当前位置: 仪器信息网 > 行业主题 > >

剩余电流发生器

仪器信息网剩余电流发生器专题为您提供2024年最新剩余电流发生器价格报价、厂家品牌的相关信息, 包括剩余电流发生器参数、型号等,不管是国产,还是进口品牌的剩余电流发生器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合剩余电流发生器相关的耗材配件、试剂标物,还有剩余电流发生器相关的最新资讯、资料,以及剩余电流发生器相关的解决方案。

剩余电流发生器相关的论坛

  • ARCM剩余电流式电气火灾监控装置

    ARCM剩余电流式电气火灾监控装置安装在0.4kV低压配电系统中,用于检测TN-C-S、TN-S及局部TT系统中的剩余电流、温度等有关电气火灾隐患产生的电气参数,当被保护线路中监控装置参数超过报警设定值时,能发生报警和控制信号,以便消除剩余电流引起的电气火灾隐患。产品采用RS485总线进行通讯,可以与其它监控报警器、监控单元或监控主机联合组成火灾监控系统,可根据用户需要选择集中总线型的信息管理模式或功能分区型的信息管理模式。  适用于智能楼宇、高层公寓、宾馆、饭店、商厦、工矿企业、国家重点消防单位以及石油化工、文教卫生、金融、电信等领域,符合GB 14287.2-2005《电气火灾监控系统第2部分:剩余电流式电气火灾监控探测器》及GB 13955-2005《剩余电流动作保护装置的安装和运行》的标准

  • 剩余电流互感器

    剩余电流互感器专用于剩余电流的采集,与电气测控装置、电动机保护装置配套使用。该产品二次可有两路输出,选择一路输出0-20mA或0-2mA,一路输出0~1V。两者只能选择其一。

  • 漏电电流和剩余电流

    漏电电流是电源没经过负载,而是与其他不应该通电的物体产生的电流,比如绝缘不好导致的接地电流,因为潮湿导致的与设备外壳产生的电流。这是种非常危险的电流,一旦人接触到设备外壳上,立刻会构成回路。如果是高电压,就十分危险。所以一边家庭都安装漏电保护器,一旦漏电电流小于36mA,就跳闸。漏电电流是有危险的,剩余电流是电器本身产生的,虽然是不允许,但有时还是避免不了。剩余电流一般比较小 ,不会造成什么大危害!漏电电流和剩余电流在本质上有什么区别?1、漏电电流是剩余电流的一种,剩余电流的含义涵盖了漏电电流;2、从保护工作原理上看,漏电保护器和剩余电流保护器是完全一样的,叫剩余电流保护器更加合理,因为不仅仅漏电使保护器动作,三相不平衡、谐波电流也会使保护器动作;3、剩余电流是根据IEC标准翻译过来的,没有漏电电流的定义;4、国内大都数厂商都已更名为剩余电流动作保护装置,也有些仍然沿用漏电保护器名称。资料来自传奇商城

  • 【转帖】精确计算电池剩余电量至关重要

    本文将讨论尽可能精确计算剩余电池电量的重要性。令人遗憾的是,仅通过测量某些数据点甚至是电池电压无法达到上述目的。温度、放电速率以及电池老化等众多因素都会影响充电状态。本文将集中讨论一种专利技术,该技术能够帮助设计人员测量锂电池的充电状态以及剩余电量。 现有的电池电量监测方法 目前人们主要使用两种监测方法:一种方法以电流积分(current integration)为基础;而另一种则以电压测量为基础。前者依据一种稳健的思想,即如果对所有电池的充、放电流进行积分,就可以得出剩余电量的大小。当电池刚充好电并且已知是完全充电时,使用电流积分方法效果非常好。这种方法被成功地运用于当今众多的电池电量监测过程中。 但是该方法有其自身的弱点,特别是在电池长期不工作的使用模式下。如果电池在充电后几天都未使用,或者几个充、放电周期都没有充满电,那么由内部化学反应引起的自放电现象就会变得非常明显。目前尚无方法可以测量自放电,所以必须使用一个预定义的方程式对其进行校正。不同的电池模型有不同的自放电速度,这取决于充电状态(SOC)、温度以及电池的充放电循环历史等因素。创建自放电的精确模型需要花费相当长的时间进行数据搜集,即便这样仍不能保证结果的准确性。 该方法还存在另外一个问题,那就是只有在完全充电后立即完全放电,才能够更新总电量值。如果在电池寿命期内进行完全放电的次数很少,那么在电量监测计更新实际电量值以前,电池的真实容量可能已经开始大幅下降。这会导致监测计在这些周期内对可用电量做出过高估计。即使电池电量在给定温度和放电速度下进行了最新的更新,可用电量仍然会随放电速度以及温度的改变而发生变化。 以电压为基础的方法属于最早应用的方法之一,它仅需测量电池两级间的电压。该方法基于电池电压和剩余电量之间存在的某种已知关系。它看似直接,但却存在难点:在测量期间,只有在不施加任何负载的情况下,才存在这种电池电压与电量之间的简单关联。当施加负载时(这种情况发生在用户对电量感兴趣的多数情况下),电池电压就会因为电池内部阻抗所引起的压降而产生失真。此外,即使去掉了负载,发生在电池内部的张持过程(relaxation processe)也会在数小时内造成电压的连续变化。由于多种原因的存在,基于电池阻抗知识的压降校正方法仍存在问题,本文会在稍后讨论这些原因。 电池化学反应及电压响应 电池本身复杂的电化学反应导致其瞬态电压响应。图1a显示了从锂离子电池的电极开始的电荷转移基本步骤(其它电池的步骤与其类似)。 电荷必须首先以电子的形式穿越储存能量的电化学活性材料(阳极或阴极),在到达粒子表面后以离子的形式存储于电解液中。这些化学步骤与电池电压响应的时间常数相关。图 1b显示了电池的阻抗范围,时间常数的范围从数毫秒到数小时不等。 在时域中,这意味着施加负载后,电池电压将随时间的推移以不同速率逐渐降低,并且在去除负载后逐渐升高。图2显示了在不同的充电状态下,对锂离子电池施加负载后的电压张弛情况。 考虑到基于电压的电池电量监测会产生误差,我们假定可以通过减去IR压降来校正带负载的电压,然后通过使用校正后的电压值来获取当前的SOC。我们将要遇到的第一个问题就是:R值取决于SOC。如果使用平均值,那么在几乎完全放电的状态下(此时阻抗是充电状态下的10倍以上),对SOC的估测误差将达到100%。解决该问题的一个办法是根据SOC在不同负载下使用多元电压表。阻抗同样在很大程度取决于温度(温度每降低10°C,阻抗增加1.5倍),这种相互关系应该添加到表格中,而这也就使得运算过程极为复杂。 电池电压具有瞬态响应特性,而这意味着有效的R值取决于负载的加载时间,显而易见我们可以将内部阻抗简单视为欧姆电阻而无需考虑时间因素,因为即使电压表中考虑到了R和SOC的相关性,负载的变化也将导致严重误差。由于SOC(V)函数的斜率取决于SOC,所以瞬态误差的范围将从放电状态下的50%到充电过程中的14%不等。 不同电池间阻抗的变化加大了情况的复杂性。即使是新生产的电池也会存在±15%的低频DC阻抗变化,这在高负载的电压校正中造成很大差异。例如,在通常的1/2C充放电电流、2Ah 电池典型DC阻抗约为0.15Ω的情况下,最差时会在电池间产生45mV的校正电压差异,而对应的SOC估测误差则达到了20%。 最后,当电池老化时,一个与阻抗相关的最大问题也随即出现。众所周知,阻抗的增加要比电池电量的降低显著得多。典型的锂离子电池70个充放电循环后,DC 阻抗会提高一倍,而相同周期的无负载电量仅会下降2%~3%。基于电压的算法似乎在新电池组上很适用,但是如果不考虑上述因素,在电池组只达到使用寿命的15%时(预计500个充放电周期)就会产生严重的误差(误差为 50%)。 两种方法取长补短 TI在下一代电量监测算法开发中选取了电流法和电压法各自的长处。该公司慎重考虑了这个看似理所当然,但迄今为止尚人涉足的方案:将电流法和电压法相结合,根据不同情况使用表现最为突出的方法。因为开路电压与SOC之间存在非常精确的相关性,所以在无负载和电源处于张弛状态的情况下,这种方法可以实现精确的SOC估算。此外,该方法也使得有机会利用不工作期(任何靠电池供电的设备都会有不工作期)来寻找SOC确切的“起始位置”。由于设备接通时可以知道精确的SOC,所以该方法免除了在不工作期对自放电校正的需求。当设备进入工作状态并且给电池施加负载时,则转而使用电流积分法。该方法无需对负载下的压降进行复杂且不精确的补偿,因为库仑计数(coulomb-counting)从运行初始就一直在跟踪SOC的变化。 这种方法还可以用来对完全充电的电量进行更新吗?答案是肯定的。依靠施加负载前SOC的百分比信息、施加负载后的SOC(两者均在张弛状态下通过电压测量获得),以及二者之间传输的电荷量,我们可以很轻松地确定在特定充电变化情况下对应于SOC改变的总电量。无论传输电量多大、起始条件如何(无需完全充电),这点都可以实现。这样就无需在特殊条件下更新电量,从而避免了电流积分算法的又一弱点。 该方法不仅解决了SOC问题,从而完全避免了电池阻抗的影响,而且还被用来实现其他目的。通过该方法可以更新对应于“无负载”条件下的总电量,例如可以被提取的最大可能电量。由于IR 降低,非零负载下的电量也将降低,并且在有负载情况下达到端接电压值的时间缩短。如果SOC和温度的阻抗关系式已知,那么有可能根据简单的建模来确定在观察到的负载和温度下何时能够达到端接电压。然而,正如前文所提到的,阻抗取决于电池,并且会随着电池老化以及充放电次数的增加而快速提高,所以仅将其存储在数据库中并没有多大用处。为了解决这个问题,TI设计了一种可以实现实时阻抗测量的IC,而实时测量则能够保持数据库的持续更新。这种就解决了电池间的阻抗差异以及电池老化问题(如图3所示)。阻抗数据的实时更新使得在指定负载下,可以对电压情况进行精确预测。 在大多数情况下,使用该方法可以将可用电量的估算误差率降低到1%以下,而最为重要的是,在电池组的整个使用寿命内都可以达到高精度。 即插即用是自适应算法带来的另一大优点,该算法的实施不再需要提供描述阻抗与SOC 以及温度之间关系的数据库,因为这一数据将通过实时测量获得。用于自放电校正的数据库也不再需要,不过仍需要定义了开路电压与SOC(包括温度)关系的数据库。但是,这方面的关系由正负极系统的化学性质决定,而不由具体的电池型号设计因素(如电解液、分离器、活性材料厚度以及添加剂)决定。由于多数电池厂商使用相同的活性材料(LiCoO2 以及石墨),因此他们的V(SOC,T)关系式基本相同。实验结果支持上述结论。图4 显示了不同厂商生产的电池在无负载状态下的电压比较。 可以看出它们的电压值很接近,偏差不过5mV,由此可知在最差情况下SOC的误差也不过1.5%。如果开发一种新电池,仅需要建立一个新的数据库,而不像现在需要数百个用于不同电池型号的数据库。这样就简化了电量监测计解决方案在各种终端设备中的实施过程,且数据库并不依赖于所使用的电池。即使采用不同类型或不同厂商生产的电池,也没有必要重新编程。这样,在实现电池监控IC即插即用的同时,精确度及可靠性也相应提高。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=42559]精确计算电池剩余电量至关重要[/url]

  • 【仪器心得】+实验室检验检测设备——仪迪IDI2620剩余电压测试仪使用心得

    【仪器心得】+实验室检验检测设备——仪迪IDI2620剩余电压测试仪使用心得

    [font=宋体][color=#222222]电器产品电源端口的剩余电压测试是电器产品安全性检测的重要指标之一。仪迪IDI2620系列剩余电压测试仪满足实验室测试需求,性价比较高,作为一名使用仪迪多年的用户,下面来评价一下该款设备的优势和不足,希望大家在选购仪器设备时少走弯路,也希望厂家不断改进仪器来满足用户的需求。[/color][/font][img=,351,241]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301006345281_6542_2771427_3.jpg!w351x241.jpg[/img][font=宋体][color=#222222]一、厂家介绍:[/color][/font][font=宋体][color=#222222]青岛仪迪电子有限公司成立于1998年,是一家专注于电子测量仪器和自动化测试系统研发、制造、销售为一体的著名高新技术企业。凭借20多年的行业经验积淀及一流人才资源的优势,仪迪研发了多款高精尖的电测产品,为电机、电器等行业提供了完美的检测方案,满足国内测试需求的同时远销30多个国家和地区。其中,高精度高稳定度的电枢转子测试仪、功能强大操作便捷的定子、整机综合测试系统、国内首款线性功放安规综测仪、高精度高效率的安规检测仪、直流无刷电机综合测试系统、测功机测试系统等产品,在国内外市场上赢得了广泛的美誉。[/color][/font][font=宋体][color=#222222]二、测试功能简介:[/color][/font][font=宋体][color=#222222]具备7寸彩色触屏显示;电压:2.5V-300V,电流量程:20A;[/color][/font][font=宋体][color=#222222]带有测试频率:30-300Hz;可采集测试曲线;测试速度可控;[/color][/font][font=宋体][color=#222222]另有触发电流和功率可设;专门针对(如风扇、豆浆机、电吹风、电热器等小家电)产品设计;[/color][/font][font=宋体][color=#222222]设备可自动对多档位电流/功率进行连续测量和判定。[/color][/font][font=宋体][color=#222222]三、检测设备溯源心得:[/color][/font][font=宋体][color=#222222]1. [/color][/font][font=宋体][color=#222222]该仪器溯源计量一般都要找CNAS资质的计量机构出具,实验室需要做好首次计量,检查设备是否符合要求,且指标是否达到产品要求;[/color][/font][font=宋体][color=#222222]2.[/color][/font][font=宋体][color=#222222]计量机构CNAS出具校准报告的依据参考:[/color][/font][font=宋体][color=#222222]JJF([/color][/font][font=宋体][color=#222222]电子)0091-2022剩余电压测试仪校准规范[/color][/font][font=宋体][color=#222222]3.[/color][/font][font=宋体][color=#222222]注意溯源设备计量参数和范围,一定是实验室使用的范围或检测点,确保量值溯源的准确;[/color][/font][font=宋体][color=#222222]另外实验室要看清楚能力参量和范围是否满足溯源要求,提前根据使用需求和设备需求编制计量校准方案。[/color][/font][font=宋体][color=#222222]四、检测设备使用心得:[/color][/font][font=宋体][color=#222222]为了提高测试效率,降低人为主观的影响因素、提高测试的准确性和测量精度,高精度的电容放电测试仪IDI2620。[/color][/font][font=宋体][color=#222222]仪器具有较高的电压采样电阻(100MΩ),可以自适应的采样,分析判断电源输入电压波形、频率和峰值状态,测量在电压峰值处自动切断输入电压,同时可以记录断电后规定时间点的残余电压和放电到具体电压的放电时间,以及放电波形曲线,并在彩色液晶显示出来,供实验员直接读出测试数据。[/color][/font][font=宋体][color=#222222]剩余电压测试仪的测试操作:负载运行到一定时间后,放电测试自动开始,仪表进入放电测试界面,若主界面可为测量模式为火零模式,也可为测量模式为自动模式。火零模式即只测试插头火零线直接的剩余电压。自动模式即测试插头火零线间,火线与地,零线与地的剩余电压,自动循环测试三次。[/color][/font][font=宋体][color=#222222]五、仪迪售后:[/color][/font][font=宋体][color=#222222]《保修卡》和《客户档案卡》是仪迪为您提供进一步服务的凭证。从购买之日起,凭《保修卡》在中国享有规定的免费调换、保修期限、包括人工费、零配件的更换。《保修卡》是仪迪公司保修服务的凭证,请妥善保管,以便维修时出示。[/color][/font][font=宋体][color=#222222]保证仪迪产品在从购买之日起3个月内,在正常使用下,万一发生故障时,按保修规定免费调换服务。[/color][/font][font=宋体][color=#222222]保证仪迪产品在从购买之日起12个月内,在正常使用下,万一发生故障时,按保修规定进行免费维修服务。[/color][/font][font=宋体][color=#222222]终身维护:为解除您的后顾之忧,对超出保修期或不属于保修范围的产品,我公司提供终身维修服务。如有特殊情况,双方另行协商处理。[/color][/font][font=宋体][color=#222222]六、总结[/color][/font][font=宋体][color=#222222]市场上电器安全性能检测[/color][/font][font=宋体][color=#222222]测试[/color][/font][font=宋体][color=#222222]厂家很多,有进口的有国产的,各厂家的仪器特点不同,突出的特点也不一样,有的仪器市场占有率较高,与仪器灵敏度,稳定性好,使用方便,售后服务好等有关系。想在市场上占有一席之地,一是不断改进与提高仪器的使用技术,二是满足用户需求,设计出用户满意的[/color][/font][font=宋体][color=#222222]仪表[/color][/font][font=宋体][color=#222222]。[/color][/font][font=宋体][color=#222222]实验室还需要货比三家,这款仪器[/color][/font][font=宋体][color=#222222]提高了检测效率,有效避免人员、环境对测量结果的影响,使测量更精准。[/color][/font][font=宋体][color=#222222]实验室还需要权衡利弊,买到品质好、售后好、准确度高、性价比优的好仪器。[/color][/font][font=宋体][color=#222222] [/color][/font]

  • 【分享】在线淋洗液发生器原理

    【分享】在线淋洗液发生器原理

    图为阴离子淋洗液发生器的结构和工作原理。淋洗液发生器由高压KOH发生室和低压K+电解槽组成。KOH发生室装有一个穿孔的Pt阴极,钾离子电解槽装有一个Pt阳极。KOH发生室装通过阳离子交换膜与K+电解槽连接。离子交换连接器允许来自K+电解槽的K+通过并进入高压KOH发生室。离子交换连接器将高压KOH发生室与低压K+电解槽隔开。泵驱动去离子水通过KOH发生室,在正负极之间加上直流电压,水在正极和负极发生电解。在正极产生的H+代替电解质溶液中的K+,被置换出的K+跨过阳离子交换连接器进入KOH发生室。这些K+与在阴极产生的OH-结合生产KOH,即用于阴离子交换色谱的淋洗液。所产生的KOH溶液的浓度由加到K+电解槽和KOH发生室上的电流和通过KOH发生室的水的流速决定。因此,在一个给定的流速,精确地控制施加电流就能精密而在线地产生所需浓度的KOH淋洗液。施加电流和所产生的KOH浓度之间存在非常好的线性关系。若将图3-35中的K+电解槽换成甲烷磺酸根(MSA)电解槽,阳离子交换连接器换成阴离子交换连接器,在电解槽装入Pt阳极,发生室装Pt阳极,即构成用于阳离子分析的淋洗液发生器,所产生的阴离子淋洗液或阳离子淋洗液的浓度与施加电流成正比,与淋洗液流速成反比,两者所产生的淋洗液浓度可达100mmol/L。[img]http://ng1.17img.cn/bbsfiles/images/2008/10/200810091056_111698_1623113_3.jpg[/img]

  • 氮气发生器的工作原理

    高纯氮气发生器简介  高纯氮气发生器以物理吸附法和电化学分离法相结合的原理直接从空气中分离高纯氮气。 高纯氮气发生器工作原理  高纯氮气发生器根据电催化法进行空气分离的原理制成,其中电解池是利用燃料电池的逆过程设计而成。作为压力稳定且纯净的原料空气进入到电解池中,空气中的氧在阴极被吸附而获得电子,与水作用生成氢氧根离子,并迁移到阳极,最后在阳极处失去电子析出氧气,因此空气中的氧不断被分离。只留下氮气随气路输出。加入电解质的作用就是提高水的导电率,使电化学反应能顺利进行高纯氮气发生器6大特点  1.程序控制。仪器的控制系统采用专用芯片。是全部工作过程均有程序控制完成。自动恒压,恒流,氮气流量可根据用量实现0-300ml/min全自动调节。   2.工艺先进:电解池采用立式单液面双阴极。最新膜分离技术,催化层使用PCAN载体及贵金属催化物,使电解池催化效率高,产气量大,氮气纯度高,电解池出厂前经过100小时以上高压,大电流老化试验,使电解池性能和工作状态极为稳定。   3.三级催化,除电解池中两级催化外另有第三极催化,催化剂选用新型贵金属,使输出的氮气含氧量小于3ppm   4.产氮湿度低。采用了超高分子量渗透麽分离技术及有效的除湿装置,因而降低了原始湿度,并能在停机后自动排出水分。采用了金属聚合物除湿及两级吸附,是氮气纯度大大提高。   5.操作方便,免运输钢瓶之劳,省搬运钢瓶之苦,使用是只需打开电源开关即可产氮,可连续使用,也可间断使用,产氮量稳定不衰减。  6.安全可靠,配有安装装置,灵敏可靠。高纯氮气发生器的缺点: 发生器对色谱的影响有一点常常被忽略,就是发生器内的开关电源工作事会对电网电压造成一定的干扰(压缩机的启动和停止也会),所以色谱仪必须经过稳压电源供电,当然不用稳压电源的用户极少,但还是有,我遇见过。对色谱来说,氮气发生器产生了氮气后,还需要脱水、脱氧(加脱水脱氧管),否则会损害ECD检测器。对质谱来说,国内的氮气发生器都无法达到很高的流量。氮气发生器只能在实验室内或实验室外很近的位置采集空气作为气源,而实验室内空气经常是受到污染的,其中的有机溶剂含量因为实验前处理过程等原因(此外GC的洗针溶剂挥发,液相的流动相挥发)不可避免的超标。我见到的国外的氮气发生器的标称纯度也不过98%,和钢瓶氮气的纯度没法比。

  • 认识高频发生器

    高频发生器是ICP-OES的基础核心部件,是为等离子体提供能量的,要求其具有高度的稳定性和不受外界电磁场干扰。从功率输出方式上可以分为自激和它激式两类,自激式高频发生器(瓦里安、PE、GBC、JY、LEEMAN、斯派克、岛津及国内厂家生产的ICP-OES均使用这个)能将稳定的直流电流变成具有一定周期的交流电流后,不需要外加交变信号控制就可以产生交变输出.该RF线路简单,造价低廉,调试容易,当震荡电路参数变化时能自动补偿阻抗的少量变化等优点.缺点是功率输出效率低,震荡频率稳定度不高。它激式发生器(目前仪器我掌握的资料只有热电公司的)是由石英晶体控制频率,必须外加交换信号才能产生交变输出,具有功率输出效率高,振荡频率稳定,易实现频率自动控制等优点,缺点是线路复杂,成本高。目前商品化的仪器的振荡频率主要使用27.12MHz 和40.68MHz的,理论上讲震荡频率大的,维持等离子体的功率相对就小点,冷却气用量相对少点,产生的趋肤效应也强,便于形成等离子体中心进样通道(一般不会引起等离子体的熄灭),但在实际使用商品化仪器分析时27.12MHz 和40.68MHz其分析性能并没有特别明显的差别,特别是在检出限和测定精度方面几乎没有差异。高频发生器的另一个指标就是其功率,因为功率是影响发射线强度和背景强度的主要因素,采购时主要考虑其大小可调性和分析样品的性质,一般范围至少也在800-1500W,对于普通水样品类一般采用800-1200W基本可以满足正常分析需要,而有机物基体样品的分析一般需要较高的功率来维持等离子体的正常运行,其实作为各种ICP-OES的光源,目前的发展技术应该是比较成熟的,在采购时主要考虑一下下列指标就可以了:反射功率至少要小于10W,功率波动不能大于0.1%(假如输出功率有0.1%的飘逸,发射强度就能产生超过1%的变化,目前高档仪器的这个方面做的是比较好的,有的可以低1-2个数量级的),频率稳定性要优于0.1%。

  • 臭氧发生器的使用和维护

    一、臭氧发生器的结构和工作原理 臭氧发生器主要有原料进气系统、干燥系统、遍压变频系统、放电系统、冷却系统和控制系统组成。原料气经干燥后进入放电室,放电室中有五组20根放电管,400V、50Hz的输入电压经升压变频后变为4000V、900Hz的输出电压送至放电管,原料气中的氧经高压中频放电后电离为臭氧。放电管为内腔的复合管道,内管有非玻璃放电棒与接地不锈钢内壳组成,用于进出气体和放电,外管为不锈钢管,用于通冷却水而带走放电后产生的大量热量。具体的电离作用公式为:3O2-------2O3 设备采用了液化空气纯氧作为原料气,减少了空压泵站等附属设备,提高了生产效率。二、臭氧发生量的调节 臭氧发生量的调节可以分为自动和手动两种。自动调节需另配在线仪表与控制系统形成闭环控制回路。根据研究资料,臭氧的产量取决于气体流量和电流的大小,另外冷却介质的温度也有一定的影响。由于没有在先臭氧浓度测定仪,所以只能从臭氧反应接触池后取水来测定余O3的浓度,根据实际需求量来间接调节发生器。冷却介质采用了水厂的出厂水,水温常年在5~25 ℃之间,一般不便进行调节,因此只能通过改变O2的流量和工作电流的大小来控制O3的产量。具体的调节方法我们参照了O3产量曲图,通过计算O2的成本和耗电的电费来获取最佳的结合点。经过一段时间的摸索和测试,得出了O3发生量在1kg~5kg时各点的O2流量及工作电流大小的经验参数。实践证明,用这些经验参数进行手动调节对于江低成本、保障产量行之有效。三、使用和维护的注意事项 臭氧发生器的控制面板采用触模式液晶显示屏,使用十分方便,设备的维护也比较简单,但有几点必须引起足够重视:1.保证气体的干燥 由于O2的电离是用高压放电,因此必须绝对保证气体的干燥,否则会烧毁放电管。气体要满足下列要求:a.露点25%体积),因此如果通风不好、设备内部或外部管线泄漏、或打开含氧系统都可能使氧浓度上升至危险的水平。氧浓度升高增加了火警危险。为此,特别禁止明火,不准使用油布,与氧接触设备不要与油和黄油接触。[font='T

  • 【原创大赛】SG3525在ARL直读光谱负高压发生器中的应用(十一月)

    【原创大赛】SG3525在ARL直读光谱负高压发生器中的应用(十一月)

    SG3525在ARL直读光谱负高压发生器中的应用 前 言 ARL 2460/3460/4460直读光谱仪在进行样品分析和测试时,光电传感器PMT(光电倍增管)没有负高压是无法工作的,因此负高压发生器是直读光谱必不可少关键器件之一。SG3525又是负高压发生器的关键元件,在负高压发生器的故障中,SG3525的损坏率较高,为此本文就SG32525在ARL直读光谱负高压发生器中的应用做一个简单介绍,以给予ARL直读光谱使用者和自行维修负高压发生器时得到一定的参考和帮助。一、SG3525功能简介1、SG3525脉宽调制型控制器是美国通用电气公司的产品。它是采用双级型工艺制作的新型模拟数字混合集成电路,性能优异,所需外围器件较少。SG3525是电流控制型PWM控制器,所谓电流控制型脉宽调制器是按照接反馈电流来调节脉宽的。在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环和电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。SG3525采用16端双列直插DIP封装(图一)https://ng1.17img.cn/bbsfiles/images/2011/11/201111270106_333289_1841897_3.jpg图一 SG3525(注:KA3525为韩国产品型号) 外形封装实物图

  • 【资料】全球对气体发生器的需求

    压缩气体,如氮气和氢气,已经成为任何一家实验室的组成部分。气体发生器可为诸如傅里叶红外变换光谱仪(FT-IR)、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]、总有机碳分析仪(TOC)、核磁共振(NMR)和热分析仪等仪器提供吹扫气、载气以及燃气的装置。此外,压缩气体还可与自动取样器联用,用于溶剂蒸发、激光气体室的清洗,以及用气体覆盖溶剂和样品。  依据于气体种类的不同和所需气体纯度的高低,气体发生器制备气体的所采用的工艺也有所不同。多数情况下,气体发生器利用膜片和特定的吸附剂来制备极高纯度的气体(99.99999+%)。气体发生器主要包括氮气、氢气、TOC、零级空气、氧气和臭氧发生器。  气体发生器之所以迅速成为许多实验室的供气设备,原因有很多,最重要的原因之一是气体发生器可以方便地进行无限制的连续供气,这与传统的通过预填气罐/瓶供气恰好相反,因为预填气罐/瓶内的气体是会用完的。涉及到气体,另一个需要考虑的问题就是安全性。气体发生器使得分析者可以连续地制备气体,因此无需将气体储存在容器中,因为容器如果泄露的话会发生危险。  据SDi公司统计,北美占据了全球气体发生器市场需求的38% ,欧洲和日本仅次于北美,分别占30% 和17%。

  • 氢化物发生器和冷汞发生器

    氢化物发生器测汞和冷汞发生器测汞有什么区别吗?以前我们测汞是用氢化物发生器,现在又按了一个冷汞,冷汞发生器只能测汞元素吗?这两个发生器测汞有什么区别吗?

  • MACOM连接器梳状发生器

    [url=https://www.leadwaytk.com/article/5170.html]MACOM[/url][font=宋体][font=宋体]提供多种梳状发生器,其噪声系数性能参数[/font][font=Calibri]SRD[/font][font=宋体]设计超出高至[/font][font=Calibri]-18dBc/Hz[/font][font=宋体],适用谐波电流高至[/font][font=Calibri]50GHz[/font][font=宋体],同时通过[/font][font=Calibri]SMT[/font][font=宋体]或连接器封装。[/font][font=Calibri]MACOM[/font][font=宋体]连接器梳状发生器标准驱动电平为[/font][font=Calibri]18-21dBm[/font][font=宋体]。[/font][/font]

  • 复合型二氧化氯发生器余氯问题

    请问有单位使用复合型二氧化氯发生器消毒的吗,考虑到消毒剂成分含有二氧化氯和氯气,那么出厂水余氯要求是多少?检测方法是什么,谢谢!

  • RF发生器介绍

    网上看到,分享给大家:RF发生器介绍RF发生器通过工作线圈给等离子体输送能量,维持ICP光源稳定放电,目前ICP的RF发生器主要有两种震荡类型,即自激式和它激式。自激式RF发生器自激式RF发生器又称自由振式RF发生器,它有整流电源、振荡回路和电子管功率放大器三部分组成。整流电源是由三相电源经升压、三相全波整流及L、C滤波提供电子管功率放大器所需的直流高压(3千伏)。其振荡回路是由一个电容和一个电感组成的并联回路,当有外加电源时,回路内将产生振荡信号,回路能量交替地储存在电容和电感上。当回路中电阻很小时,即 R 2(L/C)1/2,其振荡频率为:f=1/。由于回路电阻的存在,每次振荡总要消耗部分能量,使振荡受到阻尼,为了维持等辐振荡,并保持一定的输出功率,使用电子管功率放大器,把L-C振荡回路的信号正反馈一部分供给放大器的栅极,经功放后再输出给L-C回路,这样L-C回路不断地从放大器取得能量,除反馈一部分外,大部分能量用电感耦合方式供给等离子体,从而维持稳定的等辐振荡和功率输出。信号正反馈的形式国外多采用电容反馈型,而国内生产的则多采用电感反馈型。自激式振荡器的主要特点是结构简单、价格低廉、制造调试比较容易,在技术指标上能基本满足光谱分析要求,但其主要的缺点是频率稳定性及功率稳定性较差,这主要是由于等离子体负载是作为振荡回路的一部分,负载的改变将影响L-C振荡器的频率及回路的工作状态。它激式RF发生器它激式RF发生器又称晶体控制型RF发生器,它与自激式不同,它是利用石英晶体的压电效应构成振荡器也取代L-C振荡回路的电容、电感元件。将石英晶体按一定方位角切制成一块正方形(或长方形或圆形)簿片,在晶片的两个对应表面上喷涂金属板,就可构成石英晶体振荡器。当晶体片上加上一个电场,就会使晶片发生机械形变,相反,在晶体片上加一个机械力又会在相应的方向上产生电场,这种现象称石英晶体的压电效应。若在晶片上下的金属板上施加变电压,就会产生相应的机械形变,即机械振动,通常情况下,这种形变振幅很小,当外加交变电压为某一特定频率时,振幅会突然啬,这种现象为压电谐振,这一频率称为晶体的谐振频率,它和晶体的尺寸有关。在它激式振荡器中,常应用一个频率为27.12MHz或40.68MHz的石英晶体振荡器作为振源,经过两级功率放大,就可得到27.12MHz或40.68MHz,2.0Kw的输出信号。通过匹配网络和同轴电缆传输到负载线圈上。这类发生器频率稳定度高,耦合效率好,功率输出易于自动控制,但放电回路的电学特性的任何微小变化,会导致阻抗失配,需调节至最佳匹配,仪器线路比较复杂,成本较高,但性能较好。ThermoElemental公司的的ICP均采用晶体控制型RF发生器晶体控制型RF发生器的高功率输出采用多级放大后才获得,它包括:1) RF源放大:由石英晶体振荡器(27.12MHz)和放大电路组成,受来自AGC(自动增益控制)的反馈电压和计算机给定的控制,其输出是稳定的、最大功率为3w的高频信号。2) RF驱动放大:它介于源放大和功率放大之间,其作用是放大RF源放大级的高频信号,以驱动功率放大器,并隔绝源振荡器以改善稳定性,驱动放大级的最大输出功率为65w。3) RF功率放大:它主要由大功率电子管(3cx1500A)来实现高频信号的进一步放大,并通过工作线圈把RF功率耦合到等离子体上。功率放大级的最大输出功率可达2Kw。4) 匹配网络:在以上各级放大器之间均存在阻抗匹配网络,是为RF功率在各级间传输中获得最高的效率。其中功率放大级的输入、输出匹配网络十分重要,输入匹配采用Л型匹配电路,如右图调整匹配电容Cl和C2,使输入功率放大级的反射功率几乎为零。输出匹配为自动匹配(Auto-Turning),自动跟踪等离子体负截的变化,使等离子体始终获得最高的功率传输效率。5) 自动增益控制(AGC):它的作用是自动调整整个RF发生器的放大倍数,不管等离子体的阻抗以及等离子体与负载线圈耦合有何变化,始终保证等离子体的功率恒定不变。AGC同时又受计算机控制,以实现RF功率的计算机控制。6) 工作线圈:工作线圈的作用是把RF发生器的高频能量,耦合到等离子体。由于高频电流倾向于在导体表面流动(即趋肤效应),工作线圈是由2.5圈镀银外层的空心铜管制成,内通冷却水冷却。为了防止其表面腐蚀或匝间高压放电,工作线圈外套一层四氟乙烯。7) 电源系统(POWER UNIT):为RF发生器提供各种电源,包括:+5V、+12V、±15V、+48V、+3800V和120V AC。 其中+48V提供给RF驱动放大, +3800V提供给RF功率放大。该电源系统具有各种保护,并通过其电源控制单元(Power Unit Control)实现与整个仪器的通讯和控制。固态式RF发生器固态式RF发生器是用一组固态场效应管(一般是十几只配对)来替代经典RF发生器中的大功率电子管,以获得大功率高频能量输出。固态式RF发生器具有更小的体积,有利于仪器的小型化。1) RF功率:几乎所有的谱线强度都随功率的增加而增加。但功率过大也会带来背景辐射增强,信背比变差,检出限反而不能降低。对于水溶液样品,一般选用的功率为950w-1350w,对于溶液中含有机试剂或有机溶剂的样品,为使有机物充分分解,一般选用1350w-1550w的功率。在测定易激发又易电离的碱金属元素时,可选用更低的功率(750w-950w),而在测定较难激发的As、Sb、Bi等元素时,可选用1350w的功率。2) 雾化气流量(压力):雾化气的作用已如上述,其大小直接影响雾化器提升量、雾化效率、雾滴粒烃、气溶胶在通道中的停留时间等。因此要根据每个具体的雾化器精心选择并在分析过程中保持一致。对于目前广泛使用的Menhard和GE同心型雾化器,雾化压力通常在22-35psi间选择(最常用的是26-30psi),对于“较难”激发元素如As、Sb、Se、Cd等元素的测定可选用较小的雾化压力(24-26psi),使气溶胶在通道中停留较长的时间,更有利于激发发射,对于K、Na等易激发又易电离的元素的测定,可选用较高雾化压力(32-35psi),使气溶胶在通道中停留时间较短,且雾化得更好,以获得更低的检出限。3) 观察高度:在炬管垂直放置的情况下,采用侧向采光,各种元素的最佳激发区因元素而异。具有较难激发的原子谱线的元素如As、Sb、Se等,它们的最佳激发区在ICP通道偏低的位置。而具有较易激发的离子谱线的元素如碱土族元素,周期表的第三、四副族元素,其最佳激发区则应在ICP通道偏高的位置。易激发又易电离的碱金属元素,在通道较低位置则绝大部分成为很难激发的离子状态。只有在通道的较高位置为最佳观察区域。所谓的观察离度是指工作线圈的顶部作为起点向上计算(如图所示)。而原子发射光谱分析的一个重大优势是多元素同时分析,因此曝光高度与其他参数一样,很难仅考虑个别元素的最佳观察高度,必须兼顾一次采样分析所有待测元素,所以一般采用折中的观察高度。在调试仪器时,一般以1ppm的Cd元素来选择最佳的观察高度(通常在15mm左右)。另可通过辅助气的改变可使观察高度在13-17mm间调整。4) 频率:在一般情况下ICP的频率并不认为是重要的参数,目前常用的频率为27.12MHz与40.68MHz,这是为了避免与广播通讯相干涉而专门留给工业部门使用的频率,也比较适合于产生ICP,所以正规的ICP发生器都采用这个指定的频率

  • 高压发生器的问题

    仪器突然停电后,开关全部关掉,第二天等到电源正常,重新开机,声音异常,好像有开关在不停的开合,但是声音太小,后来贴着仪器,才发现是仪器内部的声音,打开仪器后声音清晰多了,确定是高压发生器发出的声音。 以前,没有太注意是否这种声音是正常的,但是,现在发现了,没有胆量继续往下操作,只好把仪器关掉了。心里实在没有底,打电话咨询了厂家,说确定是高压发生器的问题,而且,不能维修,只能换高压发生器,请高手判断一下,我们这高压发生器还有救吗? 另外,要是高压发生器坏了的话,继续往下操作,会不会对别的地方再造成损害呢?

  • 高压发生器故障

    求助: 大家好,我们用的是ARL 9800 XP荧光仪,已有8年时间,最近清灰后,重新开机,对x光管可以加电压,一加电流就掉,但偶尔一次能升起来,升不起时出现警报: 8218—F—Milliamps regulation fault 8214—F—ray power supply fault 8210—F—time-out on x-ray on ack. or x-ray lamps fault 检查过,x射线指示灯没问题,工程师怀疑是发生器内部的三块主控板有问题,更换后,现在都加不上去,但只出现8210报警。求各位大虾分析一下,是什么故障,该怎么处理,小弟谢谢了。 急!急!急!

  • 臭氧发生器如何选型?

    臭氧发生器选型非常重要应从以下几个方面进行选型:1.确定臭氧发生器的型号即臭氧产量 臭氧用于空气灭菌除味还用于水处理。用于空气处置时可选择低浓度经济型的开放式臭氧发生器,推销臭氧发生器时首先要确定其使用用途。包括有气源开放式和无气源开放式两种最好选有气源机型。该类臭氧发生器结构简单价格低廉,但工作时温度和湿度影响臭氧发生量。上述开放式臭氧发生器属最简单的臭氧装置,对于要求高的场所空气处置也应选择高浓度臭氧发生器。空气处置时按20-50mg/m3规范投放,食品药品行业选高值。可根具空间大小换算即得出臭氧的总用量(即臭氧发生器产量)用于水处置时必需选购高浓度臭氧发生器(臭氧浓度大于12mg/L低浓度臭氧处置水是无效的高浓度臭氧发生器为规范配置含气源及气源处置装置和臭氧发生装置。小型的可设计成一体式机型产量在5-200g/h间,大中型臭氧发生器基本以机组形式存在2.鉴别臭氧发生器的品质 臭氧发生器品质的优劣可从制造材料、系统配置、冷却方式、工作频率、控制方式、臭氧浓度、气源和电能消耗指标等多方面鉴别。优质的臭氧发生器应是高介电材料制造、规范配置(含气源和净化装置)双电极冷却、高频驱动、智能控制、高臭氧浓度输出、低电耗和低气源消耗。3.性价比 利息远高于低档发生器和低配置发生器。但优质臭氧发生器性能非常稳定,优质的臭氧发生器从设计到配置及制造资料均按其标准进行。臭氧浓度和产量不受环境因素影响。而低配置臭氧发生器工作时受环境影响较大,温度和湿度的增加可使臭氧产量和浓度大幅度下降,影响处置效果。选购时应对其售价和性能进行综合比评。4.防止误区 含气源发生器和不含气源发生器造价相差很大。如果通过价格优势推销了无气源的臭氧发生器,A.解臭氧发生器是否含气源。还需自配气源装置最终可能要多花钱。B.解发生器的结构形式,否可以连续运行,臭氧输出浓度等指标。例如需要一台臭氧发生器用于净水处置,若误选了开放式臭氧发生器那是无法使用的D确认臭氧发生器额定标注产量,使用空气源标注的还是使用氧气源时标注的产量。因为臭氧发生器使用氧气源时臭氧产量比使用空气源时大一倍,两者的造价相差近一倍。选购臭氧发生器时供求双方应全方位沟通防止走入误区,切勿以价格为主要参考依据衡量臭氧发生器。

  • 【讨论】发生器选择

    求教!现在我正在选择气体发生器,由于经费原因,需要的氮空发生器和氢气发生器只能选择一种进口的,另一种为国产的。我主要用于GC,请问该如何取舍。谢谢

  • 【讨论】进口氮气发生器相同性能的国产氮气发生器

    新诞生的氮气发生器采用了世界先进的材料和气相色谱分离技术,它直接从空气中分离获得高纯度的氮气。本产品的原理与需要加KOH液体(水)产生氮气的发生器有根本性的不同,它是纯物理的分离方法,因此彻底消除了化学物质腐蚀气相色谱仪等仪器的隐患。新开发的氮气发生器不需要加液体(KOH液)水,所产生气体流速稳定,氮气纯化更彻底,产出的氮气纯度更高,适用于各种气象色谱的TCD、FID检测器,也可用于ECD电子捕获检测器。该系列高纯发生器有内置和外置无油空压机以供客户灵活选择。目前国内市场中的氮气发生器都是加KOH液体(水),它是采用电化学分离和物理吸附法从空气中获得氮气。这些氮气发生器存在的问题很多。主要的问题有:1. 加KOH液体(水)的氮气发生器所发生的氮气中含水量高还带有一定腐蚀性,色谱仪调试不容易稳定,一旦使用该氮气时间一久色谱柱效降低。2.不能在常压(标准大气压)下使用,有严重返液(回液)现象,为了防止返液,厂家设计各种装置来解决,但不能解决根本性问题毕竟他是要加水的,一旦装置故障就会造成气路及色谱柱报废,严重的甚至导致色谱仪全部报废。3. 氮气纯度偏低,对TCD色谱仪的热敏元件会造成氧化,时间一久TCD的灵敏度降低。针对诸多问题,研发了新氮气发生器系列,就是不需要加液(KOH液)水的氮气发生器,从根本上解决了上述回液的安全隐患和对仪器的破坏威胁。一些进口ppm、ppb的高端色谱仪也配用我们的氮气发生器,而且检测效果很好。该研发生产的不需加KOH液体(水)氮气发生器DF系列,技术国内首创、世界领先,能与进口氮气发生器相聘美!主要技术参数:[font=Ti

  • 空气发生器

    空气发生器中主要部件为压缩机,压缩机中的润滑油会随水排出机外,为什么有些叫无油空气发生器也出油啊?那“无油”是什么意思啊?

  • 关于ICP电源、高频发生器

    ICP能量的来源是高频发生器产生的高频震荡,高频震荡产生的原理是将直流电转变成交流电,这个交流电的频率完全由振荡电路中的选频部分来决定,那么高频线圈内的电流就应该是高频的交流电流,同理由这个高频电流在炬管轴向产生的磁场也应该是方向不断变化的磁场,耦合出来的等离子体电流也是方向不断变化的电流,不知道我理解的对吗?如果耦合出来的等离子体电流是方向不断变化的,那么雾化后的样品能够在炬管内稳定吗?希望大家帮帮忙解释解释。

  • 如何正确的选择流量计测量臭氧发生器中的流量?

    如何正确的选择流量计测量臭氧发生器中的流量?

    在日常生产生活中,我们常会见到食品、药品、化妆品等健康产品腐败变质的现象,如果想要延长食品保质期,臭氧具有十分重要的作用,臭氧之所以能够延长食品保质期,主要是因为臭氧具有高效的杀菌消毒作用。除杀菌作用之外,臭氧还有消除室内外臭味、分解有害物质、处理污水、漂白等作用。虽然臭氧已用于生产和生活中很长时间,但很多人还不太了解产出臭氧的设备,也就是臭氧发生器。下面工采网小编和大家一起了解一下流量计在臭氧发生器中的作用。[align=center][img=,362,505]https://ng1.17img.cn/bbsfiles/images/2019/10/201910151148144211_6591_3430007_3.png!w362x505.jpg[/img][/align]臭氧发生器是用于制取臭氧气体(O3)的装置。臭氧易于分解无法储存,需现场制取现场使用(特殊的情况下可进行短时间的储存),所以凡是能用到臭氧的场所均需使用臭氧发生器。臭氧发生器在饮用水,污水,工业氧化,食品加工和保鲜,医药合成,空间灭菌等领域广泛应用。 臭氧发生器产生的臭氧气体可以直接利用,也可以通过混合装置和液体混合参与反应。所以凡是能用到臭氧的场所均需使用臭氧发生器。[b]臭氧发生器工作原理[/b]臭氧发生器是利用高压放电原理,将氧气转化为臭氧的过程。即将高压交流电加在中间隔有绝缘体并有一定间隙的高压电极上,让经过的干燥净化空气或氧气通过。当高压交流电达到10-15KV时,产生蓝色辉光放电,电晕中的自由高能离子离解O2分子,经碰撞聚合为O3分子。臭氧的产量、浓度随所加的电源电压,电流等变化。臭氧发生器开始工作时,将无油空气压缩机中的空气压进臭氧发生器的冷却器和储气罐,空气通过无热再生干燥装置并由流量计控制其气体流量和速度,由此气源进入臭氧发生单元。此时臭氧发生单元内调压器调节变压器将压力升至12000V左右,操作人员可通过视镜观察臭氧产生状况和辉光 放电状况。变压器继续使压力逐步上升至15000V左右并至稳定状态,操作人员观察各仪表运转情况至稳定状态。 [align=center][img=,627,274]https://ng1.17img.cn/bbsfiles/images/2019/10/201910151148339291_5797_3430007_3.png!w627x274.jpg[/img][/align]在臭氧发生器上经常要使用玻璃转子流量计来测量臭氧的流量,那么如何正确的选择一款流量计测量臭氧呢?工采网提供的一款美国Siargo MF5700系列便携式气体质量流量计 - MF5706是根据我公司自主研发的MEMS流量传感芯片开发的一款应用范围宽、低功耗、便携式、带显示、能够实现网络化的计量仪表。该仪表适用于医院临床供氧的监视和计量(即医用氧气表)和各种工业、商业应用。[b]产品结构与机械尺寸:[/b][align=center][b][img=,648,246]https://ng1.17img.cn/bbsfiles/images/2019/10/201910151148518831_2641_3430007_3.png!w648x246.jpg[/img][/b][/align][b]气体质量流量计选型:[/b][align=center][b][img=,600,353]https://ng1.17img.cn/bbsfiles/images/2019/10/201910151149153981_5013_3430007_3.png!w600x353.jpg[/img][/b][/align]

  • 导致配电箱发生故障的原因

    作为一个电气化时代,基本上所用的东西都跟电有关系,一旦某一区域的配电箱出现故障就会导致整个区域的电力都会无法正常使用,而因停电所造成的损失是无法计量的,严重影响人们的正常生活。 据研究调查发现,会导致配电箱出现故障主要有以下几个方面的原因:第一、环境温度对低压电器影响。我们知道许多的低压电器主要是由熔断器、交流接触器、剩余电流动作保护器、电容器及计量表等组成。而这些低压电器对温度都是有限定条件的,如果一旦工作温度超出这个范围,就会引发故障。第二、产品质量不合格。由于产品质量的不严格,造成了一些产品投入运行后不久就发生故障。比如:有些型号交流接触器在配电箱投运后不久,就因接触器合闸线圈烧坏,而无法运行。第三、箱体内电器选择不当。选择交流接触器容量时,没有考虑到三相负荷不平衡,导致因高温季节运行时出现的交流接触器烧坏的情况。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制