当前位置: 仪器信息网 > 行业主题 > >

纳米粒子控系统

仪器信息网纳米粒子控系统专题为您提供2024年最新纳米粒子控系统价格报价、厂家品牌的相关信息, 包括纳米粒子控系统参数、型号等,不管是国产,还是进口品牌的纳米粒子控系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纳米粒子控系统相关的耗材配件、试剂标物,还有纳米粒子控系统相关的最新资讯、资料,以及纳米粒子控系统相关的解决方案。

纳米粒子控系统相关的论坛

  • 【分享】银纳米粒子极易伤害某些有益菌 恐破坏土壤系统

    加拿大科学家研究认为,某些工业产品中含有的银纳米粒子对一些生活在北极极地土壤中有益的细菌来说毒性非常大。科学家发现,将一定数量的银纳米粒子加入取自北极极地的土壤中后,会造成土壤中的许多种类的细菌数量减少,还会使一种有益的慢生菌全部消失。科学家担心纳米粒子进入自然环境可能破坏土壤生态系统。相关文章发表在最新一期出版的《有毒材料》杂志上。  银纳米粒子作为抗微生物剂被大量用于防臭袜和T恤衫等日用消费品中。据统计,目前市场上有1300多种产品含有纳米粒子,这些产品包括不粘锅、织物柔软剂、长毛绒玩具以及某些食物和饮料等。参与此项研究工作的加拿大女王大学生物学家维吉尼亚·沃克表示,该研究成果有助于促请人们重新考虑如何更加安全使用纳米粒子。   沃克称,全球每年生产出数百万吨纳米粒子,其中不少最终将进入到环境中,他们的研究工作就是想找出这些纳米粒子到底对土壤中的细菌有何影响。   研究小组在加拿大极地地区收集了土壤样品,他们认为极地地区无人居住,因此土壤还未受到纳米粒子的污染。研究人员分析了这些土壤中的脂肪酸和DNA(脱氧核糖核酸),以确定土壤中含有哪些细菌。然后,研究人员将土壤与银、铜、硅等纳米粒子分别混合,使其含量达到土壤重量的0.066%。半年后,他们对土壤样品中的脂肪酸和DNA再次进行了分析,并将结果与未含纳米粒子的土壤样品进行比较。他们发现,铜和硅纳米粒子对土壤的影响不大;但是在掺入银纳米粒子的土壤中,一种称为Bradyrhizobiumcanariense的慢生细菌完全消失了,大多数其他细菌的数量也降低了,细菌DNA的总数量下降了44%,只有一种叫Bacillales的细菌其数量有所增加,而这种细菌的生存能力向来就非常强。   研究人员非常关注这种慢生细菌的消失,因为它是一种固氮细菌,对植物从土壤里吸收氮非常有用。而在实验室试验中,他们再次确认了这种慢生细菌比其他细菌更易受到银纳米粒子的负面影响。即便是面对低于土壤里10倍量的纯纳米粒子,这种细菌都会立即死亡。  研究人员因此担心,银纳米粒子的影响可能破坏极地区域的生物地理化学循环。(科技日报)

  • 上海应物所发现金纳米粒子对果蝇代谢信号通路的调控作用

    金纳米粒子很可能是最早被用作药物的纳米材料,其历史甚至可追溯到几千年前的古埃及——炼金术士们将金熔化后制成金水供法老饮用,其中就含有金纳米粒子。直到中世纪的欧洲,贵族中也流行着类似的方法。现代的纳米研究表明,金纳米粒子细胞毒性很低,生物安全性良好,因而被广泛应用于纳米药物研究。科研人员猜想,进入动物体内的金纳米粒子是否可能产生其它独特的生物效应呢? 近期,中国科学院上海应用物理研究所物理生物学实验室樊春海、黄庆研究员和中国科学院系统生物学重点实验室宋海云研究员开展合作研究,课题组的科研人员王彬、陈楠和魏应亮以果蝇为动物模型的工作表明,经食物摄取的金纳米粒子能够显著增强胰岛素和生长因子下游的PI3K/Akt信号通路,促进细胞对食物中营养成分的吸收和利用。相关论文已于近日发表于自然出版集团的综合性杂志《科学报道》(Scientific Reports 2012, 2:563)。 PI3K/Akt信号通路是多细胞生物中高度保守的合成代谢通路。果蝇幼虫通过PI3K/Akt信号通路将摄入的营养成分以甘油三酯的形式储存,以满足成蛹期的能量需求。果蝇幼虫摄取掺入金纳米粒子的食物后,PI3K/Akt信号通路活性上升,并通过SREBP通路增加甘油三酯的合成。在能量限制(calorie restriction)导致PI3K活性下降的条件下,金纳米粒子的这一效应表现更加显著。如果在喂食金纳米粒子的同时抑制Akt信号通路,能够消除其对脂合成代谢的作用,说明金纳米粒子的代谢效应是通过促进PI3K/Akt信号通路实现的。进一步研究表明,金纳米粒子并没有改变果蝇的进食量,其促进PI3K/Akt信号通路的机制,一部分在于促进细胞对营养成分的摄取,一部分在于促进PI3K定位于细胞膜。 该研究揭示了金纳米粒子一种出人意料的生物学效应,预示了其在糖尿病等代谢紊乱研究中的应用前景。 该研究工作得到科技部、国家自然基金委和中国科学院的支持。http://www.cas.cn/ky/kyjz/201208/W020120823596824413298.jpg金纳米粒子对果蝇代谢信号通路的调控作用

  • 靶向生物分解纳米粒子可有效消除炎症

    中国科技网 讯(记者常丽君)据物理学家组织网3月19日(北京时间)报道,来自美国布莱根妇女医院(BWH)、哥伦比亚大学医疗中心等研究人员,共同开发出一种不到100纳米的微小纳米粒子,能装载并释放一种促消炎的肽类药。通过小鼠实验证明,这些纳米粒子具有强力促分解效果,能选择性地进驻受伤组织部位,以可控方式在一段时间内缓慢释放出治疗药物。相关论文在线发表于3月18日的美国《国家科学院学报》上。 发炎是身体抵抗外来生物入侵和组织创伤的自然防御机制。在急性炎症中,病原体或炎症媒介会被清除出去,达到一种动态平衡;但在慢性炎症中,这种消解反应被削弱而导致慢性炎症和组织损伤。目前普遍认为,消炎功能受损是动脉粥样硬化、关节炎、神经退化、癌症等疾病恶化的一个主要原因。 研究人员解释说,这些纳米粒子的独特之处在于,它们是专门设计瞄准炎症组织的细胞外微环境的,能缓慢释放强效消炎药分散在炎症组织中,药物与被激活的白细胞质膜上的受体结合,使白细胞安静下来。论文合著者、哥伦比亚大学医疗中心医生艾拉·塔巴斯说:“这种方法的优点是利用机体固有的预防发炎机制,与其他抗炎措施不同,不会被身体防御机制削弱并能促进组织修复。” 这种自组装的靶向纳米粒子由首尾相连的3条链组成的聚合物构成。其中一条链能装载并缓慢释放治疗药物,如实验中所用的是一种能模拟膜联蛋白A1促分解作用的肽;另一条链赋予纳米粒子潜入组织的能力,让它们能在系统管理之下长期流通;第三条链赋予纳米粒子导航的能力,让它们能瞄准胶原蛋白IV以到达血管壁。由于这些纳米粒子能有选择地粘住受伤的脉管系统,并在需要的地方释放所携带的抗炎药,所以能有目标地高效消炎。 “这些靶向聚合纳米粒子能阻止嗜中性粒细胞(白细胞中数量最多的一种)渗透到伤病部位,即使只有很少量,也能阻止它们分泌下一步的信号分子,从而避免了高度炎症和进一步的并发症。”论文合著者、BWH博士后纳茨拉·卡玛丽说。 纳米粒子能选择性地与受伤血管结合,将对一些常见疾病产生深远影响。目前,BWH正在研究促分解纳米药物在消除动脉粥样硬化斑方面的可能性。 总编辑圈点 人人都要与炎症纠缠一生。慢性炎症是白细胞久战不下的结果。器官得了慢性炎症,往往没有明显痛感,却导致亚健康状态,继而是各种难治的大病。如果美国医学家的新发明得以应用,我们或许能得到一种灵验的保健药——它在身体内“消肿祛毒”,让人恢复精力和健康,即所谓“治未病”。纳米药物靶向治疗的概念极其诱人,在下一个十年将仍然是研究的热点。 《科技日报》 2013-03-20 (一版)

  • 【求助】纳米粒子能进GCMS吗

    请问大家 我的样品是用一种纳米粒子催化剂催化而来 纳米粒子经离心后大部分已除去 但因离心机达不到那么高的转速 还有一定量的残留 而且这种纳米粒子会团聚 我这样的样品可以进GCMS吗

  • 纳米粒子分离方法的研究进展

    [color=#333333]随着纳米科技的快速发展,纳米粒子的分离已经成为纳米领域的基础性研究课题,同时也是热点与难点问题。该文介绍了几种较为常用的分离纳米粒子的方法,主要包括场流分级法、超速离心法、膜分离法、色谱分离法和磁性分离法,评述了每种方法的优缺点、适用范围、具体应用实例和相关研究进展,并具体讨论了每种分离方法的分离效果、重复性和特异性。[/color]

  • 纳米粒子递送药物技术有新进展

    蛋白质“通行证”让纳米粒子通过免疫系统2013年02月25日 来源: 中国科技网 作者: 常丽君 中国科技网 讯人体免疫系统能识别并摧毁外来物。除了细菌、病毒,递送药物的纳米粒子、植入的起搏器和人工关节等也是外来物,同样会引发免疫反应,导致药物失效、排斥或发炎。据物理学家组织网2月21日报道,美国宾夕法尼亚大学科学家开发出一种新方法,给这些治疗设备贴上蛋白质“通行证”,让它们能顺利通过人体的防御系统。相关论文发表在最近的《科学》杂志上。 “身体对入侵的外来物会一视同仁地加以排斥。”论文第一作者、宾夕法尼亚大学分子与细胞生物物理学实验室研究生派尔·罗德里格斯说,这是由身体天然免疫系统所引发的。这一过程涉及多种细胞,如巨噬细胞能发现、吞掉并破坏入侵者;血清蛋白会黏在目标物上,引起巨噬细胞注意,一旦巨噬细胞确定黏住的是外来物就会吞掉它,或发信号召集其他巨噬细胞一起来包围它。 为避免纳米粒子引发天然免疫反应,早期的办法是给它们涂一层高分子的“刷子外衣”,这些“刷子”从纳米粒子中伸出来,阻止各种血清蛋白黏在它表面。但这只能暂缓一时而不能最终解决问题。宾夕法尼亚大学工程与应用科学学院化学与生物分子工程教授丹尼斯·迪斯科和研究小组另辟蹊径:让巨噬细胞相信纳米粒子是“自己人”而放过它们。 早在2008年,迪斯科小组发现人体细胞膜上有一种叫做CD47的蛋白,它能与巨噬细胞受体SIRPa结合。就像巡警检查人们的通行证,CD47蛋白会告诉巨噬细胞是“自己人,别吃我”。随后有其他研究人员破解了CD47和SIRPa的连接结构。 利用这些信息,迪斯科小组绘制出了执行类似CD47蛋白功能所需的最小氨基酸序列,并将这种“小肽”折叠起来作为固体“通行证”。他们用化学方法合成了这种小肽,将其黏附在抗癌药物递送粒子上,然后注射到小鼠体内检验其功效。这些小鼠经过基因改造,其巨噬细胞具有和人类相同的SIRPa受体。 研究人员给小鼠注射了两种纳米粒子:一种携带小肽通行证,另一种没有,然后检测小鼠免疫系统要多久能识别出来。“我们每10分钟抽一次血,检测两种纳米粒子各剩下多少。”罗德里格斯说,“最初注射两种粒子的比例是1∶1,20分钟到30分钟后,有小肽的粒子数是没有小肽的4倍。” “这证明小肽确实抑制了巨噬细胞的反应。我们引起它们之间的互动,然后又克服了它。”迪斯科说。对治疗用的纳米粒子而言,它们只需活到发现目标,不必无限期地留在体内,即使多出半小时时间已能带来很大利益;而对起搏器之类的长久植入体内的设备来说,则需要另外的表面蛋白结合物,让它们能和免疫系统长期和平共处。 研究人员还指出,这些小肽在进入实际应用前,还需进一步研究,将其减少到只有几个氨基酸。这一步很关键,通行证分子越简单,就越容易合成。如果能在一台机器上统一制造,并能方便地修改以适应多种植入物和注射剂,就能粘黏在多种药物递送工具上,也能黏在专门抗体上瞄准癌细胞或其他疾病组织。(常丽君) 《科技日报》 2013-02-25 (二版)

  • 美首次获得纳米粒子内单原子三维图像

    科技日报 2012年03月24日 星期六 本报讯 据美国物理学家组织网3月21日报道,美国科学家在3月22日出版的《自然》杂志上表示,他们发明了一种直接测量纳米材料原子结构的新方法,让他们首次得以看见纳米粒子内部的情况,并获得其单个原子及原子排列的三维图像。最新研究有望大大改进医学和生物学等领域广泛使用的X射线断层照相术获得图像的清晰度和质量。 加州大学洛杉矶分校物理学和天文学教授兼加州纳米系统研究所研究员苗建伟(音译)领导的团队使用一个扫描透射电子显微镜,在一个直径仅为10纳米的微小金粒子上方扫射了一束狭窄的高能电子。这个金纳米粒子由成千上万个金原子组成,每个金原子的大小仅为人头发丝宽度的百万分之一,它们与通过其上的电子相互作用,产生的阴影包含有金纳米粒子内部结构的信息,这些阴影被投射到扫描镜下方的一个探测器上。 研究小组从69个不同的角度进行测量,将每个阴影产生的数据聚集在一起,形成了一个纳米粒子内部的三维结构图。使用这种名为电子断层摄影术的方法,他们能直接看到单个原子的情况以及单个原子在特定的金纳米粒子内的位置。 目前,X射线晶体照相术是让分子结构内的原子三维可视化的主要方法。然而,这一方法需要测量很多几乎完全一样的样本,然后再将得到的结果平均。苗建伟说:“一般平均需要扫描数万亿个分子,这会导致很多信息丢失。而且,自然界中的大部分物质都是结构不如晶体结构那么有序的非晶体。”他表示:“现有技术主要针对晶体结构,目前还没有直接观察非晶体结构内部原子的三维情况的技术。探索非晶体材料的内部情况非常重要,因为结构上一点小小的变化都会大大改变材料的电学属性。例如,半导体内部隐藏的瑕疵会影响其性能,而新方法会让这些瑕疵无所遁形。” 苗建伟和他的同事已经证明,他们能为一个并非完美的晶体结构(比如金纳米粒子)摄像,晶体可小至0.24纳米,一个金原子的平均大小为0.28纳米。实验中的金纳米粒子由几个不同的晶粒组成,每个晶粒形成一块拼图,其中的原子采用些许不同的模式排列。纳米结构具有隐藏的晶体断片和边界,同由单一晶体结构组成的物质不同,新方法首次在三维层面实现了纳米粒子的内部可视化。 (刘霞)

  • 磁性纳米粒子在生物医学方面的应用

    磁性纳米粒子/磁性纳米颗粒(Magnetic Nanoparticles, MNPs)是近年来发展迅速且极具应用价值的新型材料,在现代科学的众多领域如生物医药、磁流体、催化作用、核磁共振成像、数据储存和环境保护等得到越来越广泛的应用。 在科学家、工程师、化学家和物理学家的共同努力下,纳米技术使得生命科学和健康医疗领域在分子和细胞水平上取得很大的进展。磁性纳米粒子是纳米级的颗粒,一般由铁、钴、镍等金属氧化物组成的磁性内核及包裹在磁性内核外的高分子聚合物/硅/羟基磷灰石壳层组成。最常见的核层由具有超顺磁或铁磁性质的Fe3O4或γ-Fe2O3制成,具有磁导向性(靶向性),在外加磁场作用下,可实现定向移动,方便定位和与介质分离。最常见的壳层由高分子聚合物组成,壳层上偶联的活性基团可与多种生物分子结合,如蛋白质、酶、抗原、抗体、核酸等,从而实现其功能化。因此磁性纳米粒子兼具磁性粒子和高分子粒子的特性,具备磁导向性、生物兼容性、小尺寸效应、表面效应、活性基团和一定的生物医学功能。 由于其独特的物理、化学特性,磁性纳米粒子可以简化繁琐复杂的传统实验方法,缩短实验时间,是一种新型的高效率的试剂。目前,磁性纳米粒子在生物医药方面主要应用在磁性分离、磁性转染、核酸/蛋白质/病毒/细菌等的检测、免疫分析、磁性药物靶向、肿瘤热疗、核磁共振成像和传感器等。下文将具体介绍磁性纳米粒子的性质及在生物医学领域的主要应用, 并列出对应于不同应用的具体产品。 磁性纳米粒子的性质 磁性纳米粒子有一系列独特而优越的物理和化学性质。随着合成技术的发展,已成功生产出一系列形状可控、稳定性好、单分散的磁性纳米粒子。磁性纳米粒子具有的磁性使其易于进行富集和分离,或进行定向移动定位。磁效应由具有质量和电荷的颗粒运动形成。这些颗粒包括电子、质子、带正电和负电的离子等。带电颗粒旋转产生磁偶极,即磁子。磁畴指一个体积的铁磁材料中所有磁子在交换力的作用下以同一方向排列。这个概念将铁磁与顺磁区别开来。铁磁性材料有自发磁化强度,在无外加磁场时,也具有磁性。铁磁材料的磁畴结构决定磁性行为对尺寸大小的依赖性。当铁磁材料的体积低于某个临界值时,即成为单磁畴。这个临界值与材料的本征属性有关,一般在几十纳米左右。极小颗粒的磁性来源于基于铁磁材料磁畴结构的尺寸效应。这个结论的假设是铁磁颗粒在具有最低自由能的状态对小于某个临界值的颗粒有均匀的磁性,而对较大颗粒的磁性不均匀。前者较小颗粒称为单磁畴颗粒,后者较大的颗粒称为多磁畴颗粒。当单磁畴颗粒的直径比临界值更进一步降低,矫顽力变成零,这样的颗粒即成为超顺磁。超顺磁由热效应造成。超顺磁纳米粒子在外加磁场作用下具有磁性,而在外加磁场移除后不具有磁性。在生物体内,超顺磁颗粒只在有外加磁场时具有磁性,这使得它们在生物体内环境中具有独特优点。铁、钴、镍等晶体材料都有铁磁性,但由于氧化铁磁铁(Fe3O4)是地球上天然矿物中最具磁性的,且生物安全性高(钴和镍等材料具有生物毒性),因而在多种生物医学应用中,超顺磁形式的氧化铁磁性纳米粒子最常见。 铁磁流体(磁流体)是在外加磁场作用下变得具有很强磁性的液体,它是既具有磁性又具有流动性的新型功能材料。铁磁流体是由纳米级的铁磁或亚铁磁构成的胶体溶液,颗粒悬浮于载体溶液中,载体溶液通常为有机溶剂或水。纳米颗粒完全被表面活性剂包裹以防止聚合成团。铁磁流体通常在无外加磁场时不保持磁性,因而被归类为超顺磁。铁磁流体中的纳米粒子在正常条件下由于热运动不发生沉降。 球形颗粒的磁性纳米粒子的比表面积(表面积与体积之比)与直径成反比。对于直径小于0.1um的颗粒,其表面原子的百分数急剧增大,此时表面效应显著。颗粒直径减小,比表面积显著增大,同时表面原子数迅速增加。当粒径为1nm时表面原子数为完整晶粒原子总数的99%,此时构成纳米粒子的几乎所有原子都分布在表面上,在表面原子周围形成很多悬空键,具有不饱和性,易与其他原子结合形成稳定结构,表现出高化学活性。因此,固定目标分子/原子效率高。[font='

  • 美开发新技术快速描绘“双面”纳米粒子属性

    据美国物理学家组织网9月26日报道,美国范德堡大学化学家开发出一种先进方法,能迅速精确地描绘出雅努斯(Janus)纳米粒子的化学属性,为评价其应用效果、改进制备方法提供了有效工具。发表在本月德国《应用化学》杂志上的研究论文对雅努斯纳米粒子在应用方面的主要障碍进行了分析。Janus本意为古罗马的“双面神”,法国物理学家德热纳(De Gennes)在1991年诺贝尔奖颁奖大会上首次用它来描述一类由两半球面组成且具有两种截然不同化学性质的粒子。两面性让这种粒子能形成特殊结构,合成新型材料,比单一性质的纳米粒子拥有更多潜能,因而在药物递送、生物传感、太阳能电池、工业催化剂以及视频播放器等领域具有广泛应用前景。比如,它的一面可以结合药物分子,而另一面黏附连接分子与标靶细胞结合。当它的两个面是完整分开的两个半球时,这种优势更加明显。雅努斯粒子越小,就越难绘制出它们的表面结构,不但给制备带来了很大困难,也很难评价它们在各种应用中的效果。对较大的纳米粒子而言(约10纳米),可以用扫描电子显微镜来绘制它们的表面结构,帮助生产出两面完整分开的雅努斯粒子。但如果粒子小于10纳米,这种方法就会失效。而仅几个纳米大小的雅努斯粒子和单个蛋白质相仿,是最有潜力的药物递送工具。在此项研究中,范德堡大学副教授大卫-克利菲尔等人采用了能同时识别上千种单个纳米粒子的离子迁移质谱仪。他们将两种不同的化合物涂在一些金纳米粒子表面,然后把这些纳米粒子分裂成由4个金原子组成的原子团,再让这些碎片通过离子迁移质谱仪。两个涂层的分子仍黏附在原子团上,由此,通过分析最后的图样,研究人员能对这些纳米粒子进行识别,区分开哪些粒子的双涂层完整分开,哪些粒子的双涂层随机混合,哪些的分开程度中等。克利菲尔说:“目前除了用X射线晶体摄影术,还没有其他方法可以分析这种级别的纳米粒子。但X射线晶体摄影非常困难,要花几个月才能获得一个结构图。”另一位研究人员约翰·麦卡林也指出,离子迁移质谱仪在精确性方面虽然比不上X射线晶体摄影术,但非常实用,几秒钟内就能获得纳米粒子的结构信息。

  • 【转帖】无机纳米粒子复合乳液的研究进展!

    无机纳米粒子复合乳液的研究进展 王玉玲,邓宝祥 (天津工业大学材料科学与化学工程学院,天津300160) 摘要:对纳米SiO2复合乳液的合成制备作了详细的综述,介绍了共混法、插层法、溶胶-凝胶法和原位分散聚合法,概述了纳米SiO2对复合材料性能的影响及其特性和发展。 关键词:纳米粒子 SiO2 聚丙烯酸 复合乳液 0引言 乳液型复合材料具有价廉、安全无污染及使用方便等特点,在胶粘剂、涂料、皮革、纸张、纤维、纺织等领域已得到广泛应用。但是乳胶膜在某些性能上存在缺点,例如,耐候性差、硬度低、胶膜冷脆热粘等,这样其应用性就会受到限制。如果在聚合物乳液中加入无机纳米粒子制成无机纳米粒子复合乳液,利用纳米材料的特性制备性能优异的复合乳液,则在乳液性能上会有很大的提高,使这种复合乳液比单纯的有机乳液具有更好的应用前景。 这种复合乳液属于有机-无机复合材料,它并非是无机相与有机相的简单加合,而是由无机相与有机相在纳米范围内结合而成,在这两相的界面上有着或强或弱的各种物理键和作用(范德华力、氢键等),这种作用赋予材料各种优异的特性。纳米级材料本身具有的特性效应,SiO2表面具有不饱和的残键及不同键合状态的—OH,促使分子呈现出三维结构形态。同时,也是由于这种三维硅石结构,庞大的比表面积和纳米效应,表面严重的配位不足,表现出极强的活性,所以,对色素粒子的吸附力很强,紧紧包裹在色素粒子的表面,形成屏蔽作用,大大降低了因紫外光的照射而造成的色素衰减,这样就能大大提高涂料的附着力与耐候性。 1纳米粒子的分散方法 纳米粒子由于颗粒小,其表面原子比率很高,比表面积大,所以颗粒间往往会通过范德华力、氢键以及一些共价键的作用而互相吸引,形成二次粒径,三次粒径,即团聚体。这种团聚现象就会使纳米粒子失去其独特性,因此合理经济的分散方法十分重要。 1.1物理机械分散法 利用机械搅拌或超声波的方式使纳米粒子均匀分散。 1.2化学试剂添加法 通过加入表面活性剂等化学试剂降低界面之间的张力,添加吸附稳定剂形成界面膜包覆纳米颗粒,即立体保护作用。 2纳米粒子复合乳液的合成方法 有关纳米复合乳液的制备方法,文献报道最多的有:共混法、插层法、溶胶-凝胶法和原位分散聚合法。 2.1共混法 这种方法是先制备出各种形态的纳米粒子,再通过各种方法(例如机械搅拌、超声波等)将其与制备好的乳液直接共混,是制备纳米杂化材料最简单的方法。为防止纳米粒子团聚,需对其表面进行处理。张宝华等通过超声分散仪将纳米SiO2直接与制备好的PUA离聚物乳液共混制得了复合乳液。用激光粒度分布仪检测表明SiO2在复合乳液中呈现纳米尺寸分布,且发现共混法制得的复合乳液能显著改善涂膜的紫外光吸收性能、热学性能及机械性能。曾丽娟等以无机系硅溶胶为主,有机高分子乳液为辅,二者共混改性硅溶胶苯丙复合涂料,所得的涂料具有无机涂料和有机涂料的特性,又弥补了两者的不足,是非常有前途的环保涂料。并在这篇文章中介绍了最佳共混条件的优化选择,以及颜填料、助剂的选用对涂料性能的影响。 2.2插层法 插层复合法是制备聚合物基无机杂化材料的一种重要方法。利用层状无机物(如硅酸盐类粘土、石墨、V2O5、Mn2O3、二硫化物等)作为无机相主体,将单体或聚合物作为客体插入主体的层间,制得插层型杂化材料。用这种方法制备无机纳米粒子复合乳液主要又分为下面3种。 2.2.1嵌入原位聚合方法 先将高分子单体和层状无机物分别溶解到某一种溶剂中,然后单体在外加条件(如氧化剂、光、热、电、引发剂等)下发生原位聚合,利用聚合时放出的热量克服硅酸盐片层间的库伦力而使其剥离,从而使纳米尺度硅酸盐片层与高分子物基体以化学键的方式结合。王一中、李同年分别以此法制备了聚甲基丙烯酸甲酯(PMMA)/蒙脱土(MMT)和聚苯乙烯(PS)/蒙脱土(MMT)嵌入混杂材料 LeewookJang和范宏制备了苯乙烯-丙烯腈(SAN)/MMT纳米复合材料 官同华等合成了聚甲基丙烯酸甲酯(PMMA)/蒙脱土(MMT)纳米材料,并对其性能进行了表征 金星等采用双-苯基二甲基十八烷基溴化铵(TBDO)作为有机插层剂对钠基蒙脱土进行了有机化处理,该有机化的蒙脱土粒子在苯乙烯单体中很容易地分散并形成稳定的胶体溶液。通过对分散由蒙脱土的苯乙烯进行自由基聚和制备了聚苯乙烯-蒙脱土纳米复合材料,X衍射和透射电镜研究表明形成了原位插层型和部分插层部分剥离型纳米复合材料。且其与纯聚苯乙烯相比,具有更高的相对分子质量,较低的玻璃化转变温度(Tg)和优良的热稳定性。

  • 【谱图】纳米粒子鉴别

    【谱图】纳米粒子鉴别

    我做了一个材料,较高倍率SEM照片显示大颗粒由无数的小粒子组成,小粒子非常小,处于纳米级,较低倍率的照片显示大颗粒表现为多面体,说我做的材料是纳米材料很勉强,但是的确看到了一次纳米粒子,我应该怎么描述材料的形貌呢?请有经验的朋友帮忙分析下![img]http://ng1.17img.cn/bbsfiles/images/2008/07/200807282055_100440_1803816_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/07/200807282102_100441_1803816_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/07/200807282103_100442_1803816_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/07/200807282103_100443_1803816_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/07/200807282103_100444_1803816_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/07/200807282103_100445_1803816_3.jpg[/img]

  • 磁电纳米粒子可传递药物直入大脑

    中国科技网讯 据物理学家组织网4月18日(北京时间)报道,美国佛罗里达国际大学赫伯特·韦特海姆医学院的研究人员开发出一种可以向大脑传递的磁电纳米粒子,以充分释放抗艾滋病病毒(HIV)药物活化型三磷酸体(AZTTP)的革命性技术。该研究成果刊登在4月17日出版的《自然·通讯》上。 多年来,血脑屏障让研究神经系统疾病的科学家和医生很伤脑筋。血脑屏障是一种天然的过滤器,只允许极少数的物质通过其进入大脑,把大多数药物拦截在外,以致目前99%以上用于治疗艾滋病的抗逆转录病毒药物如AZTTP,在到达大脑之前都会沉积在肝、肺等器官内。 实验中,研究人员把药物插入单核细胞/巨噬细胞,然后将其注射到人体内,药物随磁电纳米粒子进入大脑。一旦药物到达大脑,低能量的电流会触发药物释放,然后将其用磁电引导至目标。试验中几乎所有的治疗都达到了预期效果。 研究人员采用磁电纳米粒子(MENs)穿透血脑屏障,高达97%的药物AZTTP能够到达被HIV感染的细胞。而AZTTP可竞争性地抑制病毒逆转录酶和终止DNA链增长,从而阻碍病毒繁殖。 研究人员说,这是一个可满足多种疾病治疗的方法,还可以帮助其他神经系统疾病的患者,如阿尔茨海默氏症、帕金森氏症、癫痫、肌肉萎缩症、脑膜炎和慢性疼痛的人,也可以适用于癌症。目前,该技术正在申请专利。(记者华凌) 总编辑圈点 血脑屏障本是脑毛细血管阻止某些物质(多半是有害的)由血液进入脑组织的结构,这种结构可使脑组织少受甚至不受循环血液中有害物质的损害,“忠心耿耿”地维持脑组织内环境的基本稳定。然而这种“铜墙铁壁”式的结构也会认“友”为“敌”,阻止用于治疗某些疾病的药物的进入。文中的新技术,成功化解了这一“误会”,二者联手筑起更加坚固的防御长城,共同抵御神经系统疾病的侵扰。这对久治不愈的患者们来说,绝对是个利好的消息。 《科技日报》(2013-04-19 一版)

  • 【讨论】纳米粒子滴在铜网上的,在支持膜作用下的排列

    请问大家,纳米粒子滴在铜网上后,在垂直方向上,粒子是会遵从重力因素只能以最稳定的一面附在支持膜上吗,比如说,我有一个带尖角的粒子,但是我想看与尖角相反的一面,那是否能找到以尖角附在支持膜上的,虽然这样的放置感觉会因重力而倒下。谢谢

  • 电极玻碳电极上金纳米粒子拍不清楚

    我把金纳米粒子滴在电镜玻碳电极上,然后拍电镜,每次都拍不清楚。应该是导电性不好的问题,请问有人做过类似的吗?我是把把玻碳电极和附带的金属底座旋上,然后贴在碳导电胶带上测的

  • 两种纳米粒子同时存在时,紫外光谱应该怎么进行分析?

    假设金纳米粒子和银纳米粒子同时存在,而二者又不互相反应,相互独立的存在于同一个体系中,那它们的紫外可见光谱的最大特征吸收峰会相互影响吗?可不可以认为在他们混合存在时在390nm和520nm左右的峰分别代表了金纳米粒子单独存在时在520nm的特征峰和银纳米粒子单独存在时在390nm的特征峰啊?因为他们两个混合后,确实会出现这两个峰,与单独存在时的特征峰对应,只是峰强度会发生改变。如果有论文或者文章能解释就更好了

  • 【转帖】纳米粒子与转铁蛋白结合即可猎杀癌细胞

    转铁蛋白与纳米粒子结合就可瞄准并杀死拉莫斯癌细胞,而无需负载其他化疗药物,此项发现将有望发展出癌症靶向治疗的新策略。   相关研究成果发表在本周的《美国化学协会杂志》上。  美国北卡罗莱纳大学教堂山分校文理学院的首席化学教授约瑟夫德西蒙博士领导的研究小组发现,人体中的一种正常的良性蛋白质,如果和纳米粒子相结合,就能瞄准并杀死癌细胞,而无须负载那些携带化疗药物的粒子。此前,研究人员曾认为,纳米粒子只有携带了有毒的化学载体才能达到这样的效果。   转铁蛋白是人体血液中数量第四多的蛋白质,近20年来一直被作为肿瘤靶向载体用以递送治癌药物。纳米粒子通常也是无毒的,需要通过负载标准化疗药物来治疗癌症。然而,结合转铁蛋白的“打印”纳米粒子,不仅能识别它们,还能诱导癌细胞死亡。而不与任何纳米粒子结合的自由转铁蛋白,能从拉莫斯癌细胞中获得养料生长,即使在很高浓度下也不会杀死任何拉莫斯癌细胞。   然而令人吃惊的是,转铁蛋白附着在纳米粒子表面后,其能有效地筛选标靶,攻击并杀死B细胞淋巴瘤。在许多迅速生长的癌细胞表面,蛋白质受体被过度表达,于是和转铁蛋白配体结合的治疗就能找到并瞄准它们,而结合转铁蛋白的纳米粒子被认为是安全且无毒的。   德西蒙实验室发明了一种“打印”技术,能人为造出尺寸精确且形状符合预期的纳米颗粒。他们采用这种技术制作出一种可与人类转铁蛋白相结合的生物相容性纳米粒子,其能安全且精确地识别广谱癌症,除了B细胞淋巴瘤外,还能有效地指向非小型细胞,如肺、卵巢、肝脏和前列腺的癌细胞。   研究人员目前正在进一步研究,携带转铁蛋白的纳米粒子如何及为何对于拉莫斯癌细胞是有毒的,而对其他细胞却无毒。   化学治疗和放射治疗曾被认为是癌症的最有效疗法,但这些疗法通常会损害健康组织和器官。这一发现将可能发展出一种全新的策略来治疗某种类型的淋巴瘤,而副作用更小。   不过,德西蒙承认,该研究也会引起一些人对不可预期后果的担忧,即一个设计好的针对某类癌症的靶向化疗载体是否会偏离目标。(科技日报)

  • RNA递送纳米粒子系统能关闭特殊基因 抗癌药物开发中的瓶颈问题或找到克服途径

    中国科技网讯 据物理学家组织网近日报道,美国麻省理工大学和哈佛大学达纳—法伯癌症研究所、布罗德研究所合作,利用RNA介入(RNAi)方法开发出一种RNA递送纳米粒子系统,能大大加快筛选抗癌药物标靶进程。首个小鼠试验显示,一种以ID4蛋白为标靶的纳米粒子能缩小卵巢肿瘤。相关论文在线发表于《科学·转化医学》上。 通过对癌细胞基因组进行测序,科学家发现了大量基因变异或被删除。这对寻找药物标靶来说是个福音,但对测试标靶来说,却几乎成了不可能的任务。论文高级作者、麻省理工大学卫生科学与技术教授桑吉塔·巴蒂雅说,这种纳米粒子系统克服了抗癌药物开发中的瓶颈问题。“我们所做的是努力建设一条管线,在这里你可以测试所有的标靶,然后通过小鼠模型筛选出重要标靶。你可以用RNA介入的方法,确定想要进入临床试验的标靶的优先顺序,或者开发抵抗它们的药物。” 通常筛选出药物标靶后,下一步是通过基因技术让小鼠缺乏该基因(或该基因过度表达),观察肿瘤长出来以后它们有什么反应。但还有一种更快的方法,就是在肿瘤出现后简单地将它们关闭,RNA介入法为此提供了广阔前景。在自然的RNA介入中,RNA短链与信使RNA(mRNA)结合,负责递送怎样构建蛋白质的指令。如果mRNA被破坏,就无法造出相应的蛋白质。 自上世纪90年代末发现RNA介入以来,科学家一直在研究怎样利用这一过程来治疗癌症。但要找到一种安全有效地瞄准肿瘤的方法,尤其是让RNA进入肿瘤,还有很多困难。 在实验中,研究人员将目标集中在ID4蛋白,因为在约1/3的高侵略性卵巢肿瘤中,这种蛋白都被过度表达。该基因显示出与胚胎发育有关:它在生命早期已经关闭,不知什么原因在卵巢肿瘤中被重新激活。 他们设计了一种以ID4为标靶的RNA递送纳米粒子,能同时瞄准并进入肿瘤,这是以往的RNA介入方法做不到的。其表面标记有一种短链蛋白片断,这让它们能进入肿瘤细胞,这些蛋白片断会被拉向肿瘤细胞中一种特殊蛋白p32。研究人员还发现了许多这类片断。纳米粒子外面有一层膜,内部是RNA链与蛋白质的混合。粒子进入肿瘤细胞后,蛋白质—RNA混合物能穿过膜层进入细胞内部,开始破坏mRNA。经过对卵巢肿瘤小鼠的实验,研究人员发现,通过RNAi纳米粒子治疗,能消除大部分的肿瘤。 在潜在标靶中,有许多蛋白无法与传统药物结合,而新粒子能递送RNA短链关闭特殊基因,使科学家能继续“追捕”这些“没有可能”的蛋白。达纳—法伯研究所癌症基因组发现中心主任哈恩说:“如果这一方法能在人体内发挥作用,将再打开一类全新的药物标靶。” 联合研究的目标是开发一种“混合与剂量”技术,通过混合不同的RNA递送粒子,瞄准特殊基因。目前,研究人员正在用纳米粒子系统测试其他可能的卵巢癌标靶和包括胰腺癌在内的其他类型癌症,并在研究将ID4—标靶粒子开发为一种卵巢癌疗法的可能性。(记者 常丽君) 《科技日报》(2012-09-17 二版)

  • 核壳纳米粒子 HR-TEM表征

    请教大家:文献中很多关于核壳粒子的HR-TEM表征:核和壳的明显的单独的晶格条纹。弱弱的问:假设球形核壳纳米粒子(有一层均匀的壳在核表面)---在透射图像中, 其实看到的核并不是单独的核的投影 (外壳是壳的单独投影,这个没有问题)---所以,为何文献中核能清晰的看到单独核的晶格条纹呢?我武断的猜测: 应该壳的晶格条纹对应壳的---核的晶格条纹应该是核和壳共存的晶格条纹。但的确文献看到的就只有核的,不明白谢谢

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制