当前位置: 仪器信息网 > 行业主题 > >

热场场流分离仪

仪器信息网热场场流分离仪专题为您提供2024年最新热场场流分离仪价格报价、厂家品牌的相关信息, 包括热场场流分离仪参数、型号等,不管是国产,还是进口品牌的热场场流分离仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热场场流分离仪相关的耗材配件、试剂标物,还有热场场流分离仪相关的最新资讯、资料,以及热场场流分离仪相关的解决方案。

热场场流分离仪相关的论坛

  • 热场场流仪在高分子材料分析测试方面的应用介绍

    热场场流仪,简称TF3,是利用在空心的分离通道内的垂直方向上施加由温度差引起的热扩散力,来实现对有机相溶剂体系的高分子材料的分子量分布、含量、共混物的分离进行分析测试。热场TF3的主要应用,就是测试分子量分布、聚合物共混物的分离与分析、橡胶样品中的凝胶含量测试等等,以及聚合物质的纳米材料的尺寸分布的分析测试。由于热场具有两个分离原理:1 流体力学体积分离;2 化学性质,因此热场可以分离分析聚合物共混物,这在高分子材料的科研当中具有广阔的应用前景。此外,热场场流仪的一个独特应用,是分析超大分子量淀粉的分子量分布。此方法以DMSO(N,N -二甲基亚砜)为溶剂、流动相,在较高温度下操作。热场TF3,是利用分离通道上下壁的温度差:上壁为热壁、下壁为冷壁,来实现对样品的分离与分析的。热扩散性,是在热场中是样品分离的原动力,影响热扩散性的因素,既包括流体力学体积/分子量,也包括样品自身的化学性质,即:不同种类的高分子材料,其热扩散性也不同。就是利用这个原理,热场TF3实现了对聚合物共混物的分离与分析。橡胶中的凝胶含量分析,目前已被全球各大橡胶制品企业、橡胶轮胎企业广泛接受,世界知名的轮胎厂,基本都购买、使用热场TF3来分析橡胶原胶、混炼橡胶的凝胶含量测试,TF3享有很高知名度。与凝胶渗透色谱仪GPC相比,热场除具有上述优势外,还具有分析速度快、溶剂消耗少——多数应用方法,流速都是0.2--0.5ml/min——等许多优点。

  • postnova的非对称流动场场流分离仪与竞争对手的技术对比

    介绍场流分离技术,我们在外商提供的与竞争对手的技术对比文件的基础上,将其翻译成中文,并在此上传以供大家了解、学习。让大家认识到什么是真正的非对称流动场场流分离仪AF4。在附件的文件中,几个关键地方请大家注意:1 样品聚集:这是场流分离仪与HPLC/GPC的明显不同之处,而样品聚集技术的好坏,几乎就关系着非对称流动场场流分离仪的使用效果的好坏!竞争对手采用手动调节样品聚集,是非常落后的,也是非常困难的,因为绝大多数用户都不熟悉场流分离技术,更谈不上有什么使用经验了,也没有时间和精力去通过长时间的使用来总结出经验,而往往是通过使用这台仪器来尽快地做出科研成果来。这就要求实现自动化!postnova公司的非对称流动场场流分离仪采用了最先进的自动样品聚集技术,无需操作人员手动调节!2 化学兼容性:postnova产品采用了完全适应多种溶剂体系的仪器,包括:交叉流泵、溶剂输送泵、样品聚集泵、自动进样器、馏分收集器、智能分流泵等等全部硬件设备,都是分成几种溶剂体系的,以适应不同的应用,保证化学兼容性不会影响分析效果和仪器寿命。而竞争对手则完全没有这方面的设计和技术,其交叉流调节器,也不是完全采用了PEEK管路以适应水相应用,因此其中的金属部件在盐水溶液浸泡下会发生腐蚀!而有机相的应用,就更无法真正实现了——采用塑料材质的部分管路,会与有机溶剂发生溶胀,段时间使用也会产生表面张力的不良影响。

  • 离心场场流仪在纳米材料领域的应用简介

    离心场场流仪,简称CF3,是在空心的分离通道内施加一个垂直于样品流动方向的离心力,使样品分离并分析测试其尺寸及分布。这款仪器与超速离心有相似之处,但是分离能力、分辨率等要高出很多。像热场具有两个分离原理一样,离心场也具有两个分离原理:1 尺寸分离,包括聚合物/生物大分子材料的流体力学体积、纳米材料的体积与尺寸;2 按照密度分离。离心场是最早商品化的场流分离仪,在人工合成/制造的纳米材料领域有着广泛的应用,在国际纳米材料科研领域享有极高声誉。许多归国留学科学家都曾经在国外学习期间使用过、了解过离心场CF3。目前,国内不少科研单位都对离心场产生了浓厚兴趣。由于具有按照密度分离的能力,离心场可以把尺寸相同或相近的、但是化学性质不同的纳米材料分离开来。附件的文件中,就介绍了尺寸基本相同的纳米金与纳米银颗粒的混合材料,被离心场分离开来并分别测试其含量和尺寸分布。注意,场流仪的分离,是先馏出小尺寸/小分子量样品,再馏出大尺寸/大分子量样品的,其顺序与GPC的分离顺序相反。具体到离心场,小尺寸/小密度的样品先馏出,因此,纳米银颗粒在前、纳米金颗粒在后。离心场可以分离分析各种纳米材料:金属、非金属、有机与无机材料等等,既可以使用水做流动相,也可以使用各种有机溶剂做流动相。

  • POSTNOVA的热场场流仪与布鲁克的核磁NMR在线联用的文献

    近期,一个在德国多特蒙德的客户,发表了一篇论文,介绍了其采用postnova TF2000热场场流仪与布鲁克Bruker公司的NMR仪器:DRX-500 实现在线联用,分析聚异戊二烯Polyisoprene与聚甲基丙烯酸甲酯PMMA共聚物。 请大家参看附件的这篇论文。

  • POSTNOVA的热场场流仪与布鲁克的核磁NMR在线联用的文献

    近期,一个在德国多特蒙德的客户,发表了一篇论文,介绍了其采用postnova TF2000热场场流仪与布鲁克Bruker公司的NMR仪器:DRX-500 实现在线联用,分析聚异戊二烯Polyisoprene与聚甲基丙烯酸甲酯PMMA共聚物。 请大家参看附件的这篇论文。

  • POSTNOVA的热场场流仪与布鲁克的核磁NMR在线联用的文献

    近期,一个在德国多特蒙德的客户,发表了一篇论文,介绍了其采用postnova TF2000热场场流仪与布鲁克Bruker公司的NMR仪器:DRX-500 实现在线联用,分析聚异戊二烯Polyisoprene与聚甲基丙烯酸甲酯PMMA共聚物。 请大家参看附件的这篇论文。

  • 热场场流分离仪分析超高分子量PMMA样品应用介绍

    近期,我们为国内某客户的PMMA样品进行了分析,并配合21角度激光散射检测器对样品的绝对分子量进行了测试,结果发现,其分子量都在千万Dalton之上,最大的甚至达到了20亿。最初,该客户想用GPC分析,结果发现,不论是0.22u还是0.45u的过滤器,都无法对该样品进行过滤,只好不过滤、直接进样,但是样品堵在柱子里面不出来,检测器没有任何信号。热场TF3的分析,也正是其分子量确实奇大无比,否则也不会连0.45u的过滤器都无法滤过。多角外推法激光散射检测器,测试均方旋转半径多数在100nm以上,说明样品尺寸不大,但是密度很大,因此在GPC柱子上才没有馏出,实际上是因为密度大,无法被剪切降解、分子保持完好,但是却堵在柱子里面了。有些样品,分子密度小,即:特性粘度很大,当分子量较大时,就容易在GPC柱子上被剪切而降解。请大家参看附件的测试报告。

  • 【原创】POSTNOVA场流分离仪

    我们把场流分离技术隆重介绍给大家!FFF技术也是大分子分离与分析的重要手段。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=121343]中温非对称流动场场流分离仪[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=121344]常温非对称流动场场流分离仪[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=121345]新型热场场流分离仪[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=121347]离心场场流分离仪[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=121348]重力分离场场流分离仪[/url]

  • 【原创】POSTNOVA场流分离仪

    给大家介绍场流分离仪——大分子分离分析的另一种方法[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=121350]常温[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=121351]中温非对称流动场场流分离仪 [/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=121352]离心场[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=121353]热场场流分离仪[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=121354]重力分离场场流分离仪 [/url]

  • 是非对称场流分离仪吗?

    场流分离技术是分离技术的一种,它可以与液相色谱(LC)相比。就像液相主要用来分离小分子一样,场流分离主要用来分离大分子或粒子(可称为:粒子色谱)。场流分离技术是一个独特的分离技术,所有场流分离技术都使用相同的基本分离的原则,但采用不同的分离场。根据不同分离场,场流分离技术可分为流动场流分离,沉淀场流分离,热场流分离等。场流分离技术可以提供快捷,温和以及高分辨率的分离,它可以分离任何液体介质中的从1纳米至100微米的颗粒物。积利公司生产的是哪一类场流分离仪呢?

  • 非对称流动场场流仪在生物大分子领域的应用

    生物大分子材料,主要是指:蛋白质类、多糖类、组织细胞、血液及其替代品等大分子量、大尺寸/大体积样品。蛋白质集聚体的研究,以及其它生物大分子材料的分离与分析,是非对称流动场AF4MT的重要应用领域。postnova公司的中温型流动场AF4MT,主要应用之一就是生物大分子材料,特别是利用其优异的半导体制冷的柱箱对场流分离通道盒进行低于室温、高于0摄氏度的精确控温,实现蛋白质样品的高效分离,取得了很好的应用效果。再结合多角激光散射检测器、静态/动态激光粒度仪和生物质谱仪等在线定性检测技术,可以获得生物大分子材料的大量构型信息。也可结合馏分收集器,将样品组分收集下来,再进行其它分析检测,如:MALDI-TOF、NMR、AMF等等。附件的文件,介绍了AF4MT 对蛋白质混合物的分离并结合光散射检测器对其进行分析。近年,postnova公司又推出了中空纤维流动场 Hollow Fiber Flow FFF,简称HF5,这项技术主要针对生物大分子材料,分离通道是一次性使用的,具有很好的分离效果。

  • 探讨一下:国内大学如何采购场流分离仪

    首先,祝大家新春快乐、羊年吉祥如意!近期,国内不少大学都对场流分离仪表现出了浓厚兴趣,纷纷表达了采购意向。但是,不少大学的客户向我们询价之后,感觉价格昂贵、一时半会儿没有那么多资金采购,需要等待机会、获得国家资金支持或拨款,才能采购。这是可以理解的。德国postnova的场流仪,相比较液相色谱、凝胶渗透色谱仪器而言,确实贵一些。我想说的是,我觉得,对于大学来说,应该由学校的分析测试中心、至少也应该是某一学院的分析测试中心来采购场流分离仪才合适,至少第一套仪器应该是这样来采购。因为场流分离仪,特别是流动场场流分离仪AF4MT中温型,是一款通用型的分离与分析的仪器,可适用于:高分子材料(水相、有机相)、蛋白质和多糖等生物高分子材料、纳米材料(包含环境领域的天然产物样品),因此,只有大学或学院的分析测试中心,才能够更好地、充分的发挥一套场流分离仪的作用,为更多的老师和同学们提供测试服务,这方面的成功案例很多很多了。通过更换场流分离通道盒(水相:聚酯-透明有机玻璃材质、有机相:不优秀钢材质)、场流分离通道膜(叶城为:spacer)、过滤膜等来实现对各种样品的通用分析。其次,分析中心采购AF4/CF3/TF3这类大型仪器,还可以配合使用自动进样器、馏分收集器、激光粒度仪DLS/SLS或者激光散射检测器MALS/LALS、各种质谱仪器、光谱仪器、核磁NMR和电镜等等,从而实现深度分析、对未知样品的分析。仪器的使用效率更高一些。第三,分析中心采购仪器,就可以实现专人管理、专人操作,有利于保持仪器的最佳运行状态、降低故障率和消耗品的毁损与消耗,节约运行成本。特别是像分离通道内部的过滤膜这类消耗品,一套仪器是需要很多种不同的过滤膜的,以适应不同的样品。但是厂家提供的过滤膜,都是10片一包装的,不拆包也无法拆包卖啊,所以,集中使用就显得最经济实惠了。分析测试中心的人员,一般来说,对色谱类仪器还是比较熟悉的,也更容易较快掌握AF4这类比较复杂的仪器,也就可以更快发挥作用了。第四,分析仪器,特别是色谱类仪器,也像其他设备那样,不怕用、就怕不用。如果一个课题组买了仪器,课题结束了,仪器就不怎么用了,那么不仅是浪费了科研资源,而且仪器还面临着维护越来越困难、故障越来越多的问题,到最后,不到10年,仪器就报废了,真是莫大的损失啊!综上所述,我强烈建议,大学的客户们最好不要由课题组出资金采购,而是统一由学校的分析中心、学院的分析测试中心来组织招标采购,即可以集中资金干大事儿——采购一套配置比较高级的AF4/CF3/TF3仪器,配置上自动进样器、馏分收集器、激光散射检测器、甚至中空纤维流动场HF5等等,就可以为更多老师和同学的科研工作提供强有力支持了。有的学校,由课题组申请经费采购、再组织招标。由于经费有限,不得不跟厂家进行反复讨价还价。厂家或代理商为了维护自身利益,不得不酌减配置,弄到最后,往往成了一个“半拉子“工程:只买了AF4,而没有买DLS/MALS,这样做的结果,就使分析测试变得有些不方便了,因为许多样品无法找到标准样品来做标准曲线!如:环境类样品中的腐殖酸、凝胶微球、抗生素颗粒等等。而且,没有自动进样器和馏分收集器,也影响了分析效率、无法进一步做其它项目的分析测试。最后,希望对场流仪感兴趣的客户,一定要充分调研、甚至是做一下样品测试,再选择仪器厂家。目前,我们可以为有采购意向的客户提供德国原厂分析测试服务。对于一些不太适合邮寄到国外的样品,我们也可以在国内为用户做分析测试,客户可现场观看分析过程、现场亲眼目睹色谱图和数据结果。一旦有合适的测试结果报告,我们也会第一时间上传到这个网页上来,以供大家参考。

  • 场流分离仪的来历

    “场流分离”(Field-Flow Fractionation)概念和场流分离技术是凯文.吉蒂斯教授(Prof. C. Giddings,两次获得诺贝尔奖提名)的发明,他也是“场流技术公司/POSTNOVA公司”的创始人之一,这家公司专注场流分离技术的研发和仪器设计生产,并且开发出世界上第一台商业化的场流分离仪,为全球的科学家们提供了非常独特的大分子物质分离技术和技术服务。

  • 场流分离技术中的专业术语

    近期,我们在与客户交流中、以及与竞争对手交锋中,发现一个现象:有些用户受竞争对手的影响较深,说话中经常带出来一些让人蒙圈的词汇来,呵呵。例如:在北京某高校做交流的时候,客户跟我说:人家W 的场流仪,有两种流道呢。。。, 我都没听懂,就问他:此话怎讲?这个客户说:人家除了AF4,还有HF5呢。我这才明白,所谓流道,原来就是指AF4与HF5 啊。关于HF5这一“过气的网红”,我会专门写一个帖子,论一下其与AF4、EAF4的对比,此处不再赘述,就专门说一说这些专业术语吧。在POSTNOVA的原文资料中,AF4与HF5 是两种不同的场流分离FFF,所以,“流道”这个词,我都不知道从何而来啊,既不准确也不专业,还略微带有点儿不雅,呵呵。准确的称呼,应该是:两种场流分离技术,或者简称:两种场流、2 种 FFF 。此外,“预切膜”也是让人蒙圈的词儿,呵呵。这个词,来自英语:pre-cut membrane,其实应该翻译成:按照(分离通道的)尺寸大小裁剪好的(即:预先切好的)分离通道过滤膜,简称:过滤膜。预切膜这个名字,既有些太通俗了,又忽略了膜的真正的用途:分离通道下面起到过滤作用。而翻译成过滤膜,则不仅仅准确说明了用途,还说明了其具有的消耗品的特点。我介绍一下POSTNOVA这边对于场流仪、特别是AF4的专业术语的翻译吧:1 [b]Cartridge[/b] : 原意为:弹夹,此处翻译成:分离通道盒,最为准确,因为分离通道膜、过滤膜、陶瓷片等,都安装与其内部;2 [b]Spacer[/b]: 应该翻译为:分离通道膜,最为准确;其上开有长条状、两头呈三角形的空的部分,这一空的部分,就是:channel,即:分离通道;所以,翻译成分离通道膜,是最准确的;3 [b]Membrane[/b]:此处,就是指的分离通道下面的过滤膜,因此,准确翻译应该是:分离通道过滤膜,简称:过滤膜。在离心场CF3、热场TF3中,也有Cartridge 和 Spacer、Channel ,但是没有过滤膜membrane,因此,通常情况下,CF3 TF3的耗材要少得多,不需要频繁更换分离通道内的过滤膜耗材。衷心希望大家今后使用准确的专业术语来讨论场流仪技术,尽量不要再用什么“流道”啊、什么“预切膜”这类不专业、甚至冒傻气的词儿,过滤膜如果不预先按尺寸切好了,难道还要让客户自己像裁纸一样切吗?那也太傻了吧,呵呵。

  • 欢迎hwtech担任场流分离仪正式版主

    欢迎hwtech担任场流分离仪正式版主!我们希望有更多的热心用户能加入到版主队伍中来,也希望在职的版主能在版面中发现有能力的热心用户推荐给我们。论坛正在招募版主,有兴趣的用户请到此页面申请:http://bbs.instrument.com.cn/resume/

  • 欢迎V2840106担任场流分离仪实习版主

    欢迎V2840106担任场流分离仪实习版主!我们希望有更多的热心用户能加入到版主队伍中来,也希望在职的版主能在版面中发现有能力的热心用户推荐给我们。论坛正在招募版主,有兴趣的用户请到此页面申请:http://bbs.instrument.com.cn/resume/

  • 〈高速逆流分离技术及应用〉

    [em01] 书 名 高速逆流色谱分离技术及应用 定 价 48元 作 者 曹学丽 开 本 16开 出 版 社 化工出版社 总 页 数 I S B N 7-5025-6518-3 加入日期 2005-4-28 高速逆流色谱(HSCCC)技术正在发展成为一种备受关注的新型分离纯化技术,已经广泛应用于生物医药、天然产物、食品和化妆品等领域。本书详细介绍了HSCCC的理论、技术与应用,全书共分15章,第1~4章着重阐述逆流色谱(CCC)基础知识以及HSCCC分离机理、工作方法及溶剂选择策略;第5~8章主要介绍近年来HSCCC发展过程中形成的新技术、新方法,包括分析型高速逆流色谱、双向逆流色谱、pH区带精制逆流色谱、正交轴逆流色谱;第9~15章对逆流色谱技术(主要是HSCCC技术)在各个领域的应用研究成果进行了报道,包括HSCCC在天然植物有效成分、海洋生物活性成分、抗生素的分离中的应用,双水相逆流色谱、离心沉淀色谱在蛋白质等分离中的应用,逆流色谱在手性分离和天然药物工业中的应用。 可供天然产物、中药、药品、食品、化妆品及生物工程等领域的研发人员、技术(分析、分离等)人员使用,也可供高等院校相关专业师生参考。" "第1章逆流色谱基础 11逆流色谱的概念 12逆流色谱的发展 121逆流分溶法 122液滴逆流色谱 123离心分配色谱和螺旋管式逆流色谱 124高速逆流色谱和正交轴逆流色谱 125pH区带精制逆流色谱 126离心沉淀色谱 127螺线形圆盘柱式高速逆流色谱 128逆流色谱的发展趋势 13现代逆流色谱仪器体系 131流体静力学平衡体系 132流体动力学平衡体系 133两种体系的逆流色谱仪的比较 14逆流色谱的基本色谱理论 141溶质的保留 142保留因子和选择性 143分离度 15逆流色谱和液相色谱的比较 151理论塔板数的工作范围 152逆流色谱的制备性分离 153逆流色谱和液相色谱的互补性 参考文献 第2章高速逆流色谱分离机理 21重力场中旋转螺旋管内流体动力分布 22不用旋转密封接头的流通式离心分离仪 23同步行星式运动旋转螺旋管内流体动力分布 24高速逆流色谱的单向流体动力平衡机理 25高速逆流色谱仪器系统 26相分布图 27影响相分布的物理参数 271β值的影响 272溶剂体系的物理特性和分层时间 273温度对分层时间的影响 参考文献 第3章高速逆流色谱工作方法 31溶剂体系的准备 311溶剂体系的选择原则 312几种常用的溶剂体系选择方法 313溶剂体系的平衡 314温度的影响 32柱系统的准备 33样品溶液的准备和进样 34洗脱方式 341梯度洗脱 342双向洗脱 343清空柱子 35检测 351紫外可见光检测器 352蒸发光散射检测器 353傅里叶红外光谱检测器 354薄层色谱检测器 36高速逆流色谱的优点 参考文献 第4章溶剂体系的选择策略 41溶剂体系的物理参数 411Hildebrand溶解度参数 412Snyder吸附溶剂强度参数 413Rohrschneider和Snyder极性参数 414Reichardt极性指数 415HSCCC中应采用的极性指数 42三元溶剂体系 421三元相图 422三元相图的类型 423三元溶剂体系的选择策略 43多元溶剂体系 431Ito方法 432Oka方法 433HBAW方法 434ARIZONA方法 435扩展的“ARIZONA”方法 436乙基乙二醇二甲基醚体系 437丙酮溶剂系列 438Abbott方法 44一种实用性的溶剂选择思路 参考文献

  • 欢迎v2840106担任场流分离仪正式版主

    欢迎[url=https://www.instrument.com.cn/bbs/user.asp?username=v2840106]v2840106[/url]担任场流分离仪正式版主!我们希望有更多的热心用户能加入到版主队伍中来,也希望在职的版主能在版面中发现有能力的热心用户推荐给我们。论坛正在招募版主,有兴趣的用户请到此页面申请:[url=https://bbs.instrument.com.cn/resume/]https://bbs.instrument.com.cn/resume/[/url]

  • 欢迎v2840106担任场流分离仪正式版主

    欢迎[url=https://www.instrument.com.cn/bbs/user.asp?username=v2840106]v2840106[/url]担任场流分离仪正式版主!我们希望有更多的热心用户能加入到版主队伍中来,也希望在职的版主能在版面中发现有能力的热心用户推荐给我们。论坛正在招募版主,有兴趣的用户请到此页面申请:[url=https://bbs.instrument.com.cn/resume/]https://bbs.instrument.com.cn/resume/[/url]

  • 非对称流动场AF4的分离通道过滤膜种类与型号

    Postnova公司的非对称流动场场流分离仪上配用的分离通道过滤膜,简称:通道膜,主要分为:水相 和 有机相 两大系列。水相,又进一步分为适用于纳米材料、聚合物、蛋白质等三个应用方向的。参看附件的英文文件。此外,分离通道本身也可以分为:有机相、水相 两大类。水相的AF4仪器,也可以用轻质有机相溶剂和有机相的分离通道,但是重质溶剂则不适用于水相的AF4仪器,如:DMF、DMAC、DMSO、甲酸、六氟异丙醇、三氯苯、十氢萘、二甲苯等等。

  • 高速逆流色谱在植物有效成分分离中的应用

    高速逆流色谱在植物有效成分分离中的应用国家自然科学基金资助项目袁黎明(云南师范大学化学系 昆明 650092)傅若农(北京理工大学化工与材料学院 北京 100081)张天佑(北京市新技术应用研究所 北京 100035)高速逆流色谱(High-speed Countercurrent Chromatography,简称HSCCC)是由美国国家医学院Yiochiro Ito博士于1982年首先开始的。到目前为止,此项技术已用于生物化学、生物工程、医学、药学、天然产物化学、有机合成、化工、环境、农业、 食品、材料等领域。开展此项技术研究的科学家遍及美国、日本、中国、俄罗斯、法国、英国、瑞士等地。高速逆流色谱具有两大突出优点:1.聚四氟乙烯管中的固定相不需要载体,因而消除了气液色谱中由于使用载体而带来的吸附现象,特别适用于分离极性物质和具有生物活性的物质2.由于其与一般色谱的分离方式不同,使其特别适用于制备性分离。最近的研究结果表明:一台普通的高速逆流色谱仪一次进样可达几十毫升,一次可分离近10g的样品。因此,在80年代后期被广泛地应用于植物化学成分的分离制备研究,本文就其在这方面的成果作一综述。 HSCCC在天然产物中的分离制备是很成功的。既可分离又可定量,进样量可从毫克级到克级,进样体积可从几毫升到几十毫升;不但适用于非极性化合物,而且适用于极性化合物的分离;它可用于天然产物粗提物的去除杂质,也可用于最后产物的精制,甚至直接从粗提物一步纯化到达纯品;当加快仪器转速如1800r/min,其分离速度可与HPLC媲美,用于天然产物化学成分的分离始于1985年,到1988年、1989年达到一个高潮,发表了大量的文章,目前处于平稳发展阶段。1994年HSCCC创始人Ito又发展了pH-zone-refining CCC,使HSCCC的进样量又大大地前进了一步,能方便地分离克量级的样品,使其更加有利于天然植物的分离制备。因此,我们可以说HSCCC已为天然植物的分离制备开辟了一个十分广阔的新天地。

  • 场流分离的原理介绍

    为了更好地向大家介绍我们的产品,我们的技术团队制做了一个简要介绍场流分离仪的原理的文件,请大家参考。简单地说,场流分离就是用一个没有固定相填料的、空心的分离通道盒,代替了HPLC/GPC/SEC的色谱柱,利用垂直于样品流动方向的分离力,对大尺寸/大分子量样品进行分离与分析,测试其尺寸分布与分子量分布。这种方法是有数学理论基础的,这个原理文件简要介绍了相关的数学模型。

  • 非对称流场流分离技术的现状及发展趋势

    [color=#333333]场流分离是生物分析领域一项成熟的技术,将流体与外场联合作用于待分离物质,利用分析物某些理化参数上的差异进行分离。非对称流场流是其重要的分支之一,所施加的外力场为垂直方向的液流,分离过程于开放型的通道中在某种组成的载液迁移推动下进行,主要根据分析物与垂直施加的第二维液流之间的相互作用完成分离。非对称流场流在蛋白质、蛋白质复合物、衍生纳米级/微米级粒子、亚细胞单元和聚合物等分离中的应用日益广泛,主要归功于其直接应用于生物样品时可进行无损分离,因此生物分析物如蛋白质可以在生物友好型的环境中完成分离而不改变其构型,也无需使用降解载液。分离设备便于保持无菌状态,分析物可在生物友好的环境中维持其自然状态。该文简要描述了场流分离原理并罗列出其在生物分析领域一些卓越的发展和应用。 [/color]

  • 液相色谱新技术场流分离技术

    [align=center][size=21px][url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url][/size][size=21px]新技术场流分离[/size][size=21px]技术[/size][/align][size=16px] 场流分离[/size][size=16px]([/size][size=16px]FFF[/size][size=16px])[/size][size=16px]技术是[/size][size=16px][url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url][/size][size=16px]色谱发展的新技术,德国和美国在[/size][size=16px]这方面已做了好多年的研究,[/size][size=16px]现在已有新产品[/size][size=16px]上市,我[/size][size=16px]国现在[/size][size=16px]也已[/size][size=16px]开始[/size][size=16px]投入这方面的研究。[/size][size=16px] 场流分离技术[/size][size=16px]无需[/size][size=16px]色谱柱,分离是靠一种或几种场作用力[/size][size=16px]来实现[/size][size=16px]。典型的[/size][size=16px]几种场[/size][size=16px]有[/size][size=16px]流体场、[/size][size=16px]重力场、电场、磁场、热场、光场、离心力[/size][size=16px]场[/size][size=16px]、[/size][size=16px]压力场[/size][size=16px]等,[/size][size=16px]也有在某种场中叠加[/size][size=16px]半透膜、分散膜、其它流体[/size][size=16px]等[/size][size=16px]。[/size][size=16px]场流分离[/size][size=16px]技术[/size][size=16px]是一种有效分离大分子化合物、胶体[/size][size=16px]、[/size][size=16px]颗粒的[/size][size=16px]新兴[/size][size=16px]技术,[/size][size=16px]在[/size][size=16px]生物[/size][size=16px]、药物、[/size][size=16px]医学、材料、化工[/size][size=16px]等流域等有应用空间[/size][size=16px]。[/size][size=16px] 场流分离[/size][size=16px]技术[/size][size=16px]主要用来分离大分子或粒子[/size][size=16px]物质[/size][size=16px](目前技术是这样,以后随着技术的发展也可能会分离其它类型物质),[/size][size=16px]有[/size][size=16px]人[/size][size=16px]称[/size][size=16px]之[/size][size=16px]为[/size][size=16px]粒子色谱[/size][size=16px]。[/size][size=16px]场流分离[/size][size=16px]分析系统包括输液[/size][size=16px]系统(输液泵,[/size][size=16px]由于系统没有色谱柱,压力不高,输液泵一般需要[/size][size=16px]中压泵即可[/size][size=16px])、进样[/size][size=16px]系统(进样器)[/size][size=16px]、场分离系统(场分离器)、[/size][size=16px]检测系统(检测器)[/size][size=16px]、数据采用与处理[/size][size=16px]系统[/size][size=16px]等,[/size][size=16px]和[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]系[/size][size=16px]统类似度[/size][size=16px]很高,[/size][size=16px]有[/size][size=16px]人[/size][size=16px]称之为场流色谱[/size][size=16px](以下我们[/size][size=16px]称场流[/size][size=16px]色谱)。[/size][align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210191759544595_2705_2369266_3.jpeg[/img][/align][size=16px] 场流分离[/size][size=16px]技术有的采用一种场,有的同时采用多种场叠加,场作用力有的是水平的,有[/size][size=16px]的是垂直的,有的是有角度直线型的,也有是弧线或特定曲线的等。由于样品本身特性[/size][size=16px]差异[/size][size=16px],[/size][size=16px]流经[/size][size=16px]场[/size][size=16px]分离器所受到的作用力[/size][size=16px]不同[/size][size=16px](不管采用的是[/size][size=16px]那种场[/size][size=16px]或那些叠加场)[/size][size=16px],[/size][size=16px]在场分离器中流动的速度就不同,[/size][size=16px]从而达到分离目的。[/size][align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210191759546728_6036_2369266_3.jpeg[/img][/align][size=16px] 场流分离[/size][size=16px]技术可以与色谱等其它分离技术联用,一般场分离在系统最后端([/size][size=16px]目前场分离器[/size][size=16px]耐不了高压),比如分离系统[/size][size=16px]C18[/size][size=16px][url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]柱[/size][size=16px]+[/size][size=16px]场分离器,分离效果更佳。[/size][size=16px] 场[/size][size=16px]流[/size][size=16px]分离[/size][size=16px]系统[/size][size=16px]能够[/size][size=16px]和[/size][size=16px]多种[/size][size=16px]检测器,[/size][size=16px]如[/size][size=16px]紫外[/size][size=16px]检测器[/size][size=16px]、[/size][size=16px]红外检测器、[/size][size=16px]荧光[/size][size=16px]检测器[/size][size=16px]、质谱[/size][size=16px]检测器[/size][size=16px]等[/size][size=16px]连接,[/size][size=16px]检测范围[/size][size=16px]较广[/size][size=16px]。[/size][size=16px] 场流色谱[/size][size=16px]的优点:选择性强;分离速度快[/size][size=16px](一般一分钟或几分钟)[/size][size=16px];[/size][size=16px]适用[/size][size=16px]范围[/size][size=16px]宽[/size][size=16px](分子[/size][size=16px]粒径[/size][size=16px]在[/size][font='times new roman'][size=16px]1nm~100[/size][/font][font='times new roman'][size=16px]μ[/size][/font][font='times new roman'][size=16px]m[/size][/font][size=16px])[/size][size=16px];前处理简单[/size][size=16px](有些样品无需处理,可直接进样)[/size][size=16px]等。[/size][size=16px] 场流[/size][size=16px]分离[/size][size=16px]技术现在还是起步或发展阶段,[/size][size=16px]已[/size][size=16px]在蛋白质[/size][size=16px]、病毒、糖类物质[/size][size=16px]等[/size][size=16px]分离方面发挥[/size][size=16px]很大[/size][size=16px]作用[/size][size=16px]。随着技术的发展,科技的进步,自动化程度的进一步提高[/size][size=16px],[/size][size=16px]该技术[/size][size=16px]还有[/size][size=16px]很大的提升与[/size][size=16px]完善[/size][size=16px]空间[/size][size=16px],有望发展成[/size][size=16px]为[/size][size=16px]最具潜力的分离[/size][size=16px]应用[/size][size=16px]技术之一。[/size]

  • 六味安消胶囊中大黄素与大黄酚及杂质的分离——PFP、ADME、CORE PFP、CORE C18

    六味安消胶囊中大黄素与大黄酚及杂质的分离——PFP、ADME、CORE PFP、CORE C18

    [align=center][b]六味安消胶囊中大黄素与大黄酚及杂质的分离[/b][/align]按照客户提供方法,对客户提供的样品进行分析,要求对大黄素与其相邻杂质峰得到基线分离。实验室分别尝试使用键合五氟苯基的全多孔性色谱柱CAPCELL PAK PFP及键合金刚烷基的高极性色谱柱CAPCELL PAK ADME进行分析,结果如图1、图2。(*由于客户提供的对照溶液为大黄素与大黄酚的混合溶液,因此无法判断大黄素与大黄酚的出峰顺序,给出峰1与峰2的光谱图以辅助进行判断。)首先,CAPCELL PAK PFP色谱柱对总大黄素与总大黄酚的混合样品进行分析所得结果如图1及表1,杂质峰位于峰1之前,二者在18min内可得到良好分离,分离度为4.38。[img=,690,566]http://ng1.17img.cn/bbsfiles/images/2017/07/201707121116_01_2222981_3.png[/img][img=,602,230]http://ng1.17img.cn/bbsfiles/images/2017/07/201707121116_02_2222981_3.png[/img]其次,CAPCELL PAK ADME色谱柱所得结果如图2及表2,杂质出峰位置在峰1与峰2之间,与相邻的峰1分离度为1.66,在12min内可得到良好分离。[img=,648,598]http://ng1.17img.cn/bbsfiles/images/2017/07/201707121116_03_2222981_3.png[/img][img=,584,227]http://ng1.17img.cn/bbsfiles/images/2017/07/201707121116_04_2222981_3.png[/img][img=,482,172]http://ng1.17img.cn/bbsfiles/images/2017/07/201707121133_01_2222981_3.png[/img]接下来,为缩短分析时间,继续尝试使用CAPCELL CORE PFP、CAPCELL CORE C18进行分析,结果如图3、4。如图3、表3所示,使用CAPCELL CORE PFP色谱柱对总大黄素与总大黄酚混合样品的进行分析,杂质出峰位置在峰1与峰2之间,杂质与峰1分离度为3.22,与峰2分离度为2.01,5min内杂质与峰1、峰2均可得到基线分离。[img=,567,352]http://ng1.17img.cn/bbsfiles/images/2017/07/201707121123_03_2222981_3.png[/img][img=,580,229]http://ng1.17img.cn/bbsfiles/images/2017/07/201707121123_04_2222981_3.png[/img][img=,478,174]http://ng1.17img.cn/bbsfiles/images/2017/07/201707121124_01_2222981_3.png[/img]如图4、表4所示,使用CAPCELL CORE C18色谱柱进行分析时,杂质出峰位置在峰1与峰2之间,杂质与其相邻的峰1分离度为1.75,二者在10min内可得到良好分离。[img=,563,333]http://ng1.17img.cn/bbsfiles/images/2017/07/201707121125_02_2222981_3.png[/img][img=,579,259]http://ng1.17img.cn/bbsfiles/images/2017/07/201707121125_03_2222981_3.png[/img][img=,477,172]http://ng1.17img.cn/bbsfiles/images/2017/07/201707121130_01_2222981_3.png[/img]

  • Nature:将转移瘤掐灭在萌芽状态

    癌症转移瘤的增殖常常是肿瘤导致并发症和死亡的主要原因。近期来自瑞士洛桑联邦理工学院实验癌症研究所(ISREC)的一个研究小组首次密切观察了这些转移瘤自身的形成过程,而非如以前一般仅聚焦于它们起源的原发性肿瘤。研究人员发现了一个在转移瘤形成中起关键性作用的蛋白,并证实阻断该蛋白可以有效抑制继发性肿瘤的形成。新研究发现为治疗晚期癌症打开了新的治疗方案之门。相关研究成果在线发表在《自然》(Nature)杂志上。众所周知,恶性肿瘤一旦形成,就会很快将癌细胞广泛扩散至全身各处。这些癌细胞并不总是会导致继发性肿瘤形成,研究表明所有的癌细胞并非是完全相同的:其中只有一小部分称为“癌症干细胞”的细胞才能启动肿瘤转移。为此,它们必须首先在一个有利于它们形成的地方(微环境,niche)中安营扎寨。瑞士实验癌症研究所的研究人员证实有几个是癌症扩散必不可少的条件。“值得关注的是,我们从转移瘤形成的微环境中分离出了一种称为periostin的蛋白,”瑞士洛桑联邦理工学院肿瘤形成信号转导项目负责人Joerg Huelsken说:“我们证实缺失该蛋白,癌症干细胞不仅无法启动转移,反之会导致它们消失或维持休眠状态。”Periostin蛋白在生理条件下是细胞外基质的组成成分,且在胚胎发育中发挥重要作用。在成人体内,Periostin蛋白仅在一些特定的器官例如乳腺、骨骼、皮肤和肠中活性表达。新研究证实Periostin有可能在癌症干细胞启动肿瘤转移所必需的微环境中发挥了至关重要的作用。实验结果表明缺失Periostin蛋白的小鼠能够抵抗转移瘤形成。“我们开发出了一种可结合到Periostin蛋白上的抗体,这种抗体能够使得Periostin蛋白丧失功能。我们希望通过这种方法能够阻断转移瘤的形成。”Huelsken.说。实验结果表明阻断periostin蛋白仅会对小鼠产生非常轻微的副作用。“但这并不一定意味着在人类身上也能获得相同的结果,”研究人员谨慎地表示:“我们甚至还不肯定能否找到能在人体中发挥同等效应的抗体。”尽管如此,新研究发现仍然是非常鼓舞人心的,特别是因为我们知道恶性肿瘤扩散远比人们之前所想的还要快得多。能够阻断转移瘤的形成似乎是限制癌症有害效应的一个重要的治疗选择。

  • GPC和场流分离仪当中的多检测器技术资料讲义

    GPC与场流分离仪在用途上很相似,都可以用来分析聚合物、蛋白质、生物大分子材料的分子量分布。因此,在GPC上得到广泛应用的多检测器技术,在场流分离仪FFF上同样可以、并且也已经得到了广泛应用。但是,我看到不少客户,特别是年轻的朋友们,例如:在读的研究生、本科生等等,对多检测器技术不是很了解,于是,就把当年我们做美国viscotek公司的多检测器GPC的销售的时候,外商提供的一个培训文件,贴上来,供大家学习。近日,我看到,我们的帖子:“场流仪与多检测器GPC联用”,得到不少朋友的光顾,更是深感特别有必要好好地、严肃认真地、全面地宣传和普及正确的多检测器技术知识,而不是像有些厂家那样,只宣传对自己有利的内容。因此,viscotek公司的这个文件还是很有价值的。其中,第26页也介绍了分析样品分子量的其它方法,其中之一就是场流分离仪,以及膜渗透压、冰点下降等等方法,这些知识也是非常有帮助。客观公正地说,viscotek公司的产品,设计合理性、特别是检测器连接顺序这方面,是目前商品化的GPC产品中最好的,但是制造工艺显得稍微有些粗糙了。德国postnova公司自己不生产粘度检测器,因此,在多检测器技术上,目前只有21角度、9角度和7角度激光散射检测器,以及其它的浓度型检测器可供客户选择。由于只有激光散射MALS一个定性检测器,因此,MALS 与RI 或者 UV/DAD 检测器在连接顺序上就要简单一些了,不论谁在前谁在后,对分子量分布的影响都不是很明显。但是一旦连上粘度IV检测器,还是应该采取并联的方法的:从GPC柱子或者场流分离通道盒的后面分出两路,浓度型检测器一路,而MALS和IV在另一流路。这样就保证了定性的检测器——MALS和IV的较大的样品池死体积,不会影响到浓度型检测器准确测试样品的分子量分布/尺寸分布的数据!而美国viscotek公司的RI检测器,是可以承受反压/背压的,因此其RI检测器可以串联在MALS检测器之后、IV检测器之前的位置,这是其独有的技术,但仅限于M302型、M305型和M350型GPC上。多检测器技术中的计算方法,例如:马克—霍温克方程、斯托克梅尔—爱因斯坦公式等等,不论是GPC,还是FFF,都是一样的。相关内容,其实在“高分子物理”教材中也有介绍,只不过我们提供的这个讲义,讲得更实用一些。另外,高物教材中没有的ZIMMER-STOCKMAYE 公式,也是计算相对支化的重要公式!这个,在FFF中也适用。文件中有些内容,还是有一定难度的。如果大家有问题,欢迎交流、切磋啊。

  • 南京大学成为我们在国内的首个二维场流仪EAF4的实际用户

    大家好!如题,南京大学环境学院的几位老师,认知能力、接受新事物的能力都比较好,调研充分,不偏听偏信,近日采购了我们的EAF2000MT型电流动场,并配上了21角度激光散射检测器、马尔文的台式机的激光粒度仪(通过PN9020接口板与EAF4实现在线直接联用),以及三个浓度型检测器:RI、UV和FL,同时还配置了postnova的自动进样器(带10毫升大体积进样附件包)和馏分收集器(配用分析型组件),总的配置超过了中山大学分析测试中心,成为了我们在国内配置最齐全的流动场场流仪。中山大学去年买仪器的时候,电场流EF3还未推出,所以没有带上,其余的都有,配置也很强。二维场流仪EAF4,通过在一个分离通道盒内同时施加非对称流动场AF4和电场EF3,从而实现了二位场流分离,因此,对于蛋白质、病毒、抗体等生物类样品,以及腐殖酸、聚电解质类聚合物、聚合物制的纳米材料,都具有更好的、更加强大的分离分析能力。当竞争对手及其用户,还在自鸣得意地显摆“双流道”(就好像HF5是什么高深莫测的技术似的)的时候,我们已经真正开启了二维场流的时代了。今后,还会有客户陆续采购二维场流的。

  • 微流控电泳技术检测药物中对乙酰氨基酚(扑热息痛)和维生素C

    醋氨酚【对乙酰氨基酚,退热净(一种替代阿司匹林的解热镇痛药);扑热息痛(APAP)】广泛应用于止痛剂和解热镇痛药,用于退热、止头痛和其它轻微的疼痛等。由于药物中APAP的过量会引起暴发性肝病或肾坏死和其他毒副作用,所以药物中APAP的定量检测非常重要。 APAP水解主要生成对氨基苯酚(pAP),在医药制剂中可以作为降解产物或作为合成中间体。 据报道,抗坏血酸(维生素C)对APAP引起的肝中毒具有保护作用。 Micrux微流控系统很好的分离和检测了醋氨酚(APAP)、抗坏血酸(AA)、对氨基苯酚(pAP)提供了简单、经济、精确的分析方法,非常适合于医药厂家检测药物的稳定性、药物分析和质量控制。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制