二氢桑色素对照品

仪器信息网二氢桑色素对照品专题为您提供2024年最新二氢桑色素对照品价格报价、厂家品牌的相关信息, 包括二氢桑色素对照品参数、型号等,不管是国产,还是进口品牌的二氢桑色素对照品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二氢桑色素对照品相关的耗材配件、试剂标物,还有二氢桑色素对照品相关的最新资讯、资料,以及二氢桑色素对照品相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

二氢桑色素对照品相关的资料

二氢桑色素对照品相关的论坛

  • 【求助】求助:桑色素-铁配合物的配位测定及其抗菌性研究文献?

    急求两篇文献!!年代比校早还有一个是比校近的,但是校园网下不了~请大家帮个忙下下来~~谢谢啊~~1。文献:L. H. Briggs, L. D. Colebrook. Infra-red spectra of flavanones and flavones. Carbonyl and hydroxyl stretching and CH out-of-plane bending absorption Spectrochimica Acta, Volume 18, Issue 7, July 1962, Pages 939-9572。卢俊 余希成 温彩莲 桑色素-铁配合物的配位测定及其抗菌性研究

  • 食品中的色素

    1.什么是色素:使各种物质产生各种颜色的物质就是色素,我们日常看到五颜六色的各种食品,就是因为含有各种不同的色素,所以我们才看到了各种不同颜色的食品,如果食品不含色素,那我们看到的食品都将是透明的或者白色的。2.食品中为何要添加色素:食品讲究色、香、味,颜色排在第一位,说明了色素在食品中的重要性,色、香、味俱佳的食品,能通过视觉感官刺激增强食欲,为了吸引人们的食欲,食品中添加了各种颜色来吸引消费者,据了解橙色的食品最能使人有食用的欲望。3.色素属于食品添加剂么:色素是食品添加剂,属于食品添加剂中的着色剂类别。4.色素的分类:食品中添加的色素分为人工合成色素和天然色素,各种色素通过红、黄、蓝三原色的不同比例的复配,可以生成无数种各种各样的颜色。5.色素的来源:合成色素是指用人工化学合成方法所制得的有机色素,主要是以煤焦油中分离出来的苯胺染料为原料制成的,按结构分,人工合成色素可分为偶氮类、氧蒽类和二 苯甲烷类色素;天然色素是指以植物、动物、微生物或矿物质为原料通过物理方法,再不改变色素分子结构的情况下提取分离出来的色素,从溶解性分可分为水溶 性、油溶性、醇溶性色素。6.色素的危害:合理合法使用各种色素是没有危害的。但大量研究表明过量食用合成色素会在肝脏沉积,可造成生育力下降、畸胎,有些合成色素在人体内可能转换成致癌物质, 可引起儿童发育障碍、多动症,在化妆品中使用有引起炎症,甚至癌变的可能;天然色素也不是没有危害,过量食用也会并不是就安全,比如连续大量食用柑橘类、 或萝卜之类的食品,会使或萝卜属类物质过量,造成皮肤泛黄等症状,不过停止食用一段时间就会自动恢复正常。7.我国允许在食品中使用合成色素种类:到2015年10月24日止GB2760里面允许使用的合成色素是:赤藓红及其铝色淀,靛蓝及其铝色淀,二氧化钛,蕃茄红,核黄素,β-胡萝卜素,喹啉 黄,亮蓝及其铝色淀,柠檬黄及其铝色淀,日落黄及其铝色淀,酸性红(又名偶氮玉红),苋菜红及其铝色淀,新红及其铝色淀,胭脂红及其铝色淀,氧化铁黑,氧 化铁红,诱惑红及其铝色淀等十七种。8.我国允许食品中使用天然色素种类:到2015年10月24日止GB2760里面允许使用的天然色素是:β-阿朴-8’-胡萝卜素,番茄红素,柑橘黄,黑豆红,黑加仑红,红花黄,红米红, 红曲红,红曲黄,天然β-胡萝卜素,花生衣红,姜黄素,焦糖色,金樱子棕,菊花黄浸膏,可可壳色,辣椒橙,辣椒红,辣椒油树脂,蓝靛果红,萝卜红,落葵 红,玫瑰茄红,密蒙黄,葡萄皮红,桑葚红,沙棘黄,酸枣色,天然苋菜红,橡子壳棕,胭脂虫红,胭脂树橙,杨梅红,叶黄素,叶绿素铜,叶绿素铜钠盐,叶绿素 铜钾盐,玉米黄,越橘红,藻蓝,栀子黄,栀子蓝,植物炭黑,紫草红,紫甘薯色素,紫胶红,高粱红,甜菜红等四十八种。9.色素的功能或生理活性:几乎所有人工合成色素都不能给人体提供营养物质,也没有什么有益的生理功能;部分天然色素本身也是保健品原料,对人体有保健作用和一定的生理功能,比如 番茄红素、胡萝卜素、花青素等的抗氧化、去除自由基功效、叶黄素对视黄斑的保护修复作用、姜黄素的消炎生肌、抗肿瘤功效等。

  • CNS_08.129_桑椹红

    [align=center][font='calibri'][size=29px]食[/size][/font][font='calibri'][size=29px] [/size][/font][font='calibri'][size=29px]品[/size][/font][font='calibri'][size=29px] [/size][/font][font='calibri'][size=29px]添[/size][/font][font='calibri'][size=29px] [/size][/font][font='calibri'][size=29px]加[/size][/font][font='calibri'][size=29px] [/size][/font][font='calibri'][size=29px]剂[/size][/font][font='calibri'][size=29px] -- [/size][/font][font='calibri'][size=29px]桑[/size][/font][font='calibri'][size=29px] [/size][/font][font='calibri'][size=29px]葚[/size][/font][font='calibri'][size=29px] [/size][/font][font='calibri'][size=29px]红[/size][/font][/align][size=18px]金浩[/size][size=18px]二零二一年七月二十八日[/size]摘要:桑葚红是一种安全、无毒食品添加剂,本文主要介绍了该添加剂的理化性质、制备方法、应用、限量、检测和标准。关键词:桑葚红、理化性质、制备方法、应用、限量、检测、标准[font='calibri'][size=21px]1、 [/size][/font][font='calibri'][size=21px]引言[/size][/font] 桑椹是桑科桑属植物桑的近成熟聚花果。桑椹含有丰富的糖、有机酸、氨基酸、维生素及微量元素等。桑椹不仅具有极高的营养价值,而且具有保健功能,被国家卫生部列为“既是食品又是药品”的农产品之一。从桑椹中提取的桑椹红色素,具有补血、润脑、利尿、润便、抗氧化及消除自由基等作用。现就对桑葚红的理化性质、稳定性、应用、限量、检测和标准进行介绍。[font='calibri'][size=21px]2、 [/size][/font][font='calibri'][size=21px]理化性质[/size][/font][font='calibri'][size=21px]1. [/size][/font][font='calibri'][size=21px]化学结构[/size][/font]1972年,日本佐藤俊之报道了白桑中含有3种花色苷成分,按其含量高低依次排列为矢车菊素-3-葡萄糖苷、天竺葵-3-葡萄糖苷和碧冬茄-3-芸香糖苷。现在,已经证实桑椹红色素的主要着色成分为花青素-3-葡萄糖苷,分子式为C[font='calibri'][size=13px]21[/size][/font]H[font='calibri'][size=13px]21[/size][/font]O[font='calibri'][size=13px]11[/size][/font],分子量为449.39。[img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108061808221536_1715_1608728_3.jpeg[/img][font='calibri'][size=21px]2. [/size][/font][font='calibri'][size=21px]溶解性[/size][/font]桑椹红色素为水溶性色素,易溶于水、乙醇、甲醇等极性溶剂,不溶于丙酮、石油醚、乙醚、氯仿等非极性有机溶剂。[font='calibri'][size=21px]3. [/size][/font][font='calibri'][size=21px]酸碱性及吸光度[/size][/font]pH值的影响比较明显,桑椹红色素在酸性条件下稳定,pH5时色素损失率不大 在碱性条件下,色素中的花色苷元发生分子结构的改变,而使颜色发生明显变化。桑椹红色素在不同pH值下吸收光谱各异,随着酸碱度的变化吸收峰也跟着变化,pH值为5、6、7时在可见光区没有明显的吸收峰 当pH5.4时,测得最大吸收波长为512~514nm。当pH>12时,特征峰出现于565nm处。[font='calibri'][size=21px]4.[/size][/font][font='calibri'][size=21px]化学性质 [/size][/font]桑椹红色素与SO[font='calibri'][size=13px]2[/size][/font]发生加成反应而褪色,与金属Pb[font='calibri'][size=13px]2+[/size][/font]、Sn[font='calibri'][size=13px]2+[/size][/font]、Cu[font='calibri'][size=13px]2+[/size][/font]发生络合反应产生沉淀。[font='calibri'][size=21px]4. [/size][/font][font='calibri'][size=21px]桑椹红色素的稳定性及其影响因素[/size][/font][size=18px]①光照和温度[/size]室温下,桑椹红色素溶液放置6d,色素的损失率为10.68% 放置3周,色素的损失率达19.55%,说明桑椹红色素溶液对光照稳定性较差,光照易引起桑椹色素的分解。将色素水溶液维持在 90 ℃恒温水浴锅中加热 2h ,然后添加适量水 , 以补充加热过程中损失的水分 , 在520nm 条件下测其吸光度 , 吸光度值与对照相比 , 没有明显差异。说明该色素对热稳定性良好。[size=18px]②金属离子[/size]Fe[font='calibri'][size=13px]3+[/size][/font]、Zn[font='calibri'][size=13px]2+[/size][/font]、Pb[font='calibri'][size=13px]2+[/size][/font]、Sn[font='calibri'][size=13px]2+[/size][/font]、Fe[font='calibri'][size=13px]2+[/size][/font]、Cu[font='calibri'][size=13px]2+[/size][/font]等离子的存在对桑椹红色素有较大影响,K[font='calibri'][size=13px]+[/size][/font]、Na[font='calibri'][size=13px]+[/size][/font]、Ca[font='calibri'][size=13px]2+[/size][/font]、Mg[font='calibri'][size=13px]2+[/size][/font]、Al[font='calibri'][size=13px]3+[/size][/font]有保护色素的作用。[size=18px]③[/size][size=18px]氧化还原剂[/size]氧化剂、还原剂对桑椹红色素有强烈的破坏作用,浓度越高、作用时间越长,色素的吸光值降低、损失率增大。不同氧化剂或还原剂对色素的影响也不同。[size=18px]④食品添加剂[/size]蔗糖、淀粉桑椹红色素的稳定性无影响,[font='宋体']苯甲酸钠对该色素虽有一定影响但影响程度很小[/font][font='宋体'],[/font][font='宋体']少量苯甲酸钠的存在对色泽稳定性不会产生大的影响[/font][font='宋体'][size=16px] [/size][/font]Vc、柠檬酸、Na[font='calibri'][size=13px]2[/size][/font]SO[font='calibri'][size=13px]3[/size][/font]对色素有一定影响,Na[font='calibri'][size=13px]2[/size][/font]SO[font='calibri'][size=13px]3[/size][/font]、柠檬酸可使色素颜色变深,Vc使色素溶液颜色变浅,但吸光度均增加。[font='calibri'][size=21px]3、 [/size][/font][font='calibri'][size=21px]制备方法[/size][/font][font='calibri'][size=21px]1. [/size][/font][font='calibri'][size=21px]桑椹红色素的提取[/size][/font]制备桑椹红色素的步骤:称量、破碎、提取、抽滤、干燥、成品。主要提取方法是溶剂浸提法,当前常用的有:盐酸-乙醇提取法、柠檬酸-乙醇提取法和超声波提取法。[size=18px]①盐酸[/size][size=18px]-[/size][size=18px]乙醇提取法[/size]杨伦等用0.1%HCl-乙醇溶液为萃取液,于75℃下提取2h,得率为11%。李和生等进行了不同配比的提取剂对提取效果的比较研究,认为以0.1%HCl-95%乙醇溶液(配比1∶1)作提取剂、料液比1∶10、温度70℃、提取时间2h时效果最佳,提取液经旋转蒸发仪蒸发、真空干燥,得率为5.8%。而段江莲等的研究结果表明,最佳提取条件为:溶剂配比为含0.01%HCl-80%乙醇溶液、料液比为1∶20、温度20℃、浸提时间lh、得率为93.07%。因此,虽然桑椹红色素对热稳定,不过温度过高会导致乙醇的挥发而损失,使提取剂的组成发生改变,对提取效果也会产生一定的影响。[size=18px]②柠檬酸[/size][size=18px]-[/size][size=18px]乙醇提取法[/size]毛平生等使用0.5%柠檬酸-80%乙醇溶液(1∶1)和0.1%盐酸-50%乙醇溶液(1∶1),试验温度分别为60℃和70℃、物料比分别为1∶2和1∶6、提取时间均为2h,筛选出最佳提取条件。试验结果表明:0.5%柠檬酸-乙醇体系在70℃、料液比为1∶6、提取2h有最高的吸光度和提取率。因此,柠檬酸-乙醇体系较之于盐酸-乙醇体系,不仅安全而且可以避免盐酸对干燥器的腐蚀作用。[size=18px]③[/size][size=18px]超声波提取法[/size]徐建国等通过单因素试验和正交试验,与溶剂浸提法相对照,研究了超声波提取桑椹红色素的工艺参数和提取效果。结果表明,超声波提取的最佳条件为:提取剂为含0.01%HCl-80%乙醇溶液,提取功率200W,提取时间10min,料液比1∶20,提取率为86.57%。超声波法提取桑椹红色素既可以提高色素得率,又可减少提取时间,为工业化生产、开发、利用提供了依据。[font='calibri'][size=21px]2. [/size][/font][font='calibri'][size=21px]大孔树脂吸附纯化[/size][/font]将色素粗品进行离子交换处理,利用交换树脂特有的选择性进行纯化。树脂吸附纯化的工艺过程为:色素粗提液→上柱吸附→洗脱→浓缩→干燥→色素粉末。刘学铭等的研究证明:大孔吸附树脂D[font='calibri'][size=13px]101[/size][/font]能很好地吸附桑椹红色素(饱和吸附量达33mg/mL),酸性乙醇有较好的解吸性能,在静态解吸时体积分数大于40%时即有良好效果,在动态解吸时宜用高浓度的乙醇(体积分数70%以上),在洗脱后期加入一定量的蒸馏水,可减少拖尾现象的发生。刘树兴等[8]选用AB-8树脂,工艺参数为:50℃、pH值为2.0吸附、饱和吸附量为66.15mg/mL,pH值为1.5、室温、50%乙醇、流速0.5BV/h洗脱。田呈瑞等对NKA-Ⅱ、D-3520、AB-8、X-5、LSA-20、LSA-21、HPD-100、HPD-300等8种大孔吸附树脂进行筛选,认为LSA-21树脂对桑椹红色素的吸附和解吸性能最好。徐建国等研究了桑椹红色素在LSA-21大孔吸附树脂上的动态洗脱工艺,最佳蒸馏水洗脱条件为:水洗流速1.5BV/h、用水量1.96BV、时间1.4h 最佳酸性乙醇洗脱条件为:乙醇75%、流速1.0BV/h、用水量2.5BV。各因素对色素洗脱效果的影响程度依次为洗脱流速、乙醇浓度、洗脱剂用量。[font='calibri'][size=21px]4、 [/size][/font][font='calibri'][size=21px]应用[/size][/font][font='calibri'][size=21px]1.[/size][/font][font='calibri'][size=21px]食品添加剂[/size][/font]桑椹红色素(GB08.129)已经列入我国食品添加剂使用卫生标准(GB2760-1996)中48种天然色素之一,可以用作酸性食品如:饮料、糖果、糕点、果冻等的着色剂,并规定饮料的最大使用量为1.5g/kg,糖果的最大使用量为2.0g/kg,果冻的最大使用量为5.0g/kg。[font='calibri'][size=21px]2.[/size][/font][font='calibri'][size=21px]真丝染料[/size][/font][font='calibri'][size=21px] [/size][/font]徒晓茜等对从桑椹中提取色素,对桑椹色素在蚕丝织物上的染色性能和牢度进行了分析、对比,并对染色后织物的抗紫外线性能进行了测试。结果表明:以FeSO[font='calibri'][size=13px]4[/size][/font]7H[font='calibri'][size=13px]2[/size][/font]O为媒染剂可以显著提高织物的上染性和牢度,桑椹色素染色后织物具有优良的抗紫外线性能 确定了先媒后染的工艺条件为:90℃媒处理30min,媒染剂用量10%(以织物重量为基准,下同),100℃染色45min,桑椹色素液pH值为3 先染后媒的工艺条件是:100℃染色45min、桑椹色素液pH值为3,90℃后媒处理30min,媒染剂用量为8% 先染后媒工艺较之先媒后染、直接染色的染色牢度和抗紫外效果高。[font='calibri'][size=21px]3. [/size][/font][font='calibri'][size=21px]酸碱指示剂[/size][/font]研究表明:桑椹红色素溶液的颜色会随pH值的改变发生灵敏变化,且颜色变化具有可逆性 pH≈6时有一个颜色突变,即蓝色与红色的突变,可用于酸碱滴定试验,用作酸碱指示剂。牛家淑等用桑椹红色素作指示剂,滴定了NaOH溶液和HCl溶液,取得满意效果。用HCl溶液滴定NaOH溶液,颜色由浅绿色变成微红色即为终点,用NaOH溶液滴定HCl溶液,颜色由红色变成淡绿色即为终点。[font='calibri'][size=21px]4. [/size][/font][font='calibri'][size=21px]抗氧化剂[/size][/font]徐建国等采用O[font='calibri'][size=13px]2[/size][/font][font='calibri'][size=13px]-[/size][/font]、OH[font='calibri'][size=13px]-[/size][/font]、H[font='calibri'][size=13px]2[/size][/font]O[font='calibri'][size=13px]2[/size][/font]、-R自由基引发的亚油酸氧化体系及DPPH对桑椹红色素的清除自由基活性进行了研究,并同Vc进行了比较。结果表明,桑椹红色素对这几种自由基均有不同程度的清除作用,对O[font='calibri'][size=13px]2[/size][/font]-、OH-、H[font='calibri'][size=13px]2[/size][/font]O[font='calibri'][size=13px]2[/size][/font]的清除能力高于Vc,清除DPPH的能力低于Vc,清除-R的能力和Vc相当。吕英华等综合考察了桑椹色素的总抗氧化、抗脂质过氧化及对OH、DPPH和ABTS[font='calibri'][size=13px]+[/size][/font]的清除能力,并以半抑制浓度IC[font='calibri'][size=13px]50[/size][/font]表征了桑椹色素提取液对4个体系抑制能力的量效关系,IC[font='calibri'][size=13px]50[/size][/font]分别为18.56、77.62、35.91和109.33mg/L。因此,桑椹红色素具有较强的体外抗氧化能力,是一种很好的天然抗氧化剂。[font='calibri'][size=21px]5. [/size][/font][font='calibri'][size=21px]其他用处[/size][/font]桑椹红色素作为一种天然食用色素,不仅色泽诱人,还具有营养药理保健作用,可作为化妆品及保健品着色剂加以开发利用。[font='calibri'][size=21px]5、 [/size][/font][font='calibri'][size=21px]检测标准与方法[/size][/font][font='calibri'][size=21px]1. [/size][/font][font='calibri'][size=21px]技术要求[/size][/font]①感官要求[img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108061808222688_54_1608728_3.jpeg[/img]②理化指标[img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108061808223606_5918_1608728_3.jpeg[/img][font='calibri'][size=21px]2. [/size][/font][font='calibri'][size=21px]检测方法[/size][/font]范围:本标准适用于以桑葚果实及其果渣为原料,用含柠檬酸等酸和食用乙醇的水溶液,经提取、精致而得的食品添加剂桑葚红。A.1一般规定标准所用试剂和水在没有注明其他要求时,均指分析纯试剂和[font='calibri']G[/font]B/T[font='calibri']6682[/font]规定的三级水。试验中所用标准溶液、制剂和制品,在没有注明其他要求时均按GB/T601、GB/T602、GB/T603的规定制备。试验中所用溶液在未注明用何种溶剂配制时,均指水溶液。[font='calibri']A.2[/font][font='calibri']鉴别试剂[/font][font='calibri']A.2.1[/font][font='calibri']试剂和材料[/font][font='calibri']三氟乙酸:色谱纯。乙腈:色谱纯。氢氧化钠溶液:[/font][font='calibri']2mol/L[/font][font='calibri']。盐酸溶液:[/font][font='calibri']2mol/L[/font][font='calibri']。磷酸氢二钠溶液:[/font][font='calibri']0.2mol/L[/font][font='calibri']。柠檬酸溶液:[/font][font='calibri']0.1mol/L[/font][font='calibri']。柠檬酸[/font][font='calibri']-[/font][font='calibri']磷酸氢二钠缓冲溶液:[/font][font='calibri']PH=3.0[/font][font='calibri']。三氟乙酸溶液:[/font][font='calibri']0.1%[/font][font='calibri'](体积分数)。提取溶剂:三氟乙酸溶液[/font][font='calibri']+[/font][font='calibri']乙腈([/font][font='calibri']75+25[/font][font='calibri'])。矢车菊色素[/font][font='calibri']3-[/font][font='calibri']葡萄糖苷对照品:[/font][font='calibri']CAS[/font][font='calibri']:[/font][font='calibri']7084-24-4[/font][font='calibri'],纯度≥[/font][font='calibri']98%[/font][font='calibri']。矢车菊色素[/font][font='calibri']3-[/font][font='calibri']芸香糖苷对照品:[/font][font='calibri']CAS[/font][font='calibri']:[/font][font='calibri']18719-76-1[/font][font='calibri'],纯度≥[/font][font='calibri']98%[/font][font='calibri']。[/font][font='calibri']A.2.2[/font][font='calibri']仪器和设备[/font][font='calibri']紫外分光光度计。比色皿:[/font][font='calibri']1cm[/font][font='calibri']。液相色谱仪:配有紫外[/font][font='calibri']-[/font][font='calibri']可见或二极管阵列检[/font][font='calibri']测器。[/font][font='calibri']A.2.3[/font][font='calibri']鉴别方法[/font][font='calibri']A.2.3.1[/font][font='calibri']颜色反应[/font][font='calibri']称取[/font][font='calibri']0.1g[/font][font='calibri']试样,精确至[/font][font='calibri']0.01g[/font][font='calibri'],加入[/font][font='calibri']50mL[/font][font='calibri']水溶解,剧烈摇动,必要时过滤。使用氢氧化钠溶液和盐酸溶液调节溶液[/font][font='calibri']PH[/font][font='calibri'],在酸性条件下,溶液应呈鲜艳的玫瑰色;在中性条件下,溶液呈紫色;在碱性条件下,溶液呈紫黑色。[/font][font='calibri']A.2.3.2[/font][font='calibri']吸光度实验[/font][font='calibri']称取[/font][font='calibri']0.1g[/font][font='calibri']试样,精确至[/font][font='calibri']0.001g[/font][font='calibri'],用柠檬酸[/font][font='calibri']-[/font][font='calibri']磷酸氢二钠缓冲溶液溶解并稀释定容至[/font][font='calibri']100mL[/font][font='calibri']。将试样溶液注入[/font][font='calibri']1cm[/font][font='calibri']比色皿,用柠檬酸[/font][font='calibri']-[/font][font='calibri']磷酸氢二钠缓冲溶液为空白测定吸光度,此[/font][font='calibri'] [/font][font='calibri']试样溶液在[/font][font='calibri']510nm-530nm[/font][font='calibri']范围内应有最大吸收[/font][font='calibri']峰。剩余试样溶液用于色价的测定。[/font][font='calibri']A.2.3.3[/font][font='calibri']色谱实验[/font][font='calibri']A.2.3.3.1[/font][font='calibri']试样溶液的制备[/font][font='calibri']固体试样:称取[/font][font='calibri']0.5g[/font][font='calibri']试样,精确至[/font][font='calibri']0.001g[/font][font='calibri'],溶于提取试剂,定容至[/font][font='calibri']100mL[/font][font='calibri'],经[/font][font='calibri']0.45um[/font][font='calibri']滤膜过滤。[/font][font='calibri']液体试样:称取[/font][font='calibri']1g[/font][font='calibri']试样,精确至[/font][font='calibri']0.001g[/font][font='calibri'],溶于提取溶剂,定容至[/font][font='calibri']10mL[/font][font='calibri'],经[/font][font='calibri']0.45um[/font][font='calibri']滤膜过滤。[/font][font='calibri']A.2.3.3.2[/font][font='calibri']对照品溶液的制备[/font][font='calibri']分别称取矢车菊色素[/font][font='calibri']3-[/font][font='calibri']葡萄糖苷和矢车菊色素[/font][font='calibri']3-[/font][font='calibri']芸香糖苷各[/font][font='calibri']10mg[/font][font='calibri'],溶于提取溶剂,定容至[/font][font='calibri']100mL[/font][font='calibri'],经[/font][font='calibri']0.45um[/font][font='calibri']滤膜过滤。[/font][font='calibri']A.2.3.3.3[/font][font='calibri']参考色谱条件[/font][font='calibri']色谱柱:[/font][font='calibri']C[/font][font='calibri'][size=13px]18[/size][/font][font='calibri']反相色谱[/font][font='calibri']柱。流动相[/font][font='calibri']A[/font][font='calibri']:三氟乙酸溶液。流动相[/font][font='calibri']B[/font][font='calibri']:乙腈。流速:[/font][font='calibri']0.4mL/min[/font][font='calibri']。检测波长:[/font][font='calibri']520nm[/font][font='calibri']。进样体积:[/font][font='calibri']2uL[/font][font='calibri']。柱温:[/font][font='calibri']35[/font][font='calibri']摄氏度。等度洗脱条件:流动相[/font][font='calibri']A+[/font][font='calibri']流动相[/font][font='calibri']B=89+11[/font][font='calibri']。[/font][font='calibri']A.2.4[/font][font='calibri']分析步骤[/font][font='calibri']再参考色谱条件下,矢车菊色素[/font][font='calibri']3-[/font][font='calibri']葡萄糖苷、矢车菊色素[/font][font='calibri']3-[/font][font='calibri']芸香糖苷对照品溶液和试样溶液分别进样。[/font][font='calibri']A.2.5[/font][font='calibri']结果判定[/font][font='calibri']试样溶液色谱图中应出现两个明显主峰,且两个主峰的保留时间应与矢车菊色素[/font][font='calibri']3-[/font][font='calibri']葡萄糖苷和矢车菊[/font][font='calibri']3-[/font][font='calibri']芸香糖苷对照品保留时间一致。[/font][font='calibri']A.3[/font][font='calibri']色价的测定[/font][font='calibri']A.3.1[/font][font='calibri']试剂和材料[/font][font='calibri']柠檬酸[/font][font='calibri']-[/font][font='calibri']磷酸氢二钠缓冲溶液:[/font][font='calibri']PH=3.0.[/font][font='calibri']A.3.2[/font][font='calibri']仪器和设备[/font][font='calibri']紫外分光光度计。比色皿:[/font][font='calibri']1cm[/font][font='calibri']A.3.3[/font][font='calibri']分析步骤[/font][font='calibri']将试样溶液注入[/font][font='calibri']1cm[/font][font='calibri']比色皿中,以柠檬酸[/font][font='calibri']-[/font][font='calibri']磷酸氢二钠缓冲溶液为空白,用分光光度计于[/font][font='calibri']510-530nm[/font][font='calibri']范围内的最大吸收波长处测定吸光度(吸光度值应控制在[/font][font='calibri']0.2-0.7[/font][font='calibri'],否则应调整试样溶液浓度,再重新测定吸光度值)。[/font][font='calibri']A.3.4[/font][font='calibri']结果计算[/font][font='calibri']色价以被测试样溶液浓度为[/font][font='calibri']10%[/font][font='calibri']、用[/font][font='calibri']1cm[/font][font='calibri']比色皿、再[/font][font='calibri']510nm-530[/font][font='calibri']范围内的最大吸收波长处测定吸光度值[/font](510nm-530nm)计,按下式计算。(510nm-530nm)=*式中:A:被测试样溶液的吸光度;c:被测试样溶液的浓度,单位为克每毫升(g/mL);10/100:浓度换算系数。实验结果以平行测定结果的算术平均值为准。在重复性条件下获得的两次独立测定结果的绝对差值与算数平均值的比值不大于2.5%。A.4二氧化硫的测定A.4.1测定方法采用GB5009.34测得试样中的二氧化硫总含量,然后按下式换算成一个色价计的二氧化硫含量。A.4.2计算结果二氧化硫含量是以一个色价产品中的二氧化硫质量分数y计,单位为毫克每千克(mg/kg),按下式计算。式中:x:按照GB5009.34蒸馏法测得的试样中二氧化硫总含量,单位为克每千克(g/kg);1000:单位换算系数;(510nm-530nm):被测试样的色价。试样结果以平行测定的结果的算术平均值为准。在重复性条件下获得的两次独立测定结果的绝对差值不得超过算数平均值的10%。A.5 PH的测定A.5.1仪器设备酸度计。A.5.2测定方法称取1g试样,精确至0.01g,完全溶解于蒸馏水中,并定容至100mL,用酸度计测定其PH。实验结果以平行测定结果的算数平均值为准。在重复性条件下获得的两次独立测定结果的绝对差值不得超过0.1PH。A.6灼烧残渣的测定A.6.1仪器设备坩埚、高温炉、干燥器。A.6.2测定方法称取3g试样,精确至0.001g,置于已在800℃±25℃恒重的坩埚中,先在电炉中缓慢碳化(约300℃),再移入800℃±25℃高温炉中灼烧至恒重。A.6.3计算结果灼烧残渣的质量分数W[font='calibri'][size=13px]1[/size][/font]按下式计算。式中:m[font='calibri'][size=13px]1[/size][/font]:坩埚和灼烧1残渣的质量,单位为克(g);m[font='calibri'][size=13px]2[/size][/font]:坩埚的质量(g);m[font='calibri'][size=13px]3[/size][/font]:坩埚和试样的质量,单位为克(g)。实验结果以平行测定的算术平均值为准。在重复条件下获得的两次独立测定结果的绝对差值不得超过算数平均值的10%。参考文献[1] 王金亭, 张季冬. 桑椹红色素的制备及其应用[J]. 江西农业学报, 2008, 020(003):78-79.[2] 食品安全国家标准食品添加剂桑葚红.国家卫生健康委员会国家市场监督管理总局.[3] 杨伦,李秀玲.桑椹红色素提取试验[J].林产化工通讯,2002,36(4):3~5.[4] 李和生,王鸿飞.桑椹红色素的提取工艺及其稳定性研究[J].食品科技,2002,(3):51~52.[5] LIHSH,WANGHF,SUNYX.Preliminarystudyonextractionandcharacteristicsofmulberrypigment[J].CanYeKeXue,2005,31(5):175~181.[6] 段江莲,徐建国,徐怀德.桑椹果渣中桑椹红色素的提取工艺研究[J].食品科技,2007,(1):134~136.[7] 毛平生,艾丽静,彭晓虹,等.桑椹红天然色素提取对比试验[J].中国蚕业,2005,26(4):18~19.[8] 徐建国,田呈瑞,胡青平.超声波提取桑椹红色素的工艺研究[J].山西农业大学学报,2005,(4):380~382.[9] 刘学铭,肖更生,徐玉娟,等.D101大孔吸附树脂吸附和分离桑椹红色素的研究[J].食品与发酵工业,2001,28(1):19~22.[10] 刘树兴,杨兆艳,吴娟亭.树脂法提取桑椹红色素的研究[J].食品科学,2004,25(6):129~133.[11] 田呈瑞,徐建国,胡青平.桑椹红色素纯化的动态吸附条件研究[J].西北植物学报,2005,25(6):1166~1170.[12] 徐建国,田呈瑞,胡青平.桑椹红色素纯化的动态洗脱条件研究[J].食品添加剂,2005,26(4):155~157.[13] 王清滨,陈国良.食品着色剂及其分析方法(第一版)[M].北京:化学工业出版社,2004.115.[14] 牛家淑,褚洪图.食用天然桑椹色素的性质及应用研究[J].河北化工,1996,19(1):18~20.[15] 曹军胜,曹娟云.桑椹红色素的提取及其稳定性[J].食品工业,2002,23(2):20~21.[16] 毕丽君,张鸿发,符荣晶.墨红色素桑椹色素红叶甜菜色素稳定性的比较[J].广州食品工业科技,2001,17(2):1~3.[17] 李志洲.桑椹红色素的提取及稳定性研究[J].汉中师范学院学报(自然科学版),2003,21(2):73~78.[18] 徒晓茜,王祥荣.桑椹色素对真丝织物的染色性能研究[J].印染助剂,2007,24(3):15~18.[19] 徐建国,田呈瑞,胡青平.天然桑椹红色素体外清除自由基活性的研究[J].食品科学,2005,26(12):77~81.[20] 吕英华,苏平,那宇,等.桑椹色素体外抗氧化能力研究[J].浙江大学学报(农业与生命科学版),2007,33(1):102~107.

二氢桑色素对照品相关的方案

  • 日立高新Primaide应对食品中四碘荧光素 色素的分析
    在食品和饮品中添加食用色素可改善其口感。食用色素主要分为天然色素和人工合成色素。 天然食用色素是直接从动植物组织中提取的色素,对人体一般来说是无害,如红曲、叶绿素、姜黄素、胡萝卜素、苋菜和糖色等,就是其中的一部分。 人工合成食用色素,是用煤焦油中分离出来的苯胺染料为原料制成的,故又称煤焦油色素或苯胺色素,如合成苋菜红、胭脂红及柠檬黄等等。这些人工合成的色素因易诱发中毒、泻泄甚至癌症,对人体有害,故不能多用或尽量不用。我国国家标准《GB 2760-2011 食品安全国家标准 食品添加剂使用标准》明确规定了这类人工色素在食品中添加的限量值。 在此,我们对苋菜红、靛蓝胭脂红、日落黄、亮蓝FCF、四碘荧光素以及酸性红52这六种人工合成色素的分析进行介绍。六种人工合成色素对不同波长的紫外线(UV)具有各不相同的最大吸收,因此可以使用DAD(二极管阵列检测器)对其进行同时分析。使用DAD可以获得最佳波长下各种人工色素的提取色谱图。通过标准样品光谱图与目标组分光谱图对比进行组分确定,可实现更精准的定量分析。
  • 日立高新Primaide应对食品中日落黄 色素的分析
    在食品和饮品中添加食用色素可改善其口感。食用色素主要分为天然色素和人工合成色素。 天然食用色素是直接从动植物组织中提取的色素,对人体一般来说是无害,如红曲、叶绿素、姜黄素、胡萝卜素、苋菜和糖色等,就是其中的一部分。 人工合成食用色素,是用煤焦油中分离出来的苯胺染料为原料制成的,故又称煤焦油色素或苯胺色素,如合成苋菜红、胭脂红及柠檬黄等等。这些人工合成的色素因易诱发中毒、泻泄甚至癌症,对人体有害,故不能多用或尽量不用。我国国家标准《GB 2760-2011 食品安全国家标准 食品添加剂使用标准》明确规定了这类人工色素在食品中添加的限量值。 在此,我们对苋菜红、靛蓝胭脂红、日落黄、亮蓝FCF、四碘荧光素以及酸性红52这六种人工合成色素的分析进行介绍。六种人工合成色素对不同波长的紫外线(UV)具有各不相同的最大吸收,因此可以使用DAD(二极管阵列检测器)对其进行同时分析。使用DAD可以获得最佳波长下各种人工色素的提取色谱图。通过标准样品光谱图与目标组分光谱图对比进行组分确定,可实现更精准的定量分析。
  • 日立高新Primaide应对食品中酸性红52色素的分析
    在食品和饮品中添加食用色素可改善其口感。食用色素主要分为天然色素和人工合成色素。 天然食用色素是直接从动植物组织中提取的色素,对人体一般来说是无害,如红曲、叶绿素、姜黄素、胡萝卜素、苋菜和糖色等,就是其中的一部分。 人工合成食用色素,是用煤焦油中分离出来的苯胺染料为原料制成的,故又称煤焦油色素或苯胺色素,如合成苋菜红、胭脂红及柠檬黄等等。这些人工合成的色素因易诱发中毒、泻泄甚至癌症,对人体有害,故不能多用或尽量不用。我国国家标准《GB 2760-2011 食品安全国家标准 食品添加剂使用标准》明确规定了这类人工色素在食品中添加的限量值。 在此,我们对苋菜红、靛蓝胭脂红、日落黄、亮蓝FCF、四碘荧光素以及酸性红52这六种人工合成色素的分析进行介绍。六种人工合成色素对不同波长的紫外线(UV)具有各不相同的最大吸收,因此可以使用DAD(二极管阵列检测器)对其进行同时分析。使用DAD可以获得最佳波长下各种人工色素的提取色谱图。通过标准样品光谱图与目标组分光谱图对比进行组分确定,可实现更精准的定量分析。

二氢桑色素对照品相关的资讯

  • 活体成像中荧光色素标记细胞的方法举例
    活体光学成像(Optical in vivo Imaging)主要采用生物发光(bioluminescence)技术与荧光(fluorescence)技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,今天,生物发光标记物可以标记到任何一种基因上,使对基因功能的全面细致研究成为现实。而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进行标记,利用荧光蛋白在外源光源或是内源发光照射下被激发产生的荧光作为检测信号。研究人员能够利用一套非常灵敏的光学检测仪器直接监控活体生物体内的细胞活动和基因行为。 该技术可被广泛应用于标记细胞或基因的示踪及检测;基因治疗在活体动物体内直接的观察和检测;基因组、蛋白组学、药学及生物技术在活体动物内的研究;药物及化学合成药物的药物代谢及毒理学监测;食品菌落生长成像;皮肤医学中皮肤疾病的体内成像;法医鉴定;微孔板成像,例如:免疫分析、报告基因、基因探针和嗜菌作用分析等;荧光团的体内成像,例如:Alzheimer疾病研究中结合嗪的β-淀粉沉淀物分析;转基因植物中通过报告基因对生理周期节奏的研究;凝胶成像分析等等。 但在研究过程中,研究者们必须事先用基因技术进行荧光素酶基因标记,或者某种荧光报告基团标记。目前活体光学成像系统的知名制造商,如Berthold、GE、Xenogen、Photometrics、Carestream Health等,不仅为客户提供先进的仪器,也提供具体实验所需的整套解决方案,包括试剂、实验手册、特殊用途的质粒、细胞株、转基因动物、细胞处理和动物处理设施等配套技术支持。出色的多任务处理能力,人性化的整体设计,便捷精确的操作系统,使实验室影像分析领域进入了一个全新的时代。 下面以研究干细胞活体移植后的存活率为例,简介一两种内源性荧光色素标记的实验方法,供专业人士参考。 用荧光色素DiD标记 间充质干细胞 1. 先用胰蛋白酶消化待标记材料,使之成为一定密度的悬浮液; 2. 从细胞培养箱中取出间充质干细胞,吸取含原有培养基的细胞悬浮液进行标记; 3. 用10 ml Mg/Ca-free PBS (不含钙镁离子的磷酸缓冲液)清洗细胞,吸去PBS, 钙镁离子会影响胰蛋白酶的活性,必须小心; 4. 加入预热的0.05% 胰蛋白酶液,加液量以T75型瓶为例,每瓶加5ml, 确保瓶的表面被完全覆盖; 5. 在细胞培养箱中37° C 孵育约 5 分钟; 6. 然后在显微镜下确认细胞已经完全分散,如果有细胞贴壁情况,轻拍若干次或延长孵育时间直至酶解消化完全成功; 7. 加入等量含 10% FCS的培养基中和胰蛋白酶; 8. 用移液器反复吸取几次确保细胞均匀分散; 9. 然后移取细胞悬浮液至15ml 已灭菌的有盖聚丙烯离心管中; 10. 400 RCF离心5 分钟; 11. 小心移去上清液,不要扰动细胞; 12. 将细胞重新悬浮于DMEM 并进行计数; 13. 需要待标记细胞在无血清DMEM溶液中的密度应为1x106 /ml ; 14. 每ml细胞悬浮液加入5 ?L DiD 染色液; 15. 用移液器将染色液与细胞悬浮液混合均匀; 16. 在6孔低附着性细胞板上37 °C 孵育20分钟; 17. 孵育完全后移取细胞悬浮液至15ml 已灭菌的有盖聚丙烯离心管中; 18. 400 RCF离心5 分钟; 19. 小心移去染色液,不要扰动细胞; 20. 用PBS清洗细胞,用移液器反复吸取几次确保细胞均匀分散; 21. 重复洗三次; 22. 细胞重新计数并用台盼蓝染色法检测细胞活性; 23. 可以进行活细胞成像了! 用荧光色素ICG标记 人胚胎干细胞 1. 必须先准备好吲哚菁绿溶液(血容量、心输出量、肝功能测定剂)作为对照品 ,然后使之与转染试剂鱼精蛋白(抗凝血作用)混合; 2. 测出1ml吲哚菁绿溶液的活力,然后在100 ?L DMSO中溶解ICG; 3. 向混合物中加入 400 ?L Dulbecco的改良Eagles 培养基 (DMEM + 10% 胎牛血清), 震荡均匀,吲哚菁绿溶液终浓度为2mg/ml; 4. 加入转染试剂鱼精蛋白,鱼精蛋白作为对照品的载体,使之能够有效进入细胞; 5. 在300 ?L ICG 和 300 ?L 无血清Dulbecco改良 Eagles 培养基中混入 5 ?L 硫酸鱼精蛋白溶液, 使之终浓度为 10mg/ml,; 6. 震荡5分钟使之形成复合物,标记溶液制备完毕; 7. 从 hESC 10mm Petri 培养皿中移去原有培养基; 8. 加入5ml预热的 DMEM; 9. 加入制备好的鱼精蛋白/ICG 溶液, 37 °C下孵育1h; 10. 孵育完全后移去染色液; 11. 用5 ml PBS漂洗培养皿以清除染色液; 12. 移去 PBS 再加入 5ml 0.25 % 胰蛋白酶液,37 °C下孵育5分钟使之酶解,适当震摇培养皿效果会更好; 13. 用移液器反复吸取几次确保细胞均匀分散; 14. 加入等量含 10% KSR的培养基中和胰蛋白酶; 15. 然后移取细胞悬浮液至15ml 已灭菌的有盖聚丙烯离心管中,400 RCF离心5 分钟; 16. 在全培养基中悬浮细胞; 17. 如果还有细胞团块,可以移去原有培养基用10ml预热的全ESC培养基重新悬浮细胞,重复酶解再离心; 18. 在这一点上,鼠源饲喂细胞需从hESCs中分离; 19. 然后将细胞悬浮液移至涂布琼脂的10 cm 培养皿中; 20. 37 °C 孵育 45 分钟,注意不要晃动培养皿,如此鼠源饲喂细胞会贴壁而干细胞保持悬浮; 21. 从Petri 培养皿中移出已标记的单细胞人胚胎干细胞悬浮液; 22. 细胞重新计数并用台盼蓝染色法检测细胞活性; 23. 可进行活细胞成像了!
  • 液相二极管阵列检测器,让假阳性峰无处可藏——测定食品中的胭脂虫红色素
    胭脂虫红色素是以醌类色素胭脂红酸为主要成分的红色染料,从胭脂虫(原产于中南美洲的昆虫)中提炼而得,目前广泛应用于食品、药品、化妆品等众多领域。 我国国家标准《GB2760-2007食品添加剂使用卫生标准》中规定了食品中胭脂虫红的限量值,其中:果冻中胭脂虫红(以胭脂红酸计)的最大添加量为0.05g/kg,饮料中最大添加量为0.6g/kg。 目前对食品中胭脂虫红酸的检测方法主要有:高效液相色谱法(HPLC)、分光光度法、毛细管电泳法和薄层色谱法(TLC)。日本卫生试验法中规定胭脂虫红色素的试验方法为TLC法,但是作为参考方法,也介绍了使用HPLC的测定例。 本文使用日立HPLC-二极管阵列检测器(DAD)对食品中的胭脂红酸进行了测定,除了峰的保留时间外,还根据紫外吸收光谱对胭脂红酸的定性进行了确认。图为.胭脂红酸标准样品的测定图为.果冻中胭脂红酸的测定图为.清凉饮料中胭脂红酸的测定 通过使用DAD检测器可以对标准样品和食品样品中检出的峰进行紫外吸收光谱的比较,结果发现果冻中两者的光谱一致,而清凉饮料中光谱形状则不同。由此可以认为,在清凉饮料中检出的峰除胭脂红酸外,还混合了其他成分。进一步使用DAD检测器的纯度检测功能检测这个峰的纯度,结果发现其纯度很低,认定是假阳性峰。综上认为,通过使用DAD检测器可以增强定性能力,排除假阳性峰。关于该应用的详细信息,请参考:http://www.instrument.com.cn/netshow/SH102446/down_250484.htm关于日立高效液相色谱仪Chromaster,请参考:http://www.instrument.com.cn/netshow/SH102446/C137940.htm关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。更多信息敬请关注:http://www.instrument.com.cn/netshow/SH102446/
  • 第二个冷冻电镜导电毛结构,居然还是细胞色素?
    撰文丨王冯斌博士"Truth never triumphs - its opponents just die out." - Max Planck.普朗克大佬的意思大概是 "Old theories never die only their proponents do"。某些科研领域确实存在一些很尴尬的现象,一个方向停滞不前,是因为多年前领域里的大佬一把油门把别人带到坑里去了,然后大佬又因为不为人知的原因,死活不承认。今天要讲的,就是一个这样的故事(编者注:2022年7月7日,弗吉尼亚大学王冯斌博士以第一作者身份在Nature Microbiology上发表了文章Cryo-EM structure of an extracellular Geobacter OmcE cytochrome filament reveals tetrahaem packing)。德里克老铁是一个有名的微生物学家。35年前在华盛顿DC的河流沉积物里发现了一种厌氧菌,这个菌就厉害了,能产生一种好几微米长的“导电毛”,在很长的距离传导电子,进行能量代谢。德里克研究这种导电毛一搞就是30来年。后来他们发现,一但敲掉一个叫pilA-N的“第四型菌毛”的基因,导电毛就没了。pilA-N呢,结构上只是一个很疏水的长helix,是第四型菌毛中间的疏水核心。尽管pilA-N在很多结构生物学家眼中可不可溶都是个问题,德里克老铁却认定了导电毛一定是pilA-N,坚信自己可以守得云开见月明。随着冷冻电镜技术革命,现在大家也不用天天只靠遗传实验做这些判断了。想知道导电毛是啥?放在冷冻电镜下看看喽。2019年,我们直接用冷冻电镜观察了导电毛,至于它的组成与第四型菌毛蛋白之间的关系,只能说是毫不相关。导电毛其实是multi-heme cytochrome形成了一种之前从没被发现过的菌毛,而multi-heme的细胞色素,大家早就知道它们可以传导电子了(详见BioArt报道:Cell | 王冯斌博士等解析地细菌导电纳米线的冷冻电镜结构)。德里克老铁没有欣然接受这一现实,而是继续选择逐梦第四型菌毛。他声嘶力竭的质问,为啥突变了pilA-N,导电毛就没了?啊?尼秋老铁是德里克之前的博士后,现在已经是名校教授,非常的“父慈子孝”。在2021年发表了一个相对令人信服的模型,说第四型菌毛在该菌里包括两个蛋白pilA-N和pilA-C,第四型菌毛平常是不分泌到细胞外的,基本上相当于一个泵,有事没事动一动,把细胞色素形成的导电毛给怼出去。(ref: https://doi.org/10.1038/s41586-021-03857-w)德里克老铁彻底的愤怒了,说“冷冻电镜看不到我说的3nm的pilA-N“导电毛”不代表它就不存在!我用AFM就能看见!你们冷冻电镜都是artifact!”你看,这不是巧了嘛。我们最近又做了一些别的冷冻电镜的观察。我们把初代“导电毛”的关键氨基酸给突变了,本来想研究研究突变的初代导电毛。您猜怎么着,如果用一个一般的promoter表达突变,我们压根看不到突变的初代导电毛,反而看到了一种新的导电毛,OmcE。猜猜他是啥,还是细胞色素。谁能想到细胞这么“聪明”,连初代导电毛的替代品都悄默默的存好了。如果用一个过表达的promoter,不仅可以看到OmcE,还能看到初代菌毛的一些bundles,还有少量把他们泵出来的第四型菌毛(pilA-N和pilA-C,他们分开的话pilA-N很可能不可溶)。可能是表达的太猛烈了,泵工作的太猛,把自己都怼出来了。图 OmcS导电毛的替代品, OmcE那么,就真的没有3nm的毛了嘛?德里克老铁眼神儿就那么不好吗?其实还真有一个2.5nm左右的毛,偶尔会出现。加了Dnase I就会消失,是的,它就是——B-form DNA。图:所有毛的画像别着急,还会有新的细胞色素导电毛被发现的。我期待德里克老铁改变自己看法的那一天。

二氢桑色素对照品相关的仪器

  • 应用范围广泛应用于果味水、汽水、配制酒、软糖、硬糖、蜜饯、奶糖、蛋糕、冰淇淋、果冻等食品中添加的添加非食用色素,如柠檬黄、日落黄、苋菜红、胭脂红、诱惑红、亮蓝、靛蓝等人工合成色素指标进行快速定量测定性能特点标准96孔,微孔板;可进行横向或纵向96孔可视化布板,自由编排对照、样本位,直观可靠光路系统:9通道光纤测量系统,其中8路光源用于96孔板的同步测量,另外一道光路用于校准光源,作光源系统的补偿及光源工作情况的监测光源:卤素灯;采用光源自动开关节能设计,最大限度延长光源寿命滤光片标准配置:410nm、450nm、492nm、630nm报告打印:内置热敏打印机,并可外接打印机处理器:嵌入式高速处理器存储:超大硬盘存储,可存储上亿组以上测试结果接口: USB接口振板功能:快速混匀孔内液体,便于准确测量windows图形化界面,十寸彩色液晶触摸屏操作,操作简捷方便固化常见检测项目,可自动计算浓度值,无需二次换算数据处理操作流程简洁:无需外接电脑,仪器本身可实现仅需点击检测项目,无须编程直接进入测试状态,并能直接自动计算浓度具有查询、打印、汇总等功能,可直接输出检测结果,软件终身免费升级技术参数 ※ 测定下限1.0mg/kg(柠檬黄、日落黄、胭脂红、苋菜红、诱惑红)0.2 mg/kg(亮蓝) ※ 测定范围1.0~80.0mg/kg(柠檬黄、日落黄、胭脂红、苋菜红、诱惑红)0.20~20.0 mg/kg(亮蓝) ※ 波长范围:300nm - 1000nm※ 波长准确度:±2 nm※ 精确度:±0.5%或0.005A※ 测量范围:0-4.000 A※ 重复性:≤±0.5%※ 分辨率:0.001A(显示),0.0001A(计算)※ 稳定性:≤±0.005A/10 min
    留言咨询
  • 色素检测仪可快速定量检测食品中人工合成色素柠檬黄、日落黄、胭脂红、苋菜红、诱惑红、亮蓝、赤藓红的含量。目前我国允许使用的合成色素有苋菜红、胭脂红、柠檬黄、日落黄和靛蓝。它们分别用于果味水、果味粉、果子露、汽水、配制酒、红绿丝、罐头,以及糕点表面上彩等。这些合成色素的确把食品表面装扮的格外惹人喜爱,但是,它们禁止用于下列食品:肉类及其加工品(包括内脏加工品)、鱼类及其加工品、水果及其制品(包括果汁、果脯、果酱、果子冻和酿造果酒)、调味品、婴幼儿食品、饼干等。合成色素检测仪技术参数:☆精度误差:±3%☆线性误差:±5‰☆稳 定 性: ±0.001A/hr☆波长准确度:2.0nm☆透射比重复性:±1%☆合成色素检测仪测定下限:1.0mg/kg(柠檬黄、日落黄、胭脂红、苋菜红、诱惑红)0.2 mg/kg(亮蓝)☆测定范围1.0~80.0mg/kg(柠檬黄、日落黄、胭脂红、苋菜红、诱惑红)0.20~20.0 mg/kg(亮蓝)☆数据储存80,00条☆比色皿:10×10mm标准样品池☆外观尺寸:415X310X150(mm)☆重量:3.6kg功能介绍:1、安卓智能操作系统,采用更加高效和人性化操作,仪器具有网线连接、wifi联网上传、4G无线远传功能,快速上传数据。2、智能化程度高,仪器具有自检功能:具有开机自检和调零功能,具有自动检测重复性功能。3、配备新一代嵌入式热敏打印机,可选择手动打印或者自动打印,检测完成可自动打印检测报告和二维码。4、光源采用进口超高亮发光二极管,高精度、稳定性强、光源可控、可以关掉不使用的光源,功耗更低。5、采用USB2.0接口设计,方便数据的存贮和移动,并可随时与计算机直接相连,并且可用计算机控制仪器。实现数据查询、浏览、分析、统计、打印等。6、仪器带有监管平台。数据可局域网和互联网数据上传,检测结果直接传至食品安全监管平台。进行区域食品安全监管及大数据分析处理,检测区域食品安全长短期动态,达到食品安全问题预估、预警7、一体化便携式快检设备,满足现场及流动检测使用需求,能够在同一软件下实现所有检测项目的检测,并可通过同一窗口直观显示检测结果。8、仪器具有多品类多种类样品菜单库,可灵活选择检测样品,不同的检测通道可同时检测不同的样品项目。也可在仪器上直接编辑录入样品名称、检测指标、送检单位等信息并保存进样品数据库。9、样品处理简单省力,整体操作快速、安全、便捷。10、高灵敏度,高检测精度,高重复性精度,扫描式高精度光学传感器。11、仪器具有重新校准、锁定、恢复出厂设置功能。12、支持U盘存储。 结果判定线可修改,对照值标定值可保存,断电不丢失数据。主要参数:1、主控芯片采用ARM Cortex-A7,RK3288/4核处理器,主频1.88Ghz,运转速度更快速,稳定性更强。2、显示方式:7英寸彩色触摸屏显示,人性化中文操作界面,读数直观、简单。3、直流12V供电,可连接车载电源,可配6ah大容量充电锂电池,方便户外流动测试。4、四波长冷光源,≥12个检测通道,每个通道均配置410、520、590、630nm波长光源,标配先进的光路切换装置,专利光路切换功能可实现最多64波长,并且所有检测项目可实现所有通道同时检测。5、光源亮度自动调节与校准6、智能恒流稳压,光强自动校准,长时间连续工作光源无温漂现象。。7、内置新国家限量标准,与所测结果进行现场比对,并持续更新标准。8、不间断进样,连续检测9、样本编号自动累加。10、检测项目可扩充。11、检测结果为Excel表格,连接电脑即可拷贝。12、检测结果存储容量20万条13、标准USB接口,免驱动安装。14、可配置大容量锂电池,固件可升级
    留言咨询
  • 色素检测仪 400-860-5168转4275
    色素检测仪可快速定量检测食品中人工合成色素柠檬黄、日落黄、胭脂红、苋菜红、诱惑红、亮蓝、赤藓红的含量。 目前我国允许使用的合成色素有苋菜红、胭脂红、柠檬黄、日落黄和靛蓝。它们分别用于果味水、果味粉、果子露、汽水、配制酒、红绿丝、罐头,以及糕点表面上彩等。这些合成色素的确把食品表面装扮的格外惹人喜爱,但是,它们禁止用于下列食品:肉类及其加工品(包括内脏加工品)、鱼类及其加工品、水果及其制品(包括果汁、果脯、果酱、果子冻和酿造果酒)、调味品、婴幼儿食品、饼干等。 合成色素检测仪技术参数: ☆精度误差:±3% ☆线性误差:±5‰ ☆稳定性:±0.001A/hr ☆波长准确度:2.0nm ☆透射比重复性:±1% ☆合成色素检测仪测定下限:1.0mg/kg(柠檬黄、日落黄、胭脂红、苋菜红、诱惑红)0.2mg/kg(亮蓝) ☆测定范围1.0~80.0mg/kg(柠檬黄、日落黄、胭脂红、苋菜红、诱惑红)0.20~20.0mg/kg(亮蓝) ☆数据储存80,00条 ☆比色皿:10×10mm标准样品池 ☆外观尺寸:415X310X150(mm) ☆重量:3.6kg 功能介绍: 1、安卓智能操作系统,采用更加高效和人性化操作,仪器具有网线连接、wifi联网上传、4G无线远传功能,快速上传数据。 2、智能化程度高,仪器具有自检功能:具有开机自检和调零功能,具有自动检测重复性功能。 3、配备新一代嵌入式热敏打印机,可选择手动打印或者自动打印,检测完成可自动打印检测报告和二维码。 4、光源采用进口超高亮发光二极管,高精度、稳定性强、光源可控、可以关掉不使用的光源,功耗更低。 5、采用USB2.0接口设计,方便数据的存贮和移动,并可随时与计算机直接相连,并且可用计算机控制仪器。实现数据查询、浏览、分析、统计、打印等。 6、仪器带有监管平台。数据可局域网和互联网数据上传,检测结果直接传至食品安全监管平台。进行区域食品安全监管及大数据分析处理,检测区域食品安全长短期动态,达到食品安全问题预估、预警 7、一体化便携式快检设备,满足现场及流动检测使用需求,能够在同一软件下实现所有检测项目的检测,并可通过同一窗口直观显示检测结果。 8、仪器具有多品类多种类样品菜单库,可灵活选择检测样品,不同的检测通道可同时检测不同的样品项目。也可在仪器上直接编辑录入样品名称、检测指标、送检单位等信息并保存进样品数据库。 9、样品处理简单省力,整体操作快速、安全、便捷。 10、高灵敏度,高检测精度,高重复性精度,扫描式高精度光学传感器。 11、仪器具有重新校准、锁定、恢复出厂设置功能。 12、支持U盘存储。结果判定线可修改,对照值标定值可保存,断电不丢失数据。 主要参数: 1、主控芯片采用ARMCortex-A7,RK3288/4核处理器,主频1.88Ghz,运转速度更快速,稳定性更强。 2、显示方式:7英寸彩色触摸屏显示,人性化中文操作界面,读数直观、简单。 3、直流12V供电,可连接车载电源,可配6ah大容量充电锂电池,方便户外流动测试。 4、四波长冷光源,≥12个检测通道,每个通道均配置410、520、590、630nm波长光源,标配先进的光路切换装置,专利光路切换功能可实现最多64波长,并且所有检测项目可实现所有通道同时检测。 5、光源亮度自动调节与校准 6、智能恒流稳压,光强自动校准,长时间连续工作光源无温漂现象。。 7、内置新国家限量标准,与所测结果进行现场比对,并持续更新标准。 8、不间断进样,连续检测 9、样本编号自动累加。 10、检测项目可扩充。 11、检测结果为Excel表格,连接电脑即可拷贝。 12、检测结果存储容量20万条 13、标准USB接口,免驱动安装。 14、可配置大容量锂电池,固件可升级
    留言咨询

二氢桑色素对照品相关的耗材

  • 太玮科技 合成色素柱
    合成色素柱• 非常适合红酒等食品中非法添加合成着色剂的提取• 方法简单,重现性好,95%以上的回收率
  • 纳谱分析 ChromCore C18-AC色素专用柱 其他专用柱
    色素专用色谱柱是纳谱分析基于食品安全国家标准(GB 5009.35-2016 食品中合成着色剂的测定)色谱条件研发出的专用色谱柱。采用独特固定相键合技术,能够在不同水相pH(5-8)环境下保证良好峰形与分离度。特性:满足食品安全国家标准(GB 5009.35-2016 食品中合成着色剂的测定)在不同的水相pH(5-8)环境下均可保证良好的峰形及分离度应用案例:订货信息:货号名称规格S009-050018-04625SChromCore C18-AC色素专用柱5μm, 4.6×250mmS009-030018-04615SChromCore C18-AC色素专用柱3μm, 4.6×150mm
  • SureGuide gRNA 对照试剂盒,20 次反应
    SureGuide gRNA 对照试剂盒为 CRISPR 研究提供对照 gRNA 和对照 DNA 靶标。对照 gRNA 为 gRNA 制备的质量评估提供了参比。对照 DNA 靶标用于测量 CRISPR/Cas 实验中的酶切效率。 包含这些对照以获得安捷伦用于体外 CRISPR/Cas 研究的一体化解决方案的所有优势。 特征明确的对照材料可监测 CRISPR/Cas 实验每个步骤的情况。 知晓您的实验何时成功并尽早纠正任何问题。在进行进一步的实验之前,对照 gRNA 有助于评估 gRNA 制备的质量,在制备的 gRNA 不适用时避免浪费时间和精力,适用时可进一步增加您对实验的信心。对照 DNA 靶标用于确定 CRISPR/Cas 实验中的 DNA 酶切效率,以确认实验结果的有效性。根据您的需求量身定制。="" href='https://www.agilent.com/common/requestQuote.jsp?source=contactus”联系我们 返回页首

二氢桑色素对照品相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制