四聚乙二醇单辛醚

仪器信息网四聚乙二醇单辛醚专题为您提供2024年最新四聚乙二醇单辛醚价格报价、厂家品牌的相关信息, 包括四聚乙二醇单辛醚参数、型号等,不管是国产,还是进口品牌的四聚乙二醇单辛醚您都可以在这里找到。 除此之外,仪器信息网还免费为您整合四聚乙二醇单辛醚相关的耗材配件、试剂标物,还有四聚乙二醇单辛醚相关的最新资讯、资料,以及四聚乙二醇单辛醚相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

四聚乙二醇单辛醚相关的资料

四聚乙二醇单辛醚相关的论坛

  • 【求助】请教聚醚产品中残留的聚乙二醇的液相色谱分析方法

    请教聚醚产品中残留的聚乙二醇的液相色谱分析方法最好能给出相关标准不然的话请详细给定。。。。1.样品预处理方法(如果需要的话)2.液相色谱 所需色谱柱型号 所需流动相 及检测器的选取3.液相色谱测定条件(流速 温度)4.谱图解析 (即大概聚乙二醇出峰时间等等可能需要的知识。。。。)麻烦大侠们 给出的解答尽量详细 不然小白我很难理解 谢谢拉 另:聚乙二醇貌似紫外检测器检测不出来 是不是哦~~~

  • 【原创大赛】聚乙二醇在新型药剂的应用和质量控制

    【原创大赛】聚乙二醇在新型药剂的应用和质量控制

    聚乙二醇在新型药剂的应用和质量控制摘要:聚乙二醇是常用的药用辅料,有不同的分子量规格。聚乙二醇在新型药剂中有广泛应用,其修饰的药物和纳米粒制剂可以有效提高药物利用度,减少副作用,提高病灶组织药物浓度。本文简单介绍了聚乙二醇化的新型药剂实例,比较了主要药典对聚乙二醇的质量控制方案,结合新的分析方法,介绍了聚乙二醇及其衍生物质量控制的快速简便方案。1聚乙二醇http://ng1.17img.cn/bbsfiles/images/2014/12/201412170937_527449_2265735_3.jpg图1 聚乙二醇结构和化学通式。 聚乙二醇(polyethylene,PEG)由环氧乙烷和水缩聚而成 (图1),n代表基本单元氧乙烯基的平均数目。低分子量的聚乙二醇为粘稠的液体,当平均分子量超过1000,聚乙二醇为白色的蜡状固体。在中国药典收录作为辅料的常用聚乙二醇辅料有分子量400、600、1000、1500、4000、6000共6种规格。聚乙二醇是传统的药用辅料,一般作为赋形剂使用,或者作为药物的分散剂。随着药物输送系统的发展,目前聚乙二醇在制药技术的应用主要有两个方面:药物的聚乙二醇修饰和修饰纳米粒的骨架结构1]。2聚乙二醇在新型药剂中的应用 聚乙二醇两端的羟基可以方便的被修饰(图1B R[sub]1[/sub]和R[sub]2[/sub]),如羟基甲基化形成聚乙二醇单甲醚,也可以用来直接和药物基团反应,形成药物和聚乙二醇复合物。大量实验和研究表明药物和聚乙二醇复合物是一种有效的药物输送手段,它可以有效延长药物的半衰期,增加药物溶解性,提高药物的安全性[[url=file:///M:/PEG-1.doc#_ENREF_2]2]。http://ng1.17img.cn/bbsfiles/images/2014/12/201412170940_527450_2265735_3.jpg 传统的抗肿瘤小分子是聚乙二醇修饰的主要目标。聚乙二醇修饰的柔红霉素(daunorubicin)改善药物的溶解性和水溶液稳定性,增加了药物在血液中的循环时间。在临床Ⅲ期治疗Kaposi[sup],[/sup]s肉瘤的研究中,对比阿霉素的治疗效果,聚乙二醇修饰的柔红霉素显著降低了毒性,减缓了中性中性粒细胞减少症[[url=file:///M:/PEG-1.doc#_ENREF_3]3]。与聚乙二醇修饰小分子药物相比,聚乙二醇修饰的蛋白质药物获得的进展更为引人关注。第一个上市的聚乙二醇修饰的蛋白质药物是腺苷脱氨酶,Enzon公司在1991年推出。聚乙二醇修饰蛋白质药物最成功的例子是[color=#323E32]安进([font='simsun','serif'][color=#323E32]Amgen[color=#323E32])推出的[font='simsun','serif'][color=#323E32]Neulasta[color=#323E32](培非格司亭)(聚乙二醇修饰的重组人粒细胞集落刺激因子(G-CSF)),[font='simsun','serif'][color=#323E32]Neulasta[color=#323E32]的销售额在推出的第一年就超过了原研药[color=#323E32]非格司亭。[font='simsun','serif'][color=#323E32]Neulasta[color=#323E32](培非格司亭)主要治疗多种癌症化疗导致的嗜中性白血球减少症,降低化疗病人的感染风险。从[color=#323E3

四聚乙二醇单辛醚相关的方案

四聚乙二醇单辛醚相关的资讯

  • PEN聚萘二甲酸乙二醇酯的粘度测量
    聚萘二甲酸乙二醇酯简称PEN,是聚酯家族中重要成员之一,是由2,6-萘二甲酸二甲酯(NDC)或2,6-萘二甲酸(NDA)与乙二醇(EG)缩聚而成,是一种新兴的优良聚合物。目前主要应用于磁带的基带、柔性印刷电路板、电容器膜、F级绝缘膜等方面,也开始逐渐延伸至碳酸饮料瓶、酸性饮料瓶等包装领域和工业电缆料、过滤器介质用单丝等工业用纤维领域。PEN化学结构与PET相似,其各项特性也与PET类似,但在分子链中PEN由刚性更大的萘环代替了PET中的苯环。使PEN比PET具有更高的物理机械性能、气体阻隔性能、化学稳定性及耐热、耐紫外线、耐辐射等性能。国标GB/T 1632.5-2008中对聚萘二甲酸乙二醇酯特性黏度的测量方法给出了详细的说明:对于无定型的PEN采用苯酚四氯乙烷作为溶剂,结晶PEN采用苯酚三氯苯酚作为溶剂,再通过相关辅助设备测试PEN溶液的黏度。在PEN的黏度测试流程中,传统的手动测试方式是使用乌氏粘度管在温控精准度较高的恒温水浴槽中进行黏度测试,采用传统的手动测试方法会存在:测试精度低,测试流程繁琐等诸多弊端。随着生产企业以及研发机构等对于实验数据高标准、高精度、高效率的要求,自动化的乌氏粘度仪已逐步取代传统手动测试方法。以杭州卓祥科技有限公司的IV3000系列全自动乌氏粘度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例:实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时最多可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度最高可达180℃。3. 测试过程IV3000系列乌氏粘度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可精确到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV3000系列全自动粘度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表和外推分析等多种功能。5. 粘度管清洗干燥过程:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。清洗模式可多种选择,同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。IV3000系列乌氏粘度仪可实现自动测试、自动排废液、自动清洗及干燥过程的自动化,告别粘度管是耗材的时代。
  • 我国工业排放气制乙二醇技术获突破
    开创乙二醇生产新原料路径 降低投资30%   记者从西南化工研究设计院获悉,该院开发的“回收和利用工业排放气制乙二醇技术”,日前通过由四川省科技厅组织的专家鉴定。新技术不仅开创了乙二醇生产的新原料路径,降低投资30%,还有效解决工业排放气的污染问题,已具备成熟工业化条件。   西南化工院自1986年在国内率先开展合成气制乙二醇技术研究,并承担“十一五”国家科技支撑计划重点项目“非石油路线制备大宗化学品关键技术开发”。经过25年不懈努力,科研人员先后完成该技术的关键催化剂及配套工艺集成开发,开发了具有工业应用价值的两个核心催化剂,实现转化率100%、选择性90%条件下,6000小时以上长周期考核 通过减去复杂的“煤气化”设备和工艺,每吨产品节省甲醇消耗0.16吨、蒸汽消耗2.5吨 形成加氢反应器、聚酯级乙二醇产品精制等五大关键工艺技术,目前已获4项国家发明专利。   专家介绍,与传统石油路线、煤制路线制备乙二醇相比,采用黄磷尾气或电石炉尾气等工业排放气生产乙二醇的新技术,成本仅为4000元/吨,分别节省3500元和1000元。而从环保效益分析,按国内每年产100万吨黄磷计算,每年可减排3750吨磷化物、7500吨硫化物、200吨砷化物和1250吨氟化物。   乙二醇作为用于溶剂、防冻剂以及合成涤纶的主要原料,今年年底在我国产能将达到每年450万吨,消费量则为每年800万吨。若近400万吨产能缺口采用工业排放气为原料替代生产,每年可节约外汇30多亿美元,同时减少200多万吨乙烯消耗。
  • 使用表面增强拉曼光谱检测瓶装水中的聚对苯二甲酸乙二醇酯纳米塑料
    近日,挪威科技大学与南开大学合作在Environmental Science & Technology上发表了题为“Identification of Poly(ethylene terephthalate) Nanoplastics in Commercially Bottled Drinking Water Using Surface-Enhanced Raman Spectroscopy”的研究论文。研究合成了一种新型的表面拉曼增强光谱(SERS)衬底,该衬底可增强纳米颗粒的拉曼光谱信号,通过对不同粒径的聚苯乙烯(PS)纳米颗粒测试发现,粒径越小拉曼光谱信号增强因子越高。使用该SERS衬底,对经100 纳米滤膜过滤后瓶装水进行了检测,通过与标准谱图比对,发现瓶装水中的纳米塑料为聚对苯二甲酸乙二醇酯,浓度高达108 个/毫升。全文速览微纳塑料作为新型污染物,引起了全球范围的广泛关注。而作为微纳塑料研究的基石,检测分析方法一直是该领域的重点和难点,尤其是粒径更小的纳米塑料。本研究合成了一种新型三角孔隙阵列SERS衬底,该衬底可增强纳米塑料的拉曼信号。通过对不同粒径(50,200,500,1000 nm)的PS纳米塑料测试,发现粒径越小,拉曼光谱信号的增强因子越高。对于50 nm的PS纳米塑料检测限为0.001%,约为1.5×1011 个/毫升。使用该衬底,检测了市售的瓶装水,瓶装水经100 nm滤膜过滤后,滴加在衬底上,可直接检测到拉曼光谱信号,经过与标准谱图的比对,发现为聚对苯二甲酸乙二醇酯,该塑料主要为瓶身材质,浓度约为108 个/毫升。该研究提供了一种快速且灵敏的纳米塑料检测方法。引言微纳塑料由于其独特物化性质,分析检测一直是微纳塑料研究领域的重点和难点。拉曼增强由于其可对小分子有机化合物以及纳米颗粒的拉曼光谱信号进行增强,近年来也逐渐应用于纳米塑料的检测。但目前关于SERS测试纳米塑料多集中于实验室内的加标样品,对于实际样品的检测的研究仍然很少。本研究通过合成一种新型的三角孔隙阵列衬底,测试了其对PS纳米塑料的增强效果,并检测分析了市售瓶装水中纳米塑料的赋存。图文导读阵列合成Figure 1. A schematic illustration of fabrication process for the triangular cavity arrays (TCAs). First, close-packed polystyrene (PS) nanospheres are self-assembled on a silicon substrate (i). A thin silver (Ag) film is deposited over the nanospheres (ii), which are then tape stripped away, leaving Ag nanotriangle arrays (iii). A gold (Au) film is then deposited over the entire substrate (iv). An adhesive epoxy is applied on the top of Au and then peeled off, transferring two metals Ag and Au sitting in a complementary arrangement side-by-side on epoxy (v). Simply removing of the Ag parts using chemically etching, revealed gold triangular cavity arrays as shown in (vi).图1展示了该拉曼衬底的合成示意图,首先将一层500 nm的PS纳米微球平铺在硅胶板上,然后在表面添加一层Ag,去除掉纳米微球后,形成了Ag纳米三角阵列,再添加一层150 nm的Au薄膜,之后添加一层粘合剂环氧树脂,在紫外线照射下固化后剥离掉带着两层金属的环氧树脂,再去除孔隙中的Ag后,形成最终的三角阵列衬底。阵列表征Figure 2. Scanning electron micrographs (SEMs) of the corresponding processing steps in Figure 1 to fabricate gold TCAs substrate: (a) Close-packed PS nanospheres that corresponds to step i in Figure 1 (b) Ag triangle arrays after removing of PS nanospheres that corresponds to step iii in Figure 1 (c) Top-view of morphology after depositing Au layer that corresponds to step iv in Figure 1 (d) Au TCAs arrays after removing of Ag parts that corresponds to step vi in Figure 1. Scale bar in a-d: 250 nm. (e) Patterned gold TCAs over large area, scale bar in e: 1 µm.图2为经过图1合成的衬底的扫描电镜图,分别表示了衬底在不同合成阶段的扫描电镜图。从图中可清楚的表明于实际合成的衬底与图1中的示意图完全吻合。PS纳米颗粒测试Figure 3. (a) Raman spectra of PS nanoplastics with different sizes on Au TCAs substrates at concentration of 1%. (b) Enhancement factor (EF) as a function of PS size. (c) Raman spectra of 50 nm PS nanoplastics with concentrations varying from 1% to 0.001% on TCAs substrates and on plain glass substrate at the concentration of 1% (control line). (d-g) Raman mapping images of 50 nm PS nanoplastics on Au TCAs substrates with different concentrations from 1% to 0.001%. Scale bar in d-g: 200 nm.图3展示了不同粒径的PS纳米微球的增强测试,在50、200、500和1000 nm四个粒径中,50 nm的PS微球增强因子最高,随着粒径增加,增强因子变低。此外,还对50 nm的PS微球的不同浓度做了分析测试,发现在0.001%仍可检测到清晰的信号,特征峰1003 cm-1的信噪比为88。瓶装水前处理Figure 4. (a) Schematic of sample preparation from commercially bottled drinking water. (b-d) SEM images of an extracted sample that drop-casted on a silicon wafer after drying under ambient conditions. Scale bar: (b) 300 µm (c) 5 µm (d) 200 nm.图4为瓶装水的处理过程和SEM结果。在采购瓶装水后,取100 mL过100 nm的滤膜,对过滤后的水样进行SEM检测,从图中可看出,在扫描电镜下,存在大量的颗粒物,经过不同倍数的放大,粒径小的可低至几十纳米。同时,采用去离子水做了过程空白对照,在扫描电镜下,无颗粒物检出,排除了实验过程中外部的污染。瓶装水检测Figure 5. (a)Schematic of sample preparation from bottled drinking water. (b) Raman mapping image of sample extracted from bottled drinking water on TCAs substrate. Scale bar: 500 nm. (c) Raman spectra of sample extracted from bottled drinking water on TCAs substrate (red line) and plain glass substrate (brown line), and PET film (purple line). (d) Finite track length adjustment (FTLA) concentration/size image for NTA of sample extracted from bottled drinking water on TCAs substrate: indicating mean size of nanoplastics is ca. 130.8 ± 58.0 nm.图5为瓶装水的拉曼检测结果,将过滤后的瓶装水直接滴加在衬底上,经过拉曼检测后,可鉴别出1620和1760 cm-1两个峰,与PET纳米塑料标准品和PET膜进行对比,可知瓶装水中的颗粒物为PET,在检测空白和过程空白中均无信号。此外,水样还进行了NTA测试,平均粒径约为88.2 nm(三个平行样品的平均值),浓度为1.66×108 个/毫升。小结通过合成新的SERS衬底,可实现对纳米塑料的拉曼信号的增强,纳米塑料的粒径越小增强因子越高,且该衬底的灵敏度高,可对过滤后的水样直接检测,同时还可重复使用。瓶装水的检测结果表明塑料瓶身是水样中纳米塑料的主要来源。

四聚乙二醇单辛醚相关的仪器

  • ultrafleXtremeTM MALDI-TOF/TOF充分体现了MALDI-TOF技术的巨大突破,开辟了其在科研和工业等领域的新应用。一系列新技术和专业软件的应用,使ultrafleXtreme的应用范围不仅超越了常规蛋白质组学研究,而且拓展到生物药品的深入解析、基于快速组织成像技术的生物标志物发现和糖蛋白质组学等多种研究领域。MALDI分子成像:来自技术引领者的完整分子组织学解决方案 从上至下(Top-Down)生物标志物发现全新的从下至上ImageID工作流程,即能对蛋白定位,又能鉴定蛋白,并且扩展到FFPE组织和大蛋白分析增强的数据采集速率和仪器稳定性,适合于大规模高通量研究分析。蛋白质组学和糖蛋白质组学:扩展研究领域的超强能力 一体化的液质联用和二维凝胶电泳工作流程标记和非标记的从上至下以及从下至上定量技术糖蛋白质组:GlycoQuestTM高通量自动分析蛋白糖链结构生物医药:MALDI-TOF技术直接确定完整蛋白分子量和蛋白序列 多价态分析,准确测定完整蛋白分子量信息量丰富的快速蛋白测序副产物及末端多样性分析聚乙二醇化蛋白的分析 糖蛋白分析 完全糖链分析解决方案确定混合样品中的N-糖肽通过糖肽在MALDI-TOF/TOF谱图中呈现的独具特征的MS/MS二级碎片离子谱峰,结合GlycoQuest自动化糖链数据库搜索,完美实现糖肽结构解析。
    留言咨询
  • 马尔文帕纳科OMNISEC是一套完整灵敏的凝胶渗透/尺寸排阻色谱(GPC)/(SEC)系统,是由前端色谱分离系统、检测器和软件组成的多检测器GPC/SEC系统,用于合成高分子和天然高分子,以及蛋白质的特性分析。OMNISEC 凝胶渗透色谱仪能够测定重要的特性参数如下,包括:绝对分子量和分子量分布特性粘度和分子结构 样品浓度 以及其他多种关键参数OMNISEC 凝胶渗透色谱仪是可控制您产品的性能、质量和价值,无论是针对工业合成多聚物,还是食品或药品中的天然多聚物或多糖,或制药业所使用的蛋白质或抗体。作为一款研究工具,它可以针对各种应用提供信息量,加速这些分子的研究进程,是大学的理想之选。 它可以减少维修费用和停机时间,同时通过易用直观的软件提高产能。借助 OMNISEC,您可以_分析对象…控制强度、韧度、耐用性、脆性、加工性能和枝化聚苯乙烯、尼龙、PET、PVC、聚酯、硝化纤维、树脂、环氧树脂、聚氨酯、PVA测量降解和药物控释率PLA、PLGA、PEG、聚己内酯对天然聚合物和多糖进行分级海藻酸盐、黄原胶、阿拉伯树胶、淀粉衍生物 (如麦芽糖糊精)、纤维素衍生物(如 HEC)、卡拉胶、明胶、瓜尔豆胶、壳聚糖、透明质酸控制配方粘度醇酸树脂、丙烯酸树脂、聚氨酯、聚脂、树脂、环氧树脂、PVA控制食品口感和凝胶化作用果胶、海藻酸盐、黄原胶、阿拉伯树胶、瓜尔豆胶、淀粉衍生物(如麦芽糖糊精)、卡拉胶通过测量分子量评估和预测活性蛋白质、抗体、mAb预测和了解免疫原性和疗效蛋白质聚合物、生物制药、生物制剂和 mAb控制半衰期、细胞渗透性并了解蛋白质偶合物的晶体化聚乙二醇化蛋白质、膜蛋白、抗体药物偶合物
    留言咨询
  • 适用范围广:几乎所有不挥发和半挥发物质都能检测高灵敏度:达到ng级(较ELSD高1-2个数量级)质量响应型:仅依赖于质量的信号响应一致性,与化学性质无关现行响应范围宽:动态监测范围可达4个数量级,从ng到μg环境稳定性优异:几乎不受外界环境(如温度)变动的影响经济环保:可仅使用压缩空气,也可使用氮气操作直观:触摸屏面板操作维护简单:仅需每半年更换一次小配件 特点NQAD的卓越性能来源于核心组件水凝粒子计数器WCPC(Water condensation particle counter) NQAD工作原理简述:1) 色谱柱的溶出液在NQAD内部雾化(①)2) 可挥发成分被蒸发,残留组分形成颗粒群(②)3) 各颗粒吸收水蒸汽,形成水分凝结体,液滴增大颗粒到μm级别 (③-⑤)4) 各水分凝结体通过检测区时,在激光照射下,发出脉冲式散射光,通过对脉冲计数 (⑥)来进行检测 WCPC特性简述:1) 待测物液滴增大,监测灵敏度提升,动态监测范围扩宽2) 脉冲计数值与待测物形成的水分凝结体数量呈线性3) 响应信号值只与水分凝结体数量相关,即只与待测物质量相关,与待测物化学性质无关 应用 气溶胶激光计数检测器(NQAD)适用于:1、没有紫外吸收的物质2、离子化比较难的物质3、没有电化学活性的物质4、性质不明的物质 例如:氨基酸类、糖类、植物药、聚合物、化学药、酯类、胆固醇、离子、表面活性剂、胺类、蛋白等 使用CAPCELL CORE MP S2.7 (2.1 mm i.d. x 50 mm)对聚乙二醇(PEG,平均分子量4000)的低聚物分布进行了测定。使用NQAD检测器,可得到表征质量分布的色谱图。 【HPLC Conditions】Column : CAPCELL CORE MP S2.7 2.1 mm i.d. x 50 mmMobile phase : A) H2O, B) CH3CNB 20 % (0 min) → 40 % (10 min) → 20 % (10.1 min)Flow rate : 400 μL/minTemperature : 50 degrees CelsiusDetector : NQAD (Evaporation 35 degrees Celsius,Nubulizer 30 degrees Celsius,Filter 2.5 s) TOF-MS (ESI positive, MicroTOF, Bruker)Inj. vol : 2 μLSample dissolved in : 20 % CH3CN * 1 μg/mL = 1 ppm 更多应用欢迎联系我们* 本设备由大阪曹達株式会社生产
    留言咨询

四聚乙二醇单辛醚相关的耗材

  • AC-20 100%聚乙二醇20M
    AC-20 100%聚乙二醇20M 100%聚乙二醇20M 强极性 工业标准的WAX色谱柱 适用于醇类、酯和醛分析 内径(mm) 膜厚(µ m) 长度30m 长度60m 对应产品* 应用 0.22 0.25 053181 053182 BP20, DB-Wax, HP-20M, HP-Wax, CP-Wax 52CB, Rtx-Wax, Stabilwax, SupelcoWax-10,Carbowax-20M, AT-WAX 醇类、游离酸、脂肪酸甲酯FAME、醛类、芳香化合物、香味剂和风味成分、多环芳烃PAHs、溶剂、卤代物、氮化物、硫化物。 0.32 0.5 053187 053188 1 053193 &minus 0.53 1 053196 &minus
  • SolGel-WAX – 聚乙二醇
    SolGel-WAX &ndash 聚乙二醇 · 新产品,高温极性WAX固定相; · 操作温度:30° C - 300° C; · 无直接替换产品。 SolGel-WAX &ndash 聚乙二醇 内径(mm) 膜厚(µ m) 30m 60m 0.25 0.25 054796 054791 1 054787 &minus 0.32 0.25 054788 054789 0.5 054797 054792 0.53 0.5 054786 &minus 1 054785 &minus
  • 瑞思泰康 Rtx-Wax 聚乙二醇气相专用柱
    Rtx-Wax 气相色谱柱 (熔融石英)(极性固定相;Crossbond聚乙二醇)最佳的聚乙二醇(PEG)固定相,用于链烯醇、乙二醇和醛类的分析。温度范围: 20 °C~250 °C。等同于USP G14, G15, G16, G20, G39 固定相。类似固定相:DB-Wax, CP Wax 52 CB, ZB-Wax订货信息:IDdf温度限度15-米30-米60-米0.25mm0.25 μm20 to 250 °C1242012423124260.50 μm20 to 250 °C1243512438124410.32mm0.25 μm20 to 250 °C1242112424124270.50 μm20 to 250 °C1243612439124421.00 μm20 to 240/250°C1245112454124570.53mm0.25 μm20 to 250 °C12422124250.50 μm20 to 250 °C1243712440124431.00 μm20 to 240/250°C124521245512458

四聚乙二醇单辛醚相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制