当前位置: 仪器信息网 > 行业主题 > >

纳秒固体激光器

仪器信息网纳秒固体激光器专题为您提供2024年最新纳秒固体激光器价格报价、厂家品牌的相关信息, 包括纳秒固体激光器参数、型号等,不管是国产,还是进口品牌的纳秒固体激光器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纳秒固体激光器相关的耗材配件、试剂标物,还有纳秒固体激光器相关的最新资讯、资料,以及纳秒固体激光器相关的解决方案。

纳秒固体激光器相关的资讯

  • 必达泰克公司半导体泵浦固体激光器获美国专利
    必达泰克公司的半导体泵浦固体激光器近日获得了美国专利 (专利号: US 7,218,655 B2), 为环境温度变化较大时的激光器应用提供了新的选择。 该激光器采用了必达泰克公司自主研发的先进技术,使其在没有致冷/加热控制器的情况下也能在环境温度变化较大的情况下获得稳定的输出,从而避免了带有温度控制系统的激光器所常有尺寸大、功耗高的弊病,使其更适用于如搜索营救时的信号指示、现场检测设备以及激光指示器等应用。该专利可应用于蓝光、绿光等固体激光器上,在拓宽激光器的适用温度范围和延长其使用寿命方面有显著的效果。 美国必达泰克公司一直致力于激光器和微型光纤光谱仪的研发生产,在激光器和光谱仪的研发生产上有着丰富的经验。目前必达泰克公司在激光器和光谱仪方面已获得两项美国专利,并且还有十几项专利正在审核中。美国必达泰克公司,竭诚为您的激光应用服务!
  • 中科院在有机近红外固体微纳激光研究方面取得系列进展
    有机固体激光器因其制备简单、价格低廉和易于集成等优势,一直以来备受科研工作者的关注。与无机激光介质相比,有机激光材料来源广泛,并且具有发射光谱宽、受激发射截面积大等特性,近年来在激光显示、生物传感器等应用方面显示出很大的应用前景。在国家自然科学基金委、科技部和中国科学院的支持下,中国科学院化学研究所分子动态与稳态结构国家重点实验室和光化学院重点实验室研究员付红兵课题组近期在设计有机共轭小分子近红外发光材料的基础上,发展了有机固体微纳近红外激光器。  传统无机半导体垂直腔面发射激光器(Vertical Cavity SurfaceEmitting Laser, VCSEL)由上下两层反射腔镜以及夹在中间的活性层材料组成,需要复杂的工艺流程和昂贵的成本。相比较而言,有机半导体材料可以通过低温溶液加工工艺进行激光器谐振腔的构筑。科研人员从1,4-二芳乙烯基苯(DSB)入手,利用溶液自组装的方法制备了六边形微米盘单晶。利用这种微米片状结构所形成的回音壁模式(Whisper Gallery Mode)的光学微腔,通过调控微米片的尺寸,分别实现了单模和多模的激光发射 (Angew. Chem. Int. Ed. 2014, 53, 5863) 进一步基于有机分子的可裁剪性,系统研究并揭示了分子结构—微纳谐振腔—激光性能三者之间的内在关联规律,为高性能有机固体激光器提供了新的设计思路 (J. Am. Chem. Soc. 2014, 136, 16602) 与此同时科研人员把材料体系拓展到有机无机杂化钙钛矿材料,实现了绿光波段的激光发射 (Adv. Mater. 2015, 27, 22)。  最近,研究人员通过把“分子内氢键”引入有机共轭小分子的策略,合成了固体发光量子效率高达15.2%的近红外发光材料?查耳酮衍生物DPHP。由于DPHP的双亲性质,用溶液自组装方法自下而上构筑了有机微米半球的回音壁谐振腔。与此同时,DPHP材料自身超快的辐射速率,避免了在高强度泵浦光下的激子-激子湮灭现象,使得DPHP材料发出的近红外荧光在回音壁腔中实现了光的受激发大,这也是基于非掺杂型有机固体近红外激光的首例报道(J. Am. Chem. Soc. 2015, DOI:10.1021/jacs.5b03051)。文章在线发表后,美国《化学与工程新闻》(C&EN)周刊网站,以Organic Lasers Shine Bright in the Infrared 为题对此工作进行了相关报道并且给予了高度评价:“Easy-to-build hemispheres could prove widely useful for lasing applications”。图1 北京天坛(回音壁)和有机六边形微米盘中光波的回音壁现象图2 有机固体近红外激光器示意图
  • 活力激光获千万级A轮融资,专注研发千瓦级半导体激光器系列产品
    近日活力激光科技有限公司(以下简称“活力激光”)宣布完成数千万人民币A轮融资,由亦庄资本独家投资。本轮资金将主要用于研发和生产千瓦级半导体激光器(1千瓦至1万瓦)系列产品,在激光焊接和激光表面处理领域进行推广应用。  活力激光成立于2019年12月,主要专注于高功率半导体激光器的研发、生产和销售,整体技术及生产能力覆盖各种功率、波长和封装形式的半导体激光器,核心产品包括固体激光器泵浦源、千瓦级半导体激光器、以及应用于医疗美容等领域的小功率半导体激光器。公司在深圳宝安设有一处工厂,面积达3500平方米,其中无尘车间2000平米。  目前,活力激光团队规模超70人,核心成员曾任职于JDSU等头部激光器公司。公司创始人兼CEO蔡万绍拥有二十余年半导体激光器研发与生产经验,先后任职于JDSU/Lumentum、Oclaro、西安炬光等公司。  据Emergent Research相关报告数据,2021年全球半导体激光器市场规模为81.9亿美元(约551.9亿人民币),预计2022-2030年间年复合增长率为6.7%。值得一提的是,半导体激光器在医疗保健领域的应用价值高,目前已广泛用于医疗诊断、美容手术和治疗,这一方向也将成为半导体激光器市场增长的重要驱动力,而随着技术的突破,半导体激光器在工业加工领域的直接应用也将被打开,想象空间极大。  全球激光器市场核心玩家包括起步较早的通快、朗美通、恩耐、相干、业纳等国外公司,也有起步较晚但发展较快的锐科、英诺、炬光、长光华芯等国内公司。在成熟的光纤激光器领域,市场竞争相当激烈,从各大上市光纤激光器公司的财报中,可明显看到竞争激烈导致的价格下跌。  蔡万绍告诉36氪,为了避开同质化竞争激烈的细分市场,活力激光以产品创新作为突破口,采用国产芯片,率先在国内开发出878.6nm锁波长窄光谱的半导体激光器,以及1440nm二维点阵激光器,在固体激光器泵浦和激光嫩肤美容领域,打破了国外玩家的垄断,实现国产替代,目前该产品已逐渐放量增长。  “未来3-5年是激光芯片国产替代的重要时间窗口,也是半导体激光器创新发展的关键机遇。”蔡万绍提到,活力激光已经和国内多家激光芯片供应商展开合作,定制开发波长多样化的半导体激光器,包括1550nm(照明应用)、1470nm(医美应用)、780/766nm(碱金属气体激光器泵浦)、405nm/450nm/650nm(加工及照明应用)、以及常见的976nm和808nm激光波长,并同步研发千瓦级半导体激光器,覆盖1千瓦至1万瓦功率,取得了巨大进展。  相对来说,固体激光器的优势应用领域是非金属材料及合金材料的精细加工,光纤激光器的优势应用领域是钢铁材料的大功率激光切割,而半导体激光器凭借高功率、低能耗、高性价比、体积小、重量轻、波长多样性等优势,将在铁、铜、铝等金属材料的激光焊接和激光表面处理领域得到举足轻重的应用。  在蔡万绍看来,如果充分利用半导体激光器的优势展开产品研发布局,有望让半导体激光器在工业加工、医疗美容、照明显示、激光雷达等领域的总体应用量,提升至与光纤激光器、固体激光器同等的水平,逐步构建出三种激光器三分天下的格局。“我们的中期目标是成为国内领先的半导体激光器供应商。”他说。  目前,活力激光客户已覆盖多家激光器、机器视觉、医疗美容等领域上市公司,并在公司成立以来,保持了100%以上的年营收增长率,预计2023年收入将突破亿元关口。
  • 物理所等二维纳米材料锁模全光纤激光器研究获进展
    p   超短脉冲激光具有峰值功率高、作用时间短、光谱宽等优点,在基础科学、医疗、航空航天、量子通信、军事等领域有着广泛的应用。特别是近年快速发展的飞秒光纤激光器由于结构简单、成本低、稳定性高以及便于携带等特点,表现出越来越广泛的应用前景。目前光纤锁模激光器,包括其它类型的固体激光器,要实现稳定的锁模运行,更多时候还得依靠可饱和吸收体,但由于可饱和吸收体所带来的激光损伤及损耗等问题,不仅制约着所能产生的激光脉宽与功率,也会影响到长期运行的可靠性。因此研究发展具有高损伤阈值及低损耗的新型可饱和吸收体,倍受激光专家及材料专家的关注。近十多年来,随着凝聚态物理与材料制备技术的发展,碳纳米管、石墨烯、拓扑绝缘体等材料作为可饱和吸收材料相继成功地应用于激光锁模中,特别是新发展起来的二维纳米材料由于具备窄带隙、超快电子弛豫时间和高损伤阈值等特点,表现出优良的可饱和吸收特性,利用该材料的锁模激光研究也成为人们广泛关注的热点研究内容之一。 /p p   中国科学院物理研究所/北京凝聚态物理国家实验室(筹)光物理重点实验室L07组一直致力于超快激光的研究,近年来针对小型化飞秒激光的发展,先后实现了多类晶体及光纤激光的可饱和吸收被动锁模。通过使用脉冲激光沉积方法将锑化碲拓扑绝缘体材料均匀生长在拉锥光纤的表面所形成的可饱和吸收体,首次实现了光纤激光的混合锁模,得到了70 fs的输出脉冲结果。通过使用具备超短电子弛豫时间的二硫化钨作为可饱和吸收材料,结合减小拉锥光纤的纤芯直径,得到了67 fs锁模脉冲输出,验证了该混合锁模光纤激光具有脉宽更短、定时抖动更低等优点。此外针对暗孤子产生技术的限制,通过理论计算Ginzburg- Landau方程中光纤激光器的增益、损耗、色散和非线性等参数的关系,理论分析了暗孤子脉冲形成的动力学机制,获得了信噪比高达94 dB的结果,实验上实现了最宽光谱的暗孤子脉冲输出。 /p p   最近该研究组与北京邮电大学合作,将二硫化钨作为饱和吸收材料用于光纤激光锁模,进一步实现了脉宽246 fs的锁模脉冲激光输出,据知这是迄今为止过渡金属硫化物全光纤锁模激光器所产生的最短脉宽报道。相关结果发表在新出版的一期Nanoscale(2017, 9: 5806)上,并被该杂志选为Highlights进展作为Inside front cover论文刊出(如图所示),论文第一作者为刘文军,通讯作者为北京邮电大学教授雷鸣及中科院物理所研究员魏志义。 /p p   该项研究获得了科技部“973”项目(2012CB821304)及国家自然科学基金项目(批准号11674036, 11078022 和 61378040)的支持。 /p p   相关论文: /p p   [1] Wenjun Liu, Lihui Pang, Hainian Han, Wenlong Tian, Hao Chen, Ming Lei, Peiguang Yan and Zhiyi Wei, 70 fs mode-locked erbium doped fiber laser with topological insulator, Scientific Reports, 6 (2016) 19997. /p p   [2] Wenjun Liu, Lihui Pang, Hainian Han, Mengli Liu, Ming Lei, Shaobo Fang, Hao Teng and Zhiyi Wei, Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers, Optics Express, 25 (2017) 2950-2959. /p p   [3] Wenjun Liu, Lihui Pang, Hainian Han, Wenlong Tian, Hao Chen, Ming Lei, Peiguang Yan and Zhiyi Wei, Generation of dark solitons in erbium-doped fiber lasers based Sb2Te3 saturable absorbers, Optics Express, 23 (2015) 26023-26031. /p p   [4] Wenjun Liu, Lihui Pang, Hainian Han, Zhongwei Shen, Ming Lei, Hao Teng and Zhiyi Wei, Dark solitons in WS2 erbium-doped fiber lasers, Photonics Research, 4 (2016) 111-114. /p p   [5] Wenjun Liu, Lihui Pang, Hainian Han, Ke Bi, Ming Lei and Zhiyi Wei, Tungsten disulphide for ultrashort pulse generation in all-fiber lasers, Nanoscale, 9 (2017) 5806-5811. /p p style=" text-align: center " img width=" 300" height=" 395" title=" W020170616579709764036.png" style=" width: 300px height: 395px " src=" http://img1.17img.cn/17img/images/201706/noimg/9d1831a1-51e9-41cb-a069-261a0f0bc4cb.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " 图:Nanoscale(2017, 9: 5806)论文被选为该期Inside front cover论文刊出 /p p /p p /p
  • 400um光纤耦合千瓦半导体激光器
    成果名称 400um光纤耦合千瓦半导体激光器 单位名称 北京工业大学 联系人 李强 联系邮箱 ncltlq@bjut.edu.cn 成果成熟度 □研发阶段 &radic 已有样机 □通过小试 □通过中试 □可以量产 合作方式 &radic 技术转让 &radic 技术入股 &radic 合作开发 □其他 成果简介:   400&mu m光纤耦合千瓦半导体激光头实物图  400&mu m光纤耦合千瓦半导体激光器整机实物图 本项目研发的光纤耦合半导体激光器光纤耦合输出功率大于1000W,光束质量好,耦合光纤芯径400&mu m,光纤耦合效率大于96%,总的电光效率42.99%。样机集成激光模块、电源、冷却、控制等为一体,通过触摸屏实现激光器开关、输出功率设置、状态监测显示。激光器可以放置于机柜上方,也可以与机柜分离放置,适应科研应用及工业加工配合机床或者机械手的应用需求。产品化样机配备了用于激光焊接、激光熔覆的加工头,已进行了不锈钢等材料的激光焊接、激光熔覆加工应用。 本项目研发的高光束质量光纤耦合输出半导体激光器,采用标准的半导体阵列(10mm bar),避免采用特殊的半导体激光器所带来的器件成本增加;采用微光学元件对半导体阵列的发光单元重构、变换,单阵列输出功率高,组合阵列数减少,装配工艺相对简单,降低了制作成本;耦合传输光纤采用高功率石英传输光纤,提高激光器的传输效率和可靠性,满足推广应用的要求。 本项目创新点是采用标准的半导体阵列(10mm bar),通过微光学元件将阵列发光单元重构、变换的新方法,极大提高阵列的光束质量。本项目所研制的400&mu m光纤耦合千瓦激光器中,所使用的每一个半导体阵列都采用了该技术提高了光束质量,使得每个空间合束模块能够获得高功率、高光束质量的激光输出。 该项技术不仅可以应用于半导体激光器的直接应用,而且在用于泵浦源应用时,可以提高泵浦激光的功率密度,可以为提高输出激光的功率和光束质量。可以预期的是,利用该项技术,在现有的400&mu m光纤耦合千瓦激光器的技术基础上,通过合束更多的激光波长,获得2000W,甚至更高的激光输出功率,为工业应用提供更高功率的激光源。而且该项技术应用于泵浦固体激光器、光纤激光器等方面,提高了泵浦光的功率密度,也为实现高性能的固体激光器、光纤激光器等提供更好的技术支持。 应用前景: 输出激光光强分布图 半导体激光器与其他传统的材料加工用大功率激光器如 CO2 激光器、YAG 激光器相比,具有体积小巧,结构紧凑,是灯泵 Nd:YAG 激光器的1/3,光电转化效率高,节省能源,无污染,系统稳定性高,寿命长,维护费用低的特点。 目前大功率光纤耦合半导体激光器用于激光熔覆、激光焊接在中国处于启动阶段,国产光纤耦合半导体激光器,只能将标准半导体阵列激光耦合入大芯径光纤(芯径600&mu m以上光纤),由于激光亮度低,只能用于金属材料的激光熔覆。而本项目研制的400um光纤耦合千瓦半导体激光器,由于光束质量好,可直接用于激光熔覆、激光焊接、切割等领域,代替国外产品。 本项目开发的千瓦级光纤耦合半导体激光器除了具有国内外的半导体激光亮度的基础指标外,还具有其它优点:1. 自主开发,具有完全的自主知识产权;2.采用标准半导体阵列,使整体原材料成本降低20%-25%;3.空间合束组合模块后,进行偏振、波长合束的方法组合,使产业化中方便进行模块化工艺设计,适于大批量生产;4.采用微光学元件对光束进行整形,使装配难度及后端光纤耦合难度降低,从而降低生产成本;可附加多种功能,如指示光、光电探测器等,更灵活适应用于各种行业;5.多个半导体阵列模块可灵活组合,可方便为用户提供多种解决方案。 知识产权及项目获奖情况: 本项目开发的千瓦级光纤耦合半导体激光器受到北京市科学技术委员会首都科技条件平台资助,是自主开发产品,具有完全的自主知识产权。 专利情况: (1)大功率固体激光高效率光纤耦合方法,专利号:CN101122659A (2)激光二极管电极连接装置,专利号:CN100527532C
  • 我国光纤激光器实现新突破 优于国际同行
    中国科学院上海光学精密机械研究所先进激光技术与应用系统实验室李建郎研究员课题组“径向偏振光纤激光器”研究工作近日取得突破性进展。该研究组从掺镱光纤激光器中获得2.42瓦高效率、高偏振纯度和高轴对称性的径向偏振激光输出,创造了目前径向偏振光纤激光器研究的最高纪录。   径向偏振光束在离子捕获、生物光镊、高分辨率显微镜技术、电子加速以及高效率高精度金属材料加工等领域有着非常重要的应用,通过固体、气体激光器的输出来直接产生该种光束已经成为国际研究热点领域之一。2006年李建郎等人首次提出利用稀土掺杂的多模光纤作为增益介质来直接输出径向偏振激光的概念,并在掺镱光纤激光器实验中获得了近40毫瓦的径向偏振激光输出(Opt. Lett., 31, 2969, 2006 Opt. Lett., 32, 1360, 2007 Laser Phys. Lett., 4, 814 2007)。继该研究领域被开拓后,以色列魏兹曼研究所(Weizmann Institute of Science, Israel)、美国代顿大学(Dayton University, USA)等研究机构的科学家相继通过努力在掺铒光纤激光器中实现了140毫瓦(斜坡效率约为3%) 的径向偏振激光输出(Appl. Phys. Lett., 93, 191104, 2008 Appl. Phys. Lett., 95, 191111, 2009)。在这些前期研究中,由于寄生振荡等因素的干扰,激光器效率和功率很低,并且存在偏振纯度低以及光束轴对称性差等关键性缺陷,限制了径向偏振光纤激光器技术的进一步实用化。   该课题组李建郎、林迪等经过约一年时间的奋斗摸索,在实验中采用光纤耦合的976nm二极管激光器从端面泵浦1.8米长的多模掺镱双包层光纤。该增益光纤具有低V参量,仅支持光纤基模以及其邻阶模(其中包括TM01模,即径向偏振模)传输。同时增益光纤的一个端面被切成8o斜角以抑制光纤端面之间的寄生振荡。实验采用具有径向偏振选择性的光子晶体光栅镜做为激光器的输出耦合器。实验测得激光器阈值泵浦功率为0.9W,在最大泵浦功率7W 时输出功率达到2.42W,光—光效率为35%(对应的斜坡效率43.8%),激光器波长为1050nm。激光器输出圆环形光斑,且为径向偏振,偏振纯度为96%。   此结果目前已远优于其他国际同行的工作。该研究首次实验证明了径向偏振光纤激光器完全可以达到与同类的固体激光器相比拟的性能指标,从而基本消除了困扰径向偏振光纤激光器发展及应用的技术障碍。
  • 激光赛道再添新军 英诺激光A股上市
    7月6日,我国激光产业赛道再添新军,英诺激光(301021)正式登陆创业板。英诺激光本次IPO发行3800万股,发行价格9.46元/股,对应的市盈率和市净率分别为26.48倍和1.59倍;募资总额3.59亿,拟用于固体激光器及激光应用模组生产、营销及技术服务网络中心建设、激光及激光应用技术研究中心建设和企业管理信息化建设及补充流动资金。  激光器+定制模组双向驱动  英诺激光是国内领先的专注于微加工领域的激光器生产商和解决方案提供商,激光器产品包括DPSS调Q纳秒激光器(纳秒固体激光器)、超短脉冲激光器(超快激光器,包括皮秒、飞秒级)和MOPA纳秒/亚纳秒激光器(MOPA光纤激光器),覆盖从红外到深紫外的不同波段,从纳秒到飞秒的多种脉宽。  2018 至2020 年,英诺激光营业收入分别为2.91 亿、3.59 亿和3.39 亿元,除了2020年受疫情影响外,主营业务整体上呈良好增长态势,最近三年复合增长率为6.90%。2021年一季度,公司营业总收入8608.20万元、归母净利润1956.29万元,同比增速分别为100.17%和561.79%。  从营收构成来看,激光器产品和定制激光模组销售是公司主要收入来源。公司激光器产品主要面向激光智能装备集成商,2018至2020年主营业务收入占比分别为69.28%、63.32%和64.84%;定制激光模组主要面向工业制造商、科研机构等终端用户,2018至2020年主营业务收入占比分别为24.17%、30.12%和28.13%。随着新产品的研发、推广以及新客户的开发,公司定制激光模组销售收入呈整体增长态势。  盈利能力上,英诺激光的整体毛利率和净利率水平较高,超过多数国内的可比公司。2018 至2020 年,公司销售毛利率分别为56.91%、50.75%和50.63%,销售净利率分别为21.35%、19.97%和19.35%。  顶尖“高材生”团队  管理团队背景来看,英诺激光是一家“高材生”企业。公司核心技术团队是广东省“珠江人才计划”和深圳市“孔雀计划”重点引进的创新创业团队;董事长暨创始人赵晓杰毕业于华中科技大学光电子工程系,日本分子科学研究所博士后,普林斯顿大学应用研究科学家,该机构也被认为是全球顶级的电化学研究机构;MOPA纳秒/亚纳秒激光技术研发负责人林德教为清华大学博士,英国哈德斯菲尔德大学博士后,曾发表过与激光技术及应用相关的期刊论文70多篇。此外,公司的激光应用技术研发工程师陶沙、混合超快激光技术研发工程师杨昕、激光应用技术研发负责人Jie Zhang等也均拥有知名机构的博士学历背景。  截至2020年12月31日,英诺激光共有研发人员55人,占公司员工总数的16.67%,其中博士15人。2018年-2020年,公司研发投入占比分别为9.19%、10.72%、11.78%,处于行业头部水准。  得益于较强的技术背景和较高的研发投入,英诺激光已成为全球少数同时具有纳秒、亚纳秒、皮秒、飞秒级微加工激光器核心技术和生产能力的厂商之一,同时也是全球少数实现工业深紫外纳秒激光器批量供应的生产商之一,拥有专利124项,其中发明专利34项。  英诺激光的主要产品纳秒紫外激光器,2018年销售量为2633台,约占当年全国销量的21.94%,市占率水平较高。  国产激光器正当时  2018年起全球激光行业周期性下行,目前正处于加速复苏阶段。而国内激光产业自2012年以来,市场规模加速成长,年均复合增速达26.45%。2019 年,我国激光设备市场规模达到658 亿元,全球激光设备市场规模1267 亿元,超过一半以上的激光设备市场在国内。  从发展趋势上看,紫外激光器销量增长明显,现已成为激光微加工的主力机型。紫外光的波长较短,加工时的接触面相对较小,有利于减小热效应影响区,能够有效提升加工精度,应用领域广。根据《2019年中国激光产业发展报告》,国产紫外激光器的出货量从2014年的2300台增长至2018年的15000台,预计2020年出货量有望达到20,000 台,整体增速较高。18年15000台出货量中,纳秒紫外激光器约占八成,是目前激光微加工领域的主力产品。  同时,超快激光器也正蓬勃发展,2017、2018 年两年的增速远超过整体激光设备市场增速。超快激光器短脉宽、大功率,适用于精密加工,未来仍有望成为激光微加工领域新的增长点。  回到公司而言,英诺激光的主力产品便是纳秒紫外激光器,主要竞争对手包括美国光谱物理、美国相干和华日精密激光等。与国际先进企业相比,公司的产品在光束质量M2、最大单脉冲能量和平均输出功率等性能指标上已达到国际先进水平。同时,超快激光器正是英诺激光主要研发布局方向,目前公司部分产品的性能也已达到或接近国际先进水平,该领域主要竞争对手包括美国光谱物理、美国相干等。  公司表示,未来将继续专注于微加工激光器及解决方案的自主研发,在激光器方面进一步丰富产品线,朝更短波长、更窄脉宽、更高功率方向发展。在微加工解决方案方面,积极布局激光技术在生命健康、生物医疗、高效微纳制造等新兴领域的应用,成为全球激光微加工行业的技术引领者之一。
  • 我国大功率激光器用标准创新打破国外垄断
    全国大功率激光器应用分技术委员会在武汉成立   曾被国外垄断的大功率激光器技术,通过技术标准创新,现已转化为我国具有完全自主知识产权的尖端产品。11月11日,全国光辐射安全和激光设备标准化技术委员会大功率激光器应用分技术委员会,在湖北武汉东湖国家自主创新示范区成立。   大功率激光器是激光产业的高端核心技术。30年来,我国对大功率气体激光器、大功率固体激光器、高功率激光传输聚焦加工系统、大功率激光加工工艺等,实行了引进、吸收和消化,逐步开发出各种大功率的激光焊接、激光切割、激光打孔、激光表面处理的成套设备。随着这些高新技术的广泛应用,使钢铁、汽车、能源、电子、船舶等支柱产业的技术能力和制造水平得到迅速提升。   然而,与美国、欧盟、日本等国相比,目前我国在大功率激光器的制造水平和应用规模上,尚处在初级研制或小规模生产阶段,尤其是高端的大功率激光器与激光加工成套设备几乎全部依赖国外进口。究其原因,主要是我国的大功率激光器尚未达到生产标准化,难以保证产品质量和提高技术档次,同时也限制了发展规模。因此,大功率激光器应用专业的标准研制,是促进我国激光产业科学发展的攻关大课题。   近几年来,武汉华工激光工程有限公司旗下的科威晶激光技术有限公司,在引进生产大功率激光器的过程中,借助武汉华工激光工程有限公司的自主研发和标准创新,成功地开发出4000瓦轴快流二氧化碳激光器。这项拥有完全知识产权的大功率激光器,入选国家重点新产品计划,今年产销量可望达到120台。从此,国产大功率激光器实现了规模化量产,跻身于世界大功率激光器7大生产企业。   武汉华工激光工程有限公司自主制定的大功率激光器生产标准,达到了国外先进水平。自2008年开始,湖北省和武汉市的质监部门积极支持该公司筹备激光领域的国家级标准化分技术委员会,以此提高我国大功率激光器应用专业的整体水平,缩短与国际先进水平的差距。经国家标准化管理委员会批准,由武汉华工激光工程有限公司申办的全国光辐射和激光设备标准化技术委员会大功率激光器应用分技术委员会,正式落户武汉东湖国家自主创新示范区。   在全国大功率激光器应用分技术委员会一届一次工作会议上,确定北京工业大学激光工程研究院院长左铁钏等25位专家担任该委员会委员,武汉华工激光工程有限公司为该委员会秘书处承担单位。   据了解,作为我国激光领域的首个国家级标准化分技术委员会,将站在行业发展的战略高度,对国内外大功率激光器应用加工设备的相关标准进行对比分析 组织编制大功率激光器应用的标准体系,制定大功率激光器应用技术和安全辐射等基础标准。
  • 潜心激光器纳米测量40年,冷门中做出系列“颠覆性”技术成果——访清华大学教授张书练
    没有测量就没有科学技术,没有超精密测量仪器,就不会有高端装备制造。然而多年来,中国制造业升级几乎是由国外超精密测量仪器来支撑,这是我国高端制造的短板之一。中国在超精密测量仪器领域,是否能够实现颠覆性技术突破和技术的持续跃迁,从而实现追随、并行、赶超,让“卡脖子”不再来?渐进式创新常有,颠覆性创新不常有,尤其是在历经几十年发展的激光测量技术领域。为了追求“变不能为能,使激光测量仪器具有更高精度、更小体积、更方便使用、更低造价”,清华大学教授张书练不介意是否进“冷门”坐“冷凳”,深挖激光现象不止,转化激光现象为纳米测量技术不停。从发现现象开始,到把现象推化为仪器原理,他取得了一系列颠覆性技术成果:发明了新型原理双折射(-塞曼)双频激光器,开发出十多种世界独一份的激光器纳米测量仪器。目前,多种仪器已经实现应用,部分实现规模产业化,在光刻机、机床、航空航天等领域得到广泛应用,带动了纳米测量,对科学技术做出了的重大贡献。张书练教授近日,仪器信息网有幸采访到这位非常具有创新性且多产的科学家,请他谈一谈自己这条深耕了40年的偏振正交激光器纳米测量技术的研究和应用之路。 路自创新开,果从问题来张书练生于农村,每每假期,他都下地干活,十分卖力。经历过多次旱涝,也常见春天的盐碱覆盖农田,缺苗少棵。百姓靠天吃饭,常靠政府救济。锄头的力量实在有限,既解决不好温饱更帮不了别人。他从高中课堂里,学到了蒸汽机、内燃机、电力、化肥,知道这才是“改天换地”的力量。20世纪60年代,清华大学在四川绵阳建立分校,张书练作为清华大学精仪系(原机械系)光学仪器专业学生,随校远赴绵阳,毕业后留校,被纳入分校(现在的清华电子系)激光专业任教。70年代,国家恢复研究生招考,张书练考入清华大学精仪系光学仪器专业,并回到北京。硕士论文的研究内容是激光陀螺,毕业后又在精仪系任教。激光技术的基础和精密仪器系的环境,使张书练走进了“激光”和“纳米测量”学科交叉的方向,心底的追求使他迈向“不创新我何用,不应用我何为”的道路。《不创新我何用,不应用我何为——你所没有见过的激光精密测量仪器》是张书练教授于2021年3月出版的学术书,总结了自己近40年有新意和有重要性的成果。在写作过程中,他从回顾中感悟到:失败和质疑是开辟创新之路的动力。在中国仪器界,过去长期大幅度落后于西方先进国家,这给了我国一个模仿、学习、跟进的快速成长机会。但现在或不远的未来,如何在无人引领的前沿仪器领域保持创新?张书练教授认为,“科学家应该见问题而喜,我们就是为解决问题才当教授的。有失败和质疑,就有需要解决的问题,才会有连续不断的成果并产生各种应用。”例如,张书练教授在研究环形激光器测量弱磁场和测量位移受阻,产生了双折射-塞曼双频激光器,今天显示出其突出重要性;申请“激光器纳米测尺”,被专利审查员质疑,因为形似一样实为不同,抗辩中接触了激光回馈,把他创新的正交偏振激光器引入激光回馈又开辟了一个新的方向,如今已是“枝繁叶茂”。坚韧不拔,金石可镂谈及对创新的执着,张书练教授说“坚韧不拔,金石可镂,才能攀上创新高峰,落实到应用”。他研究的双折射双频激光器,历经30余年才实现批量应用,是张书练教授攀上高峰的范例之一。近50年来,塞曼氦氖双频激光器作为光源的干涉仪——双频激光干涉仪,一直是机械制造、IT(光刻机)等行业不可替代的纳米测量仪器。而由于原理限制,这种传统塞曼双频激光器存在三大缺憾。首先,两个频率之差一般在3兆赫兹左右。这一小频率差成为双频激光干涉仪提高测量速度的瓶颈,测量速度一直不超过1米/秒,成为提高测量导轨、光刻机、机台等设备测速的障碍。第二,需要加大频率差时,激光器的功率大幅度下降,7兆赫兹频率差激光功率下降到一百多微瓦,甚至几十微瓦,测量路数受到瓶颈性限制。此外,塞曼双频激光器输出的偏振旋转的光束,需要经转化才成为偏振与光传播方向垂直的光(线偏振),这给干涉仪带来几纳米,甚至10纳米的非线性误差。中国计量院的测试表明,非线性误差不仅是塞曼双频干涉仪的缺憾,也存在于单频干涉仪和其他类型的激光干涉仪中。该如何跳出这一窠臼?从物理原理再出发!张书练教授自1985年起开始了寻找产生大频率差方法,也即偏振正交激光器的研究。通过梳理、探究激光器的原理、特性和频率稳定技术,从普通的晶体双折射现象中,他找到了解决问题的契机。基于此,通过在激光器内置晶体石英片,使激光频率分裂,一个频率分成两个偏振方向互相垂直的光频率,晶体石英片的厚度,放置角度的微小改变,即可实现频率差的大范围改变,一个全新的双频激光器产生了——双折射双频激光器,其可输出40MHz到数百MHz频率差的光。如再加上横向磁场,成为双折射-塞曼双频激光器,输出~0MHz到数百MHz频率差的光。双折射(-塞曼)双频激光器为双频激光干涉仪性能的阶跃(减小非线性误差,提高测速,增加测量路数)做好了准备。利用双折射产生双频是把石英晶体片安放于激光器内,张书练证明双折射双频激光器的可行性。进一步,找到了消除两个频率相互竞争的“死区”,解放出0~40兆赫兹频率差的方法,这其中有复杂的物理问题,又有复杂的技术问题。再进一步,就是找到能实用、最优的双折射双频激光器的结构,包括实现全内腔,真空封接方式,消除环境温度变化影响等。为此,十几位研究生(博士,硕士)和工程师长期持续攻关,难以计数的实验,否定之否定,最终发明了内应力激光腔镜,即把双折射做在激光器反射镜内。这一激光器称之为双折射-塞曼双频激光器。这一颠覆性的激光器技术站在了世界双频激光的最前列。最后的胜利要体现在双频激光干涉仪上,只有把双折射双频激光器作光源的双频激光干涉仪做出来,并在应用中纠错改进,被应用认可,推广开,才算成功。从原理设计、实验验证装置、工程样机到仪器产品的跨越,可谓“古来征战几人回”。“熬人!”张书练教授用两个字表达了自己的体会,但他的脸上却洋溢着自豪。“从提出原理,到实验验证,再到产品化,并应用到双频激光干涉仪中。一开始仪器不稳定,我们就不停做调整,做工艺改造。在这个过程中,十几年就过去了。”张书练教授说到。如今,张书练教授发明的以双折射双频激光器为核心的激光干涉仪已成功实现批量商用。该仪器可广泛应用于科学研究、光刻机、数控机床、航空航天、舰船等行业;其核心部件——双频激光器,基于双折射产生激光双频的原理,比国内外传统的塞曼双频激光器的激光功率高四倍、频率差大一倍或两三倍、最近达到13倍(40MHz),且没有两个频率之间耦合串混,分辨率达到1纳米,线性测量长度范围0到70米,非线性误差小于1纳米,测量速度超过2米/秒。这些技术指标,满足了机床检定、高端光刻机工件台定位等应用的要求。据透露,华为等经过广泛调研,选定了张书练教授的双频激光干涉仪,此外,相关机构也选定了张书练教授的双频激光器。独辟蹊径,步步生花双折射-塞曼双频激光器和干涉仪的成功是是从“冷门”里出来的,张书练教授认为,“被世界公认为那种‘红的’、‘紫的’领域,最有创新的工作往往已经完成了,再跟过去,虽然也能发表文章,也能突破,但仅仅是在人家设计好的大筐子里做。”“冷门”研究,说起来容易,做起来难。因为探索的是新原理的仪器,研究的是几乎空白的领域,张书练教授在工作展开过程中不可避免地遇到了太多的问题,他却对此保持了一个非常乐观的心态。在激光器的研究过程中,他深入揭示了其物理现象(获教育部自然科学一等奖两项),如以往不能观察的激光模分裂、模竞争、正交偏振,正交偏振回馈等,并从新发现的这些现象中思考,独辟蹊径,步步生花。在为双频激光干涉仪研究双折射(-塞曼)双频激光器的同时,张书练教授研究了双折射双频激光器的两个频率之间的耦合,也就是它们相互争夺(竞争)能量的过程,看到一个频率光强度增加伴随另一个频率的光强度减小,直至一个到最大时另一个被熄灭,周而复始。一个全过程正好是激光谐振长度变化半个光波长(316纳米),电路处理后,一个上升沿、下降沿是78纳米。这就是张书练教授发明的氦氖激光器纳米测尺等仪器,获得了国家发明二等奖(2007年)。激光的两个偏振正交的频率是因在激光器内放入了晶体石英或应力元件产生的,反过来,测出激光器的频率差就知道了激光器内的元件有多大内应力,多大内部双折射,这就发明了世界最高精度的光学波片和双折射的测量仪器,比传统仪器高一个量级。特别是测量方法可溯源到自然基准——光的波长。其至今成为唯一的国家标准的测量方法,也是世界上第一个波片相位延迟标准。客户利用这种仪器对加工过程中激光陀螺的元件进行内应力检测,找到了残余应力的成因,显著提高了精度。上海光机所用标准仪器校准了用于核聚变研究的激光玻璃内应力测量的仪器。这款仪器使他再次获国家发明二等奖(2010年)。气体HeNe激光器可以做出以上仪器,固体微片(毫米尺寸)激光器能有所作为吗?张书练教授指导博士生开始固体微片(毫米尺寸)激光双频激光干涉仪的研究,也取得了成功,研制出国内外第一台固体微片激光双频干涉仪,第一台固体微片激光回馈位移测尺。张书练教授从最基本的激光原理和光学原理出发,以解决问题为导向,一个又一个的创新思维,指导开发出这些世界独一份的纳米仪器,应用并产业化,从而创建了“偏振正交激光器纳米测量”学术体系。仪仪相连,都是“中国创”张书练教授带领团队展开的研究工作,像葡萄树一样,一直向上开花结果。行进中,来了一个又一个“中国创”的机会,横向看去,仪仪相连成片,都是颠覆性的技术。激光回馈本来是激光系统中“绝对的害群之马”,张书练教授之前看过相关的文献,却没有想到要去研究它。因“位移自传感器氦氖激光器系统及其实现方法”专利在申请的时候被专利审查员驳回,说其与美国伯克利分校的一个专利相同,张书练教授便仔细阅读了审查员提供的对比文件,发现两个专利在结构上非常雷同,核心元件一样多,摆放顺序一个样,却因一个镜片的差别,使其原理完全不同,属于两个分支。张书练教授的专利,在镜片两面都镀上了激光消反射膜,光线没有反射地通过,镜片仅仅起到密封激光器的壳内气体的作用,完全不遮挡光线,所以被称为窗口片;而伯克利的这个镜片是个高反射率镜片,激光器靠其对光束的反射形成振荡。也就是说,一个与激光振荡无关,一个是激光器振荡的必需元件,即前者是激光振荡系统,后者是激光回馈系统。张书练教授想到,如果自己的偏振正交激光原理引入回馈,又会是什么行为呢?试一试!张书练教授先安排一个研究生研究激光回馈技术,要亲自看清了激光回馈的行为,思考激光回馈技术走向何方。自然想起偏振正交激光器技术,他用偏振正交激光器改造了激光回馈,于是,观察到若干新的现象,形成了偏振正交激光器回馈纳米测量系列技术和仪器,把激光回馈技术推上了一个新的高度,也使偏振正交激光器“再添双翅”。或走入他的实验室参观,或阅读他的四部专著(《正交偏振激光原理》、《激光器和激光束》、《Orthogonal Polarization Lasers》、《不创新我何用,不应用我何为——你所没有见过的激光纳米测量仪器》)和近400篇论文,可看到,张书练教授及其团队研制出的激光回馈光学相位延迟/内应力在线测量仪、激光回馈纳米条纹干涉仪、微片激光(Nd:YAG和Nd:YVO4)共路(和准共路)移频回馈干涉仪、激光回馈远程振动和声音测量仪、激光回馈材料热膨胀系数测量仪、微片固体激光万分尺、Nd:YAG双频激光干涉仪、微片固体激光回馈共焦测量技术、微片固体激光回馈表面测量技术等十余种国内外独有的纳米测量仪器,仪仪相连,构建出了一个“正交偏振激光器回馈纳米测量仪器”体系。“步步生花”的“偏振正交激光器纳米测量仪器”和“仪仪相连”的“偏振正交激光器回馈纳米测量仪器”,构建成了一个完整的“偏振正交激光器及纳米测量”体系。“其中,激光器是核心,我们看见并解决了他人没有想到的问题,仪器的‘台阶’也就上来了。”张书练教授说他和团队的成果鲜明特征是,“激光器就是仪器,仪器就是激光器自身。”坐实创造,不让论文变“云烟”在实验室里,一个博士生来了,做完实验,毕业后离开,然后再来一个博士生,这是一种很正常的安排,却往往使经验和教训难于传承,因为论文里面记录的一般都是好的结果,不常写入失败和纠正错误的过程,传承不全面。张书练教授很早就注意到了这个问题,因此邀请了4个工程师来实验室工作,由他们和学生一起完成实验。也正是这些工程师的工作,帮助张书练教授及其团队传承了一个个技术和仪器。张书练教授很注重团队研究课题的取舍,发现论文漂亮,实际上不能应用的,或更改方案,或暂时放下;发现论文漂亮,实际应用可能性大的,就持续研究,做实验样机。一直找机会仪器化,把首创的技术和仪器推向应用。除了双折射双频激光干涉仪外,国内外首台基于激光回馈原理的纳米分辨力固体激光回馈干涉仪也已经实现产业化,在美国圣路易斯华盛顿大学、合肥工业大学(三台已应用10年)、上海理工大学、北京理工大学等处被应用,且使用情况良好。该仪器能够无接触地测量微、轻、薄、黑、烧红等目标的移动量,以及水、酒精等液面的位移和高度变化,完全不需要在被测物上加附件配合,可用于监测航天相机的支架和镜面形变等。该仪器还可用于刻划光栅的金刚车刀,光束直接射向车刀,颠覆了以往光束射向车刀支撑臂的方式,将测量误差减小到1/4。“这些仪器,我想无论如何还是要传承下去。我在这块做了几十年研究,花了国家不少钱,要回馈给社会,这是我目前所想的事儿。虽然已经有几款仪器实现了产业化,但还是希望另外几款仪器也能‘成气’,至少,有仪器公司能把它接下来,由企业来推动仪器化、产业化。”张书练教授说到。据悉,北京镭测科技有限公司正努力把仪器产业化,尤其是双频激光干涉仪已经被几个半导体企业采购,担当起半导体全产业链一个重要环节国产化替代的历史重任。此外,华为、德国Blankenhorn和福建福晶科技有限公司等国内外企业也在为张书练教授团队仪器的产业化和推广而努力。凡是新原理的东西,想要真正被社会所认可,尽管再好用,再有潜力,都是要花时间的。且由于历史和思维定式,国外多年强势,要国人接受中国自己的创造有很多事要做,要国人接受国产高档激光仪器也是一个循序渐进的过程。张书练教授对此表示:“困难怕意志,中国创、世界用的时代一定会到来!” 个人简介张书练,清华大学本科,硕士,教授,博士生导师。激光和精密测量专家,偏振正交激光器纳米测量技术的国内创建人和国际主要创建人。作为第一完成人,获国家技术发明二等奖两项,教育部自然科学一等奖两项,电子学会发明一等奖一项等十余次奖项。他在ISMTII-2017国际学术会议上被授终身贡献奖。出版专著:唯一作者3部,第一作者1部,主编国际会议专题文集2部,计测技术“教授论精密测量”一期,发表论文360余篇,发明专利权80余项。发明的双折射-双频激光器及干涉仪等纳米测量仪器已经批产。
  • 高功率纳秒激光器及精密探测仪器研制项目启动
    4月21日,中国科学院条件保障与财务局在光电研究院组织召开了国家重大科研装备研制项目&ldquo 高功率纳秒激光器及精密探测仪器研制&rdquo 实施方案研讨暨项目启动会。会议由副局长曹凝主持,中科院副秘书长吴建国出席了会议并讲话,院内外10多位专家和项目监理组成员参加了会议。   项目负责人、光电院副院长樊仲维代表项目组作了汇报。曹凝介绍了本次会议的目的和要求,宣布项目正式启动,项目监理工作同步开展。与会专家重点就项目实施方案、研制计划、管理措施以及知识产权保护等方面进行了深入研讨,提出了许多宝贵的意见和建议。   吴建国在项目启动会上提出了三点要求:一是科研装备要研以致用。在项目目标设定和研制过程中,要加强与用户的沟通,提前做好需求分析,加快研制周期,确保装备研制成功后得到真正应用。二是要提高关键部件的国产化率。项目单位要敢于挑战,深入分析,加强关键部件的自主研制,真正实现打破禁运的目的。同时,要通过制定鼓励优先使用自主研制装备的政策,加大设备的扶持推广使用力度,不断检验和提升仪器设备的性能和指标,从而提升我国重大装备研制的自主创新能力。三是要多快好省,保质保量完成研制任务。要加强项目过程管理,充分发挥技术专家组和监理组的作用,及时发现问题并找到解决措施,全力攻关,力争实现项目资金使用效益最大化。
  • 国家重大科研装备研制项目“高功率纳秒激光器及精密探测仪器研制”通过验收
    7月20日,由中国科学院空天信息创新研究院(以下简称“空天院”)牵头承担的国家重大装备研制项目“高功率纳秒激光器及精密探测仪器研制”通过验收。验收会由中国科学院条件保障与财务局组织,成立了由姜会林院士、罗毅院士、江碧涛院士等13位技术、财务、档案专家组成的验收专家组,罗毅院士任组长。会上,验收专家组听取了项目总体报告、空间碎片探测应用示范汇报、汤姆逊散射诊断应用示范汇报、技术测试情况报告、财务验收情况报告、档案验收情况报告,审查了相关文档资料,通过视频了解仪器设备运行情况。经质询和讨论,验收专家组认为,该项目完成了项目实施方案规定的全部任务,实现了仪器的全部技术指标,达到了预期目标;研制工作取得了丰硕的成果,攻克了高功率纳秒激光器、远距离空间碎片激光探测和高精度等离子体汤姆逊散射诊断等关键技术;项目研制的两类激光器、空间碎片探测仪器和汤姆逊散射诊断仪器指标先进、为国家急需,意义重大。专家组同意项目通过验收。该项目由空天院牵头,参研单位包括中国科学院光电技术研究所、中国科学院国家天文台、中国科学技术大学、北京工业大学、同济大学和北京国科世纪激光技术有限公司。研制过程中项目团队突破了高稳定单频种子源、大口径侧泵模块、大尺寸板条模块、相位共轭镜、高损伤阈值膜层和自适应光学等核心技术与器件工艺,基于大口径棒状放大器和大尺寸板条放大器分别研制了100Hz/3.3J/9.1ns/1.83DL和200Hz/5.2J/11.8ns/2.3DL两类高功率纳秒激光器。已经申请89项国家发明专利,其中获得授权46项,相关技术完全自主可控,国产化率达95%以上。中国科学院国家天文台利用空天院提供的100Hz/3.3J激光器,成功研制了空间碎片探测仪器,在云南天文台开展了1000km空间碎片探测技术研究,在轨道高度1075km*1050km上(斜距1274.3-2080.8km)首次实现了直径36 cm的小目标激光探测。中国科学技术大学利用空天院提供的200Hz/5.2J激光器,成功研制了汤姆逊散射诊断仪器,在中国科学技术大学反场箍缩磁约束聚变试验装置上开展了等离子体温度诊断技术研究,实现了空间分辨率5mm、时间分辨率5ms、等离子体密度下限10^13/cm^3的等离子体温度诊断。验收会前期,中国科学院条件保障与财务局分别组织专家完成了100Hz激光器及空间碎片探测仪器技术验收、200Hz激光器及汤姆逊散射诊断仪器技术验收以及项目整体技术验收、财务验收和档案验收。
  • 1455万!山西大学飞秒双光梳、高真空电子束蒸镀系统、双波长全固态单频激光器等设备采购项目
    一、项目基本情况(一)项目一1.项目编号:1499002024ATP02397(SDXZYTP-24038)2.项目名称:山西大学大功率脉冲激光器、窄线宽激光器、双波长全固态单频激光器采购项目3.政府采购计划文号:ZFCG-149900-2024-3-0331524.采购方式:竞争性谈判5.预算金额:3485000.00元6.最高限价:3485000.00元7.采购需求:本谈判项目共1包,参与谈判的供应商提交的响应文件必须实质上响应本谈判文件的要求。序号货物名称数量单位是否进口1大功率脉冲激光器1台否2窄线宽激光器2台否3双波长全固态单频激光器2台否交货地点山西大学。商务、技术要求详见谈判文件内商务、技术要求。注:上述表格中未特别标注为“进口产品”字样的,均必须采购国产产品。所采购的货物必须符合国家的强制性标准。8.合同履行期限:合同签订后100天。9.本项目各包(是/否)允许代理商参与:是。10.本项目各包(是/否)接受联合体:否。(二)项目二1.项目编号:1499002024ATP02394(SDXZYTP-24039)2.项目名称:山西大学量子光源泵浦系统、高真空电子束蒸镀系统采购项目3.政府采购计划文号:ZFCG-149900-2024-3-0331544.采购方式:竞争性谈判5.预算金额:3940000.00元6.最高限价:3940000.00元7.采购需求:本谈判项目共1包,参与谈判的供应商提交的响应文件必须实质上响应本谈判文件的要求。序号货物名称数量单位是否进口1量子光源泵浦系统1套否2高真空电子束蒸镀系统1套否交货地点山西大学商务、技术要求详见谈判文件内商务、技术要求。注:上述表格中未特别标注为“进口产品”字样的,均必须采购国产产品。所采购的货物必须符合国家的强制性标准。8.合同履行期限:自合同签订之日起120天内,供方应向需方完成供货、安装调试、质量验收等相关交货手续。9.本项目各包(是/否)允许代理商参与:是。10.本项目各包(是/否)接受联合体:否。(三)项目三1.项目编号:1499002024ATP02393(SDXZYTP-24036)2.项目名称:山西大学窄线宽激光器设备采购项目3.政府采购计划文号:ZFCG-149900-2024-3-0331534.采购方式:竞争性谈判5.预算金额:3330000.00元6.最高限价:3330000.00元7.采购需求:本谈判项目共1包,参与谈判的供应商提交的响应文件必须实质上响应本谈判文件的要求。序号货物名称数量单位是否进口1窄线宽激光器1台否2窄线宽激光器1台否3高功率超稳定单频超窄线宽激光器2台否4窄线宽激光器1台否交货地点山西大学商务、技术要求详见谈判文件内商务、技术要求。注:上述表格中未特别标注为“进口产品”字样的,均必须采购国产产品。所采购的货物必须符合国家的强制性标准。8.合同履行期限:自合同签订之日起120天内,供方应向需方完成供货、安装调试、质量验收等相关交货手续。9.本项目各包(是/否)允许代理商参与:是。10.本项目各包(是/否)接受联合体:否。(四)项目四1.项目编号:1499002024ATP02395(SDXZYTP-24035)2.项目名称:山西大学飞秒双光梳等设备采购项目3.政府采购计划文号:ZFCG-149900-2024-3-0331544.采购方式:竞争性谈判5.预算金额:3800000.00元6.最高限价:3800000.00元7.采购需求:本谈判项目共1包,参与谈判的供应商提交的响应文件必须实质上响应本谈判文件的要求。序号货物名称数量单位是否进口1飞秒双光梳1套否2高智能激光器1台 否3高智能激光器1台否4大功率脉冲激光器1台否5双通道超低相噪信号源1台否交货地点山西大学。商务、技术要求详见谈判文件内商务、技术要求。注:上述表格中未特别标注为“进口产品”字样的,均必须采购国产产品。所采购的货物必须符合国家的强制性标准。8.合同履行期限:自合同签订之日起120天内,供方应向需方完成供货、安装调试、质量验收等相关交货手续。9.本项目各包(是/否)允许代理商参与:是。10.本项目各包(是/否)接受联合体:否。二、获取谈判文件1.获取时间:2024年10月08日00时00分00秒至2024年10月10日23时59分59秒(北京时间)2.获取方式:在线获取凡有意参加谈判的供应商,请按照以下步骤免费获取谈判文件:(1)在中国政府采购网山西分网完成注册,已完成注册的请跳过此步骤;(2)请于谈判文件获取截止时间前(北京时间,下同),进入山西政府采购平台(https://login.sxzfcg.zcygov.cn/user-login/#/login)使用企业数字证书(CA)在网上获取谈判文件。3.售价:0元三、凡对本次采购提出询问,请按以下方式联系1.采购人信息名 称:山西大学地 址:山西省太原市小店区坞城路92号联系方式:0351-70112552.采购代理机构信息名 称:山西鑫众益项目管理有限公司地 址:山西省太原市小店区永利国际中心7层701室联系方式:0351-8710087采购代理机构项目联系人:王湧
  • 先进超快(飞秒、皮秒)激光器
    table width=" 633" cellspacing=" 0" cellpadding=" 0" border=" 1" align=" center" tbody tr style=" height:25px" class=" firstRow" td style=" border: 1px solid windowtext padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 成果名称 /span /p /td td colspan=" 3" style=" border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign=" bottom" width=" 501" height=" 25" p style=" text-align:center line-height:150%" strong span style=" line-height:150% font-family:宋体" 先进超快(飞秒、皮秒)激光器 /span /strong /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 单位名称 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 501" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 中科院物理研究所 /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 联系人 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 168" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 方少波 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 161" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 联系邮箱 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 172" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" Renee_zlj@126.com /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 成果成熟度 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 501" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" □正在研发& nbsp & nbsp √已有样机& nbsp & nbsp □通过小试& nbsp & nbsp □通过中试& nbsp & nbsp √可以量产 /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 合作方式 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 501" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" √技术转让& nbsp & nbsp & nbsp √技术入股& nbsp & nbsp & nbsp √合作开发& nbsp & nbsp & nbsp √其他 /span /p /td /tr tr style=" height:304px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 633" height=" 304" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 成果简介: /span /strong /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 激光器被广泛运用于工业、农业、精密测量和探测、通讯与 /span span style=" font-family:宋体" a href=" https://www.baidu.com/s?wd=%E4%BF%A1%E6%81%AF%E5%A4%84%E7%90%86& tn=44039180_cpr& fenlei=mv6quAkxTZn0IZRqIHckPjm4nH00T1Ykmy7WP1K-Pjf3PhRdPynv0ZwV5Hcvrjm3rH6sPfKWUMw85HfYnjn4nH6sgvPsT6KdThsqpZwYTjCEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-TLwGUv3EnHmsrjfsPjT1" target=" _blank" span style=" color:windowtext text-underline:none" 信息处理 /span /a /span span style=" font-family:宋体" 、医疗、军事等各方面,并在许多领域引起了革命性的突破。其中,超快激光器倍受各界追捧。它不仅可以实现加工的“超精细”,还实现了真正意义上的激光“冷”加工;由于超快特性,可以用于更精密的手术;更高的峰值功率,可引雷、放电,快速毁坏目标,导弹拦截、卫星致盲等等。 /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 由于飞秒激光的前沿性,是激光产业中高利润的高端产品。国际市场每年飞秒激光相关产值约100 亿美元,国内市场为国外公司垄断,大量外汇流失(10亿美元),同时影响国家安全。 /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 中国科学院物理研究所光物理重点实验室从事飞秒激光器研究多年,开发出一系列飞秒激光器及相关科研成果,包括: /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒钛宝石激光振荡器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" TW /span span style=" font-family:宋体" 级飞秒超强激光放大器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 高重复频率飞秒激光放大器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒参量激光器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 光纤飞秒激光器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 全固态飞秒激光器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 全固态皮秒激光器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 低噪声光学频率梳 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 窄线宽及可调谐激光器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 同步及延时控制器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 周期量级激光及其CEP锁定 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 用户定制激光器 /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 部分产品和指标达到国际领先或国内首次的程度,包括: /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 同步飞秒激光器(国际领先) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒PW超强激光(世界纪录) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 若干全固态飞秒激光(国际首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 紫外波段皮秒激光(国际领先) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 红外波段飞秒激光(国际领先) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 阿秒激光装置(国内首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒光学频率梳(国内首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒参量激光振荡器(国内首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒镁橄榄石激光(国内首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒Cr:YAG激光(国内首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒激光压缩器(国内最短脉宽) /span /p p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 主要技术指标: /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/ea10646a-372a-4205-8429-4a0ef2b8d87e.jpg" title=" 3.png" / /p p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 技术特点: /span /strong /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 超快:国内最短激光脉冲,3.8fs/可见光波段 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 超强:1.16PW峰值功率,当时的世界纪录 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 阿秒:160as/XUV极紫外波段,国内首次实现 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 光梳:稳定度~10-18 /秒,国际同类最高结果之一 /span /p /td /tr tr style=" height:75px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 633" height=" 75" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 应用前景: /span /strong /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 自20世纪60年代问世以来,激光已在工业、医学、军事等众多领域广泛应用。近年,超短脉冲激光即超快激光成为激光领域的先端发展趋势。脉冲越短,激光的精度越高、释放的能量越大。在实验室, a href=" http://laser.ofweek.com/tag-%E6%BF%80%E5%85%89%E8%84%89%E5%86%B2.HTM" target=" _blank" title=" 激光脉冲" span style=" color:windowtext text-underline:none" 激光脉冲 /span /a 已短到飞秒级别(1飞秒等于千万亿分之一秒)。超快激光投入应用,成为人类工具史上的又一“利器”。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 飞秒激光作为最重要的前沿方向,可以完成常规激光无法完成的工作,因此应用更为广泛,需求量巨大。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 在加工制造领域:比常规激光更高的精度、更高质量的加工效果。如发动机汽缸、太阳能电池、仿生加工… /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 在医疗领域:由于超快特性,可以用于更精密的手术,无痛、高效。近视、老花… /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 在国防领域:更高的峰值功率,快速毁坏目标,导弹拦截、卫星致盲。引雷、放电等常规激光所不能。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 在科研领域:常规激光远远不能的科学前沿:激光粒子加速、高能物理、光钟…… /span /p /td /tr tr style=" height:72px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 633" height=" 72" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 知识产权及项目获奖情况: /span /strong /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 已经申请相关发明专利23项。包括—— /span /p p style=" text-indent:28px line-height:24px" a title=" 高对比度飞秒激光脉冲产生装置" span style=" font-family:宋体 color:windowtext text-underline:none" 高对比度飞秒激光脉冲产生装置 /span /a span style=" font-family:宋体" (申请号CN201210037173.1) /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 一种全固态皮秒激光再生放大器(申请号CN201210360026.8) /span /p p style=" text-indent:28px line-height:24px" a title=" 飞秒锁模激光器" span style=" font-family: 宋体 color:windowtext text-underline:none" 飞秒锁模激光器 /span /a span style=" font-family:宋体" (申请号CN201410251367.0) /span /p p style=" text-indent:28px line-height:24px" a title=" 基于全固态飞秒激光器的天文光学频率梳装置" span style=" font-family:宋体 color:windowtext text-underline:none" 基于全固态飞秒激光器的天文光学频率梳装置 /span /a span style=" font-family:宋体" (申请号CN201410004852.8) /span /p p style=" text-indent:28px line-height:24px" a title=" 全固态陶瓷锁模激光器" span style=" font-family:宋体 color:windowtext text-underline:none" 全固态陶瓷锁模激光器 /span /a span style=" font-family:宋体" (申请号CN201310349408.5)等 /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 曾获得国家自然科学二等奖 /span /p /td /tr /tbody /table p br/ /p
  • 全球首台商用石墨烯飞秒光纤激光器问世
    记者从近日在江苏泰州举行的中国石墨烯标准化论坛上获悉,泰州巨纳新能源有限公司研制的世界首台商用石墨烯飞秒光纤激光器Fiphene问世,同时创造了脉冲宽度最短(105fs)和峰值功率最高(70kW)两项石墨烯飞秒光纤激光器世界纪录。   飞秒光纤激光器的应用领域非常广阔,包括激光成像、全息光谱及超快光子学等科研应用,以及激光材料精细加工、激光医疗(如眼科手术)、激光雷达等领域。传统的飞秒光纤激光器核心器件&mdash &mdash 半导体饱和吸收镜(SESAM)采用半导体生长工艺制备,成本很高,且技术由国外垄断。   在飞秒光纤激光器领域,石墨烯被认为是取代SESAM的最佳材料。2010年诺贝尔物理学奖获得者撰文预测石墨烯飞秒光纤激光器有望在2018年左右产业化。要实现真正的产业化,需要解决高质量石墨烯制备、大规模低成本石墨烯转移、石墨烯与光场强相互作用、石墨烯饱和吸收体封装以及激光功率稳定控制等一系列关键技术。泰州巨纳新能源有限公司经过多年持续研究,成功攻克了这些关键技术,率先实现了石墨烯飞秒光纤激光器的产品化,主要性能指标均高于同类产品,具有很高的性价比和很强的市场竞争能力。   该产品被命名为Fiphene,取Fiber(光纤)和Graphene(石墨烯)两个词的组合。泰州巨纳新能源有限公司计划以Fiphene为平台,推出更多石墨烯光纤激光器产品,将石墨烯的应用发展向前推进。
  • 我国投资1.8亿深紫外固态激光项目世界领先
    深紫外全固态激光源指输出波长在200纳米以下的固体激光器,与同步辐射和气体放电光源等现有光源相比具有高的光子流通量/密度、好的方向性和相干性。   中科院自上世纪90年代初开始研究深紫外非线性光学晶体和激光技术,经过20多年努力,在国际上首次生长出可直接倍频产生深紫外激光非线性光学晶体,并发明棱镜耦合技术,率先发展出实用化的深紫外固态激光源,使中国成为当今世界上唯一掌握深紫外全固态激光技术的国家。   中国科学家利用独创、独有的深紫外技术和深紫外激光非线性光学晶体,已成功研制出深紫外激光拉曼光谱仪、深紫外激光发射电子显微镜等8台深紫外固态激光源前沿装备,均为当今世界所独有的科研利器,居深紫外领域国际领先地位。   总投资1.8亿元人民币的深紫外固态激光源前沿装备研制项目,2008年启动实施以来进展顺利,现已研制成功的8台前沿装备还包括深紫外激光光化学反应仪、深紫外激光光致发光光谱仪、深紫外激光自旋分辨角分辨光电子能谱仪、深紫外激光原位时空分辨隧道电子谱仪、基于飞行时间能量分析器的深紫外激光角分辨光电子能谱仪等国际领先水平的仪器设备,另外1台光子能量可调深紫外激光光电子能谱仪研制工作也已基本完成,正在调试之中,多台仪器设备已初步用于前沿科学研究,并表现出优异的性能。   中科院整合麾下理化技术研究所、物理研究所、大连化学物理研究所、半导体研究所科研资源,在财政部专项资金支持下,设立深紫外固态激光源前沿装备研制项目,设计出从“材料-器件-装备-科学研究”完整研发体系。在成功研制8台重大仪器设备的同时,还搭建有深紫外非线性晶体和器件研制平台、深紫外固态激光器研发平台和深紫外应用仪器开发平台,核心器件深紫外晶体及器件已实现小批量生产,为仪器设备后续发展尤其是产业化工作奠定了基础。   深紫外固态激光技术突破是中国新型科学仪器研发的难得机遇。中科院在前期工作基础上,正组织专家进一步调研,一方面,将研制成功的8台仪器设备中技术成熟、具有市场潜力的发展为商品化仪器设备,推动中国高端科学仪器产业化 另一方面,进一步整合人才、技术力量,继续研发新型深紫外科学仪器和设备。
  • 世界最大激光器:192束激光点燃人造太阳
    经过10余年设计制造、35亿美元投资,美国建成世界最大激光器   新浪科技讯 北京时间5月7日消息,据美国《连线》杂志网站报道,在劳伦斯利弗莫尔国家实验室(LLNL)国家点火设施(NIF)的科学家,希望利用192个激光器和一个由400英尺长的放大器及滤光器阵列构成的装置,制造出一个像太阳或者爆炸的核弹一样的自维持聚变反应堆(self-sustaining fusion reaction)。最后一批激光器安装完毕后,《连线》网站记者参观了这个点火设施。观看看世界上最先进的科学设备。   1.美国“国家点火装置”   这个大部头看起来可能很像迈克尔贝执导的《变形金刚》中的人物,但是这个大型机器很快就会成为地球上的恒星诞生地。   美国“国家点火装置” 位于加州,投资约合24亿英镑,占地约一个足球场大小。科学家希望该激光器能模仿太阳中心的热和压力。“国家点火装置”由192个激光束组成,产生的激光能量将是世界第二大激光器、罗切斯特大学的激光器的60倍。2010年,192束激光将被汇聚于一个氢燃料小球上,创造核聚变反应,打造出微型“人造太阳”,产生亿度高温。   2.庞大的靶室    庞大的靶室   在庞大的靶室里,192束激光束进入直径是33英尺的蓝色真空室,在那里跟一个胡椒瓶大小的目标物相撞。然后这些光束会以动力较低的红外线的形式,从该仪器的不同部位出来,这个部位跟DVD播放器的内部结构类似。接着激光经过一系列复杂的放大器、过滤器和镜子,以便变得足够强大和精确,可以产生自维持聚变反应堆。   3.包含放射性氢同位素、氘和氚的铍球    包含放射性氢同位素、氘和氚的铍球   这个铍球包含放射性氢同位素、氘和氚。科学家将利用这个系统的192个激光器产生的X射线轰击它。核子熔合的关键是有足够的能量把两个核子熔合在一起,在这项实验中用的是氢核子。由于把两个核子分开的斥力非常强,因此这项任务需要利用极其复杂的工程学和特别多的能量。   例如,在光束进入真空室(包含图片上方的目标物)之前,激光必须通过巨大的合成水晶,转变成紫外线。发射到真空室里的光束会进入一个被称作黑体辐射空腔(hohlraum)的豆形软糖大小的反射壳(reflective shell)里,光束的能量在这里产生高能X射线。从理论上来说,X射线的能量应该足以产生可以克服电磁力的热和压力,这样核子就能熔合在一起了。电磁力促使同位素的核子分开。   4.靶室顶部的起重机和气闸盖    靶室顶部的起重机和气闸盖   在第一张照片的靶室顶上,是用来把底部仪器放入真空室的起重机和气闸盖。如果这个仪器产生作用,它将成为未来发电厂的前身,将提高科学家对宇宙里的力的理解。当常规核试验被禁止的时候,它还有助于我们了解核武器内部的工作方式。   5.精密诊断系统    精密诊断系统   激光束将被发射到精密诊断系统里,以在它进入靶室以前,确定它能正常工作。   6.激光间    激光间   在激光间(laser bay)里眺望,会看到国家点火设施的激光间2号向远处延伸超过400英尺,激光在从这里到达靶室的过程中,会被放大和过滤。过去35年间,科学家在劳伦斯利弗莫尔国家实验室建设了另外3个激光熔合系统,然而它们都不能生成足够达到核子熔合的能量。第一个激光熔合系统——Janus在1974年开始运行,它产生了10焦耳能量。第二项试验在1977年实施,这个激光熔合系统被称作Shiva,它产生了10000焦耳能量。   最后一项实验在1984年实施,这个被称作Nova的激光熔合项目产生了30000焦耳能量,这也是它的制造者第一次相信通过这种方法可以实现核子熔合。国家点火设施科研组制造的这个最新系统有望产生180万焦耳紫外线能量,科学家认为这些能量已经足以在劳伦斯利弗莫尔国家实验室里产生一个小恒星。   7.磷酸盐放大玻璃    磷酸盐放大玻璃   国家点火设施包含3000多块混合着钕的磷酸盐放大玻璃,这是在熔合试验中用来增加激光束的能量的一种基本材料。这些放大玻璃板隐藏在密封的激光间周围的围墙里。   8.技术人员在激光间里安装光束管    技术人员在激光间里安装光束管   技术人员在激光间里安装光束管,激光通过这些管会进入调试间。激光在调试间里会被重新改变运行路线,并重新排列,然后被输送到靶室里。   9.紧急停运盘    紧急停运盘   在整个国家点火设施里,标明激光位置的紧急停运盘(emergency shutdown panels),可在激光发射时,为那些在错误的时间站在错误的地方的科学家和技术人员提供安全保障。   10.光导纤维    光导纤维   光导纤维(黄色电缆部分)把低能激光传输到能量放大器里。然后在通过混有钕的合成磷酸盐的过程中,利用强大的频闪放电管放大。   11.能量放大器    能量放大器   能量放大器隐藏在天花板上的金属覆盖物下面,它含有可增大激光能量的玻璃板。在激光刚刚进入放大玻璃前,灯管把能量吸入玻璃里,接着激光束会获得这些能量。   12.可变形的镜子    可变形的镜子   可变形的镜子隐藏在天花板上覆盖的银膜下面,这种镜子是被用来塑造光束的波阵面,并弥补它在进入调试间前出现的任何缺陷。每个镜子利用39个调节器改变镜子表面的形状,纠正出现错误的光束。你在照片中看到的电线是用来控制镜子的调节器的。   13.激光放大器    激光放大器   激光束在进入主放大器和能量放大器前,较低前置放大器会放大激光束,并给它们塑形,让它们变得更加流畅。   14.便携式洁净室    便携式洁净室   科学家利用一个独立的便携式洁净室(CleanRoom)运输和安置能量放大器和其他元件,这个洁净室就像用来装配微芯片的小室。   15.能量放大器    能量放大器   每个能量放大器都被安装在洁净室附近,然后利用遥控运输机把它们运输到梁线所在处。   16.技术人员校对能量放大器    技术人员校对能量放大器   从照片中可以看到,能量放大器在被放入梁线以前,技术人员正在对它进行校对。   17.模仿NASA的主控室    模仿NASA的主控室   照片中的主控室看起来跟美国宇航局的任务控制中心很相似,这是因为前者是模仿后者建造的。国家点火设施并不是利用这个主控室把火箭发射到外太空,而是设法通过激光,利用它把恒星的能量(核子熔合)带回地球。   18.光束源控制中心    光束源控制中心   光束源控制中心即已知的主控振荡器室,看起来跟数据中心(Server Farm)很像,但是这个控制中心不是利用电脑,而是安装了一排排架子。光束通过光纤前往能量放大器的过程中,看起来就像网络供应商使用的网络。   19.国家点火设施的激光源    国家点火设施的激光源   国家点火设施的激光是从一个相对较小、能量较低,并且比较呆板的盒子里发射出来的。这个激光器呈固体状态,跟传统激光指示器没有多大区别,不过它们发射的光波波长不一样,前者是红外线,后者是可见光。   20.高能灯管    高能灯管   高能灯管(flashlamps)跟照相机里的灯管一样,但是前者的体积超大,它可以用来激发激光。每束光束刚产生时,强度仅跟你的激光指示器发出的激光强度一样,但是它们在二十亿分之一秒内,强度就能曾大到500太拉瓦,大约是美国能量输出峰值时功率的500倍。   这一结果是能实现的,因为该实验室里拥有巨大的电容器,里面储存了大量能量。这个电容器非常危险,当它充电后,这个房间将被封闭,禁止任何人靠近,以免出现高压放电现象,伤着来访的人。   国家点火设施的外面看起来很像《半条命(Half-Life)》的拍摄现场,这种普通的外观掩饰了在里面进行的历史性科学研究。(孝文) 英刊揭秘世界最强激光产生过程(组图)   导读:2009年4月,耗资达35亿美元的美国“国家点火装置”(NIF)正式开始进行相关实验,并计划于2010年最终实现聚变反应。届时会将192束激光同时照射在一个微小的目标上,是迄今世界上性能最强大的激光装置。英国《新科学家》杂志网站13日撰文揭秘世界最强激光产生过程。以下为全文:   “国家点火装置”是美国国家核安全管理局(NNSA)的库存管理计划的关键环节。在受控实验室条件下,“国家点火装置”将进行聚变点火和热核燃烧实验,实验结果将为NNSA提供相关武器生产条件的实验手段。这些条件对NNSA在不开展地下核试验的条件下评估并验证核武库的工作至关重要。“国家点火装置”实验将研究武器效应、辐射输运、二次内爆和点火相关的物理学机理,并支持库存管理计划继续取得成功。“国家点火装置”是目前世界上最大和最复杂的激光光学系统,用于在实验室条件下实现人类历史上的第一次聚变点火。192束矩形激光束将在30英尺的靶室中实现会聚,其中靶室内含有直径为0.44厘米的氢同位素靶丸。发生聚变反应时,温度可达到1亿度,压力超过1000亿个大气压。   以下是“国家点火装置”产生最强激光的几大步骤:   1、安装球形外壳      安装球形外壳   为了产生聚变所必须的高温和高压,“国家点火装置”将汇聚其所有192束激光束同时射向一个氢燃料目标之上。“国家点火装置”呈球形(如图所示),直径约为10米,重约130吨。装置内有一个目标聚变舱,点火实验就发生于目标聚变舱内。整个球体由18块铝材外壳拼接而成,每块外壳均约10厘米厚。球体外壳上正方形窗口就是激光束的入口,而圆形窗口则是用来安装和调节诊断装置,诊断装置共有近100个分片。   2、用调节器调整靶位      用调节器调整靶位  这是目标聚变舱内部的照片。激光束通过外壳上的入口进入目标舱,把将近500万亿瓦特的能量瞄准于位置调节器的尖端。图中右侧的长形带有尖端的物体就是位置调节器,每次实验的目标氢燃料球就置放于尖端之上。当所有激光束全部投入时,“国家点火装置”将能够把大约200万焦耳的紫外线激光能量聚焦到小小的目标氢燃料球之上,它比此前任何激光系统所携带能量的60倍还要多。当激光束的热和压力达到足以熔化小圆柱目标中氢原子的时候,所释能量要比激光本身产生的能量更多。氢弹爆炸和太阳核心会发生这类反应。科学家相信,总有一天通过核聚变而不是核裂变会产生一种清洁安全的能源。   3、将燃料放入燃料舱(圆柱体)      将燃料放入燃料舱(圆柱体)   进入“国家点火装置”的所有192束激光束都将被引向图中这个铰笔刀大小的圆柱体。该圆柱体中将装有聚变实验所使用的目标燃料,目标燃料就是约为豌豆大小的球状冰冻氢燃料。实验时,激光束将通过各自窗口进入目标舱内,从各个方向压缩和加热氢燃料球,希望能够产生自给能量的聚变反应。曾经有不少科学家认为可控核聚变反应是不可能实现的。近年来,科学家找到了一些点燃热聚变反应的方法,美国研究人员找到的方法是利用高能激光。虽然科学家们也尝试了其他种核聚变发生技术,但从已完成的实验效果看,激光技术是目前最有效的手段。除激光外,利用超高温微波加热法,也可达到点燃核聚变的温度。   4、压缩并加热燃料      压缩并加热燃料   所有激光束进入这个金属舱内部时,他们将产生强烈的X光线。这些X光线不仅仅可以把豌豆大小的氢燃料球压缩成一个直径只有人类头发丝截面直径大小的小点,它还能够将其加热到大约300万摄氏度的高温。尽管激光的爆发只能持续大约十亿分之一秒,但物理学家们仍然希望这种强烈的脉冲可以迫使氢原子相互结合形成氦,同时释放出足够的能量以激活周围其他氢原子的聚变,直到燃料用尽为止。在激光点火装置内,一束红外线激光经过许多面透镜和凹面镜的折射和反射之后,将变成一束功率巨大的激光束。然后,研究人员再将该激光束转变为192束单独的紫外线激光束,照向目标反应室的聚变舱中心。当激光束照射到聚变舱内部时,瞬间产生高能X射线,压缩燃料球芯块直至其外壳发生爆裂,直到引起燃料内部的核聚变,从而产生巨大能量。   5、用磷酸二氢钾晶体转换激光束      用磷酸二氢钾晶体转换激光束   激光束在进入目标舱内之前,必须要先由红外线转换成紫外线,因为紫外线对加热目标燃料更为有效。激光转换过程必须要使用磷酸二氢钾晶体。图中的这块磷酸二氢钾晶体重约360公斤。首先将一粒籽晶放入一个高约2米的溶液桶中,经过两个月的培养才可形成如此巨型的晶体。然后将晶体切割成一个个截面积约为40平方厘米的小块。“国家点火装置”共需要大约600多块这样的晶体小块。“国家点火装置”将被用于一系列天体物理实验,但是,它的首要目的是帮助政府科学家确保美国“老年”核武器的可靠性。“国家点火装置”项目的建造计划于上世纪90年代早期提出,1997年正式开始建设。(刘妍)
  • 科学家利用玻璃造出飞秒激光器
    科学家在玻璃基板上制造了千兆飞秒激光器。图片来源:瑞士洛桑联邦理工学院商业飞秒激光器是通过将光学元件及其安装座放置在基板上制造的,这需要对光学器件进行严格对准。那么,是否有可能完全用玻璃制造飞秒激光器?据最新一期《光学》杂志报道,瑞士洛桑联邦理工学院的科学家成功做到了这一点,其激光器大小不超过信用卡,且更容易对准。研究人员表示,由于玻璃的热膨胀比传统基板低,是一种稳定的材料,因此他们选择了玻璃作为衬底,并使用商用飞秒激光器在玻璃上蚀刻出特殊的凹槽,以便精确放置激光器的基本组件。即使在微米级的精密制造中,凹槽和部件本身也不够精确,无法达到激光质量的对准。换句话说,反射镜还没有完全对准,因此在这个阶段,他们的玻璃装置还不能作为激光器使用。于是,研究人员进一步设计蚀刻,使一个镜子位于一个带有微机械弯曲的凹槽中,凹槽在飞秒激光照射时局部可扭动镜子。通过这种方式对准镜子后,他们最终创造出稳定的、小规模的飞秒激光器。尽管尺寸很小,但该激光器的峰值功率约为1千瓦,发射脉冲的时间不到200飞秒,这个时间短到光都无法穿过人类的头发。这种通过激光与物质相互作用来永久对准自由空间光学元件的方法可扩展到各种光学电路,具有低至亚纳米级的极端对准分辨率。
  • 上海光机所在特殊波长的飞秒超快光纤激光器研制方面获进展
    近期,中国科学院上海光学精密机械研究所高功率光纤激光技术实验室在特殊波长的飞秒超快光纤激光器研制方向取得重要进展。该团队首次报道了一种基于色散管理、全保偏九字腔的978 nm飞秒掺镱光纤激光器。相关研究成果以Generation of 978 nm dispersion-managed solitons from a polarization-maintaining Yb-doped figure-of-9 fiber laser为题,发表在《光学快报》(Optics Letters)上。978 nm掺镱飞秒锁模光纤激光器因独特的应用价值而备受关注。然而,由于Yb3+在978 nm波长附近的吸收截面近似等于发射截面,为了在这个波长获得高性能激光输出,必须克服978 nm处的激光自吸收和1030 nm附近的放大自发辐射(ASE)等问题。此外,Yb3+在978 nm附近的增益带宽相对较窄,这进一步增加了在该波长下获得飞秒激光脉冲的难度。因此,与1 μm以上的传统掺镱锁模光纤激光器相比,实现这种978 nm的飞秒光纤激光器面临着更大挑战。针对上述问题,研究团队采用基于九字腔结构的非线性放大环镜(NALM)技术实现了978 nm处色散管理孤子的稳定输出。实验中,通过控制激光腔内各色散元件的参数有效地管理了腔内总色散,并引入滤波器来抑制1030 nm的ASE,最终获得了具有14.4 nm光谱带宽和175 fs的高相干激光脉冲。此外,激光腔由全保偏光纤器件组成,能够有效抗温度、震动等环境扰动,确保了锁模脉冲的长期稳定性。数值模拟结果表明,978 nm色散管理孤子的光谱宽度主要受限于Yb3+在相关波长附近的增益带宽。未来,可以利用非线性效应在腔外进一步展宽光谱,从而在这个特殊波长实现更窄脉宽的激光输出。该研究实现的978 nm锁模脉冲是迄今为止报道的相关波长超快光纤激光器中能够输出的最短脉冲,在水下通信和太赫兹波产生等领域具有良好的应用前景。图1.978 nm九字腔色散管理孤子光纤激光器实验装置图图2. 978 nm九字腔光纤激光器输出脉冲参数。(a)光谱,(b)脉冲序列,(c)射频谱,(d)自相关信号,(e) 腔外压缩后的频谱和(f)自相关信号。图3. 数值模拟结果。(a、b)输出色散管理孤子的光谱和时间特性;(c、d)腔内脉冲的时频演化过程。
  • 199万!华中科技大学超高分辨率激光扫描共聚焦显微镜采购项目
    项目编号:HW20220426、ZCZB-2209-ZH165项目名称:华中科技大学采购超高分辨率激光扫描共聚焦显微镜项目采购方式:竞争性磋商 预算金额:199万元序号货物名称是否接受进口产品单位数量是否为核心产品1超高分辨率激光扫描共聚焦显微镜是套1是指标要求全固体激光器:405nm,功率≥50mW488nm,功率≥20mW561nm,功率≥20mW640nm,功率≥20mW开放式和一体化的激光耦合器,通过单独一根宽光谱、高透过率光纤导出,近紫外到红光区域一体化色差校正,无须调节光纤中心。所有激光谱线均由AOTF控制,可实现连续调节激光强度、高速激光谱线切换、具有快速光闸控制功能,可进行局部的R0I成像、FRAP等实验应用;激光强度调节范围:0.01%-100%,最小调节步进精度0.01%,后期可升级激光器最大可升级9根激光器。附件一华中科技大学采购超高分辨率激光扫描共聚焦显微镜项目采购需求书.docx
  • 1090万!太原理工大学激光扫描共聚焦显微镜、复杂应变率动静载多场耦合岩石综合力学测试仪等采购项目
    一、项目基本情况1.项目编号:1499002024AGK02850(HA-TYLGZFCG2024-121)项目名称:太原理工大学激光扫描共聚焦显微镜采购采购计划文号:ZFCG-149900-2024-1-037923采购方式:公开招标预算金额:4800000.00元最高限价:4800000.00元采购需求:本次招标共1包,参与投标的投标人应按照招标文件要求编制投标文件,提交的投标文件应实质性上响应本招标文件的要求。序号标的名称数量单位简要技术需求备注1激光扫描共聚焦显微镜1套配备四个固体激光器:紫色固体激光器:波长405nm,功率≥50mW;蓝色固体激光器:波长488nm,功率≥20mW;绿色固体激光器:波长561nm,功率≥20mW;红色固体激光器:波长640nm,功率≥40mW。开放式和一体化的激光耦合器,通过单独一根宽光谱、高透过率光纤导出,近紫外到红光区域一体化色差校正,无须调节光纤中心。是否允许代理商参加是是否接受联合体参加否是否允许合同分包否合同履约期限自合同签订之日起10个日历天内完成所供货物的运输、安装、调试,达到技术验收标准;对所供货物的免费配套服务期限按合同条款执行。履约地点山西省太原市万柏林区迎泽西大街79号太原理工大学迎西校区博学楼材料学院付款方式签订合同后,采购人向中标人预付合同金额40%的预付款,中标人在合同约定交货时间内将货物送到采购人指定地点,且在供货期间无任何违约行为,在完成安装、调试,经采购人技术验收合格,采购人在收到中标人开具的增值税专用发票后10个工作日内将剩余合同金额一次性支付到合同约定的中标人账户。否则,按合同约定扣除相应违约金后,支付剩余合同金额。履约保证金合同金额的5%。中标人应在中标(成交)通知书发出后10日内、签订合同前,将履约保证金以支票、汇票、本票或者金融机构、担保机构出具的保函等非现金形式提交给采购人。免费配套服务期满,以支票、汇票、本票提交的,采购人在收到中标人退还履约保证金申请后5个工作日内,按审核意见扣除违约金(如有违约)后一次性无息退还;以保函形式提交的,采购人在收到中标人退还履约保函申请后5个工作日内,按审核意见向出具保函的机构提出索赔(如有违约)或将保函原件退还给中标人(如无违约)。注:如以保函形式提交,须提交见索即付保函,且保函的失效日应晚于免费配套服务期满日30日。执行标准及验收标准详见招标文件内商务、技术要求。服务要求详见招标文件内商务、技术要求。相关政策要求详见招标文件内商务、技术要求。注:上述表格“备注”栏中未特别标注为“进口产品”字样的,所报货物均必须为国产产品,且必须符合国家强制性标准。2.项目编号:1499002024ATP02848(TYYD-TYLGZFCG2024-A06)项目名称:复杂应变率动静载多场耦合岩石综合力学测试仪政府采购计划书编号:ZFCG-149900-2024-3- 037496-001、ZFCG-149900-2024-3-037496-002采购方式:竞争性谈判预算金额:2600000.00元最高限价:2600000.00元采购需求:本项目共一包,参与谈判的供应商应按照谈判文件要求编制响应文件,提交的响应文件应实质上响应本谈判文件的要求。序号标的名称数量单位简要技术需求备注1复杂应变率动静载多场耦合岩石综合力学测试仪1套实现的功能或者目标:在矿山压力、岩层控制、灾害防控等领域的科学研究和教学中得到广泛利用。服务于本校从事采矿工程、安全技术与工程等学科研究的教师和研究生,还能加强与其他学校的学术交流,为学生、老师提供更好的交流平台。是否允许代理商参加是是否接受联合体参加否是否允许合同分包否合同履行期限自合同签订之日起3个月内完成所供货物的运输、安装、调试,达到技术验收标准;对所供货物的免费配套服务期限按合同条款执行。履约地点山西省太原市万柏林区新矿院街18号太原理工大学虎峪校区绿色采矿综合实验室楼矿业工程学院。付款方式签订合同后,采购人向供应商预付合同金额的80%;供应商在合同约定交货时间内将货物送到采购人指定地点,并完成安装、调试,且在供货期间无任何违约行为,经采购人技术验收合格,采购人在收到供应商开具的专用发票10个工作日内向供应商支付合同金额的20 %。否则,按合同约定扣除相应违约金后,支付剩余合同金额。履约保证金合同金额的5%。供应商应在成交通知书发出后10日内、签订合同前,将履约保证金以支票、汇票、本票或者金融机构、担保机构出具的保函等非现金形式提交给采购人。免费配套服务期满,以支票、汇票、本票提交的,采购人在收到供应商退还履约保证金申请后5个工作日内,按审核意见扣除违约金(如有违约)后一次性无息退还;以保函形式提交的,采购人在收到供应商退还履约保函申请后5个工作日内,按审核意见向出具保函的机构提出索赔(如有违约)或将保函原件退还给供应商(如无违约)。注:如以保函形式提交,须提交见索即付保函,且保函的失效日应晚于免费配套服务期满日30日。执行标准及验收标准详见谈判文件第五部分商务、技术要求。服务要求详见谈判文件第五部分商务、技术要求。相关政策要求详见谈判文件内具体要求。注:上述表格“备注”栏中未特别标注为“允许进口产品”字样的,所报货物均必须为国产产品,且必须符合国家强制性标准。3.项目编号:1499002024AGK02846(TYYD-TYLGZFCG2024-A05)项目名称:超导纳米线单光子探测器采购计划文号:ZFCG-149900-2024-1-037924-001ZFCG-149900-2024-1-037924-002采购方式:公开招标预算金额:3500000.00元最高限价:3500000.00元采购需求:本次招标共1包,参与投标的投标人应按照招标文件要求编制投标文件,提交的投标文件应实质性上响应本招标文件的要求。序号标的名称数量1超导纳米线单光子探测器1
  • 阿秒激光器可为单个电子活动“摄像”
    据美国《大众科学》网站8月16日(北京时间)报道,一国际科研团队研制出一种新的阿秒级(1阿秒=10-18秒)激光器,当单个电子参与化学反应时,这种激光器或可为其“摄像”,这是迄今为止最高清、最快速的数据收集活动。一旦取得成功,新激光系统将对从基础化学到复杂的药物研究、化学工程学等领域产生巨大影响。相关研究发表在《自然光子学》杂志上。   该科研团队由澳大利亚、美国、欧洲的科学家组成。科学家们表示,拍摄下电子的“一举一动”并非易事,因为电子的运行速度非常快,在1.51阿秒内就能环绕一个氢原子核旋转一周。为了捕捉到正在活动的电子,人们需要一种能在阿秒层面上发送脉冲的激光器。   此前已有科学家研制出并演示了阿秒激光脉冲,但那些脉冲非常微弱,无法真正测量电子的动态,真正有用的阿秒激光器需要兼具高速度和强脉冲密度。新激光系统满足了这两个需求,并且只需简单的环境设置就可完成任务。   为了获得超强的激光脉冲,人们需要将不同频率的光波精确地混合在一起,使它们能互相加强。知易行难,因为很难让两种不同的激光束精确地同步。为了克服这个问题,科学家们构建了一套环境装置,让单束激光通过一个射束分离器,产生两束不同频率的激光。因具有相同来源,这两束激光能够实现同步。   科学家们还采用了其他辅助手段,让激光脉冲达到了阿秒规模的测量所必需的激光脉冲密度和持续时间。借此,人们能以前所未有的方式观察单个电子的活动。
  • 美研究小组成功研发出实时可调节等离子体激光器
    科技日报华盛顿4月27日电 由美国西北大学和杜克大学组成的联合研究小组利用液体激光增益材料,成功研发出实时可调节的等离子体激光器。该研究发表在近期出版的《自然通讯》杂志上。   通过传统激光技术,光只能聚焦到其频率的一半,即所谓的衍射极限。对此,科学家们已经找到了突破这一极限的办法,通过建立等离子体激光,将激光束和金属(例如黄金)表面的等离子体(振动表面电子)结合,排在一个阵列中。不过,这种方法也有其局限性,因为它不得不依赖固体激光增益材料,导致激光不易调整,且不是实时的。而美联合研究小组的新研究成果,通过利用一种液体作为激光增益材料的方法,能够达到实时调节激光。   研究人员使用金阵列、等离子体纳米谐振腔阵列和液体染料溶剂作为增益材料,这样就可通过改变染料的折射率改变激光的波长。与以固体为基础的增益材料相比,新成果具有两个主要优势:首先染料能够快速溶解在不同溶剂中,具有不同的折射率,可实时调节激光 其次,因为增益材料是液体,可以通过通道灌入腔体,即可通过使用不同的液体动态改变。
  • 激光雷达、飞秒激光器等超3.2亿中标项目公布
    p   近一个月内,来自高校、科研院所、医疗系统方面近20多家单位发布了激光、光学领域的招标需求,中科煜宸、相干、西南技物所等公司成功中标,中标总金额超3.2亿元。本文根据中国政府采购网公布的信息整理了部分内容,涉及激光成像仪、激光雷达、激光增材制造系统、飞秒激光器、光纤激光器等相关项目。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 中标项目 /strong /span /p p style=" text-align: center " strong 干式激光成像仪 /strong /p p   项目编号:HYEZ2J2018007 /p p   项目名称:干式激光成像仪采购 /p p   总成交金额:6.97 万元(人民币) /p p   采购单位名称:北海市华侨医院 /p p   中标单位名称:江西伟晨医疗设备有限公司 /p p style=" text-align: center " strong 密封式同轴送粉激光增材制造系统 /strong /p p   项目编号:HBT-15170140-173892 /p p   项目名称:武汉理工大学密封式同轴送粉激光增材制造系统采购项目 /p p   总成交金额:208.85 万元 /p p   采购单位名称:武汉理工大学 /p p   中标单位名称:南京中科煜宸激光技术有限公司 /p p style=" text-align: center " strong 原子吸收分光光度计及涡度相关系统 /strong /p p   项目编号:CEIECZB03-17ZL144 /p p   项目名称:中国农业大学原子吸收分光光度计及涡度相关系统采购项目 /p p   中标金额:54.43万元 /p p   中标供应商名称、地址及成交金额: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/25ce729c-a45e-4fbb-a265-ef3a8fa5909a.jpg" title=" 1.jpg" / /p p style=" text-align: center " strong 大连工业大学信息学院光电实验室建设 /strong /p p   项目编号:LNZC20171001868 /p p   项目名称:大连工业大学信息学院光电实验室建设采购项目 /p p   中标金额:54.18万元 /p p   中标单位:大连万慧科技有限公司 /p p   主要成交标的: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201802/insimg/873035c3-9e56-4a2c-a688-b42945e1365a.jpg" title=" 2.jpg" /    br/ /p center /center p style=" text-align: center " strong 激光治疗系统 /strong /p p   项目编号:Q5300000000617001570 /p p   项目名称:昆明医科大学附属医院购置激光治疗系统采购项目 /p p   中标金额:129万元 /p p   中标供应商名称:贵州邦建医疗科技设备有限公司 /p p   主要成交标的: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/0f8ffbb7-027e-4163-97f0-b6dd9e5142f1.jpg" title=" 3.jpg" / /p p style=" text-align: center " strong 193nm 激光剥蚀进样系统等 /strong /p p   项目名称:中国海洋大学 /p p   项目名称:193nm激光剥蚀进样系统、多接收质谱仪、高纯锗伽马能谱仪、稳定同位素比质谱仪项目 /p p   采购单位名称:中国海洋大学 /p p   中标金额:1367.93612 万元 /p p   中标供应商名称、联系地址及中标金额: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201802/insimg/daa113be-02fd-4999-ae5c-05022aea1165.jpg" title=" 4.jpg" /    br/ /p center /center p style=" text-align: center " strong 激光雷达项目 /strong /p p   项目编号:JXBJ2017-J28802 /p p   项目名称:南昌大学空间科学与技术研究院激光雷达采购项目 /p p   采购单位:南昌大学 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/eaaf8200-e815-4296-aba6-c8c364d7ec20.jpg" title=" 5.jpg" / /p p style=" text-align: center " strong 308准分子光治疗系统和激光光子工作站 /strong /p p   项目编号:[350823]SHHY[GK]2017015-1 /p p   项目名称:上杭县皮肤病防治院关于308准分子光治疗系统和激光光子工作站采购项目 /p p   中标金额:169.9万元 /p p   中标供应商:厦门海辰天泽仪器有限公司 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/5f3b697b-e5bd-4a2f-a5a2-5a4f9971c740.jpg" title=" 6.jpg" / /p p style=" text-align: center " strong 复杂曲面三维激光扫描系统 /strong /p p   项目编号:LNZC20171201441 /p p   项目名称:大连交通大学复杂曲面三维激光扫描系统采购项目 /p p   中标金额:58.9万元 /p p   中标单位:北京金鹰腾飞科技有限公司 /p p   成交产品的规格、型号、单价等: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/ef6ee20b-870c-456e-a33b-0acb1241b3a4.jpg" title=" 7.jpg" / /p p style=" text-align: center " strong 双光子激光共聚焦显微镜采购项目 /strong /p p   项目编号:中大招(货)[2017]993号 /p p   采购单位名称:中山大学 /p p   中标金额:489.803430万元 /p p   中标供应商名称:广州市诚屹进出口有限公司 /p p   中标标的名称、规格型号、数量、单价、服务要求: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201802/insimg/7c940325-292e-43f8-9ee1-f901a38dc68d.jpg" title=" 8.jpg" /    br/ /p center /center p style=" text-align: center " strong 超短强激光微纳制造实验室项目 /strong /p p   飞秒激光放大器 /p p   项目号:17A51870611-BZ1700401866AH /p p   项目名称:重庆邮电大学超短强激光微纳制造实验室项目飞秒激光放大器采购 /p p   中标总金额:145.9万元 /p p   中标供应商:相干(北京)商业有限公司 /p p   成交产品的规格、型号、单价等: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/c46688d9-2e94-41a4-82ae-89b46c49c880.jpg" title=" 9.jpg" / /p p style=" text-align: center " strong 便携式高分辨测风激光雷达 /strong /p p   项目编号:OITC-G170321151 /p p   项目名称:中国科学院大气物理研究所便携式高分辨测风激光雷达采购项目 /p p   中标总金额:280.0 万元(人民币) /p p   中标供应商名称:西南技术物理研究所 /p p   中标标的名称、规格型号、数量: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/d0c3d441-6015-45d7-ae63-7bef489181d6.jpg" title=" 10.jpg" / /p p style=" text-align: center " strong 激光共聚焦拉曼光谱仪、数字综合试验箱 /strong /p p   项目编号:ZX2017-12-13 /p p   项目名称:西安工业大学激光共聚焦拉曼光谱仪、数字综合试验箱等采购项目 /p p   中标金额:115.30万元 /p p   中标单位:西安共进光电技术有限责任公司 /p p   中标标的名称、规格型号、数量: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/1f8a05da-c6b9-4b1b-bcf3-85f56097a554.jpg" title=" 11.jpg" / /p center /center p style=" text-align: center " strong 激光共聚焦拉曼光谱仪 /strong /p p   项目编号:OITC-G17031833 /p p   项目名称:中国科学院苏州纳米技术与纳米仿生研究所激光共聚焦拉曼光谱仪采购项目 /p p   采购单位名称:中国科学院苏州纳米技术与纳米仿生研究所 /p p   总中标金额:155.7781万元 /p p   中标供应商:雷尼绍(上海)贸易有限公司 /p p   中标供应商名称、联系地址及中标金额: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/5295f90b-a6fc-4eb6-8cde-52eb73be0f2a.jpg" title=" 12.jpg" / /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 还有一个招标大单,注意关注哦! /strong /span /p p   招标项目华东师范大学高重复频率宽波段可调谐窄带宽激光器 /p p   项目编号:0811-184DSITC0089 /p p   项目名称:高重复频率宽波段可调谐窄带宽激光器(第二次) /p p   采购单位:华东师范大学 /p p   预算金额:230.0 万元(人民币) /p p   采购内容: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201802/insimg/fa7045eb-d935-46c0-8ee6-90aff2739943.jpg" title=" 2018-02-07_091003.jpg" / /p p   购买标书时间:2018年01月26日-02月02日 /p p   投标截止时间:2018年02月28日 /p p   联系方式:冯东海 ,021-62231151 /p
  • 高能扫描颗粒物激光雷达告诉你:你离污染有多远?
    近年来灰霾现象频发,颗粒物区域污染现象受到社会及政府部门的高度重视。针对区域性大气污染问题,作为一种成熟的主动遥感手段,颗粒物激光雷达为掌握区域大气污染分布和输送规律,解析颗粒物污染特征、污染来源、污染变化趋势,提供了有力支撑。颗粒物激光雷达按工作方式可分为:垂直探测激光雷达和扫描探测激光雷达。其中扫描探测激光雷达是对固定站点监测空白区域、天气突发区域监测的有力补充,对重点污染区域中污染物进行3D扫描和移动观测,可获取区域污染物的空间立体分布、变化规律和排放特征,摸清局地污染物对污染形成的贡献,为环境规划与管理、环境监督与执法及政府宏观决策提供科学依据;并可对污染气团进行走航追踪观测,为短时间空气质量预测提供了及时、有效、准确的数据支撑。 大气颗粒物监测激光雷达大气环境监测激光雷达检测车  中科光电大气颗粒物监测激光雷达(高能扫描系列),采用波长532 nm线偏振激光对大气颗粒物进行遥感探测。雷达通过对532 nm垂直和水平偏振信号的探测,解析大气消光系数、退偏振比廓线、边界层高度、光学厚度等参数,进而可获取大气颗粒物时空分布特征、污染层时空变化、颗粒物输送和沉降等信息。产品特点  采用振镜扫描,避免雷达主体光机及探测器电子学系统振动;  扫描振镜具备自动除尘、除湿、除雪功能,可适用于各种天气状况;  采用单脉冲能量毫焦级固体激光器,重度污染条件下,具有较好的探测能力;  系统拥有GIS地理信息系统,可图形化显示扫描区域颗粒物分布情况,排查污染排放源;  系统具有停电自动关机,来电自动开机功能;  激光器使用寿命长,可达16000小时。产品软件  中科光电扫描激光雷达数据采集分析软件具有固定垂直探测、固定斜程探测、车载垂直探测、车载斜程探测、垂直扫描探测、水平扫描探测六种工作模式。软件通过对激光雷达原始数据进行深数据处理,可得到包括消光系数、退偏振比、光学厚度、能见度、边界层、污染物判别、PM10质量浓度时空分布等基本环境监测数据。 流程图采控软件分析软件产品应用  垂直扫描监测  激光雷达发射脉冲处于天顶方向,望远镜垂直接收来自天顶方向的后向散射信号。能够反演距地面10km以内气溶胶颗粒物的空间分布信息以及时空演变特征。可应用于雾霾判识、污染过程捕获分析、高空大气光化学过程探测、大气边界层结构特征分析、沙尘暴预警、局地污染预警等环境监测。 垂直扫描监测  区域点源排放监测  设置激光雷达工作的方位角和仰角,使置于某固定点位的激光雷达对烟囱、锅炉、化工厂、电厂、水泥厂等重要的点源实现定点定位扫描,监测污染源烟羽排放的轮廓及强度分布,实时把握污染超标动态,结合当地实际情况建立报警体系,有效实现污染源排查、偷排漏排违法取证工作。 区域点源排放监测  区域线源扫描监测  设置激光雷达工作的方位角和仰角,使置于某固定点位的激光雷达进行定点定位扫描,结合GIS地理信息,图形化展示交通主干道上空颗粒物的空间分布特征,有效监测区域内若干条交道主干道的排放强度。区域无组织排放扫描监测  设置激光雷达工作的方位角和仰角,使置于某固定点位的激光雷达对建筑工地、餐饮服务区、汽车修理厂、畜禽养殖场等区域,进行实时在线扫描监测,描绘污染物的水平分布规律,确定污染物的空间分布规律。 区域无组织排放扫描监测  区域污染物分布扫描监测  区域污染物分布扫描监测可手动设置水平扫描(针对区域内)、垂直断面扫描(针对区域边界)等不同扫描方式,实现对工业园区、居民生活区、厂区等敏感地带进行定量评估。结合GIS地理信息,图形化显示区域内污染物时空分布及演变特征。 区域污染物分布扫描监测  走航扫描监测  走航扫描监测,是通过在移动平台上搭载激光雷达系统,采用“驻车扫描”或“边走边测”的工作方式,对区域上空污染团的输入、过境、沉降过程进行实时、在线、连续扫描监测,分析污染物的类型、强度以及演变过程。走航扫描监测结合GIS地理信息,可绘制污染团的运动轨迹,追踪污染团动向,结合大气混合层及气象条件,提供典型污染过程的预警建议。走航扫描监测走航扫描监测  高能扫描颗粒物监测激光雷达系统轻便、易于移动,可实现多种扫描方式,方位角与仰角的扫描角度和探测时间都可自行设置,可实现大范围不同方位的连续自动观测,能够探测到同一仰角不同方位角处及同一方位角不同仰角处的颗粒物的变化,对实时环境监测具有较好的帮助。
  • 激光雷达 lidar
    激光雷达介绍   激光雷达   LiDAR(LightLaser Deteetion and Ranging),是激光探测及测距系统的简称。   用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物 。由发射机 、天线 、接收机 、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。 激光雷达的历史   自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。   随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。   LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(Global PositioningSystem、GPS)及惯性导航系统(InertialInertiNavigation System、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multiple echoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。   激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。   快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。   由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。 LiDAR的基本原理   LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIght Detection And Ranging - LIDAR。   激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。   LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。 激光雷达的妙用   激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。   直升机障碍物规避激光雷达   目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。   直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。   美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。   德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。   法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。   化学战剂探测激光雷达   传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。   俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。   德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9― 11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。   机载海洋激光雷达   传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。   迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。   成像激光雷达可水下探物   美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。 美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。 History and Vision History Velodyne's expertise with laser distance measurement started by participating in the 2005 Grand Challenge sponsored by the Defense Advanced Research Projects Agency (DARPA).A race for autonomous vehicles across the Mojave desert, DARPA's goal was to stimulate autonomous vehicle technology development for both military and commercial applications. Velodyne founders Dave and Bruce Hall entered the competition as Team DAD (Digital Audio Drive), traveling 6.2 miles in the first event and 25 miles in the second. The team developed technology for visualizing the environment, first using a dual video camera approach and later developing the laser-based system that laid the foundation for Velodyne's current products. The first Velodyne LIDAR scanner was about 30 inches in diameter and weighed close to 100 lbs. Choosing to commercialize the LIDAR scanner instead of competing in subsequent challenge events, Velodyne was able to dramatically reduce the sensor's size and weight while also improving performance. Velodyne's HDL-64E sensor was the primary means of terrain map construction and obstacle detection for all the top DARPA Urban Challenge teams. Vision Velodyne's ultimate vision for its LIDAR technology is simple: to save lives. We see the day where this sensor technology is deployed on every vehicle in the world. While traditional LIDAR sensors have relied on fixed electronics and rotating mirrors to deliver a 3-D terrain map, the rotation of an entire array of multiple fixed lasers has proven to be a quantum leap forward in sensing technology. This accomplishment has been termed a "disruptive event" by car safety research groups, who see the technology as a reason to rethink all that we know about vehicle sensors and the safety systems they enable. Until the day when we help eliminate automobile-relatedcasualties, Velodyne plans to market its unique LIDAR technology wherever sophisticated 3-D environment understanding is required: robotics, map capture, surveying, autonomous navigation, automotive safety ystems, and industrial applications. 激光雷达介绍   激光雷达   LiDAR(LightLaser Deteetion and Ranging),是激光探测及测距系统的简称。   用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物 。由发射机 、天线 、接收机 、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。 激光雷达的历史   自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。   随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。   LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(Global PositioningSystem、GPS)及惯性导航系统(InertialInertiNavigation System、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multiple echoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。   激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。   快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。   由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。 LiDAR的基本原理   LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIght Detection And Ranging - LIDAR。   激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。   LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。 激光雷达的妙用   激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。   直升机障碍物规避激光雷达   目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。   直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。   美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。   德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。   法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。   化学战剂探测激光雷达   传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。   俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。   德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9― 11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。   机载海洋激光雷达   传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。   迄今,机载海洋激光雷达已发展了三代
  • 《自然》:世界最小纳米激光器在美问世
    研究人员最近展示了一种有史以来最小的激光器,其包含一个直径仅为44纳米的纳米粒子。该器件因能产生一种称为表面等离子的辐射而被命名为“spaser”。这项新技术可允许光子局限在非常小的空间内,一些物理学家据此认为,就像晶体管之于现今的电子产品,spaser也许将成为未来光学计算机的基础。 美国诺福克大学材料研究中心物理学教授米哈伊尔诺基诺夫表示,现今最好的消费电子产品可在大约10吉赫兹的速度上运行,但未来的光学器件的运行速度可达到几百太赫兹范围。一般来说,光学器件难以实现小型化,是因为光子无法限定在比其一半波长更小的区域内。但以表面等离子形式与光作用的器件就能将光限定在非常紧密的位点上。 诺基诺夫说,目前科学家们正在基于等离子的新一代纳米电子设备的理论研究上努力探索。与以前的其他等离子器件不同的是,spaser能有效地产生和放大这些光波。诺基诺夫及同事在近期的《自然》杂志上发表了此项研究成果。 spaser包含一个直径仅为44纳米的单纳米粒子,激光器的其他不同部分的功能则与常规激光器无异。在普通激光器中,光子通过可放大光线的增益介质在两个镜面间反弹。而spaser中的光则围绕一个等离子形式的纳米粒子核中的金球表面进行反弹。 此中的挑战是确保这种能量不会快速从金属表面消散。诺基诺夫及其团队通过在金球上喷涂嵌有染料的硅层来实现这一要求。硅层可作为增益媒介。来自spaser的光可作为等离子体保持在限定区域,亦可作为可见光范围的光子离开粒子表面。像一个激光器一样,spaser必须“泵”入必要的能量,研究人员利用光脉冲轰击粒子来达到这个目的。 常规激光器的大小取决于其使用的光波长,反射面间的距离不能小于光波长的一半,在可见光范围大约为200纳米。spaser则是利用等离子体解决了此局限。诺基诺夫说,spaser也许将能做到一个纳米大小,但任何小于这一尺寸的纳米粒子,其功能就会丧失。 美国乔治亚州大学物理学教授马克斯托克曼称,和目前最快的晶体管相比,spaser虽具有同等的纳米尺度,但其速度要快上1000倍,这为制造速度超快的放大器、逻辑元件和微处理器提供了可能。 诺基诺夫则表示,spaser不仅能在光子计算机领域找到用武之地,也能在现今使用常规激光器的领域得到应用。更为现实的应用领域就是磁性数据存储业。现今用于硬盘的磁性数据存储介质已达到其物理极限,扩展其存储能力的方法之一就是在其记录过程中用非常小的光点对介质进行加热,而这必须使用纳米激光器才能做到。
  • 硅表面生长纳米激光器技术问世
    据美国物理学家组织网近日报道,美国加利福尼亚大学伯克利分校科学家利用新技术直接在硅表面生长出了极微小的纳米柱,形成一种亚波长激光器,这一成果将为制造纳米光学设备如激光器、光源检测仪、调制器、太阳能电池等带来新的突破。   硅材料奠定了现代电子学的基础,但它在发光领域还有很多不足之处。工程人员转向了另外一族名为III-V半导体的新材料,以此来制造光基元件,如发光二极管和激光器。   加利福尼亚大学伯克利分校的研究人员通过金属—有机化学蒸发沉积的方法,在400摄氏度条件下,用一种III-V族材料铟镓砷在硅表面生长出纳米柱。这种纳米柱有着独特的六角形晶体结构,能将光线控制在它微小的管中,形成一种高效导控光腔。它能在室温下产生波长约950纳米的近红外激光,光线在其中以螺旋形式上下传播,经过光学上的相互作用而得以放大。   研究人员指出,将III-V和硅结合制成单一的光电子芯片面临的最大障碍是,目前制造硅基材料的工业生产设备无法与制造III-V设备兼容。“要让III-V半导体在硅表面上生长,与硅制造设备兼容是关键,但由于经济和技术方面的原因,目前的硅电子生产设施很难改变。我们选用了一种能和CMOS(互补金属氧化半导体,用于制造集成线路)兼容的生长工艺,在硅芯片上成功整合了III-V纳米激光器。传统方法生长III-V半导体,要在700摄氏度或更高温度下进行,这会毁坏硅基电子元件。而新工艺在400摄氏度下就能生长出高质量III-V材料,保证了硅基电子元件正常发挥功能。”主要研究人员、加州大学伯克利分校电学工程与计算机科学教授康妮张-哈斯南说。   张-哈斯南还指出,这种亚波长激光器技术将对多科学领域产生广泛影响,包括材料科学、晶体管技术、激光科学、光电子学和光物理学,促进计算机、通讯、展示和光信号处理等领域光电子学的革命。“最终,我们希望加强这些激光的特征性能,以实现光子和电子设备的结合。”
  • 我国高功率全固态激光器成功实现应用
    工欲善其事,必先利其器。高功率全固态激光器技术就是先进制造领域的一把利器。长期以来,国外在高功率激光技术领域一直对我国实行严密的技术封锁,严重制约了我国先进制造领域工业关键激光成套装备的发展。为摆脱我国在这一技术领域的长期被动落后局面,抢占战略主动权,自&ldquo 十五&rdquo 开始,863计划持续对该项技术进行大力支持,经过多年攻关,相继突破3kW、4kW、6kW和8kW的激光输出,到&ldquo 十一五&rdquo 中期,成功研制了具有完全自主知识产权的工业级5KW全固态激光器,打破了国际禁运。   为加速成果转化应用,&ldquo 十二五&rdquo 期间,863计划继续设立&ldquo 先进激光材料及全固态激光技术&rdquo 主题项目,中国科学院半导体研究所牵头承担,以工业应用需求为导向,研制系列化的高稳定、高可靠的工业级全固态激光器及其装备,并在激光焊接、表面处理等领域实现产业化应用。目前,在项目研究成果基础上,我国首个具有自主知识产权的高功率全固态激光器生产线已在江苏丹阳建成,并实现批量生产 在汽车零部件激光焊接领域,自主研制的全固态激光器成功打破国外垄断,实现了产业化应用突破,自2012年以来,已为奇瑞汽车焊接了超过10万套自动变速箱的核心部件,为北京奔驰汽车焊接了近3万套天窗 攻克无预热情况下的激光熔覆防微裂纹、微气孔等核心技术,为全球第三大石油装备制造商威德福公司成功研制出超高耐磨转井部件,实现威德福首次将该类高难度核心部件从英国的剑桥转移到亚洲进行生产。   经过863计划长期的持续支持,我国的高功率全固态激光器产品已初步形成了从自主研制激光器到成套装备集成再到应用的完整产业链。随着我国激光技术的不断进步,更多的高功率全固态激光器产品走上成熟的工业化进程,将为提升我国先进制造产业核心竞争力,扭转关键成套装备基本依靠进口的被动局面,加强国防建设提供有力的装备保障和技术支撑。
  • Science:X射线激光器给生物分子拍部纳米电影
    威斯康星大学Milwaukee分校的研究团队,用X射线激光器以慢动作的形式展示了一个光敏性生物分子的快速动态。&ldquo 人们能够在这一技术的基础上,以原子水平的空间分辨率和超快的时间分辨率制作纳米世界的电影,&rdquo 领导这项研究的Marius Schmidt教授说。   研究人员将PYP蛋白(photoactive yellow protein)作为模式系统,PYP是一种蓝光感受蛋白,在特定细菌的光合作用中起作用。PYP蛋白捕获蓝光光子之后,会经过一系列中间结构获得光子的能量,然后再回到初始状态。PYP光循环的绝大多数步骤已经被人们研究过了,是验证新方法的理想模型。   为了获得PYP的动态快照,研究人员制造了微小的PYP晶体,这些晶体的直径大多小于0.01毫米。他们在LCLS(目前最强的X射线激光器)系统中喷射这些微晶体,并用精确同步的蓝光脉冲启动它们的光循环。LCLS生成了极短极密集的X射线快照,捕捉到了PYP在光循环不同阶段的形态改变,分辨率达到了前所未有的0.16纳米。随后研究人员将自己获得的快照组成视频,展示了慢动作的PYP光循环。   这项研究再现了PYP光循环的所有已知过程,验证了这个新技术的可靠性,同时还揭示了PYP光循环的更多细节。这一技术的时间分辨率非常高,能揭示不到1皮秒的分子活动,这是以前无法想像的。   &ldquo 这是一个真正的突破,&rdquo 文章的共同作者Henry Chapman教授说。&ldquo 我们现在可以在原子水平上对动态过程进行时间分辨研究。&rdquo   与其他方法相比,X射线激光器在研究超快分子动态时有着更多的优势。该技术能生成世界上最明亮的X射线,提供飞秒级别的时间分辨率。X射线激光器成像时使用新鲜样本,样本中不会积累辐射伤害,而且特别适合研究非常小的晶体。实际上,一些很难结晶的生物分子只能用X射线激光器进行研究。另外,晶体小也有助于分子的同步,使人们能更灵敏的检测到分子发生的改变。换而言之,X射线激光器能够揭示其他方法无法企及的分子动态。
  • 滨松开发出世界上最小波长扫描量子级联激光器,有望用于便携式火山气体监测系统光源
    此次,滨松光子学株式会社在日本国家研究开发法人新能源与产业技术开发组织(NEDO)主办的“实现IoT社会的创新传感技术开发”项目中,利用独自的微机电系统(MEMS)技术和光学封装技术,成功开发出世界上最小尺寸的波长扫描量子级联激光器(QCL),其体积约为传统产品的1/150。通过将其与日本产业技术研究所开发的驱动系统结合,实现了高速操作和外围电路简化,同时作为光源安装在分析设备上,使可便携的小型分析设备的开发成为现实。在本开发项目中,我们提高了二氧化硫(SO2)和硫化氢(H2S)的探测灵敏度以及设备的维修性,目标是实现在火山口附近对火山气体成分的长期和稳定的检测。此外,它还可以应用于化工厂和下水道中有毒气体的泄漏检测和大气测量等。图1 世界上最小尺寸的波长扫描QCL,体积约为传统产品的1/150概要在火山爆发的前几个月,火山气体中的二氧化硫(SO2)或硫化氢(H2S)等浓度会开始逐渐上升,因此对该气体浓度的监测是火山爆发预测的常规方法。目前许多研究机构在火山口附近安装了电化学传感器分析设备,通过电极检测来实时分析火山气体的成分。但由于电极与火山气体的接触,容易出现寿命变短和性能降低的问题,因此除了定期更换部件等维护,监测的长期稳定性也是一个难题。这样,长寿命光源和全光学光电检测器分析设备则具有无需大量保养,还具有高灵敏度并长时稳定地进行成分分析的特点。目前因为光源的尺寸较大,尙难以将其安装在火山口附近。 在此背景下,滨松从2020年开始,参与了NEDO与产业技术综合开发机构(产综研)的“实现IoT社会的创新传感技术开发”※1项目,积极投入研究和开发具有全光学,小尺寸,高灵敏度和高可维护性特点的新一代火山气体监测系统。 滨松公司正在该项目中承担了分析设备光源的小型化任务,并成功开发出中红外光※2在7-8微米(μm,μ为百万分之一)范围内可高速改变输出功率的世界上最小尺寸波长扫描QCL(Quantum Cascade Laser)。※3(图1、图2、表)。本次新开发的产品是通过将其与产综研开发的驱动系统相结合,实现了高速操作和外围电路简化,作为光源安装在分析设备上,实现了可便携的小型化分析设备。此外,本项目的目标是进一步提高灵敏度和可维护性,实现长时间稳定地对火山口附近气体进行实时监测。同时也有望应用于化工厂和下水道的有毒气体泄漏检测和大气测量等用途。产品特点 1、开发了世界上最小的波长扫描QCL,体积约为传统产品的1/150。 公司利用独自的MEMS技术,对占据了QCL的大部分体积的MEMS衍射光栅※4进行完全的重新设计,成功开发出新的尺寸约为以前1/10的MEMS衍射光栅。此外,通过采用小型磁铁,减少了不必要的空间,并采用独特的光学封装技术,以0.1微米为单位的高精度实现部件的组装,实现了世界上最小的波长扫描QCL,其体积约为传统产品的1/150。 2、实现中红外光在波长7~8μm的范围内的周期性变化输出 滨松利用多年积累的量子结构设计技术※5通过搭载新开发的QCL元件,实现中红外光在易于吸收SO2或H2S的7-8μm的波长范围内的扫描输出。同时,我们还开发了可变波长QCL,可以从7-8μm范围内选择特定波长进行输出。 3、可高速获取中红外光的连续光谱 与产综研传感系统研究中心开发的驱动系统相结合,实现波长扫描QCL的高速波长扫描。它可以在不到20毫秒的时间内获取中红外光的连续光谱,可捕捉和分析随时间快速变化的现象。图2 波长扫描QCL的结构表 本次开发的波长扫描QCL的主要规格未来计划滨松公司将与NEDO和产综研进一步构建新型高灵敏度和高可维护性的火山气体监测系统,同时推进多点观测等实地测试。此外,公司将在2022年度内推出将该产品与驱动电路或与本司光电探测器相结合的模块化产品,以扩大中红外光的应用。 “注释” *1 实现IoT社会的创新传感技术开发 项目名称:实现IoT社会的创新传感技术开发 / 创新传感技术开发 / 波长扫描中红外激光器 研究开发新一代火山气体防灾技术 业务和项目简介:https://www.nedo.go.jp/activities/ZZJP_100151.html *2 中红外光 是一种波长比可见光长的红外光,一般把波长在4-10μm之间的红外光称为中红外光。 *3 波长扫描QCL(Quantum Cascade Laser) 量子级联激光器(QCL)是一种通过在发光层中采用量子结构,可以在中红外到远红外的波长范围内获得高输出功率的半导体激光光源。波长扫描量子级联激光器是将从量子级联激光器发出的中红外光进行分光,反射到MEMS衍射光栅,再通过对MEMS衍射光栅进行电控,使其的倾斜面发生快速变化,从而实现中红外光的波长快速变化并输出。 *4 MEMS衍射光栅 通过电流工作的小型衍射光栅。衍射光栅是一种利用不同波长的光衍射角度的差异来区分不同波长光的光学元件。 *5 量子结构设计技术 是一种利用纳米级超薄膜半导体叠层产生的量子效应的器件设计技术。在该开发中,滨松公司在QCL的发光层采用了独有的反交叉双重高能态结构(AnticrossDAUTM )。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制