当前位置: 仪器信息网 > 行业主题 > >

数字技术干扰机

仪器信息网数字技术干扰机专题为您提供2024年最新数字技术干扰机价格报价、厂家品牌的相关信息, 包括数字技术干扰机参数、型号等,不管是国产,还是进口品牌的数字技术干扰机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合数字技术干扰机相关的耗材配件、试剂标物,还有数字技术干扰机相关的最新资讯、资料,以及数字技术干扰机相关的解决方案。

数字技术干扰机相关的论坛

  • 时间继电器及抗干扰方法

    数字技术和相关专业的不断发展,继电保护技术也有了很大发展,如静态继电器在电力系统中的应用,其中数字式时间继电器作为基础元件,已广泛应用于各种继电保护及自动控制回路中,使被控制设备或电路的动作获得所需延时,并用以实现主保护与后备保护的选择性配合。时间继电器:(1)交流频率50Hz,额定控制电源电压AC380V及以下(2)直流额定控制电源电压DC220V及以下(3)自动控制电路中作时间控制元件,按预定的时间接通或断开电路标准:JB/T 9568特点:(1)本系列产品主要由整流稳压器、振荡/分频/计数器、电子开关、电位器及执行继电器等组成的 “元器件组合”部件和外壳等部件组成(2)本系列产品延时整定机构操作方便,并有合适的操作力。电位器旋转时手感平滑,并有适当强 度和旋转力矩。表示整定时间的刻度盘清晰、易读 数字继电器: 数字式时间继电器用于继电保护,首先用于替换电磁型和晶体管型时间继电器。它可缩短过流保护的级差,减少维护量,提高保护的动作正确率。保护了主系统及主设备的安全稳定运行。由于它具有精度高、稳定性好、整定方便、直观、改变定值无需进行校验、整定范围宽等特点,深受用户的欢迎。由此数字式时间继电器在电力系统中得到广泛应用。 但近几年,数字式时间继电器在电力系统中多次出现误动,给用户造成很大的损失。误动的原因如系统环境差、使用维护问题、产品质量问题、器件损坏、抗干扰性能差等等原因,但最难处理的问题是数字式时间继电器抗干扰性能差,本文在此针对数字式时间继电器抗干扰性能方面,提出了自己的看法,供参考。 1提高抗干扰能力方法 1.1干扰的主要来源 在电力系统运行中的继电器受到干扰主要是电磁干扰,来源有以下几种 (1)直流低压回路断开电感性负载(如接触器、中间继电器等)或电磁型电流、电压继电器触点抖动时,常会产生快速瞬变脉冲组电波; (2)高压变电所临近高压电器设备操作时产生的感应干扰; (3)移动电话、携带式步话机和相邻或附近设备发生的调频电磁波及电弧放电时产生的高频电磁辐射; (4)设备中脉冲电路、时钟回路、开关电源、收发讯机等通过空间传播的电磁能量; (5)带电荷的操作人员触及到设备的导电部件时产生放电。 1.2电磁干扰的传播方式 电磁干扰的传播方式主要有两种形式,即传导和辐射。传导是通过导线以电流或电压的形式作用在继电器上。辐射是通过空间以电磁场的形式作用于继电器上。对于数字式时间继电器主要的传导路径为电源线。因此抑制传导干扰的主要部分在数字式时间继电器的电源部分。 1.3提高抗干扰的措施 根据电磁干扰的来源和干扰方式及数字式时间继电器的工作特点,对数字式时间继电器提高抗干扰能力采用的措施主要从以下方面进行解决。 (1)电源输入端增加EMI滤波器。EMI滤波器是一种低通滤波器,由无源元件构成的多端口网络。它不仅能衰减由传导传播干扰方式引起的干扰,同时也对辐射干扰方式的干扰有显著的抑制作用。这样的滤波器对于低频(20—100kHz)特别有效。再通过选用合适的铁氧体材料铁芯,它的抑制频率范围可增大到400MHz。 由于数字式时间继电器的体积小,受结构的限制,成型的EMI滤波器一般体积较大,不适用。 而继电器工作频率不高,设计及工艺相对要求不高,同时也可降低成本,因此在电路里直接设计出EMI滤波器是非常可行的。 配件经严格筛选,可选到接近理想状态,但实际上存在偏差。 滤波器中介质电容、电感均可改变,适当变化期间的耦合,对于线路开关、接触器、执行机构,触点抖动产生的瞬变干扰能起到充分的抑制作用。 (2)数字电路抗干扰一般措施 ①时钟频率应在工作允许的条件下选用最低的;②必须对电源线,控制线去耦以防止外部干扰进入;③每个集成电路的电源与地之间要加去耦电容。要求电容的高频性能好;④在速度不快的信号线上加去耦电容。 (3)合理设计印刷电路板①印刷板上的电源与地线要呈“井”字形布线,以均衡电流,降低线路电阻;②布线时高、低压线分开,交、直流分开;③输入、输出线不要紧靠时钟发生器、电源线等电磁热线,不要紧靠复位线、控制线等脆弱信号线;④相邻板间交叉布线;⑤尽量减少电源线走线的有效包围面积,这样可以减少电磁耦合;⑥相邻层布线应互相垂直;⑦走线不要有分支,以防导致反射和产生谐波;⑧正确接入旁路电容。数字电路在工作时,电流突变较大,会产生很强噪声信号,应按图4在电源线上正确接入旁路电容;⑨接地点集中。 (4)合理配线①输入电源线与地线应尽量短;②板与板间的连线或接插件连线应尽量短。且线与线间分开;③配线时,电源线与触点引出线应分开;④正、负电源线应互相绞合,以降低共模干扰。 (5)采用新工艺①采用贴装技术采用表面贴装装封技术,可以显著减少由于器件的引线较长而产生的杂散寄生电容、电感,简化了屏蔽的设计,所以在很大程度上减少了电磁干扰和射频干扰。②采用多层线路板从2层印制电路板改为4层印制电路板,可大大改善发射和抗扰度性能。

  • 【分享】电量隔离传感器在数字化技术中的应用

    一、概述 电量隔离传感器变送器是针对工程中的电量检测(监测),提高系统的整体抗干扰能力,而研制开发的一种小体积、高性能的电量测试部件(产品)。 电量隔离传感器变送器可以对现场的大电流、高电压、功率、频率、相角、电度等电参量进行隔离测量和变换,也可以对各种微弱信号(如各种桥路信号)进行隔离放大和变换,将其调理后,变换成符合国际通用标准的电压、电流、频率等模拟信号或变换成数字量、开关量状态等信号输出。这些输出信号可以和传统的指针式仪表相接,也与现代的数字式自控仪表、各种AD转换器以及计算机系统直接配接,从而可以形成一个高可靠的工业检测(监测)或控制系统。 由于电量隔离传感器在应用中,用户不需做二次开发工作,高电压或大电流信号可以直接接入产品,(通过端子、插针输入或穿孔方式输入),就可以得到相应的输出信号。因此电量隔离传感器作为信号调理、隔离和变换功能摸块,是工业控制和数据采集系统中比较理想的变送器产品。 随着科学技术的不断发展,工业控制或检测(监测)系统对电量隔离传感器的要求也越来越高,特别是在产品的稳定性、检测精度和功能方面。由于数字化产品不论其性能还是功能,如非线性校正和小信号处理方面,模拟产品是不可比拟的。因此,电量隔离传感器的数字化是一种必然趋势。 下面就电量隔离传感器的工作原理和其数字化技术问题作一个简述,供大家参考。 二、电量隔离传感器基本工作原理 由于电量隔离传感器产品的被检测对像主要是电流和电压信号,所以下面主要介绍电流和电压信号的检测原理。 1、交流信号检测原理 交流信号又分为交流电压和电流信号。图1为交流电流信号的检测原理框图,图2为交流电压信号的检测原理框图,由CT和PT对信号进行隔离,电流为穿孔输入方式,电压为端子接线输入方式。 [img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912291744_192765_1636985_3.gif[/img]图1 交流电流信号检测原理框图[img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912291744_192766_1636985_3.gif[/img]图2 交流电压信号检测原理框图其中,CT为电流互感器,PT为电压互感器,输出一般为0~5V或4~20mA。

  • 【分享】如何选择数字多用表

    如何选择数字多用表 数字多用电表由于具有准确度高、测量范围宽、测量速度快、体积小、抗干扰能力强、使用方便等特点而广泛应用于国防、科研、工厂、学校、计量测试等技术领域,但其规格不同,性能指标多种多样,使用环境和工作条件也各有差别,因此应根据具体情况选择合适的数字多用表。选择数字多用表一般从以下几个方面来考虑:

  • 数字图像处理技术在纺织品测试中的应用及发展

    近年来,随着科学技术的发展,各种先进技术不断涌入纺织工业,其中数字图像处理技术在纺织行业中的应用可谓日新月异,不断发挥其快速、精确,以及简单稳定的优势,在很大程度上加快了纺织品测试的速度,同时提高了纺织品测试的水平。1 数字图像处理技术概述数字图像处理(DigitalImageProcessing)又称为计算机图像处理,它是指将图像信号转换成数字信号,并利用计算机进行处理的过程。主要包括以下几个方面:数字图像的采集与数字化、图像压缩编码、图像增强与恢复、图像分割、图像分析等。在实际应用中,使用图像处理技术的系统很多,其一般过程为:信息获取一预处理一特征提取一图像分析。获取图像的方法多种多样,可以通过直接拍摄,或通过光学显微镜或电镜放大后拍摄等方式获取图片,然后通过A/D转换,将图像信号数字化,再将数据传人图像处理系统,运用计算机强大的数据处理能力,分析图像,根据要求输出各种指标。目前,很多方法已经逐步从理论与方法的探索研究阶段走向工业化实际生产应用,如小波变换、神经网络、专家系统、立体视觉等,同时智能分析也已成为研究的必然趋势。2数字图像处理技术的应用上世纪90年代中期,图像处理技术在纺织中应用的研究热点主要是:纤维材料性能测试、纱线性能分析、半制品质量检测等。而近几年来,人们研究关注的重点主要集中在织物表面特性的分析、组织结构的自动分析、成品及半成品性能检测等,其中一些技术已经在纺织生产中得到实际应用。另外,人们对非织造布纤维和纤维取向的评定、纤维和纱线性能分析等方面的研究也在日趋深人。

  • 数字万用表如何选型?

    数字多用电表由于具有准确度高、测量范围宽、测量速度快、体积小、抗干扰能力强、使用方便等特点而广泛应用于国防、科研、工厂、学校、计量测试等技术领域,但其规格不同,性能指标多种多样,使用环境和工作条件也各有差别,因此应根据具体情况选择合适的数字多用表。选择数字多用表一般从以下几个方面来考虑:一、功能 现在的数字多用表除了具有测量交、直流电压,交、直流电流,电阻等五种功能外,还有数字计算,自检,读数保持,误差读出,二极管检测,字长选择,IEEE-488接口或RS-232接口等功能,使用时要根据具体要求选用。二、范围和量程 数字多用表有很多量程,但其基本量程准确度最高。很多数字多用表有自动量程功能,不用手动调节量程,使得测量方便、安全、迅速。还有很多数字多用表有过量程能力,在测量值超过该量程但还没达到最大显示时可不用换量程,从而提高了准确度和分辨力。三、准确度 数字多用表允许的最大误差不仅要看它的可变项误差,还要看它的固定项误差。选择的时候还要看稳定误差和线性误差的要求是多少,分辨力是否符合要求。一般数字多用表如要求0.0005级~0.002级,至少应有61位数字显示;0.005级~0.01级,至少应有51位数字显示;0.02级~0.05级,至少应有41位数字显示;0.1级以下,至少应有31位数字显示。四、输入电阻和零电流 数字多用表的输入电阻过低和零电流过高都会引起测量误差,关键要看测量装置所允许的极限值是多少,即要看信号源的内阻大小。信号源阻抗高时应选择高输入阻抗、低零电流的仪器,使其影响可以忽略。五、串模抑制比和共模抑制比 在存在各种干扰如电场、磁场和各种高频噪声或进行远距离测量时,容易混进干扰信号,造成读数不准,因此应根据使用环境选择串、共模抑制比高的仪器,尤其是进行高精度测量时,应选择带保护端G的数字多用表,能很好地抑制共模干扰。六、显示形式及供电电源 数字多用表的显示形式不仅限于数字,还可以显示图表、文字和符号,以便于现场观测、操作和管理。根据它的显示器件的外形尺寸可分为小型、中型、大型及超大型四类。 数字多用表的供电电源一般为220V,而一些新型的数字多用表电源范围很宽,可以在1100V~240V之间。一些小型的数字多用表配上电池就可使用,也有一些数字多用表可用交流电、内部镍镉电池或外接电池三种形式。七、响应时间、测量速度、频率范围 响应时间越短越好,但有一些表的响应时间比较长,要等一段时间后读数才能稳定下来。测量速度应根据是否与系统测试联用,如联用时,速度就很重要,而且速度越快越好。频率范围,则根据需要适当选择。八、交流电压转换形式 交流电压测量分平均值转换、峰值转换和有效值转换。当波形失真较大时,平均值转换和峰值转换不准确,而有效值转换可不受波形的影响,使测量结果更加准确。九、电阻接线方式 电阻测量接线方式有四线制、两线制。进行小电阻和高精度测量时,应选择带四线制的电阻测量接线方式。 随着大规模集成电路和显示技术的发展,数字多用表逐渐向小型化、低功耗、低成本方向发展,数字多用表也明显分为便携式和台式两种。便携式一般为31位或41位,体积小,重量轻,耗电少,适合生产车间或野外使用;台式可达61位或71位,准确度和分辨力越来越高,采用微处理器和GP-IB接口设备,在计量、科研和生产部门作为标准表和精密测量用。 总之,选择时不一定要具备以上所有条件,应根据使用的具体要求来选择最适当的数字多用表。

  • 【分享】数字成像技术

    数字摄像头基础知识CCDCCD(Charge Coupled Device),即“电荷耦合器件”,以百万像素为单位。数码相机规格中的多少百万像素,指的就是CCD的分辨率。CCD是一种感光半导体芯片,用于捕捉图形,广泛运用于扫描仪、复印机以及无胶片相机等设备。与胶卷的原理相似,光线穿过一个镜头,将图形信息投射到CCD上。但与胶卷不同的是,CCD既没有能力记录图形数据,也没有能力永久保存下来,甚至不具备“曝光”能力。所有图形数据都会不停留地送入一个“模-数”转换器,一个信号处理器以及一个存储设备(比如内存芯片或内存卡)。CCD有各式各样的尺寸和形状,最大的有2×2平方英寸。CMOSCMOS(Complementary Metal Oxide Semiconductor),即“互补金属氧化物半导体”。它是计算机系统内一种重要的芯片,保存了系统引导所需的大量资料。CMOS传感器便于大规模生产,且速度快,成本较低,是数码相机关键器件的发展方向之一。白平衡 (White Balance) 在不同光源下,因色温不同,拍摄出来的相片会偏色。如色温低时光线中的红,黄色光含量较多,所拍的照片色调会偏红,黄色调,色文高时光线中的蓝、绿色较多,照片会偏蓝、绿色调。此时便需要利用白平衡功能来作修正,其原理是控制光线中红,绿及蓝三元色的明亮度,使影像中最大光位达到纯白,便能令其它色彩准确。 插值 (Interpolation)在不生成像素的情况下增加图像像素大小的一种方法,在周围像素色彩的基础上用数学公式计算丢失像素的色彩。有些相机使用插值,人为地增加图像的分辨系。Bit(位) 这是计算机图像中的术语,用来描述生成的图像所能包含的颜色数。“深度是8位”意味着图像只含有256种颜色。现在的数码相机,每一种颜色的颜色深度都是8位。由于每一个像素的颜色都是是由红色、绿色和蓝色三种颜色混合而成的,所以图像包含的颜色可达256×256×256共计1.67亿种,也就是所谓的24位色。TWAIN这是数字照相技术中非常常见的一个词。TWAIN是指一种特殊的软件,有了它,其他与TWAIN兼容的软件就可以共享图像资源了。比如说,PaintShopPro,这是一个很好的图像处理方面的共享软件,它就可以和TWAIN设备协同工作。所以你可以在PaintShopPro中直接使用数码相机中的图像。TWAIN设备包括扫描仪,传真机,当然,还有数码相机。区分CCD与CMOS1970年是影像处理行业具有里程碑意义的一年,美国贝尔实验室发明了CCD。二十年后,人们利用这一技术制造了数字相机,将影像处理行业推进到一个全新领域。数字相机无需胶卷和冲洗、可重复拍摄和即时调整;影像可无限次复制且不会降低质量,方便永久保存,并可用于电子传送和处理。它的诞生给影像处理业带来了一场革命。而后,有人发现,将计算机系统里的一种芯片进行加工也可以作为数字相机中的感光传感器,即CMOS,其便于大规模生产和成本低廉的特性是商家们梦寐以求的。业内人士分析,它在不久的将来可能取代CCD,如今两者依然共存。许多人认为:

  • 智能电网数字化计量系统关键技术取得突破

    [align=center][b][size=16px]智能电网数字化计量系统关键技术取得突破[/size][/b][/align][size=15px][color=var(--weui-FG-2)]关注→_→[/color][/size] [size=15px]海纳计量[/size] [size=15px][color=var(--weui-FG-2)]2023-01-23 01:01[/color][/size] [size=15px][color=var(--weui-FG-2)]发表于河北[/color][/size][size=17px] 近日,2022年度电力创新奖授奖成果正式公布。其中,由中国电力科学研究院有限公司雷民、殷小东等人申报的“智能电网数字化计量系统关键技术及应用”技术成果荣获电力创新奖一等奖。[/size][size=17px] 作为电网电压、电流、电能的基础感知节点,计量系统是电网数字化转型的基础和重要组成部分。随着智能电网的发展,计量系统可靠测量能力不足,数据融合应用效率低,难以支撑电网数字化转型对海量准确计量数据的需求,攻克电网数字化计量系统关键技术迫在眉睫。[/size][size=17px] 据了解,中国电力科学研究院有限公司从2012年组建数字化计量技术攻关团队,在计量系统架构、计量溯源体系、数据融合应用三方面开展技术创新,提出自校准的数字化集中计量系统架构,攻克系统级计量数据的实时自监测自校准难题;提出基于量子技术的数字量值溯源方法和“众数—赫米特”暂态校验方法,溯源准确度大幅提升;发明了基于高速同步采样和潮流分布逻辑判断的电能分析技术,实现电力系统宽动态、快时变的电能精准计量。由此,推动建立了我国数字化计量溯源体系,为电力、铁路、航天等各行业高电压测量提供准确量值。[/size][size=17px] 目前,依托该项目成果,攻关团队在全国范围内科研院所、军工企业、生产制造企业和电网开展量值传递和现场检测,统一全国量值;支撑张北柔直工程、上海世博园建设、±1100kV直流输电等重大工程和全国智能变电站数字化计量系统的建设,有效保障我国重大工程安全稳定经济运行;在陕西美鑫、山西阳泉等大型冶金行业用户推广应用,国内首次实现数字化计量贸易结算,推动数字化计量系统的法治化建设。同时,该项目成果已在巴西、巴基斯坦和土耳其等国推广应用。[/size]

  • 数字技术的应用将会产生新型的采购组织 !

    数字技术的应用将会产生新型的采购组织 !

    [color=#cc0000][b]数字技术,让梦想照进现实。尽管许多人为这种新型采购组织的理想状态所吸引,并且认为切实可行,但是要把“理想”变为现实,需要借助数字技术。[/b][/color][color=#cc0000][b]事实上,新型采购组织的形成除了企业自身发展的需求以外,还有数字化大浪潮的“推波助澜”。[/b][/color][color=#cc0000][b]因此,要实现这一新的采购理想,数字技术的应用是关键,利用数字技术或有助于显著降低采购部门的成本,并通过实现节约成本之外的更大业务价值来大幅提高其投资回报率。[/b][/color][color=#cc0000][b]而在所有数字技术中,云计算、产业物联网、数据分析和认知系统这四项将成为采购能力发展的关键。[/b][/color][color=#cc0000][b][img=,600,490]https://ng1.17img.cn/bbsfiles/images/2019/06/201906211330220426_2793_1841897_3.jpg!w600x490.jpg[/img][/b][/color]

  • 基于恒磁励磁传感技术的水流量测量干扰的分析

    0 引言恒磁励磁流量传感技术由于它结构简单可靠、励磁不用电源、磁感应强度高、对管道振动不敏感等特点,因此可广泛应用于涡街流量计、射流流量计等以频率量为被测量的流量测量仪器,也可用于以电压量为被测量的电磁流量计等产品。其基本工作原理是:当导电液体介质(如饮用水)流过非导磁体测量管或计量腔切割由恒定磁场产生的磁力线时,根据电磁感应定律导电液体介质就会产生感应电动势,通过放置在与磁力线和测量管相互垂直的一对电极可将感应电动势引出;由于感应电动势E与恒定磁场B的强度、介质的平均流速v成正比,因此可从感应电动势的强弱来测定被测介质的流速,见下式:http://dc.llybw.com/up_files/image/Article/2011/12/05/62561221.gif式中:E为感应电动势;k为调整系数;B为磁感应强度;D为测量管内径;v为测量管内导电液体介质平均流速。而流量传感器输出的体积流量则为:http://dc.llybw.com/up_files/image/Article/2011/12/05/62561222.gifhttp://dc.llybw.com/up_files/image/Article/2011/12/05/62561223.gif其工作原理见图1。基于恒磁励磁的涡街流量检测方法是根据被测流体在测量管内受到阻流体作用后,形成周期性旋涡切割磁力线而产生有一定频率的感应电动势这一原理工作的。由于被测流速与旋涡频率成比例,因此可以通过一组电极检测出有一定幅值E的频率量f作为被测量;射流流量电磁检测法与涡街流量检测法在原理上是基本相同的,即被测流体在射流(计量)腔中由于附壁效应产生反馈振荡而切割磁力线,在其电极上输出一定幅值的频率量。两种传感方式都可以做成单端信号输出形式或差动信号输出形式。由于恒磁励磁传感器无需电源励磁,因此非常适合用于电池供电电磁流量计的微功耗流量计和电子水表。而阻碍恒磁励磁传感技术推广应用的极化干扰电势以及其他不利影响,目前已可采用某些新的设计方法和技术对其作出处理,削弱其影响,达到实际应用之目的。本文对该传感技术应用于导电液体介质的流量(或总量)测量时由于传感原理而造成的各种干扰和误差作出简要分析和探讨。1 由传感原理产生的噪声及干扰1.1 极化电势引入的干扰水是一种由有极分子组成的导电液体电介质,在电场力的作用下(假设由恒磁励磁传感器的两电极产生),介质分子中的正负电荷中心发生相对位移,在其边界与外电场垂直的两表面上就会出现极化电荷,形成极化电势。极化电势的大小与外电场的大小成比例,但极化电势反过来又会影响外电场。由于极化电势是流量和温度等变量的函数,因此在电极上就会形成变化规律很复杂的极化干扰电势,也较难从被测流量信号中分离出去;同时,直流电动势的存在会导致介质中的正负离子向不同极性的电极移动,使电极间的内阻增大,也会影响传感器的正常工作。1.2 原电池效应引入的干扰在导电液体中的两电极,当其电极材料成分有微小变化时,就会产生原电池效应,即在电极回路上会产生微弱电流,并通过信号处理的输入回路产生感应电动势。由于导电液体流动状态的不确定性,因此在电极上也会形成某种随机干扰。1.3 流动噪声引入的干扰当被测流体在测量管(或计量腔)内流动时,使极化电荷随之移动,流量传感器电极上就会感应出所谓的“流动噪声”,它的量值和变化状态不但与被测流体的介电常数、电导率、运动黏度、流体流动速度等有关,还与励磁方式有关。在相同条件下,恒磁励磁时的流动噪声对测量结果的影响是比较严重的。1.4 直流放大器漂移引入的干扰恒磁励磁传感方式使某些被测流量信号以直流电势的大小来衡量流量信号的强弱(如恒磁励磁的电磁流量计),因此前级信号处理必须使用直流放大器。但直流放大器的零漂和噪声等误差会直接叠加到流量信号上,影响测量的准确性;特别是在微小流量测量时,其影响程度就更为严重。1.5 电极材料差异引入的干扰当电极材料的材质或成分有差异,即金属电极的材料标准电位不一致时,两电极间就会形成一固定的电位差。该电位差的存在(可以达到数百毫伏),一方面会加剧极化干扰影响的程度,同时也会使前级放大器产生堵塞,影响测量线性度。由于上述极化电势等干扰的存在,使得在低电导率流体测量时被测小流量信号会被干扰电势所覆盖,这也使恒磁励磁传感技术在流量仪表中的应用受到了普遍的质疑和排斥。为此必须寻找适合的方法及途径来解决这一问题,实现新的突破。2 消除噪声和干扰的主要途径及方法2.1 极化与干扰电势的抵偿方法一:在非采样期内,用中频交变方波电场接通恒磁励磁传感器的两电极,以消除励磁时产生的极化电势的干扰;而在采样期内,由微处理器将两电极自动切换到测量前置放大器的输入端,对流量信号进行检测,见图2。http://dc.llybw.com/up_files/image/Article/2011/12/05/62561224.gif方法二:用开关电路周期性地使传感器两电极接地或采集测量信号,以定期地抵消形成在测量电极上的摩擦电荷与其他杂散电荷。方法三:所谓的“动态反馈控制法”。其方法是:对两个电极进行周期性地测量时段和控制时段的交替工作方式,并使每个控制时段的电极电势等于负的测量时段的电极电势测量值,以消除电极电势信号中的极化,从而直接由两电极信号的差值求得流体流速值。其工作原理见图3。http://dc.llybw.com/up_files/image/Article/2011/12/05/62561225.gif2.2 电极电解抛光通过对传感器两电极的电解抛光处理(施加正的直流电压或交流电压),使其表面形成极其光滑并且有光泽的界面,并在5nm内的深度里具有铬元素密度高于铁元素密度的特性,见图4。抛光处理后的电极在被测流体中浸泡一段时间,就能较大幅度降低“流动噪声”对测量信号的影响。2.3 流场调整采用流场调整装置对被测流体流动分布状态进行控制和调整,提高流体雷诺数,使射流水表或涡街水表测量限下移,测量稳定性提高,间接提高了传感器的信噪比,降低了噪声对有用信号的干扰。如射流水表在采用了流场调整装置后,被测流量的雷诺数下限可以降低到102数量级,大大提高了测量小流量的计量特性。http://dc.llybw.com/up_files/image/Article/2011/12/05/62561226.gif2.4 信号差动检测流量传感器采用差动电极技术和差动放大器检测方法,可以使有用信号幅度增加一倍,明显提高了流量仪表的信噪比;同时也可以抵消由外界温度、振动等因数引起的各种干扰,提高仪表综合性能,特别是小流量测量灵敏度。2.5 电极材料的选配与加工选择材料成分一致性好、标准电位相同、耐腐蚀的电极材料制作传感器电极;同时采用抛光等方法提高电极加工后的表面粗糙度(要求Ra≤0.05μm),使电极在使用中具有较强的抗腐蚀性能。2.6 对直流被测信号进行特殊处理采用“调制”技术对被测直流信号进行调制,使直流信号“交流化”,这样可以使用高性能的交流放大器进行信号放大处理,再经解调处理后还原成原有信号;同时还可使用模拟或数字滤波技术,以及采用相关或频谱分析技术对被测信号与干扰信号进行分离,最大限度地提高信噪比。3 结语随着信号处理技术的不断发展和完善,恒磁励磁流量传感技术所固有的极化干扰电势等影响正在逐步削弱和消除,而其所拥有的各种优势和特点也在同步显现中。因此我们有充分理由相信,应用恒磁励磁传感技术的水流量测量仪表一定会有其更广阔的应用范围,其各项性能指标也将得到进一步的完善和提高。

  • 【原创】超声波液位计是很好的控制器也是数字液位仪表

    超声波液位计是一种很好的控制器,它也是一种数字液位仪表,在测量行业中的应用是很广泛的,能够适应不同行业的测量需求,而且它还可以在恶劣的环境下进行测量。先进的检测技术和计算技术,提高了仪表的测量精度,丰富的软件功能对干扰回波有抑制功能,广泛应用于电力、冶金、化工、建筑、粮食、给排水等行业,既可测量液体物料也可测量固体物料。随着工业自动化的飞速发展,对工业仪表的要求程度越来越高,国内生产超声波液位计的厂家还是沿用国外第一代的技术,当我们经过几年的现场实践和总结基本把产品做的稳定可靠的时候,进口仪表已经有了更先进的产品,譬如说高频脉冲型号的,带吹扫的,抛物面天线的,带瞄准器的,近期还推出了3D信号的。超声波液位计采用调频连续波技术的液位计,功耗大,须采用四线制,电子电路复杂,采用雷达脉冲波技术的液位计,功耗低,可用二线制的供电,容易实现本质安全,精确度高,适用范围更广。

  • 【资料】ICP-AES光谱干扰校正方法的研究

    ICP-AES光谱干扰校正方法的研究沈兰荪著 北京工业大学出版社1997年出版简介ICP-AES(电感耦合等离子体原子发射光谱)分析技术作为一种重要的元素分析技术,在国民经济与科学研究的各个方面得到了广泛的应用,光谱干扰的校正是ICP-AES分析技术进一步发展的一个关键问题。本书是一本关于ICP-AES分析技术的专著,研究用现代信号处理的观点与方法校正ICP-AES分析中的光谱干扰,全书共分7章,第1章绪论,第2章ICP-AES分析技术为全书的基本,第3章至第6章,分别讨论了“谱线拟合法”“自适应滤波法”“卡尔曼滤波算法”及“基于数字化谱的方法”等4种主要的校正方法,第7章为光谱干扰的实时校正。本书可供有关专业 高校教师、研究生、高年级大学生、科研人员及工程技术人员使用。目 录前 言第1章绪论1.1ICP-AES中的光谱干扰1.2化学计量学的发展1.3本书内容介绍第2章 ICP-AES分析技术2.1原子发射光谱2.2 ICP-AES分析仪器 2.2.1概述 2.2.2现代ICP-AES分析仪器的典型结构 2.2.3ICP-AES仪器的分析性能 2.2.4仪器函数2.3ICP-AES中光谱干扰校正概述 2.3.1ICP-AES中的干扰现象 2.3.2背景干扰的传统校正方法 2.3.3谱线重叠干扰的传统校正方法 2.3.4传统校正方法的改进2.4讨论第3章 谱线拟合法3.1光谱干扰的数学模型3.2谱线拟合的数学基础 3.2.1Cauchy法 3.2.2直接搜索法 3.2.3Newton-Raphson法 3.2.4单纯形法 3.2.5广义最小二乘法 3.2.6Davison法3.3DFP法用于光谱干扰的校正 3.3.1DFP法[87] 3.3.2模拟数据3.4基于非线性最小二乘法的光谱干扰校正 3.4.1约束条件的处理 3.4.2迭代过程 3.4.3模拟数据 3.4.4实测谱图分析3.5讨论第4章 自适应滤波法4.1Widr0w自适应噪声抵消模型4.2自适应滤波参考输入的选取4.3LMS算法[138,96,158~161]4.4LS算法[138,162,163]4.5自适应滤波法用于背景干扰的校正[98,101,103] 4.5.1模拟数据 4.5.2实测谱图分析4.6自适应滤波法用于谱线重叠干扰的校正[99,102,103] 4.6.1自适应谱线抽取模型的提出 4.6.2模拟数据 4.6.3实测谱图分析4.7ICPAES自适应分析法 4.7.1算法公式 4.7.2模拟数据 4.7.3实测谱图分析4.8用多通道系统识别方法分离光谱重叠峰[91,105] 4.8.1多通道系统识别模型 4.8.2识别算法 4.8.3模拟数据 4.9讨论第5章 卡尔曼滤波算法5.1 Van Veen的卡尔曼滤波算法5.2 Van Veen的卡尔曼滤波算法的模型误差5.3 ICP-AES加权增量卡尔曼滤波算法5.4 讨论第6章 给予数字化谱的方法6.1 数字化谱的获取6.2 模式识别用于光谱分类与识别6.3 高维数据的降维处理6.4 因子分析处理数字化谱第7章 光谱干扰的实时校正7.1 微电子技术的发展7.2 ASIC电路的兴起7.3 WSI技术与三维集成技术7.4 表面安装技术7.5 计算机技术的发展7.6 DSP芯片的进步7.7 采用TMS320C20的光谱干扰实时校正系统7.8 采用Transputer的光谱干扰实时校正系统7.9 讨论

  • 【分享】环境标志产品技术要求 数字式多功能复印设备(HJ/T 424-2008 )

    环境标志产品技术要求 数字式多功能复印设备 Technical requirement for environmental labeling products Digital multi-function copier device ( HJ/T 424-2008 代替HJBZ 40-2000 2008-07-01实施) 为贯彻《中华人民共和国环境保护法》,减少数字式多功能复印设备在生产、使用和处置过程中对人体健康和环境的影响,促进环保、节能产品的使用,制定本标准。本标准规定了数字式多功能复印设备(以下简称复印设备)环境标志产品的定义、基本要求、技术内容及检验方法。本标准适用于以复印为其基本功能,使用干式显影剂、热定影、普通纸的数字式复印机、数字式多功能一体机(多功能数码复印机、多功能数码复合机、多功能打印复印一体机、彩色复印机等)等复印设备。本标准为指导性标准,适用于中国环境标志产品认证。本标准所代替标准的历次版本发布情况为:HJBZ 40-2000。 [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=92282]环境标志产品技术要求 数字式多功能复印设备(HJ/T 424-2008 )[/url]

  • 《智能电网数字化计量系统关键技术取得突破》中术语的讨论

    [align=center][b][font=微软雅黑][size=16px][color=#333333]智能电网数字化计量系统关键技术取得突破[/color][/size][/font][/b][/align][align=center][font=微软雅黑][color=#808080][font=微软雅黑]发布时间:[/font][font=微软雅黑]2023-01-28[/font][/color][/font][font=微软雅黑][color=#333333] [/color][/font][/align][font=微软雅黑][color=#333333][font=微软雅黑] 近日,[/font][font=微软雅黑]2022年度电力创新奖授奖成果正式公布。其中,由中国电力科学研究院有限公司雷民、殷小东等人申报的“智能电网数字化计量系统关键技术及应用”技术成果荣获电力创新奖一等奖。[/font][/color][/font][font=微软雅黑][color=#333333] [/color][/font][font=微软雅黑][color=#333333]作为电网电压、电流、电能的基础感知节点,计量系统是电网数字化转型的基础和重要组成部分。随着智能电网的发展,计量系统可靠测量能力不足,数据融合应用效率低,难以支撑电网数字化转型对海量准确计量数据的需求,攻克电网数字化计量系统关键技术迫在眉睫。[/color][/font][font=微软雅黑][color=#333333] [/color][/font][font=微软雅黑][color=#333333]据了解,中国电力科学研究院有限公司从[/color][/font][font=微软雅黑][color=#333333]2012年组建数字化计量技术攻关团队,在计量系统架构、计量溯源体系、数据融合应用三方面开展技术创新,提出自校准的数字化集中计量系统架构,攻克系统级计量数据的实时自监测自校准难题;提出基于量子技术的数字量值溯源方法和“众数—赫米特”暂态校验方法,溯源准确度大幅提升;发明了基于高速同步采样和潮流分布逻辑判断的电能分析技术,实现电力系统[/color][b][color=#ff0000]宽动态[/color][/b][color=#333333]、[/color][b][color=#ff0000]快时变[/color][/b][color=#333333]的电能精准计量。由此,推动建立了我国数字化计量溯源体系,为电力、铁路、航天等各行业高电压测量提供准确量值。[/color][/font][font=微软雅黑][color=#333333] [/color][/font][font=微软雅黑][color=#333333]目前,依托该项目成果,攻关团队在全国范围内科研院所、军工企业、生产制造企业和电网开展量值传递和现场检测,统一全国量值;支撑张北柔直工程、上海世博园建设、[/color][/font][font=微软雅黑][color=#333333]±1100kV直流输电等重大工程和全国智能变电站数字化计量系统的建设,有效保障我国重大工程安全稳定经济运行;在陕西美鑫、山西阳泉等大型冶金行业用户推广应用,国内首次实现数字化计量贸易结算,推动数字化计量系统的法治化建设。同时,该项目成果已在巴西、巴基斯坦和土耳其等国推广应用。[/color][/font]

  • PCR技术迈入第三代 微滴式数字PCR

    你说世界变化快不快,PCR已经迈入第三代!近日,一种称为微滴式数字PCR(ddPCR™)的新技术出现在《Analytical Chemistry》杂志上,它能够确定样品中待测靶分子的绝对数目。第一代PCR就是我们目前最常用的终点PCR技术,通过凝胶电泳获得定性的结果。风靡全球的实时定量PCR技术为第二代,它利用荧光试剂监控扩增,来实现相对定量。在开展基因表达分析时,需要标准曲线或参考基因来协助定量。微滴式数字PCR则为第三代PCR,它不再依赖Cq值或内参基因,即可确定低至单拷贝的待检靶分子的绝对数目。微滴技术让数字PCR更低成本,且更实用。

  • 英开发质谱成像技术新方法 推动癌组织分析数字化

    原标题:英开发出质谱成像技术运用新方法 推动癌组织分析进入数字时代 在癌症研究领域,质谱成像(MSI)是一种非常有前途的技术,但目前该技术的运用还受原始数据预处理、图像精确度及图像识别能力等问题限制。英国帝国理工学院近日发布新闻公报称,该校研究人员开发出一种新方法,可有效解决上述问题。新方法将改变病体组织的检测方式,从而推动癌症组织分析进入数字时代。相关研究成果刊发在最新一期《美国国家科学院院刊》上。 质谱成像技术主要是利用质谱直接扫描生物样品,分析化学成分在细胞或组织中的结构、空间与时间分布信息。这种成像方法不局限于特异的一种或几种蛋白质分子,可在生物组织样本中找到每一种蛋白质分子,并提供它们在组织中空间分布的精确信息。早在几年前,就有科学家提出利用该技术来确定生物组织类型的构想,但却一直没有设计出实用有效的方法。 新方法利用解吸电喷雾电离技术来优化数据预处理,提高图像精确度,并通过提取生物组织特定的分子印记来强化不同生物组织类型的生化特性,以增强图像识别能力。研究人员称,利用新开发的集成生物学信息平台,可将质谱成像技术获得的大量人体组织的具体信息数据,用于构建各种类型的组织数据库。通过多样本分析,并与传统的组织学分析结果进行比较,计算机就可以学习识别不同类型的组织,从而使癌变组织的解析变得相对简单高效。他们将自己设计的工作流程用于直肠结肠癌组织的检测,效果良好。 与标准组织学动辄几周才会得出完整结果的检测手段相比,利用质谱成像技术进行单一检测,仅需几小时即可获得更详尽的信息,不仅会显示组织是否发生癌变,还会显示癌症是哪一种类型和亚型。这些信息对于医生选择最有效的治疗方法十分重要。 研究人员指出,自19世纪后期染色技术用于显示组织结构以来,对组织病理学样本的分析方法鲜有变化。直到今天,染色法依然是医院组织学分析的主流手段,并且变得越来越复杂,耗费也越来越高。而质谱成像技术可能改变组织学的基本范式,科学家将不再根据组织的结构,而是根据它们的化学成分来定义组织类型。将来的检测不再依靠专家的眼睛,而是以海量数据为基础,仅一个检测所得到的信息就远比多个传统组织学检测所得到的更多。他们表示,新研究克服了一些质谱成像技术实际应用所遇到的障碍,将成为创建下一代完全自动化的组织学分析手段的第一步。 总编辑圈点 这是用互联网思维改造传统检测方法的一种尝试,它首先选取了质谱成像方法中最容易快速成像的解吸电喷雾电离技术,实现了数据快速采集;其次,通过将质谱成像得到的结果数字化,建立样本库,提高了数据规模,保证了分析精度;最后,与大数据、云计算等结合,可不断提高检测的准确性,为可靠应用提供保证。新思维已经提高了单个样本的检测精度,我们对它在群体和地区性疾病的检测预防方面也应有所期待。

  • 蒸汽流量计的抗干扰技术

    蒸汽流量计的抗干扰技术在蒸汽流量计中,干扰信号的大小就决定了蒸汽流量计量程的下限。如果要扩展蒸汽流量计的量程测量下限就必须要降低测量干扰信号。下面介绍一下蒸汽流量计的抗干扰技术:  蒸汽流量计的干扰信号主要有电磁干扰和机械振动干扰两种方式,如何解决抗干扰信号是改进蒸汽流量计的关键问题。通常情况下,蒸汽流量计是采用金属外壳的,外壳具有很好的屏蔽作用,可以有效的防止电场以及射频的干扰。对于磁场的干扰,可以在测量仪器的内部电路设计中通过更换非磁性元件和印刷电路板合理布线等方法来解决。但是随着电子技术的发展和完善,抗电磁干扰主要是抗地线电流干扰。  在蒸汽流量计测量时,主要的干扰因素有电磁干扰和机械振动两种方式,这两种干扰限制了量程,还严重影响了蒸汽流量计在低流速、小流量的测量中的应用。可以通过在电路上采用光隔离限流来抗干扰,这种方法也可以有效的解决地线电流的干扰。

  • 【分享】工业数字摄像机--(详细技术参数 推荐大家看看)

    工业数字摄像机型 号性 能 指 标MV-1300UC/1300UM 130万彩色/黑白数工业字摄像机USB2.0接口、1/2″,750线, 15fps@1280×1024,30fps@640×480,5.2*5.2um,可通过外部信号触发采集或连续采集。静态采集可应用于文字识别、PCB检测、半导体及元器件检测、显微图像及医学图像采集、证件制作、文档电子化,动态采集用于交通管理、工业检测、车牌识别机器人视觉等领域。MV-2000UC 200万像素彩色工业数字摄像机USB2.0接口, 1/2″, 4.2*4.2um,850线, 10fps@1600×1200,15fps@1280×1024,30fps@640×480, 1.0Lux,外部触发采集或连续采集,曝光时间可控,带闪光灯控制接口。静态采集可应用于文字识别、PCB检测、半导体及元器件检测、显微图像及医学图像采集、证件制作、文档电子化,动态采集用于交通管理、工业检测、车牌识别机器人视觉等领域,支持VC、VB、C++Builder、Delphi SDK。MV-3000UC 300万像素彩色工业数字摄像机USB2.0接口, 3.2um×3.2um, 900线, 6fps@2048×1536,10fps@1600×1200,15fps@1280×1024,30fps@640×480,外部信号触发采集或连续采集,曝光时间可控,带闪光灯控制接口。静态采集可应用于文字识别、PCB检测、半导体及元器件检测、显微图像及医学图像采集、证件制作、文档电子化,动态采集用于交通管理、工业检测、车牌识别机器人视觉等领域支持VC、VB、C++Builder、Delphi SDK。MV-1300FC/1300FM 130万彩色/黑白工业数字摄像机1394接口,1/2″,750线, 15fps@1280×1024,45fps@640×480,分辨率高,图像质量好,色彩还原性好,图像稳定,体积小,安装方便,标准镜头接口(CS或C口),图像窗口无级缩放,计算机可以编程控制曝光时间、亮度、增益等参数,带有外触发输入,带有闪光灯控制输出。无中继数据传输5米,加中继可达72米,支持一台计算机连接多只摄像机,支持VC、VB、C++Builder、Delphi SDKMV-2000FC 200万像素彩色工业数字摄像机1394接口,1/2″,800线, 10fps@1600×1200,15fps@1280×1024,45fps@640×480,分辨率高,图像质量好,色彩还原性好,图像稳定,体积小,安装方便,标准镜头接口(CS或C口),图像窗口无级缩放,计算机可以编程控制曝光时间、亮度、增益等参数,带有外触发输入,带有闪光灯控制输出。数据传输5米,加中继可达72米,一台计算机连接多只摄像机,支持VC、VB、C++Builder、Delphi SDKMV-3000FC 300万像素彩色工业数字摄像机1394接口, 3.2um×3.2um ,1000线, 6fps@2048×1536,10fps@1600×1200,15fps@1280×1024,45fps@640×480分辨率高,图像质量好,色彩还原性好,图像稳定,标准(CS或C口),图像窗口无级缩放,计算机编程控制曝光时间、亮度、增益等参数,带有外触发输入,带有闪光灯控制输出。数据传输5米,加中继可达72米,一台计算机可接多只摄像机,支持VC、VB、C++ Delphi SDKMV-网络口130万数字摄像机1/2″,750线,1280X1024 ,15-25fps,100M PCI网卡,高分辨率、高精度、高清晰度、色彩还原好、低噪等,符合高速网络标准,安装、使用方便。允许外触发,曝光时间可控。带SDK开发包软件。MV-VS130FM 130万黑白CCD数字摄像机1394接口,1/2″,大于960线,12位AD,8位输出,4.65μm ,7.5fps@1280×1024,,允许外触发,曝光时间可控,帧曝光,软件控制图像窗口无级缩放,支持VC、VB、C++Builder、Delphi SDKMV-VS130FC 130万彩色CCD数字摄像机1394接口,1/2″,大于800线,12位AD,8位输出,4.65μm ,7.5fps@1280×1024,,允许外触发,曝光时间可控,帧曝光,软件控制图像窗口无级缩放,支持VC、VB、C++Builder、Delphi SDKMV-VD130SC 高速工业数字摄像机2/3“彩色面阵,最大分辩率1280×1024,10bit,全帧快门,6.7 µ m x 6.7 µ m26帧/秒@1280×1024,减小分辨率可提高输出帧1024×1024,32帧/S,1024×768,45帧/S,800×600,80帧/S,640×480,120帧/S,256×256,350帧/S,支持SDK二次开发,可以应用在半导体检测、印制板检测、印刷质量检测、食品饮料检测、电子目镜和医疗影像、高速道路监控等工业检测领域机器视觉图像采集产品专业研发制造商--维视图像(Microvision)http://www.xamv.com http://www.Microvision.com.cn西安市南二环东段1号东方广场1号楼14层 联系人:周小姐服务热线:(029)82213182 82213183 82306711 82306317 13279212018 15829900262 传真:(029)82306711Email:xamv123@126.com 北京:http://www.mv186.com Email:tuxiangmv@126.com 010-51391385  13522851886 深圳: http://www.microvision.cn 13714564541  上海: 13917389523

  • 校准曲线写几位有效数字?

    校准曲线写几位有效数字?找了一个标准,HJ/T91-2002《地表水与污水检测技术规范》,里面有有效数字、相对偏差、校准曲线等内容,比较全,发上来共享。

  • 数字万用表要怎么修理,有几个方案可遵循

    家里买了一个数字万用表,用了一定时间后就失灵了,这时你也不能去找数字万用表厂家修理,那就需要我们自己备上修理的方法,才能正常使用了,下面给大家介绍6种修理的办法,希望大家能够掌握。1.感觉法,凭借感官直接对故障原因做出判断,通过外观检查,能发现如断线、脱焊、搭线短路、熔丝管断、烧坏元件、机械性损伤、印刷电路上铜箔翘起及断裂等;可以触摸出电池、电阻、晶体管、集成块的温升情况,可参照电路图找出温升异常的原因。另外,用手还可检查元件有否松动、集成电路脚管是否插牢,转换开关是否卡带;可以听到和嗅到有无异声、异味。2.测电压法,测量各关键点的工作电压是否正常,可较快找出故障点。如测A/D转换器的工作电压、基准电压等。3.短路法,在前面所讲的检查A/D转换器方法里一般都采用短路法,这种方法在修理弱电和微电仪器时用得较多。4.断路法,把可疑部分从整机或单元电路中断开,若故障消失,表示故障在断开的电路中。此法主要适合于电路存在短路的情况。5.测元件法,当故障已缩小到某处或几个元件时,可对其进行在线或离线测量。必要时,用好的元件进行替换,若故障消失,说明元件已坏。6.干扰法,利用人体感应电压作为干扰信号,观察液晶显示的变化情况,常用于检查输入电路与显示部分是否完好。这些方法都可以用来检测数字万用表是否损坏,以及怎么样找到故障源,就能找到修理的办法。如果自己还是无法修理,可以找数字万用表厂家代理的商家,让他们帮你维修,也能解决问题。

  • 【原创】数字表和指针表的区别

    数字表和指针表的区别 数字表和指针表在实际应用中的区别:  *、指针表读取精度较差,但指针摆动的过程比较直观,其摆动速度幅度有时也能比较客观地反映了被测量的大小(比如测电视机数据总线(SDL)在传送数据时的轻微抖动);数字表读数直观,但数字变化的过程看起来很杂乱,不太容易观看。  *、指针表内一般有两块电池,一块低电压的1.5V,一块是高电压的9V或15V,其黑表笔相对红表笔来说是正端。数字表则常用一块6V或9V的电池。在电阻档,指针表的表笔输出电流相对数字表来说要大很多,用R×1Ω档可以使扬声器发出响亮的“哒”声,用R×10kΩ档甚至可以点亮发光二极管(LED)。  *、在电压档,指针表内阻相对数字表来说比较小,测量精度相比较差。某些高电压微电流的场合甚至无法测准,因为其内阻会对被测电路造成影响(比如在测电视机显像管的加速级电压时测量值会比实际值低很多)。数字表电压档的内阻很大,至少在兆欧级,对被测电路影响很小。但极高的输出阻抗使其易受感应电压的影响,在一些电磁干扰比较强的场合测出的数据可能是虚的。[em0815]

  • 【原创大赛】新技术:酚酞色度值的数字化特征

    【原创大赛】新技术:酚酞色度值的数字化特征

    新技术:酚酞色度值的数字化特征摘要:传统酚酞的变色范围是肉眼判断,采用CIE1976LAB色空间系统对其变色范围进行了标识,测量出其不同pH值变色值,绘出了pH值-CIE1976LAB色空间曲线,为进一步的深入研究提供了手段。,关键词:酚酞,色度值,数字化,特征前言指示剂颜色的突变来确定滴定终点,从而建立被测定物之间的数学关系,一直是经典化学分析的重要应用。对指示剂变色的描述是“目视感受+语言描述”方法,受照明条件、背景亮度、溶液透射度及人视觉和心理的差异等影响,对颜色的判断有较大的离散性和随机误差。特别是人眼的进化缺陷,致使目前分析精度不高,滴定过程和终点用语言描述,不能精确的实现量值传递。对颜色变化的实际需要是变色范围更窄、更灵敏、更精确,克服人眼对颜色的敏感程度不同而造成的对反应终点的判断偏差。CIE(ComnissionInternationale de I'Eclairage,国际照明委员会)推荐了CIE1976LAB色空间系统,为颜色的精确测量提供了支持和先例。就技术应用理论上来说,已具备足够的代表性和可靠的准确性,现在已成为世界各国正式采纳、作为国际通用的测色标准。1987年我国发布的GB7921-87将CIE1976(L*,a*,b*)色空间作为国家标准。酚酞化学式为C20H14O4,为白色或微带黄色的细小晶体,难溶于水但易溶于酒精],是最重要的酸碱指示剂之一。传统化学认为酚酞指示剂遇碱显示红色,在酸性溶液中不显色。也有文献研究表明,酚酞在弱碱性及中性水溶性中无色,在弱碱性溶液中呈紫红色,酚酞的pH变色范围为8.2-9.8,在强碱性溶液中也褪色。本文通过采用CIELAB色空间方法,研究了酚酞在不同pH溶液中的变色现象。通过[i]L[/i]*、[i]a[/i]*、[i]b[/i]*等色度值参数,首次测定了酚酞色度值与pH值的对应关系,绘制出酚酞变色的L*a*b*色空间色度学参数与pH值的关系图,找到了颜色突变的色度值参数,完成了颜色变化的数字描述方式。在公开的论文层面尚没有人对酚酞指示剂的色度学特征公开发表研究结果,对该领域的研究尚未起步。本文的研究发现,为代替传统的“目视感受→思维判断→语言描述”、实现颜色的“三维数字坐标”值奠定基础。1. 实验部分1.1试剂、仪器与测量条件0.5mol/L H2SO4溶液,0.5 mol/L NaOH溶液,10%酚酞溶液,邻苯二甲酸氢钾溶液,水。UV2600分光光度计,雷磁酸度计PHSJ-3F(配pH三复合电极E-301-C)、Admesy hera光纤光谱仪(配卤钨灯光源)、注射泵(SP1-C1)、电动搅拌器JJ-1、测量容器(自制)。测量条件:光谱范围380 nm~780 nm,△λ5 nm,10 mm光程,CIE 1976(L*,a*,b*)色空间,D65,以水为空白。1.2 实验内容1.2.1酚酞溶液的吸收峰将2滴10%酚酞溶液加入不同浓度的NaOH溶液中,溶液呈不同的粉红色。在分光光度计测量其吸收峰,见图1。 [table][tr][td] [img=,690,361]http://ng1.17img.cn/bbsfiles/images/2016/07/201607251050_601702_2648817_3.png[/img] [/td][/tr][/table] 图1. 酚酞在可见光谱的吸收峰1.2.2在暗背景下的滴定误差采用暗光环境,以空白终点为终点颜色基准,在邻苯二甲酸氢钾溶液中滴入酚酞,用氢氧化钠溶液滴定至终点。数据见表1。表1. 暗光环境对测定结果的影响 [table=559][tr][td] 色度值 [/td][td] 颜色基准 [/td][td] 1 [/td][td] 2 [/td][td] 3 [/td][td] 4 [/td][td] 5 [/td][td] 6 [/td][td] 7 [/td][td] 8 [/td][td] 标准偏差S [/td][td] 相对标准偏差RSD% [/td][/tr][tr][td] [i]L[/i]* [/td][td] 83.03 [/td][td] 93.52 [/td][td] 83.47 [/td][td] 91.90 [/td][td] 94.21 [/td][td] 91.79 [/td][td] 82.08 [/td][td] 86.38 [/td][td] 79.92 [/td][td] 5.6 [/td][td] 6.4 [/td][/tr][tr][td] [i]a[/i]* [/td][td] 39.03 [/td][td] 13.10 [/td][td] 35.29 [/td][td] 17.88 [/td][td] 12.04 [/td][td] 17.55 [/td][td] 40.61 [/td][td] 30.07 [/td][td] 45.65 [/td][td] 13.1 [/td][td] 49.3 [/td][/tr][tr][td] [i]b[/i]* [/td][td] -22.05 [/td][td] -7.55 [/td][td] -20.08[/align

  • 信号隔离器的抗干扰作用

    (1)地环流干扰在工业生产过程中实现监视和控制需要用到各种自动化仪表、控制系统和执行机构,他们之间的信号传输既有微弱到毫伏级、毫安级的小信号;又有几十伏,数千 伏、数百安培的大信号;既有低频直流信号,也有高频脉冲信号等等,构成系统后往往发现在 仪表和设备之间传输相互干扰,造成系统不稳定甚至误操作,出现这种 情况除了每个仪器、设备本身的性能原因如抗电磁干扰影响,还有一个十分重要的原因就是各种仪器设备根据要求和目的都需要接地,例如为了安全,机壳需要接大 地;为了使电路正常工作,系统需要有公共参考点;为了抑制干扰加屏蔽罩,屏蔽罩也需要接地,但是由于仪表和设备之间的参考点之间存在电势差(也就是各设备 的共地点不同)因而形成“地环流”、“接地环流”问题是在系统处理信号过程中必须解决的问题。(2)自然干扰雷电是一种主要的自然干扰源,雷电产生的干扰可以传输到数千公里以外的地方。雷电干扰的时域波形是叠加在一串随机脉冲背景上的一个大尖峰脉冲。宇宙噪音是 电离辐射产生的,在一天中不断变化。太阳噪音则随着太阳活动情况的剧烈变化。自然界噪声主要会对通讯产生干扰,而雷电能量尖蜂脉冲可以对很多设备造成损 坏,应该加以避免或降低损坏程度,减少损失。(3)人为干扰电磁干扰产生的根本原因是导体中有电压或电流的变化,即较大dv/dt或di/dt.dv/dt或di/dt能够使导体产生电磁波辐射。一方面,人们可以 利用这一特点实现特定功能,例如,无限通信、雷达或其他功能,另一方面,电子设备在工作时,由于导体中的dv/dt或di/dt会产生伴随电磁辐射。无论 主观上出于什么目的,客观上对电磁环境造成了污染。还有工厂企业在生产过程中会经常有一些大型的设备(电机、变频器)频繁开关,他们也会造成一些容性、感 性的干扰,也将影响仪器仪表正常显示或采集。凡是有电压电流突变的场合,肯定会有电磁干扰存在。数字脉冲电路就是一种典型的干扰源,随着电子技术的广泛应 用,电磁污染情况会越来越严重

  • 【原创大赛】新技术2:溴酚蓝指示剂的CIE 1976(L,a,b)色空间数字化特征

    【原创大赛】新技术2:溴酚蓝指示剂的CIE 1976(L,a,b)色空间数字化特征

    新技术2:溴酚蓝指示剂的CIE 1976(L*,a*,b*)色空间数字化特征 摘要:传统溴酚蓝指示剂的变色范围是肉眼判断,采用CIE 1976(L*,a*,b*)色空间方法对溴酚蓝在不同pH环境进行了测量,发现其变色范围为pH 1.0~pH 11,超出传统范围,实现的数字坐标的颜色变化测量。关键词:溴酚蓝,CIE,色度值,数字化 前言传统指示剂颜色的突变确定依靠人眼,致使目前分析精度不高,滴定过程和终点用语言描述,不能精确的实现量值传递。对颜色变化的实际需要是变色范围更窄、更灵敏、更精确,克服人眼对颜色的敏感程度不同而造成的对反应终点的判断偏差。溴酚蓝,别名是四溴苯酚磺酞。化学名称是3,3′,5,5′-四溴苯酚磺酞。英文名:Bromophenol blue;Albutest。分子式为C19H10Br4O5S,分子量670.02,CAS号115-39-9。浅黄色到棕黄色粉末,微溶于水(约0.4g/100ml),易溶于甲醇、乙醇和苯,可自由溶于氢氧化钠溶液,同时形成溴酚蓝钠盐水溶液,最大吸收波长422nm。酸碱指示剂,变色范围pH2.8~pH4.6(黄-蓝),用于非水滴定指示剂、蛋白电泳染色、病毒化验等。http://ng1.17img.cn/bbsfiles/images/2016/08/201608261003_606838_2648817_3.jpg 图1. 溴酚蓝的化学结构式采用CIELAB色空间方法研究溴酚蓝指示剂在不同pH溶液中变色现象的文献未见报道。通过色空间方法,首次测定了溴酚蓝指示剂的L*、a*、b*等色度值参数,与pH值的对应关系,绘制出溴酚蓝指示剂变色的L*a*b*色空间色度学参数与pH值的关系图,找到了颜色突变的色度值对应参数,用实验数据证实其变色范围远远超出传统范畴。在公开的论文层面尚没有人对溴酚蓝指示剂的色度学特征公开发表研究结果,对该领域的研究尚未起步。 1. 实验部分1.1试剂、仪器与测量条件0.5 mol/L H2SO4溶液,0.5 mol/L NaOH溶液,1%的溴酚蓝(1g溴酚蓝定溶于无水乙醇中,定容至100 ml。UV2600分光光度计,雷磁酸度计PHSJ-3F、光纤光谱仪、注射泵、电动搅拌器、测量容器。测量条件:光谱范围380 nm~780 nm,△λ5 nm,10 mm光程,CIE 1976(L*,a*,b*)色空间,D65,以水为空白。1.2 实验内容1.2.1 溴酚蓝指示剂溶液的吸收峰将溴酚蓝指示剂溶液滴入不同pH值的溶液中,在分光光度计测量其吸收峰,见图1。http://ng1.17img.cn/bbsfiles/images/2016/08/201608261003_606839_2648817_3.jpg 图1. 溴酚蓝指示剂在pH环境的吸收曲线图1显示,溴酚蓝在不同pH值的溶液中的最大吸收峰是不同的,分别有2个吸收峰。虽然在不同pH值环境下的第一个吸收峰的位置发生变化,但第二个吸收峰的位置不变。说明溴酚蓝在不同pH值的溶液变色是430 nm附近的吸收峰发生变化引起的。1.2.2 溴酚蓝指示剂在不同pH值的色度值测定在不同pH溶液中,溴酚蓝指示剂的色度值变化见表1。表1. 溴酚蓝指示剂的色度值变化PHL*aba*b*0.0100.00.000.000.1100.0-0.02-0.010.2100.5-0.432.830.399.2-1.346.720.4100.0-1.227.410.599.8-1.499.370.699.5-1.6810.790.799.2-1.8312.060.899.0-1.9313.000.998.8-2.0513.861.098.6-2.1514.611.196.9[/alig

  • 数字化助古籍走出“深闺高阁”

    ??根据西部文博会(简称“[url=https://www.xbwbh.com/]文博会[/url]”)了解到,为查阅古籍文献,要出差到各地,探访各家图书馆——这是许多古籍研究者的共同记忆。在数字时代,这种情况正发生改变。国家图书馆(国家古籍保护中心)等6家单位近日在线新增发布古籍数字资源6786部(件)。至此,全国已累计在线发布古籍数字资源13万部(件)。依托数字化手段,卷帙浩繁的古籍走出“深闺高阁”,让文明触手可及。??兼顾“藏”与“用”??古籍,作为文物必须保护,作为文献必须为读者所用。兼顾“藏”与“用”,一直是古籍保护工作的重点,而数字化是最好的方法。中国古籍数字化起步于20世纪90年代。随着数字技术不断成熟,科技赋能古籍工作取得可喜进展。? 据文博会了解“2016年国家图书馆搭建起‘中华古籍资源库’平台,发布了普通古籍、甲骨、敦煌文献等数字资源,并全部实现免登录在线阅览。”国家图书馆副研究员南江涛介绍,国家图书馆还联合海内外收藏机构发布“法藏敦煌遗书”“天津图书馆古籍”“云南省图书馆古籍”等,基本搭建“国家古籍数字平台”架构。??随着“中华古籍保护计划”深入开展,各地图书馆陆续投入人力物力,大力推进古籍数字化。国家图书馆先后联合39家单位发布数字古籍,1月4日是第7次联合发布,其中不仅包含明清版刻,还有碑帖拓本等特色资源。相关数据显示,在现有的13万部(件)数字古籍中,超过10.2万部(件)归属于“中华古籍资源库”。??“这13万部(件)古籍数字资源,对于我们研究者来说格外珍贵。”北京大学中文系教授杨海峥感叹,在线查阅免去了往返奔波图书馆的时间,平衡了古籍的文物性与文献性。??AI助力古籍整理??把纸质古籍转化成数字文本,只是古籍保护的第一步。“现有的数字古籍大多由缩微胶片转换而成,分辨率低,使用也不方便。”杨海峥举例解释,这类古籍通常不具备检索功能,想查阅某个内容,需逐篇逐页阅读原文,很难快速找到想要的知识。??据文博会了解,人工智能的快速发展,为数字古籍的整理分类带来革命性变化。2022年10月,由字节跳动与北京大学数字人文研究中心合作研发的数字古籍平台“识典古籍”便是一个生动案例。??进入“识典古籍”的网站,记者看到《周易》《左传》《礼记》等陈列于首页上。随机点开一本,左侧为章节目录,右侧为正文,排版形式既顺应现代人的阅读习惯,又还原了古籍纸张的阅读美感。??“与一些数字化平台不同,‘识典古籍’是完全免费的,而且增加了简繁体转换、底本影像对照、全文检索等一系列便捷功能。”抖音集团企业社会责任部产品总经理唐垲鑫介绍,该平台主要应用了文字识别、自动标点和命名实体识别这3种技术,不仅能将影印本上的文字提取整理,还能通过序列标注识别文本中的人名、地名等信息,准确率达到96%至97%。??“平台已整理上线了685部经典古籍,共计7900多万字,主要来自《四部丛刊》。”唐垲鑫说,“识典古籍”已上线手机移动版,未来平台中的书目将持续更新。??业内人士预测,随着AI技术的运用,古籍文献中所蕴藏的古代历史文化知识将不断被抽取,构造成各种各样的知识库,并将以知识图谱的形式支持互联网前端应用。??跨界合作成趋势??事实上,在“识典古籍”上线之前,文保机构、科研院校与互联网公司的跨界合作已越来越普遍。比如,腾讯联合敦煌研究院开发了AI病害识别技术,帮助“问诊”敦煌千年壁画。??由于在产品研发、设计方面存在优势,互联网公司等社会力量的加入会进一步保障古籍数字化平台的服务质量。“我们有优秀的产品经理、设计师、软件工程师,能够不断优化数字古籍平台的产品功能。”唐垲鑫说。??“识典古籍”的诞生离不开专家学者支持。北京大学数字人文研究中心主任王军表示,北大在这次合作中负责人工审核与校对,弥补人工智能有识别错误率的短板,并利用自有学术平台,连接更多专业研究者和学生群体。??据文博会了解,专家认为,在古籍整理中,人文社科学者要积极介入,并加强与技术人员的合作,那样才能更好地利用机器而不是被机器牵着鼻子走,从而保证结果的准确性。??“高校古典文献学等相关专业如何培养兼具技术与学术能力的复合型人才、如何形成多学科交叉的课程体系等,都是需要综合考虑的问题。”王军说。

  • 数字ERA技术|小海龟携手先达基因共研25分钟核酸精准定量检测产品

    2024年3月12日,上海小海龟科技与苏州先达基因在上海签署全面战略合作协议,共同推进数字ERA技术的商业化应用。目前,小海龟科技和先达基因联合开发的数字ERA技术和产品已经可以在25 min内实现核酸的精准定量检测。此次签约,将全面推进双方在数字ERA技术和产品推广上的深入合作,双方将进一步联合攻关多重和超多重的Digital ERA扩增检测技术,为更多生命科学和前沿分子诊断产品开发人员带来新的技术和产品服务;同时,双方也将基于生命科学领域的AI助手-Biobuddy系统的应用展开深入的合作,以创新的方式共同加速推动数字ERA的普及,支持全球生命科学领域创新研究。[align=center][img=图片]https://img1.17img.cn/17img/images/202403/uepic/3a6496f7-5a1d-4f6e-be41-ef7464b5e24e.jpg[/img][/align][b]先达基因[/b]苏州先达基因科技有限公司,致力于研究开发分子诊断POCT化产品与提供现场快速一体化解决方案。公司拥有全球自主知识产权酶促恒温扩增技术(ERA技术);基于此平台开发了多系列的核酸诊断试剂及其配套的便携式检测设备;产品涵盖公共卫生快速检测、体外分子诊断、POCT诊断试剂盒等领域,全力打造10-25分钟病原体快检项目。目前,先达基因已与国内外近千家高校院所及企业建立业务合作。截至2023年11月,累计申请专利40余项,11项专利获得授权,3项核心专利申请全球PCT。[b]小海龟科技[/b]上海小海龟科技有限公司,致力于引领生命科学与分子诊断进入数字时代,先后获批国家基因检测技术应用示范中心及国家首张数字 [url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]计量评价证书,已推出多款数字[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url] 系统,并在全球率先推出可商用化的数字等温系统;实现了从基因检测仪器、芯片耗材、超多重试剂盒技术及超高特异性分子诊断酶的全链条技术创新。申请知识产权 70 余项,共获得近 50 项专利授权,其中发明专利20 余项。[url=https://www.instrument.com.cn/news/20240314/708830.shtml][color=#0070c0][b]21台生命科学仪器和1台医学仪器荣获“3i奖-科学仪器优秀新品奖”2023年度“提名”名单[/b][/color][/url][align=center][url=https://www.instrument.com.cn/news/topic-496.html][img=d820de71b1668ec0b2cc891dee3887db_7cf65bd5-818a-48c5-b8c6-9201968442c3.jpg]https://img1.17img.cn/17img/images/202403/uepic/a95a0306-1f2a-4a5a-8cf0-509106b9abaa.jpg[/img][/url][/align][来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 【原创大赛】ICPMS的技术进展,干扰及消除方法

    上接第一篇 电感耦合等离子体质谱仪器进展电感耦合等离子体质谱法的技术进展,干扰及消除方法本文主要概述了最近关于电感耦合等离子体质谱仪器在进样系统、雾化器、等离子进样过程、等离子体电离过程和检测器方面的一些最新的研究动态。介绍了其中各个方面所取得的成果。论述了分析过程中可能存在的各种干扰产生的原因和消除干扰的各种方法以及方法的优缺点。1前言经过近三十年的发展,电感耦合等离子体质谱(ICPMS)技术已经取得了极大的发展。该技术提供了极低的检测限、极宽的动态线性范围,谱线简单、干扰少、分析精密度高,可进行多元素同时快速分析,可使用同位素稀释法与多种分离技术及进样方法相结合,能适应于复杂体系的痕量或超痕量元素分析。目前,在电感耦合等离子体质谱技术上面的突破性技术已经越来越少,但在ICPMS应用方面却在不断的扩大,因此有许多人认为ICPMS技术已经成熟了。ICPMS仪器大部分都是四级杆的分析器,其中四级杆分析器的质谱仪占了市场的95%左右,其它主要是扇形磁场和少量飞行时间分析器的质谱仪。在电感耦合等离子体质谱技术上最新的进展是2010年PITTION峰会推出的NexION 300和SPECTRO MS。目前每年发表的有关于ICPMS的文献已经超过1000篇了,但是其中绝大部分是关于应用的文献,其中具体对ICPMS仪器研究的比较少。ICPMS和其它技术的联用也是当今最为关注的话题,尤其是和激光、色谱、电泳和颗粒分析等技术的联用,而关于电感耦合等离子体质谱质谱仪器本身的一些技术研究较少。2 电感耦合等离子体质谱仪器进展2.1直接进样系统2.1.1 单限流器进样使用特氟龙的管连接单限流器将样品引入炬管后使用ICPMS直接测量气体中的碳同位素,这样不需要使用质量流量控制器从而避免因其产生的同位素分馏。2.1.2 气体转化器进样有一种新的廉价气体转化器用来实时测量大气颗粒物(APM),它对环境大气颗粒物动力学学研究十分重要。这个装置由两个同心炬管组成:一个能使空气样品流动的多孔硅管,另一个供载气流动的硼硅酸盐玻璃管引入氩气。因为两个炬管的分压不一样,在空气中气体分子与氩气进行交换,然后大气颗粒物就在氩气的载带下进入等离子体中。为了提高气体交换效率,三个气体交换器并行使用,以保证650mL/min的空气引入速率和7 L/min吹扫氩气速率,各种大小的大气颗粒物能够被直接引入ICP火炬管中。不过,这种方法是将颗粒物转化成噪声信号,如果该信号有许多尖形峰,那么说明有许多粗糙的颗粒物进入了等离子气体中。如果能够采用粒度控制仪来控

  • 一周一题捡起来:干扰的产生与消除技术

    先占楼,慢慢添加。欢迎大家添加自己的见解、实际遇到的问题和解决方案。那个,《中国合伙人第三季》咱肯定是拿不出来的,散分吧。或者@官人*云飘飘大力赞助本版下?http://simg.instrument.com.cn/bbs/images/default/em09503.gif灌水的就不给分了哈想到什么就先写什么,后面慢慢再整理。或者哪个版主帮忙整理下6.18:很多课本和资料都会专门讲解ICPMS的干扰产生机理以及如何消除,例如《电感耦合等离子体质谱应用实例》的第11章整章;《电感耦合等离子体质谱技术与应用——质谱技术丛书》第五章整章;《电感耦合等离子体质谱原理和应用-李冰-地质出版社》第七章整章(福利链接:http://www.book118.com/shulihua/html/shulihua_384250.html)。。等等直接copy李冰老师书本上的:ICP - MS 中的干扰可分为两大类: “ 质谱干扰” 和“ 非质谱干扰” 或称“ 基体效应”。第一类干扰可进一步分为四类: ①同量异位素重叠干扰; ② 多原子离子干扰; ③难熔氧化物干扰; ④双电荷离子干扰。第二种类型的干扰大体上可分为① 抑制和增强效应②由高盐含量引起的物理效应。对于干扰,我个人以为既然是干扰,就不应该有“消除”的说法,严格地说只能是“降低到对目标元素不产生影响的程度”然后说一点自己的理解,可能有些版友一时半会也没想到这个也是消除/降低干扰的途径:1、在满足测试所需要的灵敏度前提下,注意这里说的是“满足测试所需要的灵敏度”,而不是达到“调谐所需要的灵敏度”,尽可能地降低“氧化物、双电荷”指标:从上面对干扰分类中可以看出,氧化物也好双电荷离子也罢,广义上我认为其实都可以归结为同量异位素重叠的干扰。那么当氧化物、双电荷指标很低的时候,表示能够生成此类干扰物的可能性更低。换句话说,就是氧化物/双电荷所早成的干扰降低了。2、某些应用方面会使用“干扰校正方程式”:这种模式只是通过建立一个数学模式,来定量或者偏向定量地扣除干扰,并非从物理手段上降低/消除干扰。3、干扰的去除/降低并不一定就非得由仪器来完成。所以另外的思路是:某些可预见的干扰源,有可能设法在前处理阶段给去除或者尽可能地降低以使后续测试取得更低的BEC:例如39Ar12C干扰51V,40Ar12C干扰52Cr。那么测试高含碳的样品时,可以设法在前处理阶段尽可能地将C转变成CO2然后加热去除掉,这样在测试的时候就可得到更低的BEC。然而这种方法也有一定的局限性,最明显的就是:前处理不可控的因素比较多,仍然以ArC的干扰为例,每份样品最终溶液中剩余的C未必能保持一致性,这样会导致测试的时候可能每份待测溶液干扰不一致最终影响结果。为防止这种情况的发生,我们可以在测试目标元素的时候适当地监控着干扰元素的量——实例是以Cool Plasma测试31P16O的时候,28Si19F同样是amu=47,这时我们可以在测试47的时候同时也测定45(SiOH)。当amu=45低于某个CPS/浓度的时候(有段时间没做,印象里是cool plasma模式下,452000cps),我们就可以认为SiF对PO的干扰可以降低到可忽略的程度。下午把以前做过的内部培训《干扰的产生和消除》PPT贴上来()抱歉,这个PPT是我在公司内部培训用的,带着公司的LOGO,还没去除掉,所以一直没传上来)

  • 0.05级活塞式压力计与0.05级数字压力计比较

    以(0.04~0.6)活塞式压力计为标准值,测出来的数字压力计的值为41.75KPa, 81.11KPa, 121.00KPa, 160.80KPa, 200.60KPa,240.50KPa,280.50KPa,320.52KPa,360.35KPa,400.44KPa,,请问为什么数值会越来越小,两套设备都是合格的!

  • 数字式明渠污水流量计数据采集处理系统研究

    21世纪,工业技术发展迅速,但随之而来的环境污染问题也逐渐加剧,国家乃至全世界对环境保护问题都非常重视,“工业三废”之一的污水排放的规范化,科学化和定量化的管理已成为国家环境保护法规的一个重要方面,各地环保部门正在 根据国家法规的要求,加强对排污口的规范化整治。在污水流量计量领域,国内外较多采用的是电磁式流量计、超声波式流量计等技术,在一定程度上对污水流量的检测起到了一定的作用,但是由于其采集处理 系统采用模拟式的数据采集传输方式,受环境因素的影响比较大,因此,其使用范围受到了很大程度的限制。在经过大量的实地考察和资料学习后,根据各部门对污 水计量的急切要求,结合我们现有数字传感器的技术思路,开发出了一套新型智能数字式明渠污水流量计量的数据采集处理系统。1、基本原理1.1、巴歇尔槽流量计量原理的介绍巴歇尔槽是在污水计量领域应用较多的一种流量槽。其流量原理是,当标准巴歇尔槽内流过理想定常流体时,可以在实际工程中使用其经验公式(1)对槽内水体瞬时流量进行计量。http://ws.llybw.com/up_files/image/Article/2013/11/22/52287911.png (1)式中:qv为槽体内瞬时流量;b为喉道的宽度;h为相对于喉管底的上游侧的水位。由公式(1)可知,只要测出巴歇尔槽上游侧水位,即可得流体的瞬时流量qv。1.2 巴歇尔槽在设计中的应用明渠中的流体可以看作是在无压状态下流动,即理想定常流体,满足巴歇尔槽公式的应用条件,因此可以在明渠流量计量中使用 巴歇尔槽。设计中,巴歇尔槽的喉道宽度b已知,数字式明渠污水流量计的数据采集系统用于采集巴歇尔槽体内的水位值高度h,并将此水位值传入微处理器,进入 微处理器的水位数据可以根据公式(1)转化成流量值,等待进一步的综合处理。2、系统软硬件设计2.1、低功耗、数字式水位采样电路的设计随着传感技术的不断发展,在水位传感领域出现了一种新型的数字式水位传感器———检索式数字水位传感器,它是太原 理工大学测控技术研究所自主研发的一种新型水位传感器,其基本原理是利用不同位置的信号取样电路来采集水中传播的电信号,从而确定水位。本设计中应 用了检索式水位传感器的数字采样原理,采样系统的原理框图如图1所示。http://ws.llybw.com/up_files/image/Article/2013/11/22/52287912.png图1采集系统原理框图采样电路主要由信号取样电路,数字信号变送电路,微处理器电路构成。为了实现电路的微型化,低功耗,稳定性,一致性等问 题,取样电路和变送电路分别集成为数字化芯片MFC7710和MFC7720。每片MFC7710带有8个水位感应触点,在实验中我们将10片 MFC7710级连,并将感应触点的排列方式由线式变为点阵式,如图2所示,这种点阵式的触点排列方式能够消除由于水的表面张力作用而使感应触点误 动作,从而导致采集系统分辨率不高,易受水质影响等缺点。实验证明,水位采样的精度达到了2mm。采集电路的工作原理:水位信号取样电路由数片MFC7710组成,片与片之间通过时钟线、数据线级连而成。变送器 与取样电路之间也是通过时钟线,数据线进行数据的通讯。每片MFC7710受变送器时钟信号控制,通过数据线,逐级向上传递感应触点感知的包含水位信息的 一系列0,1数字信号,变送器将此数字信号转变成对应的16位的BCD码。微控制器通过控制三级管,以间歇式供电方式向MFC7720发送采集时钟(即只 在微控制器发出采集水位信号时,给MFC7720供电,利于降低系统的功耗),并在时钟的上升沿时逐位采集MFC7720发回的16位BCD码,自动识别 其中包含的水位信息,计算出水位值,再经公式(1)将水位值转化为流量值,实现流量的计量。2.2微处理器的低功耗设计污水流量计的安装地点多为野外或条件恶劣的场所,因此整个系统采用电池供电,这样可以避免长距离的铺设电缆,节省了安装 费用。在电池供电的情况下,系统的电能利用无疑是关键的因素,微处理器需要采用微功耗、微型化的控制芯片,本文采用了MSP430单片机系列中的 MSP430F149。其工作电压为3.3V,与5V电压供电的单片机相比,在同等条件下,3.3V微控制器能够节省一半以上的电能,同时设计中采用 8MHz和32768kHz双时钟系统,配合微处理器本身具有的五种工作模式,可以实现系统在工作时程序高速运行,休眠时超低功耗的特点。2.3、其他外围部件的设计在设计中,考虑到需要对系统进行实时调试,有些场合也需要有就地显示部件,所以系统电路设计时留有液晶拓展接口。液晶采 用点阵式液晶块CM12864,可显示4×8四排32个字。监控中心要对现场数据进行实时或历史数据调用,以进行定期的进行计量监测,时钟芯片 SD2200具有32k的存储空间,同时兼有实时时钟电路,且内置备用电池,满足流量计的设计需求。3、系统软件设计软、硬件设计的合理搭配,是实现系统的低功耗的一个重要因素,数字式明渠污水流量计采集处理系统的软件设计充分利用了微控制器的低功耗待机工作模 式。由C语言编写的程序分为主程序和中断程序两部分。主程序只负责对系统上电复位后的系统参数及功能部件的初始化设定,中断服务程序负责执行各种操作模块 功能。开放中断后,单片机进入低功耗休眠状态,等待中断发生,处理完中断后,微处理器继续进入低功耗休眠状态,这种工作方式大大减少了微控制器的非有效工 作时间,与查询等待方式相比,系统功耗减至非常低。主程序,中断程序流程图如图2、图3所示。http://ws.llybw.com/up_files/image/Article/2013/11/22/52287913.png图2主程序流程图http://ws.llybw.com/up_files/image/Article/2013/11/22/52287914.png图3中断处理流程图4、实验验证4.1、试验装置及试验方法实验采用比较法对实验数据进行分析,验证数据采集系统是否符合设计。为了能模拟工业现场的污水排放,实验设计了自循环明渠巴歇尔槽水流装置,同时安装有超声波明渠流量计作为实验参照对象。实验计量装置由上位水箱、流量槽、下位水箱、水泵四大部分组成。下位水箱水量作为实际总流量。实验中记录智能数字式明渠污水流量计的累计流量与瞬时 流量,超声波流量计的累积流量与瞬时流量,下位水箱实际流量等五部分实验数据。累计流量实验数据如表1,三次试验中超声波与数字流量计的误差数据如表2, 三次实验中瞬时流量比较如表3所示。http://ws.llybw.com/up_files/image/Article/2013/11/22/52287915.png4.2实验分析4.2.1实验中的问题及解决方案实验初期,采样电路与无线传输的其他处理电路一起浇注在流量计中,构成集成一体化仪器,取样采用查询方式,这样需要对采 样电路持续供电。在这种情况下,MFC7720会由于散热不充分而出现突然死机的现象,为了解决这个问题,笔者将采集方式改为中断式,对变送、取样电路的 供电方式改为由三级管控制的间歇式供电。解决了MFC7720的发热死机现象,同时,间歇式的供电方式也大大降低了系统功耗。软件设计涉及的另一个问题是采样公式的参数调整问题,初期实验数据证明流量计的计量存在一定的误差。笔者认为有三方面的

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制