生物素氨基甲基香豆

仪器信息网生物素氨基甲基香豆专题为您提供2024年最新生物素氨基甲基香豆价格报价、厂家品牌的相关信息, 包括生物素氨基甲基香豆参数、型号等,不管是国产,还是进口品牌的生物素氨基甲基香豆您都可以在这里找到。 除此之外,仪器信息网还免费为您整合生物素氨基甲基香豆相关的耗材配件、试剂标物,还有生物素氨基甲基香豆相关的最新资讯、资料,以及生物素氨基甲基香豆相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

生物素氨基甲基香豆相关的资料

生物素氨基甲基香豆相关的论坛

  • 生物素蛋白标记常见问题及注意事项

    [font=宋体][font=宋体]生物素[/font][font=Calibri]-[/font][font=宋体]亲和素系统 [/font][font=Calibri](biotin-avidin system[/font][font=宋体],[/font][font=Calibri]BAS)[/font][font=宋体],是[/font][font=Calibri]70[/font][font=宋体]年代后期应用于免疫学,并得到迅速发展的一种常用的生物反应放大系统。它具有高度特异性、敏感性、稳定性的特点,两者的亲和常数([/font][font=Calibri]K=1015 mol/L[/font][font=宋体])比抗原[/font][font=Calibri]-[/font][font=宋体]抗体([/font][font=Calibri]K=105[/font][font=宋体]~[/font][font=Calibri]1011 mol/L[/font][font=宋体])至少高[/font][font=Calibri]1[/font][font=宋体]万倍,是目前已知强度最高的非共价作用,这使得生物素标记的蛋白成为研究蛋白质相互作用和筛选抗体或小分子潜力药物的强大工具。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州开发了丰富的生物素标记蛋白产品,拥有[/font][font=Calibri]Avi-tag[/font][font=宋体]定点标记和化学标记两种类型的生物素标记蛋白,覆盖细胞治疗、抗体药、疫苗等热门靶点。产品具有高批间一致性、高活性等优势,适用于[/font][font=Calibri]ELISA[/font][font=宋体]、[/font][font=Calibri]Biopanning[/font][font=宋体]、[/font][font=Calibri]SPR / BLI[/font][font=宋体]等实验。下面为大家提供生物素蛋白标记常见问题及注意事项:[/font][/font][font=宋体] [/font][font=宋体][b]生物素蛋白标记常见问题:[/b][/font][font=宋体] [/font][font=宋体][font=Calibri]1[/font][font=宋体]、什么是生物素标记蛋白[/font][font=Calibri]?[/font][/font][font=宋体][font=宋体]在生物化学中,生物素化蛋白质就是生物素与蛋白质等大分子物质共价结合的产物。生物素[/font][font=Calibri]-[/font][font=宋体]亲和素亲和常数至少比抗原[/font][font=Calibri]-[/font][font=宋体]抗体高一万倍[/font][font=Calibri],[/font][font=宋体]是目前发现的自然界中具有最强亲和力的物质。因此,生物素[/font][font=Calibri]-[/font][font=宋体]亲和素系统已被广泛地应用于免疫诊断技术。生物素化蛋白的出现,也为类似于[/font][font=Calibri]WB[/font][font=宋体]实验简化了流程,提高了效率。此外,由于生物素的小尺寸([/font][font=Calibri]MW = 244.31g / mol[/font][font=宋体]),不太影响蛋白质本身的天然功能。所以它同时具备了高亲和力、高特异性、高灵敏度的优点。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2[/font][font=宋体]、生物素标记蛋白有哪些应用?[/font][/font][font=宋体][font=宋体]生物素标记蛋白广泛的应用在生物技术的众多领域。如透析,将具有特殊结构的亲和分子制成固相吸附剂放置在层析柱中,当要被分离的蛋白混合液通过层析柱时,与吸附剂具有亲和能力的蛋白质就会被吸附而滞留在层析柱中。那些没有亲和力的蛋白质由于不被吸附,直接流出,从而与被分离的蛋白质分开,然后选用适当的洗脱液,[/font] [font=宋体]改变结合条件将被结合的蛋白质洗脱下来。怎么释放所需蛋白呢?这需要非常严苛的条件(例如,[/font][font=Calibri]pH=1.5[/font][font=宋体]的 [/font][font=Calibri]GuHCl[/font][font=宋体]),这种极端条件下的蛋白是会变性的。如果需要分离标记的蛋白质,最好用亚氨基生物素标记的蛋白质。该种生物素在碱性条件下与抗生物素蛋白结合紧密,但是在降低[/font][font=Calibri]pH[/font][font=宋体]以后,亲和力降低。因此亚氨基生物素标记蛋白可以通过降低[/font][font=Calibri]pH([/font][font=宋体]约[/font][font=Calibri]pH=4)[/font][font=宋体]从柱子上释放。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]免疫检测中的应用:在常规[/font][font=Calibri]ELISA[/font][font=宋体]原理的基础上,结合生物素[/font][font=Calibri](B)[/font][font=宋体]与亲和素[/font][font=Calibri](A)[/font][font=宋体]间的高度放大作用,而建立的一种检测系统。生物素很易与蛋白质[/font][font=Calibri]([/font][font=宋体]如抗体等[/font][font=Calibri])[/font][font=宋体]以共价键结合。这样,结合了酶的亲和素分子与结合有特异性抗体的生物素分子产生反应,既起到了多级放大作用,又由于酶在遇到相应底物时的催化作用而呈色,达到检测未知抗原[/font][font=Calibri]([/font][font=宋体]或抗体[/font][font=Calibri])[/font][font=宋体]分子的目的。 这可以用于通过荧光或电子显微镜定位的[/font][font=Calibri]ELISA[/font][font=宋体]测定,[/font][font=Calibri]ELISPOT[/font][font=宋体]测定,[/font][font=Calibri]western[/font][font=宋体]印迹和其他免疫分析方法。[/font][/font][font=宋体] [/font][font=宋体][b]生物素标记注意事项:[/b][/font][font=宋体] [/font][font=宋体][font=Calibri]1[/font][font=宋体]、依抗原或抗体分子所带可标记基团的种类(氨基、醛基或巯基)以及分子的酸碱性,选择相应的活化生物素和反应条件;[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2[/font][font=宋体]、标记反应时,活化生物素与待标记抗原或抗体应有适当的比例;生物素:[/font][font=Calibri]IgG [/font][font=宋体]用量比[/font][font=Calibri](mg/mg)[/font][font=宋体]宜为[/font][font=Calibri]2:1, IgG[/font][font=宋体]应用浓度[/font][font=Calibri]0.5~5[/font][font=宋体]μ[/font][font=Calibri]g/ml [/font][font=宋体]生物素[/font][font=Calibri]1~3[/font][font=宋体]个[/font][font=Calibri]/Ag[/font][font=宋体],[/font][font=Calibri]3~5[/font][font=宋体]个[/font][font=Calibri]/Ab[/font][font=宋体];[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3[/font][font=宋体]、为减少空间位阻影响,可在生物素与被标记物之间加入交联臂样结构;[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]4[/font][font=宋体]、生物素与抗原、抗体等蛋白质结合后,不影响后者的免疫活性;标记酶时则结果有不同。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]更多关于[url=https://cn.sinobiological.com/category/biotinylated-protein-elite][b]生物素标记蛋白[/b][/url]详情可以参看:[/font][font=Calibri]https://cn.sinobiological.com/category/biotinylated-protein-elite[/font][/font][font=宋体] [/font]

  • 生物素标记抗体:原理、应用与前景

    [b][font=宋体]一、引言[/font][/b][font=宋体] [/font][font=宋体]在生物学和医学的研究中,抗体标记技术已成为一种重要的研究手段。其中,生物素标记抗体凭借其独特的优势,在许多领域中得到了广泛应用。本文将详细介绍生物素标记抗体的原理、应用及发展前景。[/font][font=宋体] [/font][b][font=宋体]二、生物素标记抗体的原理[/font][/b][font=宋体] [/font][font=宋体][font=宋体]生物素,又称维生素[/font][font=Calibri]H[/font][font=宋体],是一种存在于自然界中的小分子有机物质。它可以通过化学反应与抗体结合,生成生物素标记抗体。这一过程通常是在抗体的氨基基团上连接一个生物素衍生物,形成共价键。这种连接方式不会改变抗体的免疫活性,同时使得生物素标记抗体能够与相应的抗原结合。[/font][/font][b][font=宋体] [/font][font=宋体]三、生物素标记抗体的应用[/font][/b][font=宋体] [/font][font=宋体]免疫分析:生物素标记抗体在免疫分析中发挥了重要作用。通过将生物素标记抗体与相应的抗原结合,可以实现对抗原的灵敏检测。这种方法被广泛应用于生物学、医学及食品安全等领域。[/font][font=宋体]蛋白质组学研究:在蛋白质组学研究中,生物素标记抗体可用于蛋白质的分离和纯化。通过生物素标记抗体与抗原的特异性结合,可以从复杂的蛋白质混合物中分离出目标蛋白质。[/font][font=宋体]细胞生物学研究:生物素标记抗体在细胞生物学研究中具有广泛的应用价值。例如,通过生物素标记抗体追踪细胞内蛋白质的分布和动态变化,有助于深入了解细胞的生命活动。[/font][font=宋体]疾病诊断与治疗:生物素标记抗体在疾病诊断和治疗中也发挥了重要作用。例如,针对癌症的免疫治疗中,生物素标记抗体可以用于识别和攻击癌细胞,从而达到治疗目的。[/font][font=宋体] [/font][b][font=宋体]四、发展前景[/font][/b][font=宋体] [/font][font=宋体]随着生物学和医学技术的不断进步,生物素标记抗体的应用前景日益广阔。未来,随着技术的不断创新和完善,生物素标记抗体的性能将得到进一步提升,从而推动其在更多领域中的应用。同时,随着人类对生命现象认识的深入,将有更多具有挑战性的研究课题需要借助生物素标记抗体这一强大工具。[/font][b][font=宋体] [/font][font=宋体]五、结语[/font][/b][font=宋体] [/font][font=宋体]生物素标记抗体作为一种重要的研究手段,在生物学、医学及其他相关领域中发挥着不可或缺的作用。随着技术的不断进步和应用领域的拓展,我们有理由相信,生物素标记抗体的未来将更加光明,为人类探索生命奥秘提供更多可能性。[/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州提供[url=https://cn.sinobiological.com/category/biotinylated-protein-elite][b]生物素标记蛋白[/b][/url]相关产品,详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/category/biotinylated-protein-elite[/font][/font][b][font=宋体] [/font][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b]

  • 生物素中间体的色谱检测

    [color=#444444]先已合成的生物素的中间体:双苄基生物素和双苄烯生物素的液相色谱峰重叠,有何办法能将两峰分开。[/color][color=#444444]采用的色谱条件是:C18柱,流动相是磷酸盐缓冲溶液:乙腈=60:40,流速1ml/min, 波长210 nm[/color]

生物素氨基甲基香豆相关的方案

生物素氨基甲基香豆相关的资讯

  • 李灵军与叶慧团队合作成果:生物素硫醇标签辅助质谱法对蛋白质瓜氨酸化进行全局分析
    瓜氨酸化是影响蛋白质结构和功能的关键的翻译后修饰。尽管它与各种生物过程和疾病发病紧密相关,但由于缺乏有效的方法来富集、检测和定位该翻译后修饰,其潜在机制仍然知之甚少。近期,威斯康星大学麦迪逊分校李灵军教授课题组报道了生物素硫醇标签的设计和开发,该标签能够通过质谱法对瓜氨酸化进行衍生化、富集来实现可靠的鉴定。作者对小鼠组织的瓜氨酸化蛋白质组进行了全局分析并且从432种瓜氨酸化蛋白质中识别出691个修饰位点,这是迄今为止最大的瓜氨酸化数据集。作者发现并阐述了这个翻译后修饰的新的分布和功能并且表示该方法有希望为进一步破译瓜氨酸化的生理和病理作用奠定基础。这项工作以“Enabling Global Analysis Of Protein Citrullination Via Biotin Thiol Tag-Assisted Mass Spectrometry”为题发表在国际化学权威杂志Analytical Chemistry上 (https://doi.org/10.1021/acs.analchem.2c03844),文章作者为Yatao Shi#, Zihui Li#, Bin Wang#,Xudong Shi , Hui Ye, Daniel G. Delafield, Langlang Lv, Zhengqing Ye, Zhengwei Chen, Fengfei Ma,Lingjun Li*。此外,李灵军教授课题组进一步拓展了此方法的实用性。作者通过应用二甲基化亮氨酸(DiLeu)等重标记策略第一次实现了瓜氨酸化的高通量定量研究,并利用这一方法揭示了瓜氨酸化在人体细胞DNA损伤及修复过程中的重要作用。相关成果以“12-Plex DiLeu Isobaric Labeling Enabled High-Throughput Investigation of Citrullination Alterations in the DNA Damage Response”为题同样发表在Analytical Chemistry上(https://doi.org/10.1021/acs.analchem.1c04073),文章作者为Zihui Li, Bin Wang, Qinying Yu, Yatao Shi, Lingjun Li*。  研究的主要内容  作者设计了一种生物素硫醇标签,它可以很容易的以低成本合成并且可以与瓜氨酸残基和2,3-丁二酮发生特异性反应(图 1a)。这种衍生化不仅增加了质量转移以允许更可靠的鉴定,而且还引入了生物素部分,使修饰分子的后续富集成为可能。该生物素硫醇标签设计具有紧凑的结构,在高能碰撞解离 (HCD) 期间仅产生两个碎片/诊断离子(图 1b)。 因此,肽主链可以保持良好的裂解效率,并在 HCD 或电子转移解离 (ETD) 期间分别产生丰富的b/y或c/z离子系列。在 HCD(图 1c)、ETD或电子转移/高能碰撞解离(EThcD)碎裂下,衍生化肽标准品的序列收集质谱图几乎完全覆盖相应的肽序列。实验结果表明生物素硫醇标签衍生的瓜氨酸化肽可以产生用于解析及标注的高质量的串联质谱图,并且与各种裂解技术相结合时可以提高瓜氨酸化位点的识别可信度。  图1|用于瓜氨酸化分析的生物素硫醇标签设计。a,使用生物素硫醇标签和 2,3-丁二酮对瓜氨酸肽进行衍生化。 b,HCD、ETD 或 EThcD 片段化后生物素硫醇标签衍生的瓜氨酸化肽的片段化位点。c,HCD裂解后生物素硫醇标签衍生的瓜氨酸肽标准品 SAVRACitSSVPGVR 的串联质谱图。  在接下来的实验中作者使用该生物素硫醇标签和基于质谱的自下而上的蛋白质组学方法对瓜氨酸化进行分析(图2a)。作者在体外利用 PAD(一种可以催化瓜氨酸化的酶)催化的人组蛋白 H3 蛋白来验证这个过程。作为未被PAD催化的阴性对照,未发现组蛋白的肽段被鉴定为瓜氨酸化,证明了生物素标签反应的高特异性(图 2b)。在体外 PAD 处理后,作者 发现许多精氨酸残基被催化为瓜氨酸,并且大量的位点被高可信度的鉴定为瓜氨酸化位点(图 2c),进一步表明该方法的高效性。在 HCD 碎裂后,其产生了一系列丰富的 b/y 离子,可以帮助准确的表征在同一肽段上单个(图 2d)以及多个(图 2e)瓜氨酸化位点。  图2|使用生物素硫醇标签进行体外瓜氨酸化分析。a,使用生物素硫醇标签进行蛋白质瓜氨酸化分析的实验工作流程。b、c,在体外 PAD 处理之前 (b) 和之后 (c) 组蛋白 H3 蛋白的瓜氨酸化分析。 已识别的瓜氨酸化位点在序列中以蓝色字母突出显示。 序列下方的红色矩形表示鉴定的瓜氨酸化肽,而瓜氨酸化位点以蓝色显示。 d,PAD处理的组蛋白 H3 (R64Cit) 的已鉴定瓜氨酸化肽的串联质谱图示例。 e,PAD 处理的组蛋白 H3 的同一肽上鉴定的两个瓜氨酸化位点(R70Cit 和 R73Cit)的串联质谱图示例。  接下来,作者们尝试利用所开发的方法对复杂的生物样本中的瓜氨酸化进行全局分析,并希望能够以此提供阐明生物体中瓜氨酸化调节机制的依据。首先,作者对小鼠的六个身体器官和五个大脑区域进行了深入的瓜氨酸组分析,生成了第一个小鼠瓜氨酸组组织特异性数据库。作者从432种瓜氨酸化蛋白质中以高置信度的方式鉴定了691个瓜氨酸化位点(图 3a)。更重要的是,这些蛋白质中约有 60% 未曾在UniProt 数据库检索并被报道,这一结果极大地扩展了对瓜氨酸化以及这些底物蛋白质如何受到瓜氨酸化影响的理解。作者发现结果中与 UniProt 数据库的已知的瓜氨酸位点重叠部分较少(图 3b),这可能是因为 UniProt 中描述的近 40% 的瓜氨酸化位点是基于相似性外推理论而没有实际的实验证据。此外,许多报道的位点位于组蛋白上,尤其是蛋白质末端,可能会逃过自下而上质谱策略的检测(图 3b)。图 3c 展示了单位点瓜氨酸化和多位点瓜氨酸化蛋白质分布情况,其中 70% 的已鉴定蛋白质仅有一个瓜氨酸化位点被检测到。  这个新发现的瓜氨酸化蛋白质组为推测瓜氨酸化的调控机制提供了宝贵的资源。例如,作者在髓鞘碱性蛋白(MBP)上鉴定到了九个瓜氨酸化位点,而在 UniProt 数据库中只有四个(图3d)。作者的结果提供了高质量的串联质谱图,不仅证实了已知修饰位点的存在(图3e),而且还高可信度的识别了未知的位点(图 3f)。然后作者进行了瓜氨酸化肽段的序列分析,发现在鉴定的瓜氨酸化位点两侧并没有高度保守的氨基酸序列模式(图3g),但是谷氨酸残基更频繁地出现在瓜氨酸的N末端侧附近。这与Fert-Bober 等人报道的小鼠瓜氨酸组分析结论一致。另一方面,Tanikawa 等人发现在人体组织和血浆中大约五分之一的 PAD4 底物含有 RG/RGG 基序。同样,Lee 等人及相关研究人员观察到天冬氨酸和甘氨酸残基在瓜氨酸化位点出现频率偏高。值得注意的是,这些研究使用了不同的人源细胞系或组织,因此作者的结果可能表明在不同物种之间瓜氨酸化位点周围的序列模式是不同的。为了更好地辨别瓜氨酸化蛋白质所涉及的功能,作者展示了基因本体论(GO)富集分析的热图,其显示了二十个最显著富集的细胞成分(图3h)以及KEGG途径(图3i)。作者发现小鼠大脑组织和身体器官之间存在明显差异,而瓜氨酸蛋白更多地参与大脑功能。具体来说瓜氨酸化蛋白质集中在轴突、髓鞘、核周体和突触中,因此在中枢神经系统中可能发挥着重要的作用。  图3|不同小鼠组织的大规模瓜氨酸组分析。a,不同小鼠组织中已鉴定的瓜氨酸化蛋白和瓜氨酸化位点的数量。 b,本研究中鉴定的瓜氨酸化位点与 UniProt 数据库中报告的位点比较。 c,每个鉴定的瓜氨酸化蛋白质的瓜氨酸化位点数量分布。d,本研究中确定的瓜氨酸化位点与 UniProt 数据库中关于髓鞘碱性蛋白的瓜氨酸化位点的比较。e、f,在髓磷脂碱性蛋白 R157Cit (e) 和 R228Cit (f) 上鉴定的两个瓜氨酸化位点的示例串联质谱图。g,鉴定的瓜氨酸化肽的序列。瓜氨酸化位点位于中间的“0”位置。字母的高度表示每个氨基酸在特定位置的相对频率。 h,i,使用 Metascape 生成的热图显示不同小鼠组织中显着丰富的(p 值 0.01)细胞成分 (h) (KEGG) 通路 (i)。  为了进一步拓展该方法的实用性,作者应用了二甲基化亮氨酸(DiLeu)等重标记策略,第一次实现了对瓜氨酸化进行高通量的定量研究。作者首先使用瓜氨酸化标准肽段进行测试,证明在优化反应条件下DiLeu标记和生物素硫醇标记反应可以分步进行而不互相干扰(图 4B,4C)。同时,将标准肽段按照已知比例进行4-plex DiLeu标记并混合,再进行生物素硫醇标记和瓜氨酸化分析,结果显示了非常好的定量准确性(图5)。作者进一步优化了运用该方法在复杂生物样品中进行定量分析的实验方法,并且证明此方法依然可以实现极佳的定量准确度和精确度(图6)。  图4|瓜氨酸化标准肽段测试DiLeu标记和生物素硫醇标记分步反应的特异性和效率  图5|瓜氨酸化标准肽段测试DiLeu标记和生物素硫醇标记定量分析的准确性  图6|复杂生物样品测试DiLeu标记和生物素硫醇标记定量分析的准确度和精确度  作者接下来应用该方法对DNA损伤中瓜氨酸化的作用进行了研究。作者在MCF7细胞中用三种方法造成了DNA损伤,并定量分析了蛋白质瓜氨酸化的变化。作者一共鉴定到63种瓜氨酸化蛋白以及其包含的78个瓜氨酸化位点,并发现三个实验组中的瓜氨酸化表达相比于对照组呈现出非常不同的趋势(图7A),这一结果表明瓜氨酸化在不同类型的DNA损伤模型中具有差异性的作用。通过对实验组中显著变化的瓜氨酸化蛋白进行生物过程网络分析,作者发现瓜氨酸化主要对DNA代谢,蛋白结构变化,翻译以及DNA修复等过程进行调控(图 7B,7C)。该实验结果表明蛋白瓜氨酸化对DNA损伤以及相关发病机理具有非常重要的作用。  图7|高通量定量分析研究瓜氨酸化在DNA损伤中的变化及作用(来源:Anal. Chem.)  小结  本文章介绍了一种生物素硫醇标签的设计和开发,该标签可与瓜氨酸化肽段发生特异性反应并极大地提高了瓜氨酸化的富集和检测效率。在使用标准肽和重组蛋白证明该方法的有效性后,作者进一步优化了从复杂生物样品中检测瓜氨酸化的实验过程。通过此方法对小鼠五个大脑区域和六个身体器官的蛋白质瓜氨酸化进行分析,作者鉴定出432个瓜氨酸化蛋白以及691个瓜氨酸化位点,这是迄今为止最大的数据集。该研究揭示了这种翻译后修饰可能在神经系统中发挥的关键作用,并表明它们在包括呼吸和糖酵解在内的许多代谢过程中也可能发挥着重要作用。总的来说,实验结果表明蛋白质瓜氨酸化在不同组织中具有广泛分布并参与各种生物过程,这扩展了目前对蛋白质瓜氨酸化生理作用的认知和理解。此外,作者进一步拓展了此方法的实用性,通过应用DiLeu等重标记策略第一次实现了瓜氨酸化的高通量定量研究,并利用这一方法揭示了瓜氨酸化在人体细胞DNA损伤及修复过程中的重要作用。更重要的是,该方法可以提供一种普适、简单而强大的检测方法来明确鉴定蛋白质瓜氨酸化,这也将启发和有益于未来对这种翻译后修饰在生理和病理条件下的功能作用的研究。  相关研究成果近期发表在Analytical Chemistry上的两篇文章中, 通过生物素硫醇标签辅助质谱法对蛋白质瓜氨酸化进行全局分析文章的共同第一作者是威斯康星大学麦迪逊分校博士生石亚涛,李子辉,王斌,并与中国药科大学叶慧教授课题组合作 应用二甲基化亮氨酸等重标记策略进行蛋白质瓜氨酸化高通量定量研究文章的第一作者是威斯康星大学麦迪逊分校博士生李子辉,两篇文章通讯作者为李灵军教授。更多关于李灵军教授研究团队的最新研究进展欢迎登陆课题组网站:https://www.lilabs.org/
  • 实验室检测背后的故事之或可致命的生物素
    p   2017年11月,美国食品和药物管理局(FDA)公布近期收到一份由于生物素干扰而导致肌钙蛋白测定不准确引起患者死亡的报告,提醒临床医生及实验室工作者:大剂量补充生物素(Biotin)可能会导致实验室检测结果出现误差,从而引起临床误诊误治1。 /p p   而此前不久,国际顶级医学期刊-《新英格兰医学杂志》也发布了多例有关生物素干扰的误诊案例2。随着全球越来越多患者误诊误治案例的出现,生物素对免疫检测的干扰成为近期炙手可热的学术话题。 /p p    strong 【临床医生需了解并重视生物素对临床检测的干扰】 /strong /p p   就此,北京大学人民医院心内科许俊堂教授表示:“可靠的实验室检查结果是临床正确诊断疾病的关键。作为心肌损伤的重要标志物及临床依据,肌钙蛋白在急性心肌梗死诊断中扮演重要的角色。FDA关于生物素引起肌钙蛋白假性降低的案例,也引起了我们临床医生的关注。”他表示,临床医生在诊疗过程中,应充分了解实验室检测方法并询问患者补充含生物素制剂情况;对于一些长期服用生物素的患者,当检测结果与临床不符,应以临床判断为准并进行相应诊治,避免漏诊、漏治及所导致严重后果,同时与实验室人员商讨补救办法,如在不使用生物素标记检测系统重新测定肌钙蛋白。 /p p    strong 【生物素的应用】 /strong /p p   生物素是一种水溶性B族维生素,参与细胞的代谢及维持正常的细胞功能,被广泛添加于各种复合维生素、产前维生素和用于头发、皮肤和指甲生长的市售营养补充剂中。随着现代人群保健及美容意识的逐年上升,为了达到增强体质、防治脱发、减肥美容等各种目的,服用外源性生物素保健品的人群也越来越多3。更值得注意的是:由于保健品成分的复杂性和名称的多样性,很多人并未意识到自己服用了生物素。 /p p   生物素OTC保健品推荐剂量多为5mg-10mg,有研究显示每日摄入生物素10mg,持续7天,在循环血液中检测到的生物素浓度可超过3000pg/ml,这个浓度可影响多项实验室检测4。 /p p    strong 【重视生物素干扰并加强相关研究】 /strong /p p   在实验室免疫检测领域,生物素的应用已非常普遍。“生物素-链霉亲合素”系统是上世纪70年代末发展起来的一种生物反应放大系统。基于“生物素-链霉亲和素”系统的方法学可特异并高效地放大检测信号,提高免疫检测的灵敏度,市面上很多免疫检测产品使用了该方法学。使用这类检测产品时,患者如果服用了外源性生物素后,血液中高浓度的游离生物素可能会干扰链霉亲和素捕获目标分析物的能力。因方法学的不同,生物素可造成检测结果的假性升高或者降低。实验室的检验专业人员需要了解本实验室内检测平台的检测原理,明确受外源性生物素干扰的检测项目,并及时与临床沟通,保证检测结果的正确性。 /p p   首都医科大学附属安贞医院检验科袁慧主任表示:“生物素对免疫检测的干扰,在近年来逐渐引起国外临床检验工作者的关注,并在著名医学学术期刊《新英格兰医学杂志》和《JAMA》上均有案例分享。而在国内,目前报道仍很少。但是,我们对生物素如何干扰临床检测的了解,仍然是冰山一角。生物素的服用剂量、服用时间及受影响的项目类型等,仍需要进一步系统的研究评估。” /p p    strong 【总结】 /strong /p p   FDA建议5:“ 如果实验室检测结果与患者的临床表现不符,应考虑将生物素干扰作为可能的原因。” 在临床实践过程中,很多患者可能受到专业知识限制而根本不了解自己是否服用生物素,对生物素可能存在的干扰毫不知情。当出现检验结果和临床不符合时,需要实验室专业人员在第一时间评估实验室可能存在的风险,加强与临床的沟通。临床医生要增加对于检验的专业认识和了解,不能因为不知情而忽略, 从而对疾病的判断和诊断产生影响。生物素干扰的风险应该得到临床和检验共同的高度重视,通过临床与检验的携手,为患者提供更加优质的服务。 /p p 1. Biotin (Vitamin B7): Safety Communication - May Interfere with Lab Tests - From FDA website https://www.FDA.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm586641.htm /p p 2. Biotin Treatment Mimicking Graves’ Disease. N Engl J Med. 2016 375:7 /p p 3. Biotin: From Nutrition to Therapeutics. J Nutr. 2017 147(8):1487-1492 /p p 4. Association of Biotin Ingestion With Performance of Hormone and Nonhormone Assays in Healthy Adults. JAMA. 2017 318(12):1150-1160 /p p 5. 医脉通编译整理自:Michael O& #39 Riordan. Biotin Supplements Can Interfere With Cardiac Troponin Tests:& nbsp FDA. TCTMD. November 28, 2017 /p
  • 冬日手捧热奶茶,香兰素、香豆素含量待彻查
    每逢温度降一点,心里总想甜一点。街上传来热奶茶、烤蛋挞的香气,过路食客忍不住一口接一口,小兜里一颗小奶糖,不一定能横扫饥饿,但也能短暂满足自己。今天,我们聊下加工食品里的喷香两巨头。香兰素(Vanillin)又名香草醛,化学名称3-甲氧基-4-羟基苯甲醛,是从芸香科植物香荚兰豆中提取的一类有机化合物,具有香荚兰豆香气及浓郁奶香,添加至食品中可增香、定香,在辅助抑菌、杀菌方面也起到了重要的作用。巧克力、冰淇淋、饮品、化妆品、塑料物品等都有其存在。其中,乙基香兰素的香气浓度是天然香兰素的三四倍,而且香味持续时间更久,效果更好,只使用少量即可满足香气需求,使用范围更广。香豆素(Coumarin)又名香豆内脂,化学名称1,2-苯并吡喃酮、o-羟基肉桂酸内酯,2017年世界卫生组织国际癌症研究机构公布的致癌物清单中,香豆素被归类至3类致癌物清单中。天然香豆素存在于黑香豆、香蛇鞭菊、野香荚兰、兰花中,具有新鲜干草香和香豆香,一般不作食用,允许烟用和外用。以香豆素为原料制得的二氢香豆素,可调制奶油、椰子、肉桂香型香精,用作食品添加香精的使用是把双刃剑,应用适当可降低加工食品生产的原料成本,增加食品风味,过量使用则会引起食用者的依赖性,造成健康隐患,慎防不良商家使用纯度不足或禁用的香精。参考新国标中《GB 5009.284-2021 食品安全国家标准 食品中香兰素、甲基香兰素、 乙基香兰素和香豆素的测定》,Detelogy本次特选MultiVortex多样品涡旋混合器 MFV-12智能氮吹仪灵活搭配显身手。MultiVortex多样品涡旋混合器I 26位 12位试管架,兼容100ml以内的样品管I 转速范围200-3000rpm,3mm稳定振幅持续运行I 充分混匀样品、溶剂、分散调料、萃取盐等I 5寸高清触屏上支持自动手动双模式,整机极简设计I 根据不同的样品类型,可设置12个涡旋方法以上I 每个方法可设多达6段自动变速,样品混匀更充分MFV-12智能氮吹仪I 支持氮吹通道分组控制,按组启停,可节省氮气用量I 各通道均有数字流量微调阀,直观清晰,平行性良好I 具备大款水浴照明可视窗、智能快插排水装置I 浓缩过程中,氮吹针一键快速升降,针头支持快换I 兼容试管、离心管、烧杯、烧瓶等,范围1-150mlI 5寸高清触屏实时显示运行参数,PID算法精确控温Detelogy应用领域食品安全:添加剂、有害副产物、真菌毒素农产品检测:农药残留、兽药残留、QuEChERS药物分析:中药材样品、生物样品分析化妆品成分:着色剂、双酚A、香精、禁用成分环境检测:土壤、固废、水质、沉积物等无论绕地球多少圈,都想让你安心捧在手心~

生物素氨基甲基香豆相关的仪器

  • 仪器简介:是戴安公司最新推出的最高端研究级色谱系统,其功能整合了离子色谱、生物液相、氨基酸分析的全部应用,全新的模块设计具有极大的灵活性、功能更全面,操作更简便,其完美卓越的性能将色谱分析带入一个新的更高境界。该型号产品因此而荣获2005年度美国匹兹堡展览编辑部银奖。技术参数:构造:泵头和管路均为化学惰性非金属的PEEK材料,兼容pH: 0-14的水相淋洗液以及各种反相淋洗液体系类型:串联双活塞,恒定冲程流速范围:0.001-10 mL/min流速精确度: 1.0 mL/min时,精确度:0.1 %流速精密度:1.0 mL/min时,精密度:0.1 %压力范围:50-5000 psi压力脉动:1 %梯度比例精确度: 2.0 mL/min时,精确度在 ± 0.5 %梯度比例精密度: 2.0 mL/min时,精密度在 ± 0.5 %可选择淋洗液数量:等度泵:1种,梯度泵:4种梯度泵延迟体积:400&mu LEG 淋洗液自动发生装置技术参数淋洗液浓度范围:0.01-100 mM淋洗液种类:KOH、LiOH、NaOH、CO32-/HCO3-、CO32-、MSA(甲基磺酸)浓度增量:0.01 mM流速范围:0.1-3.0 mL/min最高操作压力:3000 psi(21 MPa)有机物最大浓度:阴离子系统:25 %甲醇阳离子系统:不允许有有机溶剂存在操作温度范围:4-40 ℃操作湿度范围:5-95 %相对湿度(无冷凝)尺寸(高× 宽× 深):41× 23× 56 cm (16.05× 8.75× 21.58 英寸)重量:25公斤 (40磅)电源条件:90-265 V,47-63 Hz 交流电离子储备罐:尺寸(高× 宽× 深)23× 7× 10 cm(9× 2.75× 4 英寸)重量:1.6公斤(3.5磅)Cr-TC捕获柱:尺寸(高× 宽× 深)3.8× 3.8× 5.8 cm(1.5× 1.5× 2.3 英寸)重量:60 g (0.13磅)流动相组织器(EO):可放置4个1 L或2 L或2个4 L的半透明抗腐蚀聚乙烯和环氧乙烯材料塑料瓶;在DC模块上可同时放置两个流动相组织器;带有清晰的刻度线可以随时监测流动相液面高度;淋洗液管入口处安装有5&mu m的聚乙烯过滤器;可以进行压力校准。详细参数请见样本。主要特点:ICS-3000是戴安公司最新推出的最高端研究级色谱系统,其功能整合了离子色谱、生物液相、氨基酸分析的全部应用,全新的模块设计具有极大的灵活性、功能更全面,操作更简便,其完美卓越的性能将色谱分析带入一个新的更高境界。该型号产品因此而荣获2005年度美国匹兹堡展览编辑部银奖。扩展工作能力生物样品分析-生物液相功能氨基酸直接分析-氨基酸分析功能离子色谱分析-离子色谱功能提高色谱性能色谱管理模块整合系统管理新型电化学检测器具有3D数据功能多点精确控温
    留言咨询
  • Essentia LC-16氨基甲酸酯柱后衍生分析系统是基于岛津公司30余载氨基酸甲酸酯农残分析经验,与客户的实际使用需求相结合,不断迭代优化。本次升级的分析系统采用整体性设计:将液相色谱系统-柱后衍生系统-专用软件三者有机整合,提供更高效便捷的全自动样品分析。特点:(1)高性能配置 采用高精度反应液输液系统基础上,搭配高灵敏度的荧光检测器,高性能化学反应器,锁定更小的脉冲、更高的灵敏度、更精确的混合精度和反应温度,是实现准确柱后衍生结果的关键。 荧光检测器温控池技术提高结果重现性 化学反应器具有优异的温度稳定性(2)高便捷性软件为氨基甲酸酯柱后分析体系专门定制的分析系统软件,分析与衍生全过程图形化监控,便于理解和操作,内置分析方法包,全自动样品分析一键开启。 (3)高安全性设计应对氨基甲酸酯柱后衍生法“碱性水解,高温衍生”的特性,安全性设计非常重要。所有模块都配制漏液传感器,化学反应器更是配备了过热保护、防漏传感、气敏传感的三重全方位保护。符合标准食品安全• GB 23200.112-2018 植物源性食品中9种氨基甲酸酯类农药及其代谢物残留量的测定• GB 23200.105-2016 肉及肉制品中甲萘威残留量的测定液相色谱-柱后衍生荧光检测法• NY/T 761-2008 蔬菜和水果中有机磷、有机氯、拟除虫菊酯和氨基甲酸酯类农药多残留的测定• SN/T 1017.7-2014 出口粮谷中涕灭威、甲萘威、杀线威、恶虫威、抗蚜威残留量的测定环境• HJ 960-2018土壤和沉积物 氨基甲酸酯类农药的测定柱后衍生-高效液相色谱法• HJ 1025-2019固体废物 氨基甲酸酯类农药的测定柱后衍生-高效液相色谱法饮用水• GBT 5750.9-2006 生活饮用水标准检验方法 农药指标(呋喃丹、甲萘威)应用同时测定七种氨基甲酸酯类农药优异的线性测试结果(n=5)色谱柱:Shim-pack Gis,4.6mm I.D.×250 mm, 5μm,流动相:水-甲醇,梯度洗脱流动相流速:0.8 mL/min柱温:42℃水解试剂:0.05mol/L氢氧化钠溶液水解试剂流速:0.2 mL/min水解反应温度:100℃衍生试剂:OPA试剂衍生试剂流速:0.2 mL/min衍生反应温度:42℃RF检测器:Ex.330nm, Em.465nm
    留言咨询
  • 赛里安 Artemis 6000 全自动氨基酸分析仪天美全新推出赛里安Artemis 6000 全自动氨基酸分析仪,它利用经典的符合国家标准和国际仲裁标准的茚三酮柱后衍生法来分析水解产物和游离氨基酸。在传统的高效液相离子交换色谱的基础上,采用更高精度输液泵系统搭配更优化的分离条件,仅使用2种缓冲液即可完成蛋白水解体系的分离(生理体液体系为3 种),对比传统使用4~5 种缓冲液的方法,有效地提高了分析效率,减少了使用成本。性能可靠的交钥匙解决方案l 基于赛里安超过30 年的色谱开发、制造和应用经验,保证一如既往的优异分析性能l 可适用于不同应用体系,如蛋白水解、生理体液、氧化水解等l 提供包括样品预处理、缓冲液、色谱柱等整套解决方案快速高效的全自动分析仪l 高速稳定的分析程序:30~50min(蛋白水解)60~160min(生理体液)l 高效的分离柱和除氨柱,使用寿命达6000~8000 次l 分离度:平均峰值分辨率2.5,所有峰值分辨率1.2(水解AA)或1.0(游离AA)l 天冬氨酸 Asp2.5pmol (信噪比=2)简单易用,操作流畅l AminoChrom 工作站可实现对仪器的完全反控,具备强大的数据处理和报告功能,且支持多种语言。l 满足21 CFR Part 11 及相关数据完整性的要求l LCD 面板可实现对仪器的直接控制、方法编辑等,同时方便了维护 Artemis 6000 设计特点赛里安Artemis 6000 整机性能优异且稳定耐用。两个独立的高精度输液泵配合一体化的最小死体积设计,确保了保留时间的准确性和长期稳定性。同时重点关注包括全惰性化管路和自动进样器标配制冷等多个细节,致力于为用户提供满足不同需求且稳定可靠的解决方案。A6400 溶剂组织器集成制冷功能,同时支持引入惰性气体(如N2)以避免缓冲盐溶剂等的氧化或污染。此外,每个溶剂瓶都单独配置了独立开关阀,配合透明罩方便在运行中观察或添加流动相。A6300 氨基酸分离衍生检测单元一体化设计结合了柱温箱、衍生化反应器以及双通道检测系统。配备高精度浮动式短程双柱塞泵保证衍生化试剂的精确输送, 支持0.01~2.00mL/ min 流速设置。高温反应器温控范围为室温至180℃,且具备自动清洗功能,在每次运行完后自动清洗反应管。集成的高灵敏度双通道检测器,检出限可达8pmol(Asp 3pmol)A6200 高通量自动进样器采用高精度计量注射泵,进样量范围1~100μL 可调。标配2×60 位标准样品盘(可控温)。可选配柱前衍生和稀释功能。A6100 高精度四元梯度输液泵集成了四通道在线脱气机,流量范围为0.01~10.0 ml/min,同时可设置多达100 阶的梯度洗脱程序,以保证更优的分离程序。
    留言咨询

生物素氨基甲基香豆相关的耗材

  • 生物素国标检测试剂(微孔板法)
    本产品用于生物素国标微孔板法法的检测,符合GB 5009.259-2023《食品安全国家标准食品中生物素的测定》,满足标准要求,实验结果回收率90%-110%,cv<10%。
  • 免疫磁珠BeaverBeads链霉亲和素-生物素
    链霉亲和素磁珠链霉亲和素-生物素(SA-Biotin) 系统具有极高的结合亲和力(K =10^-15) , 在生物领域具有广泛的应用。 BeaverBeads™ Streptavidin采用海狸的蛋白偶联技术将SA共价连接于固相载体表面,可高效结合生物素化抗体、核酸、蛋白等配体分子。本产品采用超顺磁性微球,粒径均一、形貌规整,有利于方便、快捷地捕获目标分子以及实现磁性分离。本产品可配套自动化设备进行高通量操作。 产品名称编号规格包装单价BeaverBeads™ Streptavidin22305-12μm,10mg/mL1mL¥1580.00BeaverBeads™ Streptavidin22305-102μm,10mg/mL10mL¥7980.00BeaverBeads™ Streptavidin22305-1002μm,10mg/mL100mL¥52800.00BeaverBeads™ Streptavidin22306-15μm,10mg/mL1mL¥1580.00BeaverBeads™ Streptavidin22306-105μm,10mg/mL10mL¥7980.00BeaverBeads™ Streptavidin22306-1005μm,10mg/mL100mL¥52800.00BeaverBeads™ Streptavidin22307-11μm,10mg/mL1mL¥1580.00BeaverBeads™ Streptavidin22307-101μm,10mg/mL10mL¥7980.00BeaverBeads™ Streptavidin22307-1001μm,10mg/mL100mL¥52800.00? 优秀的生物素分子结合能力? 良好的稳定性? 快速灵敏的磁响应性能? 可适应较为广泛的实验条件图一、磁珠经不同溶液处理后结合生物素化分子的活性图2、磁珠经热处理后结合生物素化分子的活性 产品应用实例1、检测Biotin标记的兔IgG BeaverBeads Mag SA磁珠可检测浓度低至6.25ng/mL的Biotin-IgG。2、检测Biotin标记DNA探针BeaverBeadsT™ Mag SA磁珠可检测浓度低至6.25fmol/mL的Biotin-DNA 探针,且具有较低的本底吸附。文献参考:doi:10.1038/ni.3229 引用文献:The transcription factor TCF-1 initiates the differentiation of TFH cells during acute viral infection;NATURE IMMUNOLOGY 卷: 16 期: 9 页: 991-999 出版年: SEP 2015Fatty Acid Elongase‐7 Is Regulated Via SP1 and Is Involved in Lipid Accumulation in Bovine Mammary Epithelial Cells;Journal of Cellular Physiology,DOI 10.1002/jcp.26255The Kinase mTORC1 Promotes the Generation and Suppressive Function of Follicular Regulatory T Cells;Immunity 47, 538–551,DOI:10.1016/j.immuni.2017.08.011
  • PriboVitaTM 维生素B7/生物素 免疫亲和柱
    1、产品简介产品名称:PriboFast® 生物素/维生素B7免疫亲和柱英文名称:PriboFast® Biotin/Vitamin B7 Immunoaffinity Column产品编号:IAC-102-3规格:25T/50T 人体中不能产生足够的维生素,食品摄入是人体获取维生素的主要渠道。食品生产加工过程中维生素的添加是否遵守了法律规定,申报的维生素含量是否确实适量的存在于食品中,市食品安全邻域布克花似的环节。普瑞邦能够提供维生素免疫亲和柱,酶联免疫试剂盒,标准品,维生素纯化与快检产品。 2、普瑞邦产品 维生素免疫亲和柱产品维生素免疫亲和柱产品PriboFast® 肝素(乳铁蛋白)免疫亲和柱PriboFast® Heparin Immunoaffinity ColumnPriboFast® 维生素B12/钴胺素免疫亲和柱PriboFast® Vitamin B12/Cobalamin Immunoaffinity ColumnPriboFast® 生物素/维生素B7免疫亲和柱PriboFast® Biotin/Vitamin B7 Immunoaffinity PriboFast® 叶酸/维生素B9免疫亲和柱PriboFast® Folic Acid/Vitamin B9 Immunoaffinity Colum维维生素固体标准品产品维生素固体标准品产品Pribolab® 叶酸/维生素B9Pribolab® Folic Acid/Vitamin B9Pribolab® U-[13C7]-维生素B12(Vitamin B12)-1 µ g/mL /甲醇Pribolab® U-[13C7]-Vitamin B12-1µ g/mL - MethanolPribolab® D-生物素/维生素B7Pribolab® D-Biotin/Vitamin B7Pribolab® 10ug U-[13C5]-生物素(Biotin)-干态Pribolab® U-[13C5]-Biotin-10ug - dried downPribolab® 维生素B12/钴胺素Pribolab® Vitamin B12/CobalaminPribolab® U-[13C5]-维生素B9(Vitamin B9)-10µ g/mL /5‰氨水Pribolab® U-[13C5]-Vitamin B9-10µ g/mL /5‰ AmmoniaPribolab® U-[13C5,15N]-维生素B9(Vitamin B9)-10µ g/mL /5‰氨水Pribolab® U-[13C5,15N]-Vitamin B9-10µ g/mL /5‰ Ammonia维生素试剂盒产品维生素试剂盒产品PriboFast® 维生素B12/钴胺素酶联免疫检测试剂盒PriboFast® Vitamin B12/Cobalamin ELISA KitPriboFast® 维生素B7/生物素酶联免疫检测试剂盒PriboFast® Vitamin B7/Biotin ELISA KitPriboFast® 叶酸/维生素B9酶联免疫检测试剂盒PriboFast® Folic Acid/Vitamin B9 ELISA Kit3、关于普瑞邦 普瑞邦(Pribolab)专注于食品检测产品的研发与应用,以认证认可的检测实验室为技术依托,先后建立四个专业性技术研发与产品应用平台,产品覆盖真菌毒素、蓝藻/海洋毒素、食品过敏原、转基因、酶法食品分析、维生素、违禁添加物等领域。尤其在生物毒素类标准品、稳定同位素内标(13C,15N)、免疫亲和柱、多功能净化柱、ELISA试剂盒/胶体金检测试纸及样品前处理仪器等产品在不同行业得到广泛应用和认可。 Pribolab始终以持续创新的态度,致力于食品安全每一天! 4、联系我们:电话:400-6885349/0532-84670748官网:https://www.pribolab.cn/邮箱:info@pribolab.cn
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制