把锋利的刀具很是关键。好啦,今后让我们继续一起发掘那些肉眼看不到的奥妙吧!公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 超高分辨率显微镜:显微镜发展史上的新突破
    显微镜技术经过长期发展,加之近年来物理学界接二连三出现的重大科研进展,终于,在2008年,显微镜发展史上的新成果&mdash &mdash 超高分辨率荧光显微镜为科学家所研制出。人们预言,它定会成为生物学家的好帮手。   Stefan Hell打破了物理学界的传统看法   自从1873年Ernst Abbe第一次发现光学成像具有衍射限制现象以来,物理学界就公认,显微镜的分辨率具有极限,该极限与光源的波长有关。直到一个多世纪之后,罗马尼亚物理学家Stefan Hell推翻了这一观点。他是首位不仅从理论上论证了,而且用实验证明了使用光学显微镜能达到纳米级分辨率的科学家。   罗马尼亚物理学家Stefan Hell,现任德国马克斯· 普朗克生物物理化学研究院(Max Planck Institute of Biophysical Chemistry)主任。   早在上世纪80年代中期,当时师从德国海德堡大学(University of Heidelberg)一位低温固态物理学家的Stefan Hell就已经发现,如果不是像常规那样使用一个透镜聚焦,而是将两个大孔径的透镜组合在一起聚焦,就可以提高光学显微镜的分辨率。Stefan Hell是首位发现这一现象的研究人员。   Hell于1990年顺利完成了他的博士学业,但同时,这也意味着他将无法再凭借奖学金的资助进行研究了。Hell最终决定独自一人继续在家研究以上的发现,并最终成功发明了4Pi显微镜。 4Pi显微镜,超高分辨率成像中的一个步骤   时任美国马萨诸塞州坎布里奇市哈佛大学(Harvard University)化学系教授的Sunney Xie遇到了Hell,当他了解了Hell发明的4Pi高分辨率显微镜时,Xie对Hell勇敢地对传统物理学观点提出挑战的精神表示赞许。   随后,Hell带着他的发明来到了位于德国海德堡的欧洲分子生物学实验室(European Molecular Biology Laboratory, EMBL),并获得了德国科学基金会提供的奖学金。1991年,Hell在该实验室开始他的博士后研究工作。   起初,许多科学家,包括那些声名显赫的物理学家都认为Hell的工作对于提高光学显微镜的分辨率没有太大的意义。他们认为,Hell仅用他那少得可怜的科研经费来从事这项研究简直就是在冒险。但Hell却始终坚信他能够打破衍射极限。   Hell的努力没有白费,他的冒险终于获得了回报。1992年,Hell第一次用他的4Pi高分辨率显微镜证明了他的确能将传统光学显微镜的分辨率提高3~7倍。然而,尽管Hell提高了Z方向的分辨率,他还是没能突破衍射极限的限制。   此后不久,Hell又在芬兰土尔库大学(University of Turku)得到了他的第二个博士后职位。一个星期六的早晨,Hell正躺在研究生公寓的床上看一本有关光学量子理论的书,突然,灵光一闪,Hell脑海里浮现了一个想法:如果使用一种合适的激光,仅激发一个点的荧光基团使其发光,然后再用一个面包圈样的光源抑制那个点周围的荧光强度,这样就只有一个点发光并被观察到了。Hell给他的这项发明取名STED,即受激发射损耗显微镜(stimulated emission depletion)。有了这个想法后,Hell立即行动,冲进实验室进行相关实验。每当回想起当时的心情,Hell都会觉得那是他科研生涯中最激动的时刻。   曾在EMBL与Hell共事,并共同研发4Pi显微镜的Pekka Hanninen指出,Hell在土尔库大学进行研究工作时非常刻苦。那时,他经常被许多问题困扰。尽管如此,研究过程中还是有许多快乐萦绕着他们。Hell不仅是一名严谨的科学研究者,还是一名音乐爱好者,每当工作至深夜时,实验室走廊总会回响起Hell吹奏萨克斯风的动听乐声。 由共聚焦显微镜(左图)和STED(右图)成像的一个神经元。   1994年,Hell在《光学快报》(Optics Letters)上发表了他关于STED的理论文章。不过直到多年以后,这项理论才得以在实践中被证实。在那段时间里,Hell一面继续研究工作,一面四处奔走筹集科研经费,还卖掉了他4Pi 显微镜的专利。   但是那个时候Abbe的衍射极限理论仍然在学界占统治地位,许多物理学家对Hell的理论都持怀疑甚至批评态度,因此他们也都将研究重点放在其它的成像技术上。尽管如此,Hell还是在1997年与马普生物物理化学研究所签订了一份长达5年的合同,以继续他的STED研究。   1999年,Hell将他的研究成果分别投给了《自然》(Nature)杂志和《科学》(Science)杂志,不过都被退稿。当时两位杂志的主编都没有意识到他的研究成果将会改变整个显微镜领域。   直到2000年,事情才终于有了转机&mdash &mdash 《美国国家科学院院刊》(PNAS)发表了Hell的科研成果。采用 Hell的STED技术,人们第一次得到了纳米级的荧光图像。Hell的工作由此获得了广泛的肯定,2002年,他获得了马普研究所的终身职位。从此,Hell一直在马普研究所从事成像技术的研究工作。   紧随STED这项开创性工作之后,世界各地实验室等研究机构内陆续出现了一批高分辨率的显微镜技术。例如,由珍妮莉娅法姆研究学院(Janelia Farm Research Campus)的物理学家兼工程师Mats Gustafsson领导的研究团队开发出了结构光学显微镜(structured-illumination microscopy, SIM)。 果蝇卵母细胞内的肌动蛋白的3D SIM成像,该照片拍摄于完整的卵泡内。   SIM技术的原理是通过一系列光成像的图案对低分辨率莫尔条纹形式的精细结构进行成像,此类图像是采用其它技术所无法观察到的。然后再由计算机处理、分析这些条纹中包含的信息,最终就可以获得高分辨率的图像。   同年,Gustafsson小组得到了HeLa细胞中肌动蛋白细胞骨架的图像,他的图像相比传统显微镜的图像来说,在测向上的分辨率提高了2倍。随后,Gustafsson小组又使用非线性技术将整体分辨率提高了4倍。   科研竞赛   2006年,超高分辨率显微镜研究行业翻开了新的篇章。Eric Betzig、Harald Hess以及Lippincott-Schwartz小组、Samuel Hess小组以及庄晓威(音译)科研小组几乎同时报道了他们提高显微镜分辨率的科研成果,下面分别介绍这三个小组的研究情况。   Eric Betzig、Harald Hess以及Jennifer Lippincott-Schwartz小组   2005年夏天,细胞生物学家Jennifer Lippincott-Schwartz卸下了她在美国马里兰州贝塞斯达美国国立卫生研究院(HIV)暗室里的红色灯泡。Lippincott-Schwartz正在为赋闲在家的两位物理学家Eric Betzig和Harald Hess腾出空间,筹备实验室。正是这两位物理学家研制出了光敏定位显微镜(photoactivated localization microscopy, PALM),他们的这种新产品能将荧光显微镜的分辨率提升至纳米级水平。   接下来的整个冬天,Eric Betzig、Harald Hess以及Lippincott-Schwartz等人都一直在那间狭小的没有取暖设备的实验室里工作。现在就职于美国弗吉尼亚州阿士伯恩霍华德休斯医学研究所珍妮莉娅法姆研究学院(Howard Hughes Medical Institute&rsquo s Janelia Farm Research Campus in Ashburn, Virginia)的Hess承认,自己与Betzig对生物学的认识都不深。不过近15年来,他们一直都在努力,希望能运用生物学知识获取高分辨率的显微图像,但是没有取得明显进展。然而,当Hess和Betzig了解到Lippincott-Schwartz和George Patterson在2002年发明的光敏绿色荧光蛋白(photoactivatable green fluorescent protein)后,他们知道他们已经找到了解决问题的关键所在。   回想起当时的情形,Lippincott-Schwartz指出:&ldquo 他们当时非常激动。我还记得当我们得到第一张显微图像时,你根本无法看出那是什么东西。直到我看到他们将荧光图像和电镜图像叠加之后的结果才相信,我们成功了。我当时觉得这一切真是太神奇了。&rdquo   2006年,Eric Betzig、Harald Hess以及Lippincott-Schwartz小组在《科学》(science)杂志上发表了他们的PALM研究成果。使用PALM可以清楚得看到细胞黏着斑和特定细胞器内的蛋白质。   Samuel Hess小组   Samuel Hess小组是上述三个小组之一。Hess是美国缅因州立大学(University of Maine)物理系的助理教授。2005年夏天,Hess一直在和他们学校的化学工程师和生物学工程师,就如何提高观察活体细胞脂筏结构的分辨率等问题进行交流。   2005年的一个夏夜,Hess被邻居家举办舞会的声音吵醒。半睡半醒的Hess走下楼来,随手画了一副设计图,他的这种设计是需要借助荧光标记的蛋白质来显示细胞形态的。第二天早上,当Hess重新翻看这幅非清醒状态绘制的潦草的设计图时,不由得大笑起来。不过令人吃惊的是,他的这幅设计图竟然没有一点问题。于是他把这幅图拿给物理系的同事检查,但同事也没有发现任何问题。   接下来,Hess就按照他的设计图开始制作显微镜了。此时,他的科研经费所剩不多,而结题时间转眼就到。因此,Hess等人以最快的速度组装好显微镜,并进行了试验。同时,在不到两天的时间里,缅因州立大学表面科学技术实验室的同事就为Hess制备好供检验显微镜效果的蓝宝石晶体样品。   对于同事们的帮助,Hess总是不胜感激。   2006年,《生物物理学期刊》(Biophysical Journal)刊登了Hess小组的科研成果。他们将这项研究成果命名为荧光光敏定位显微镜(fluorescence photoactivation localization microscopy, FPALM)。2007年,Hess小组证明了FPALM可以分辨细胞膜脂筏上的蛋白质簇。   庄晓威科研小组   与此同时,另一个研究小组&mdash &mdash 哈佛大学霍华德休斯医学研究所(Howard Hughes Medical Investigator at Harvard University)的研究员庄晓威科研小组也在研究高分辨率成像技术。   通过3D STORM观察到的一个哺乳动物细胞内线粒体网状系统。传统荧光成像(左图) 3D STORM成像(中图),其中,采用不同颜色标记出z的位置 3D STORM成像中xy维图像(右图)。   其实,这三个小组都有一个共同的也是非常简单的理念,那就是先获得单分子荧光图像,再将成千上万个单分子图像叠加在一起,获得最终的高分辨率的图像。   早在2004年初,庄等人就已经意外发现了有一些花青染料可以用作光敏开关。这也就意味着这些染料既可以被激活发出荧光,也可以被关闭不发光,人们可以使用不同颜色的光束来随意控制这些花青染料的开和关。   从那以后,庄等人就一直在研究如何用光敏开关探针来实现单分子发光技术。他们希望能用光敏开关将原本重叠在一起的几个分子图像暂时分开,这样就能获得单分子图像,从而提高分辨率。Eric Betzig小组和Samuel Hess小组也都采用了同样的策略,只不过他们使用的不是光敏开关而是一种可以先被荧光激活继而被漂白失活的探针。   2006年,庄的科研成果在《自然-方法》(Nature Methods)杂志上发表,他们将这项成果命名为随机光学重建显微镜(stochastic optical reconstruction microscopy, STORM)。使用STORM可以以20nm的分辨率看到DNA分子和DNA-蛋白质复合体分子。   此后几年,超高分辨率荧光显微镜又得到了进一步的发展。现在,生物学家已经能够使用超高分辨率荧光显微镜在纳米水平上观察细胞内部发生的生化变化了。以往那些大小在200nm至750nm之间的模糊泡状图像再也无法对他们造成困扰了。尽管早在上世纪80年代,科研机构里就已经出现了超高分辨率显微镜的构思,但只是最近几年里这项技术才伴随着它的商业化进程获得了快速发展。现在,已经有几十家实验室安装了这种最新型的显微镜并投入了使用。正像Lippincott-Schwartz所说的,超高分辨率显微镜正在以飞快的速度被科研界接受,在生物学界更是如此。   超高分辨率显微镜的成绩   已经开始使用这些显微镜的生物学家对这项技术都表示出了极高的热情。Jan Liphardt这位在美国劳伦斯伯克力国家实验室(Lawrence Berkeley National Laboratory)工作的生物学家,还清楚地记得他2006年第一次在《科学》(science)杂志读到Betzig的那篇有关PALM技术的论文时的激动心情。当他看到那幅线粒体蛋白的图像时立刻想到了该技术可以用于他自己的微生物研究领域。   Liphard说道:&ldquo 通常,我们得到的大肠杆菌荧光图像都只有20像素,甚至更低,现在突然有一幅几千像素的图片摆在你面前,你可以想象那是一种什么感觉。&rdquo   Liphard现在正与Betzig以及其他一些研究人员一起研究大肠杆菌的趋化现象(chemotaxis)。Liphard还提到:&ldquo 我从没想到这项技术达到的分辨率有这么高,可以如此清楚地看到细胞内单个蛋白质分子的定位,甚至还能定量。而对我来说,每天的工作实际上就是在弄清楚这些蛋白质在什么位置,什么时候存在。而之前我们的研究主要采用间接方法。但超高分辨率显微镜这项新技术是我从事科研工作这么长时间以来,感触最深,获益最大的一项科技成果。&rdquo   美国丹佛市科罗拉多州立大学医学院(Medicine at the University of Colorado Denver)的助理教授Nicholas Barry也正在和Betzig合作,他们使用了一台蔡司的全内反射荧光成像系统(total internal reflection fluorescence imaging, TIRF)来研究肾细胞顶端胞膜上的蛋白质簇。   Barry指出,只需要一台蔡司显微镜和普通电脑,差不多就足够了。此外,他们还花费3万美元添置了两台激光发射器。现在,Barry等人可以在8分钟内得到一幅图像,这幅图像由10000帧图像合成,每一帧图像上显示10个分子。最后的图像文件大小大约是0.3GB。Barry等人还使用Perl语言自己开发了一套免费程序。Barry表示:&ldquo 这里面包含了每帧图像的资料信息,客户可以根据这些信息进行相关计算。&rdquo Barry充满信心地提到,很快就会有人为NIH的那套免费图像分析软件ImageJ开发出一套运算程序作为插件使用。   美国斯坦福大学(Stanford University)化学及应用物理系教授W.E. Moerner曾于1989年第一个在试验中使用光学显微镜得到了单分子图像。W.E. Moerner教授表示,这几年来,超高分辨率显微镜研究领域已经取得了巨大的进展,终于达到了纳米级单分子分辨率。他兴奋地说:&ldquo 经过了近20年对单分子成像课题的研究,我们终于取得了完美的成果。&rdquo   展望   自从2006年STORM技术和PALM技术问世以来,科技工作者就一直在不断努力,对它们进行改进、完善和提升。2008年,Lippincott-Schwartz的研究团队将PALM技术和单颗粒示踪技术(single-particle tracking)结合,成功地观测到活体细胞胞膜蛋白的运动情况。同年,庄小威研究组在《科学》(science)杂志上也发表了他们的3D STORM成像成果,该技术的空间分辨率比以往所有光学3D成像技术的分辨率都要高出10倍。论文中,他们展示了用3D STORM成像技术拍摄的肾细胞内微管结构图和其它的分子结构图。随后,他们又进一步将该技术发展成了多色3D成像技术(multicolor 3D imaging)。Gustafsson,还有其他一些科研工作者使用3D SIM技术(该技术使用3束干涉光,而不是常见的2束)观察到了共聚焦显微镜(confocal microscopes)无法观测到的哺乳动物细胞核内结构。位于德国的世界知名光学仪器制造公司蔡司公司进一步发展了SIM和PALM技术,不过他们将PALM称为PAL-M。蔡司公司预计将于2009年末推出全新的成像产品。   2008年,Hell小组使用STED技术通过抗体标记目标蛋白,观察到了活体神经元细胞中突触小泡(synaptic vesicles)的运动过程。同年稍晚些时候,他们又使用4Pi显微镜和STED技术得到了固定细胞内线粒体的3D图像,分辨率达到了40至50nm。最近,他们又使用超高分辨率显微镜成像技术对脑切片组织中的形态学变化进行了研究,并得到了活体神经元细胞树突棘(dendritic spines)的3D图像。 PALM在哺乳动物细胞内拍摄到的粘附复合物。   由于最近几年这些新技术的不断涌现,现在可以对活体细胞进行三维观察了。Gustafsson指出,随着PALM技术和STORM等新技术的出现,以前很多看起来不可能的事情现在都变得可能了。   尽管已有许多科学家从这项技术进展中获益,但是仍然可以进一步提高,以使更多的研究人员能够在自己的工作中使用它。到目前为止,那些成功应用此项技术的实验室都采取了正确的技术组合:研究人员可以很好地将物理学与生物学相结合&mdash &mdash 他们将显微镜装配并做适当的调节,然后用它对生物学样品进行检测。Moerner指出,软件的编写也不容小觑:对检测到的光子进行定位和报告需要进行准确计算,从而得到合适的分辨率。   仅仅是显微镜的价格就已经限制了它的普及性,Leica&rsquo s TCS STED显微镜高达100万美元。因此,如何获得相应的资金来购置显微镜仍然是摆在研究人员面前的一个难题,位于丹佛市的科罗拉多大学(University of Colorado)光学显微镜组主任Bill Betz这样说道。   Betz曾申请用于显微镜购置的资金,但遭到了拒绝。但他表示,他们已经计划再次申请相关资金。而Stefan Hell曾指出,激光领域的技术进展已经可以使得研究人员自己在实验室内构建一个STED平台,花费只需不到10万美元。   除了要将这一技术方法普及,使生物学家能够加以利用之外,该项技术的研发人员还表示,他们已经开始致力于研究更宽范围及更多样的荧光探针了。更好的探针当然能够为我们带来更高的分辨率及更快速的图像处理。美国纽约阿尔伯特&bull 爱因斯坦医学院(Albert Einstein College of Medicine)解剖学及结构生物学副教授Vladislav Verkhusha说到:&ldquo 为了对活体哺乳动物细胞进行研究,你就需要有一整套的荧光标记蛋白和可通过光控开关控制的蛋白质。&rdquo 他本人在荧光蛋白领域的研究工作就受益于PALM的出现。   庄晓威的众多项目之一便是与Alice Ting及其在麻省理工学院(MIT)的实验室合作,对蛋白标记技术进行研究,希望能够找到一种方法可以将小和明亮的光控开关可控的探针标记于细胞的特异蛋白上,从而可以对活细胞进行成像。她提到:&ldquo 将遗传标记方法与小而明亮且可被光控开关控制的探针结合在一起,将是今后发展分子级别超高分辨率成像的十分理想的一种方法。&rdquo   尽管研发人员还将继续努力,以进行相应技术的提高,但是超高分辨率荧光显微镜更加广泛的应用还是毫无疑问地成为新的一年的标志。Harald Hess说:&ldquo 这一技术的确会为生物学家的工作带来很大的帮助。同时,我们也在不断询问,&lsquo 你们想要用它做什么精彩的实验?&rsquo 事实上,我们也得到了许多精彩的答案。&rdquo
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制