当前位置: 仪器信息网 > 行业主题 > >

纳米颗粒分析仪

仪器信息网纳米颗粒分析仪专题为您提供2024年最新纳米颗粒分析仪价格报价、厂家品牌的相关信息, 包括纳米颗粒分析仪参数、型号等,不管是国产,还是进口品牌的纳米颗粒分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纳米颗粒分析仪相关的耗材配件、试剂标物,还有纳米颗粒分析仪相关的最新资讯、资料,以及纳米颗粒分析仪相关的解决方案。

纳米颗粒分析仪相关的资讯

  • 马尔文NanoSight NS300纳米颗粒跟踪分析仪促进纳米颗粒表征
    (2014年6月30日,中国上海)作为全球材料表征领域创新企业,英国马尔文仪器公司最新一代纳米颗粒跟踪分析仪NanoSight NS300自面世以来深受好评。该多功能仪器采用杰出的纳米颗粒跟踪分析(Nanoparticle Tracking Analysis,即NTA)技术,配备全新的增强型荧光检测能力,为从事纳米颗粒表征的科研人员提供更加丰富便捷的解决方案。迄今,在全球已有超过700个用户贡献了1000篇以上第三方NanoSight应用文献。  英国马尔文仪器公司始终致力于以国际领先的技术和多元化的产品系列满足快速变化的市场需求。而最新款NanoSight NS300纳米颗粒跟踪分析仪基于出色的纳米颗粒跟踪分析技术,在分辨能力、检测能力、操作便捷性以及纳米颗粒计数分析等方面整合了独特的创新设计,可对宽分布体系纳米颗粒进行快速实时动态检测。其独特的检测能力在蛋白质聚集、药物传输、外泌体和微泡、纳米颗粒毒理、病毒和疫苗等研究领域具有广泛应用。  &diams 超高分辨率  马尔文NanoSight NS300纳米颗粒分析仪所采用的NTA技术具有独特的高分辨率,提供动态纳米颗粒检测技术,能对悬浮液中粒径范围10nm-2000nm范围颗粒进行粒径、散射光强、计数及荧光检测。相较于传统技术,马尔文NanoSight系列产品的检测分辨率提高了1-2倍。同时,由于对大、小颗粒的敏感程度相同,马尔文NanoSight NS300可帮助科研人员轻松区分出100nm、200nm、400nm、600nm混合体系中不同颗粒粒径分布,结合颗粒的散射强度,绘制出粒径、对应数量分布强度和散射强度的三维图谱,清晰区分粒径相同但材质不同的样品。图:NanoSight超高分辨率  &diams 直观可视  马尔文NanoSight NS300所采用的NTA技术利用激光光源照射纳米颗粒悬浮液,配以全黑背景增强信号对比度,用户通过显微镜就能直接清晰地观察到带有散射光颗粒的布朗运动,并及时获得布朗运动下移动颗粒的视频文件,为未来的进一步研究留存第一手资料。  &diams 荧光识别检测  马尔文NanoSight NS300的另一项优势在于其增强型荧光检测技术,对颗粒进行整体分析。在复杂的检测环境体系中,科研人员可通过荧光过滤片选择性地标记特定颗粒,并利用NTA技术单独对这些颗粒进行定向检测和分析,而不受复杂组分溶液环境影响。此外,完全由软件控制的6位滤光轮自动分析多个荧光标记物,从而节省科研人员的宝贵时间,提升工作效率。  &diams 系统高度集成  除将软硬件设备、摄像头及显微镜等多项设备集于一体外,马尔文NanoSight NS300还整合强大的颗粒检测功能与纳米颗粒分析技术,为纳米颗粒表征提供易于使用的可重复平台。在40cm x 25cm的设备主机内集成了超高灵敏度科研级sCMOS光电传感器、温控单元以及一个四种可选波长的激光。样品池和激光模块也是一个整体,便于移动、清洁,适合高通量检测。  英国马尔文仪器中国区总经理秦和义先生谈及马尔文的核心竞争力时说:&ldquo 马尔文始终坚持以用户为中心,脚踏实地不断探索市场、深入了解客户需求,持续将具有革新意义的各项创新技术带到中国,让客户买到的不只是一个硬件,而是一整套解决方案。&rdquo   马尔文和马尔文仪器是马尔文仪器有限公司的注册商标。  ---完---  关于马尔文仪器  马尔文仪器提供材料表征技术和专业知识,使得科学家和工程师们能够了解和控制分散体系的性质,这些体系包括蛋白质和聚合物溶液、微粒和纳米粒子悬浮液和乳液,以及喷雾和气溶胶、工业散装粉末和高浓度浆料等。马尔文的材料表征仪器用于研究、开发和制造的所有阶段,提供帮助加快研究和产品开发、改善和保证产品品质以及优化过程效率的关键信息。  马尔文的产品体现了最新技术创新的动力以及充分利用现有技术的承诺,应用领域从医药和生物医药到化学品、水泥、塑料和聚合物、能源及环境等。  马尔文的产品和系统被用于检测颗粒大小、颗粒形状、Zeta电位、蛋白质电荷、分子量、分子大小和构象、流变性能和化学组分测定。  马尔文仪器公司总部位于英国马尔文,在欧洲、北美、中国、日本和韩国等主要市场都设有分支机构,在印度设有合资企业,拥有遍布全球的经销网络和应用实验中心。  更多信息,请访问www.malvern.com.cn。
  • 代理英国Nanosight可视型纳米颗粒分析仪
    代理英国Nanosight可视型纳米颗粒分析仪
  • HORIBA发布新品纳米颗粒追踪粒径分析仪
    p style="text-align: justify text-indent: 2em "strong仪器信息网讯/strong 近日仪器信息网从HORIBA处获悉,HORIBA新品纳米粒度仪ViewSizer 3000已于2020年正式在中国上市。该产品是一款全新的多光源纳米颗粒追踪粒径分析仪,能同时给出颗粒的粒径分布和数量浓度信息,不仅能测量单分散样品的粒径,也能准确测量多分散性样品和多峰样品技术。该新品研发的技术来源于HORIBA刚刚于2019年收购的美国MANTA仪器公司。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202004/uepic/b3456bab-739e-4784-ac6e-f9ee64da138a.jpg" title="HORIBA发布新品纳米颗粒追踪粒径分析仪.jpg" alt="HORIBA发布新品纳米颗粒追踪粒径分析仪.jpg"//pp style="text-align: center text-indent: 0em "strongViewSizer 3000 多光源纳米颗粒追踪粒径分析仪/strong/pp style="text-align: justify text-indent: 2em "据了解,目前市面上可以进行单颗粒追踪的主要有两种技术,一种是ICP-MS,另外一种就是纳米颗粒跟踪分析技术(NTA),ViewSizer 3000正是一款采用了NTA技术的纳米颗粒追踪粒径分析仪。/pp style="text-align: justify text-indent: 2em "据HORIBA粒度表征应用工程师肖婷介绍,与普通的动态光散射纳米粒度仪相比,ViewSizer 3000具备如下三大优点:/pp style="text-align: justify text-indent: 2em "第一,仪器同时配备三种不同波长的激光光源,因而能够准确测量多分散性样品和多峰样品的粒径。/pp style="text-align: justify text-indent: 2em "第二,测量样品粒径分布的同时,能给出样品的数量浓度信息,并提供颗粒运动的视频,满足用户的可视化需求。/pp style="text-align: justify text-indent: 2em "第三,仪器可配置荧光功能模块,利用此功能可以扣除样品荧光的干扰,也可进行荧光标记,进一步测试各组分颗粒的粒径和数量浓度。/pp style="text-align: justify text-indent: 2em "ViewSizer 3000当前主要目标用户群为高校、研究所用户,肖婷表示,该仪器特别适合做生命科学和纳米材料方向的应用研究。在生命科学方向,ViewSizer 3000的荧光功能模块将发挥很大作用,通过荧光标记能得到各组分的粒径和数量浓度。而在纳米材料领域,该仪器能带来宽粒径分布的样品和多峰样品测量。/pp style="text-align:center"a href="https://www.instrument.com.cn/webinar/meetings/KLDHFIRST/" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202004/uepic/cb5743d2-5345-4ce6-9a26-eab372832a55.jpg" title="640_300.jpg" alt="640_300.jpg"//a/pp style="text-align: justify text-indent: 2em "img style="max-width: 100% max-height: 100% float: left width: 75px height: 110px " src="https://img1.17img.cn/17img/images/202004/uepic/c823118b-54b9-4f5f-b995-34a69862bcfd.jpg" title="微信图片_20200330103948.png" alt="微信图片_20200330103948.png" width="75" height="110" border="0" vspace="0"/想了解ViewSizer 3000更多信息?4月9日-10日,仪器信息网将联合中国颗粒学会举办首届“颗粒研究应用与检测分析”主题网络大会。HORIBA粒度表征应用工程师肖婷也将在4月10日10:00-10:30带来《纳米颗粒追踪粒径分析技术的特点及应用》的精彩报告,重点讲解ViewSizer 3000的更多性能特点和应用方案。欢迎大家报名参会。/pp style="text-align: justify text-indent: 2em "span style="color: rgb(255, 0, 0) "strong免费报名渠道:span style="color: rgb(0, 0, 0) "/span/strongspan style="color: rgb(0, 0, 0) "点击进入/span/spanstrong style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "a href="https://www.instrument.com.cn/webinar/meetings/KLDHFIRST/" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "首届“颗粒研究应用与检测分析”主题网络大会/a官网/span/strong,点击“我要参会”,报名即可。/p
  • 安东帕中国携全新纳米颗粒及Zeta电位分析仪亮相上海CPhI
    第十六届世界制药原料中国展(CPhI China 2016)于2016年6月21至23日在上海新国际博览中心拉开帷幕。展会期间,安东帕中国不仅展出了旋光仪、折光仪、密度计、微量粘度计、流变仪、微波样品制备系统等传统的拳头产品,也将LitesizerTM500纳米颗粒及Zeta电位分析仪这个全新产品带到广大制药领域用户面前。  LitesizerTM500纳米颗粒及Zeta电位分析仪  2016年,安东帕LitesizerTM500纳米颗粒及Zeta电位分析仪全新上市。这是一款用于表征溶液中分散的纳米颗粒以及亚微米颗粒的仪器。它可通过测量动态光散射(DLS)、电泳光散射(ELS)和静态光散射(SLS)来测定颗粒尺寸、zeta 电位和分子量。它采用了先进算法及尖端zeta电位测量专利技术:可连续测量透光率以选择最佳样品测试参数 静态光散射(SLS)测量分子量,快速无损 采用DLS颗粒分析法,可轻松解决在单一悬浮液中不同颗粒尺寸的测量问题 采用新型专利(欧洲专利 2735870)cmPALS技术,zeta电位测量的准确性达到最高,所需时间降到最少 而且其一页式的工作流程,大大减轻了实验室负担。另外,LitesizerTM500的一大亮点是其简单而巧妙的软件。安东帕已创建了可将输入参数、结果和分析集中到单个页面上的一页式工作流程:用户可以在数秒内完成试验设置,只需简单按键即可得出所需的分析结果和报告。  这款全新产品可广泛应用于制药、化工、材料及食品各行业内实验室质量控制、质量控制部门以及其他粒度分析领域。  展会同期,安东帕还在Innolab的主题活动上举办了LitesizerTM500纳米颗粒及Zeta电位分析仪的产品宣讲会,为大家呈现了激光粒度仪的用途、优势、参数以及应用。  宣讲会现场  自2006年起的十年来,安东帕中国致力于为中国制药行业的用户量身定制高质量的产品及服务,以确保药品的质量和可追溯性。上海CPhI展会期间,安东帕提供了全面的药物分析解决方案及组合方案,吸引众多用户参观。  安东帕展位  安东帕参展团队
  • 重庆大学预算783万元采购纳米颗粒跟踪分析仪等仪器设备
    项目编号:CQU-SS-HW-2023-003   项目名称:重庆大学医学公共实验中心实验设备(Ⅱ)采购   预算金额:783.0000000 万元(人民币)   最高限价(如有):729.0000000 万元(人民币)   采购需求:序号产品名称(设备名称)※数量单位备注1细胞能量代谢分析仪1套(核心产品)该设备经批准可以采购进口产品2纳米颗粒跟踪分析仪1套(核心产品)该设备经批准可以采购进口产品3活细胞工作站1套该设备经批准可以采购进口产品4大容量落地式离心机1套该设备经批准可以采购进口产品5大型灭菌器1套该投标产品必须为中国关境内生产,若为进口产品将按无效投标处理。6组合式全温振荡培养箱1套该投标产品必须为中国关境内生产,若为进口产品将按无效投标处理。   技术需求:序号设备名称技术需求1细胞能量代谢分析仪▲1.1平行检测样品量:一次可满足≥20个样品的平行检测;1.2数据采集:可在同一孔同时检测线粒体功能与无氧代谢,即时反应样本生理状态变化;1.3采用超敏感的惰性光学微传感器和非接触式设计,真正实现检测样本零损伤,在最接近样本的真实状态下,测量出反映样本能量代谢情况的动态数据;1.4实时多因子参数检测:同时分析02/H+,得到实时OCR/ECAR值,侦测有氧与无氧代谢途径;1.5可检测项目:基础代谢率、极限呼吸率、呼吸储备能力、质子漏水平、产氧自由基等有害物的情况等参数;1.6探针类型:检测探针为固态荧光探针,两种独立反应底物;※1.7检测器:配有≥20个独立的光电二极管检测器;1.8传感器:传感器为独立于每个孔的固态光纤传感器;※1.9自动加药槽:每个样品孔配有≥3通道自动加药槽,可按需设定加药程序;※1.10可在实验进程中加药,可调的混合系统,气体驱动的药物传递,自动混匀。整合了自动化药物注入系统,实验进程中可定时定量加入≥3种不同药物。2纳米颗粒跟踪分析仪2.1设备需要满足功能要求:2.1.1在主机内集成了高灵敏度传感器,温控单元以及不同波长的激光选择。便于移动、清洁,适合高通量检测;2.1.2采用整体设计,具有荧光增强检测能力。可以对于悬浮体系中的纳米颗粒进行粒径、散射光强、计数、zeta电位和荧光检测。检测能力使其在蛋白质团聚,外泌体、微泡、药物传递等领域具有广泛的应用。还可以利用荧光标定特定颗粒,单独对这些颗粒检测,而不受到复杂环境的影响;※2.1.3必须具备zeta电位测试功能。2.2技术指标:2.2.1粒径检测范围:0.01-2微米;※2.2.2浓度检测范围:106-109粒子/mL;2.2.3具有单个颗粒跟踪功能的激光散射视频技术,自动准直和自动聚焦;※2.2.4激光光源:双激光一体化配置,软件控制激光选择,无需拆卸;※2.2.5激光光源和相机同步移动,可自动测量样品至少10个测量位置达到有效统计点;2.2.6在1分钟内至少可测量样品1000个以上的颗粒,保证样品数据采集的有效性;※2.2.7仪器具备荧光测量功能,不同位置点的测量必须具有快速测试模式,在荧光淬灭前测量到样品10个不同位置的荧光数据;2.2.8光学系统:高灵敏度的CMOS相机,相机速度25fps;※2.2.9测量池必须是石英玻璃测量池,插入式设计,无需拆卸即可自动冲洗;2.2.10激光光源和检测器的位置必须全自动调节,无需人工操作;※2.2.11 Zeta电位测量范围:-400mV—400mV;2.2.12自动提示样品浓度与相机设定的匹配程度;※2.2.13可自动判断数据可靠性,并给出离散原因;2.2.14软件功能:提供布朗运动可视视频,提供平均粒径和分布宽度参数,提供颗粒浓度信息,提供粒径-数量分布和体积分布曲线,提供 Zeta 电位分布,可以在不同粒径范围进行分段计算,提供颗粒分布累积曲线,数据管理:可视频、文本、PDF、单一或叠加输出。3活细胞工作站※3.1系统包括高分辨荧光显微镜成像模块和活细胞培养模块,可通过电脑调用预设实验程序自动进行成像实验。3.2全电动荧光高分辨成像系统:3.2.1研究级全自动倒置荧光显微镜,可具备明场、荧光、相差、彩色明场成像功能;▲3.2.2相差具有立体浮雕效果,兼容塑料底耗材;3.2.3电动载物台,XY行程≥114mm×73mm;▲3.2.4物镜:至少四个,其中高倍物镜为水镜,NA≥1.2,可以自动添加水;3.2.5配有防震台;▲3.2.6配备硬件自适应焦面控制系统,兼容明场和荧光,可实现自动样品寻找和焦面寻找,并且可以在活细胞实验中维持焦平面的稳定;3.2.7机身预留灌流接口,可外置灌流系统;3.2.8配有用于76×26mm玻片、多孔板、35mm培养皿、腔室载玻片的适配器;※3.2.9拥有至少4色激发光,能同时激发DAPI,GFP,RFP,CY5等染料;※3.2.10至少配置4个高灵敏度荧光检测器,并可以4个通道同时成像;※3.2.11配备实时高分辨成像技术,最佳光学分辨率XY≤140nm;※3.2.12分辨率不低于400万像素条件下,同时4色成像速度≥20fps;▲3.2.13 4个荧光检测器QE量子效率:≥45%。※3.3环境控制模块:通过成像软件进行环境控制,温度、CO2控制及湿度控制均可由系统软件实现。3.4电脑工作站与软件系统:▲3.4.1电脑主机一台:处理器:不低于Intel Xeon Gold 5222;内存≥128GB,硬盘≥10TB;独立显卡≥8GB;显示器:≥32寸高对比度广视角液晶显示器,Win10专业版操作系统;含DVD刻录光驱;3.4.2配置UPS不间断电源一台;▲3.4.3软件功能:灵活的实验设计功能,可以针对实验需求灵活设置实验参数和自动化实验流程;多维图像成像功能,控制显微镜进行Time-lapse拍摄、多点拍摄、细胞跟踪、Z轴整合、自动对焦、样品的三维重建;图像处理和分析工具:包括可进行蛋白表达的定量分析、共定位分析、细胞内目标观测物的定量测定、动态示踪、量化参数列表和运动趋势/模式作图和视频制作等;3.4.4仪器可为后续信息化和智能化管理预留接口。4大容量落地式离心机※4.1最高转速不低于:29,000rpm,最大离心力不低于:100,605×g,最大容量≥4,000mL;▲4.2转速控制精度不高于:±50rpm;4.3具备密码保护功能;▲4.4程序保存不低于:99个;▲4.5加速至少可设定档位:9档,减速至少可设定档位:10档;4.6热输出<2.0kw,噪音<62dB;※4.7控制系统:微电脑控制,可简单快捷设定运行条件和运行参数,触摸屏液晶显示界面;4.8驱动系统:能有效降低升降速时间;▲4.9运行监测:实时显示运行曲线图,动态惯量检测功能,提高运行中的安全性;4.10转头识别与锁定:自动识别,自动锁定,具备转头管理功能,提高操作安全性;4.11温度设定范围:-20至+40℃,温度步升±1℃,温度精准度±2℃,最高转速下可保持4℃;※4.12安全系统:门互锁,对位不平衡检测(容忍度5%),超速和超温保护。5大型灭菌器▲5.1执行标准:中国标准GB8599;※5.2基本需求:采用脉动真空灭菌技术,300L≤容积≤400L,提供压力容器质量证明书、竣工图证明;▲5.3设计压力至少:0.25Mpa(-0.1),设计温度至少:139℃;▲5.4设计年限至少:8年(16000次灭菌循环);▲5.5运行时间:85min;※5.6程序最少包含:121℃塑料物品灭菌、134℃金属物品灭菌、134℃织物灭菌、121℃开口容器液体灭菌、121℃固体废弃物灭菌、121℃快速液体程序、BD测试、真空测试、自定义程序;5.7外形尺寸:尺寸1:1215×1880×1190mm;5.8夹套、门板、门档材质:304不锈钢或同类型档次材质;5.9管路:304不锈钢或同类型档次材质卫生级管路,卡箍连接;▲5.10工艺:至少满足手工焊接、无下沉工艺水平;5.11安装方式:地上安装;5.12主体结构:环形加强筋结构,内腔强度和稳定性更高;▲5.13生产厂家至少为:专业灭菌设备生产厂家,国家认定的企业技术中心,通过ISO9001、ISO13485、环境管理体系、职业健康安全管理体系认证,并提供相应证明;※5.14安全性能:压力容器安全联锁装置、超压自动泄放功能、夹套、内室各1个安全阀、漏电过载保护、经过电磁兼容检测。6组合式全温振荡培养箱6.1外形尺寸:一层、二层或三层叠加组合,以最小的占地面积为用户提供最大的使用空间;6.2三维一体的偏三轮驱动,运转平滑、稳定、耐久、可靠;▲6.3具有超温报警功能及异常情况自动断电功能;▲6.4具有断电恢复功能,避免因停电、死机而造成的数据丢失问题;6.5流线型外观,美观大方;内衬采用圆弧角镜面不锈钢设计,便于清洁,不容易滋生细菌、防腐蚀;外壳采用静电喷塑;▲6.6中空钢化玻璃门,方便随时在不开门情况下在各个角度观察箱体内部情况;6.7人性化设计,下两层为下翻式开门,第三层为上翻式开门,摇板可自由抽出,方便装卸摇瓶,每层可独立控制,各层可在不同温度转速下同时运转或根据需要运行一层、两层或三层;▲6.8精选优质进口压缩机、无氟环保制冷剂,噪音低、制冷效果好,确保设备在低温状态下长时间稳定运行;6.9配备滤波器磁环,减少外界和自身对机器稳定性的干扰;6.10人性化设计的开门即停功能,使用更加安全快捷;※6.11具有紫外线灭菌功能;▲6.12产品升级方案:可选配光照系统,光照强度可高达16000LX,高效节能,光效率高,1%—100%步进1%可调(1%、2%、3%—100%)使用寿命超长(可升级多种光源);6.13拥有数据记录功能,每分钟记录一次数据,可记录近三个月的数据,并且可显示温度、速度曲线,方便数据的分析;▲6.14配备高质伺服电机,控制速度精确、高速性能好、稳定性强;6.15特殊的制冷工艺,制冷量可调节,温度控制更加精准;▲6.16独特定时除霜功能,1—89分钟可自由设定,除霜间隔30—600分钟可调,能确保长时间在低温状态下运行时蒸发器不结冰;※6.17 LCD触摸屏,设定温度、转速、时间和实测温度、转速、剩余时间在同一界面显示,不用相互切换界面,观察更直观;6.18操作界面加密锁定功能,杜绝重复操作和人为误操作;可自由设定摇板正转或反转;强制对流的风扇常开或自动;※6.19振荡频率:可到达300rpm;※6.20温控范围:5~60℃;※6.21恒温精度:±0.5℃;※6.22温度均匀度:±0.8℃。   设备配置清单:序号设备及配件名称数量单位1细胞能量代谢分析仪1套1.1细胞能量代谢分析仪主机1台1.2数据处理和控制工作站(内置操作及分析软件一套)1套1.3微孔板套装(每套含6个探针板,10个细胞培养微孔板)2套1.4实时ATP速率测定试剂盒(6包/套)1套1.5细胞线粒体压力测试试剂盒(6包/套)1套2纳米颗粒跟踪分析仪1套2.1纳米颗粒跟踪分析仪主机(包含双激光模块,zeta电位模块和CMOS相机)1台2.2石英测量池1个2.3长通荧光滤光片1套2.4测量分析软件1套2.5标准样品1个2.6控制及数据采集系统1套3活细胞工作站1套3.1全自动活细胞显微成像系统主机,含全套适配器1台3.2采集与分析软件1套3.3计算机工作站1套3.4防震台1个3.5电脑桌2个3.6UPS不间断电源保护1个3.7除湿器2台3.8数据分析用电脑(含免费版软件、刻录光盘)1台3.9共聚焦皿1箱4大容量落地式离心机1套4.1离心机主机1台4.28×50mL定角转头,最高转速≥25,000rpm,最大相对离心力≥75,000×g1个4.34×1000mL定角转头,最高转速≥9,000rpm,最大离心力≥16,000×g1个4.450mL聚丙烯(PP)离心瓶≥50个4.510mL离心瓶≥50个4.61000mL聚碳酸酯(PC)离心瓶≥12个4.7250/500mL聚碳酸酯(PC)离心瓶≥12个4.810mL适配器8个4.9250/500mL适配器4个5大型灭菌器1套5.1大型灭菌器(设备包含压缩气、软化水等配套设备)1套6组合式全温振荡培养箱1套6.1三层组合式全温振荡培养箱1套   合同履行期限:中标人应在采购合同签订后90日内交货,交货后30日完成安装调试。   本项目( 不接受 )联合体投标。   获取招标文件   时间:2023年01月30日 至 2023年02月06日,每天上午9:00至12:00,下午12:00至18:00。(北京时间,法定节假日除外)   地点:采购代理机构领取或在中国政府采购网(http://www.ccgp.gov.cn)或重庆大学政府采购与招投标管理中心网(http://ztbzx.cqu.edu.cn)网上下载   方式:采购代理机构领取或在中国政府采购网(http://www.ccgp.gov.cn)或重庆大学政府采购与招投标管理中心网(http://ztbzx.cqu.edu.cn)网上下载   售价:¥0.0 元,本公告包含的招标文件售价总和   提交投标文件截止时间、开标时间和地点   提交投标文件截止时间:2023年02月20日 09点30分(北京时间)   开标时间:2023年02月20日 09点30分(北京时间)   地点:重庆市公共资源交易中心开标厅(地址:重庆市渝北区青枫北路6号渝兴广场B10栋2层)
  • 新一代FlowCam Nano纳米流式颗粒成像分析仪即将揭开神秘面纱
    成像分析法是分析纳米颗粒粒度和粒形的有效方法。但是技术上是否能够实现,一直是行业内讨论的焦点。比如在该技术下的三大突出问题:对于小光圈的高倍物镜下能否满足足够进光量;相机像素密度低会导致检测结果偏差大,而高像素密度又会由于光线衍射产生颗粒“虚影”,结果失真; 颗粒图像会产生大量数据,如何保证高效计算及数据即时保存。在经过重重挑战后,美国Yokogawa Fluid Imaging Technology公司研发了新一代FlowCam Nano纳米流式颗粒成像分析仪。它使用油浸式显微成像系统巧妙地解决了高倍物镜下进光量的问题,采用工业级专用CMOS相机,保证了在1140x1080高分辨率下仍然完美应对了“虚影”效应,使用了全新的VisualSpread Sheet 5.0和数据库软件提高了计算效率和存储问题。目前,上海硅酸盐研究所和西安交通大学选购了FlowCam Nano作为研究纳米颗粒的粒度和粒形的重要工具。FlowCam Nano也会在纳米材料,生物制药,化药,磨料和墨粉等行业提供巨大价值。大昌华嘉科学仪器部专业提供众多欧美先进分析仪器及设备,产品包括美国YOKOGAWA Fluid Imaging Technologies公司流式颗粒成像分析系统FlowCam 8100、FlowCam Nano、FlowCam Macro、FlowCam 5000C、FlowCam +LO等分析仪器。主要为纳米材料,生物制药,化药,磨料和墨粉等行业的开发及研究带来先进的分析方法和仪器。大昌华嘉给广大中国客户提供售前应用支持和方法开发,售后安装、技术培训、等一站式服务。
  • PMX公司2019 ISEV大会首发——四激光荧光纳米颗粒追踪分析仪 ZetaView QUATT
    德国Particle Metrix(简称PMX) 在2019 ISEV大会上推出F-NTA四激光荧光纳米颗粒追踪分析仪ZetaView QUATT, 一台仪器具有405nm,488nm,520nm 和640nm激光器,为外泌体的荧光标记研究带来了更多的选择. 这也使得 Particle Metrix 公司在生物标志物检测领域展开了新纪元。同时感谢Klinik Essen大学和HansaBioMed的技术合作伙伴QUATT NTA于生命科学领域测试中提供的支持。所见即所测应用:应用:外泌体囊泡病毒纳米颗粒纳米气泡量子点̷.. 重要提示:用户在选择ZetaView系列产品时可选择单激光、双激光和四激光 。以下二维码马上报名,即可获得两个样品免费测样名额!德国Particle Metrix德国Particle Metrix(简称PMX)是一家专业从事生命科学研究的仪器公司. 在生命科学研究领域,PMX公司的ZetaView产品采用了激光光源照射纳米颗粒悬浮液,利用全黑背景可以观察到单个纳米颗粒的布朗运动和电泳现象,实现单个纳米颗粒的跟踪,粒度测量,浓度测量, Zeta电位测量及荧光测量等。自动校准和自动聚焦功能,让用户眼见为实,更加直观人性化。通过对11个不同位置的扫描,来自于数以千计的颗粒的zeta电位和粒径柱状图的结果就可以计算出来。此外,颗粒浓度也可以通过视频计数分析得到。大昌华嘉科学仪器部大昌华嘉科学仪器部作为德国PMX公司在中国的合作伙伴,我们将会为用户提供纳米颗粒跟踪分析技术支持及售后服务。大昌华嘉是一家专注于亚洲地区,在市场拓展服务领域处于领先地位的集团。大昌华嘉于1865年成立,凭借深厚的瑞士传统背景,公司在亚洲开展业务历史悠久,深深植根于亚太地区的社会和企业界。大昌华嘉仪器部(大昌洋行(上海)有限公司)专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。我们的业务逐年增加,市场不断扩大。大昌华嘉公司在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。
  • 首台国产纳米颗粒Zeta电位分析仪由丹东百特和华南师大联合研制成功
    p  /pp style="text-align: center"img style="width: 555px height: 300px " src="http://img1.17img.cn/17img/images/201706/insimg/074ac78d-0ea5-4e88-b269-cd52086effa0.jpg" title="1.jpg" height="300" hspace="0" border="0" vspace="0" width="555"//pp 2017年6月5日,丹东百特研发中心实验室中,一台造型大方厚重的纳米颗粒Zeta电位分析仪样机——BT-Zeta100有条不紊地在试验台上配合着研发工程师进行着一次次 Zeta电位测试,随着测试的进行,一组组Zeta电位的结果展现出良好的重复性和准确性,标志着这台Zeta电位分析仪首次惊艳亮相就有不俗的表现,宣告了首台国产Zeta电位分析仪研制成功。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201706/insimg/560ca0fb-765f-4d3c-93e8-971a04e8215e.jpg" title="2.jpg"//pp  首台国产Zeta电位分析仪的研制成功,是丹东百特与华南师范大学合作的最新成果。早在2014年8月,丹东百特就与华南师范大学签订联合研发Zeta电位分析仪的协议并成立了项目组。两年来,以韩鹏教授为首的华南师范大学Zeta电位项目组,在测试原理、光学系统、信号分析处理等方面做了大量研究工作。以李晓光为首的百特Zeta电位项目组在技术路线、控制系统、仪器结构、软件设计等方面进行了积极的探索,双方密切联系,定期互访,及时将最新的研究成果融合到样机系统当中。经过两年多的联合攻关,攻克了电渗影响、电场分布不均、实时相关信号处理、极性判断等一系列技术难题,终于研制出了具有商业化前景的首台国产Zeta电位分析仪。经过与多种国外同类仪器的对比测试,样机在重复性、准确性和分辨力等主要性能指标上达到国外同类产品先进水平,项目取得了圆满成功。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201706/insimg/96d57911-1569-48d6-870e-e3595621aa44.jpg" style="width: 420px height: 300px " title="3.jpg" height="300" hspace="0" border="0" vspace="0" width="420"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201706/insimg/9abb43a1-65ec-4501-8acd-139e613eaf2b.jpg" style="width: 420px height: 300px " title="4.jpg" height="300" hspace="0" border="0" vspace="0" width="420"//pp  BT-Zeta100型Zeta电位分析仪是基于电泳光散射(ELS)原理测量纳米颗粒材料Zeta电位的,它不仅能测量纳米颗粒的Zeta电位,同时具有测量纳米粒度分布和分子量功能,是一个集粒度、分子量和Zeta电位于一体的高端纳米颗粒分析仪器,能充分满足纳米材料主要物理性能分析,同时符合多项ISO国际标准。/pp  BT-Zeta100采用了自主创新的微流控技术与自适应光子相关技术,保证了仪器的高测量精度和宽测量范围,并申请了多项发明专利。此外,仪器的核心技术还包括小型光源组件、具有独特结构的Zeta电位样品池、高灵敏度光电探测模组、高精度温控系统、光学空间调制模块等。BT-Zeta100是具有完全自主知识产权的产品,它的研制成功,结束了中国纳米颗粒Zeta电位分析仪器完全依靠进口的历史,为中国纳米材料研究、生产与应用提供科学准确经济实用的测试手段,对促进中国纳米科技的发展具有重要意义。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201706/insimg/1e6cc984-0ea7-4aaf-b40e-ff55bdfe2e93.jpg" style="width: 528px height: 300px " title="5 (2).jpg" height="300" hspace="0" border="0" vspace="0" width="528"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201706/insimg/a0208129-00ff-4165-9008-d72a482de047.jpg" style="width: 528px height: 300px " title="6.png" height="300" hspace="0" border="0" vspace="0" width="528"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201706/insimg/2d792810-34a6-41c7-bf2a-c5c8ff3ce1ef.jpg" style="width: 534px height: 300px " title="7.png" height="300" hspace="0" border="0" vspace="0" width="534"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201706/insimg/0a244707-0b27-45e0-9893-05fc8f60928e.jpg" style="width: 528px height: 300px " title="8.png" height="300" hspace="0" border="0" vspace="0" width="528"//pp strong 附:Zeta电位小常识:/strong/pp  1、什么是Zeta电位?测试Zeta电位的意义和作用是什么?/pp  悬浮于液体中的纳米颗粒表面都存在电荷,这些电荷会影响颗粒周围区域的离子分布,因此每个粒子周围都存在双电层,分别是固定层和滑动层,滑动层上的电位为Zeta电位。/pp  Zeta电位的大小反映胶体体系的稳定性趋势。Zeta电位的绝对值越大,悬浮液体系越稳定,悬浮液体系稳定与不稳定的分界线是Zeta电位± 30mv,Zeta电位大于+30mv或小于-30mv的悬浮液体系是稳定的,Zeta电位在+30mv到-30mv是不稳定的。/pp  通过Zeta电位的测试,可以帮助工程师找到阻止颗粒絮凝、保持悬浮液稳定的配方,同样也可以帮助工程师找到促使颗粒絮凝(废水处理),加速颗粒沉淀的方法。/pp style="text-align: center"img style="width: 357px height: 300px " src="http://img1.17img.cn/17img/images/201706/insimg/1ec38feb-e1e0-48b4-a4d0-bcdbd902bbc2.jpg" title="9.jpg" height="300" hspace="0" border="0" vspace="0" width="357"//pp  2、电泳光散射Zeta电位测试原理/pp  电泳光散射Zeta电位测试原理是通过激光多普勒测速技术对颗粒的电泳迁移率进行测试,然后运用所测的电泳迁移率及Henry函数进行计算得到Zeta电位的。当激光光束照射在固定电场作用下产生定向运动的带电粒子时,根据多普勒效应,粒子产生的散射光频率将会有微小的变化。利用光学相干技术,就能够使散射光频率变化转换为光强的波动变化,接着由光强的波动频率得到颗粒的运动速度。一方面,结合固定电场的方向和粒子的运动速度大小,得到粒子的带电极性。另一方面,结合固定电场的大小和粒子的运动速度大小算出粒子在单位电场中的运动速度,即电泳迁移率,再根据Henry函数计算出Zeta电位。/p
  • 2020年纳米颗粒分析市场将达9110万美元
    p  基于技术原理,纳米颗粒分析的市场可以分为7个部分:动态光散射(DLS)、显微镜、纳米颗粒跟踪分析(NTA),激光衍射,x射线衍射(XRD)、共振质量测量以及其他。其中,其他技术包括纳米表面气溶胶检测仪(NSAM)、微分电迁移率分析器(DMA)、扫描电迁移率粒子测定仪(SMPS)和凝结粒子计数器(CPC)。显微镜技术进一步分为透射电子显微镜(TEM)、扫描电镜(SEM)和原子力显微镜(AFM)。/pp  按照分析类型划分,全球纳米颗粒分析市场可以分为粒度分析、粒子浓度分析、zeta电位分析、分子结构分析、颗粒形状分析、分子量分析和流动特性分析。基于终端用户,全球纳米颗粒分析市场也分为四个部分:制药和生物制药公司、学术研究机构、公共和私人研究机构、医疗设备公司。/pp  预计,2020年,全球纳米颗粒分析的市场将达到9110万美元, 2015年到2020年复合年增长率为5.4%。新兴国家政府在医药研发支出方面的增加,对纳米技术研究关注度的增加,纳米颗粒分析技术的持续进步等很多因素都在促进纳米颗粒分析仪器需求的增加。此外,纳米技术在药物开发及药物输送中的应用,医疗产品严格的监管指南和越来越多的会议和事件导致越来越多的人意识到,纳米颗粒分析技术是这个领域中现有市场参与者以及新进入者市场增长机会的关键因素。另一方面,纳米颗粒分析仪器的高成本也是阻碍该市场增长的一个因素。/pp  新兴市场,包括中国、印度、巴西和南非给从事纳米颗粒分析仪器开发和销售的公司提供高增长的潜力。纳米颗粒分析在药品研发过程中的应用越来越多,更多的研究和开发项目外包给亚洲的发展中国家,新研究和培训中心的建立,政府在生命科学研究领域投资的增加等是推动纳米颗粒分析市场在新兴国家增长的关键因素。主要市场参与者,如HORIBA (日本)、Beckman Coulter (美国)、 Shimadzu (日本)等正在与当地供应商进行合作,以扩大在这些新兴国家的分销网络。/pp  截至2014年, Malvern (英国)在全球纳米颗粒分析市场处于领导地位。在过去三年中,该公司通过新产品发布、合作、并购等策略以确保其在该市场的主导地位。此外,HORIBA (日本)、Beckman Coulter (美国、岛津 (日本)、安捷伦 (美国)、Microtrac (美国)、日立 (日本)、JEOL (日本)、 Bruker (美国)、TSI (美国)、Wyatt Technology (美国)也是这个市场的主要参与者。br//p
  • mRNA疫苗递送载体分析技术进展与应用-脂质纳米颗粒
    脂质纳米颗粒(Lipid nanoparticles, LNPs)是一种具有均匀脂质核心的脂质囊泡,因其高包封率和高转染效率等特点,广泛用于核酸等药物的递送,目前 Moderna、CureVac和BioNTech等mRNA 疫苗企业研发的预防新型冠状病毒肺炎(COVID-19)mRNA 疫苗均采用了LNPs递送技术。LNPs 是一种多组分脂质递送系统,通常包括阳离子/可电离脂质、中性磷脂(辅助性脂质)、胆固醇以及聚乙二醇化脂质(PEG-脂质),如图1所示。阳离子/可电离脂质是LNPs系统实现递送功能的关键,由于LNPs带正电,能够吸引带负电的mRNA,并结合在LNPs内部,可以避免被溶酶体降解,提高mRNA在体内的稳定性。LNPs的各种组分的准确含量和配比是脂质纳米颗粒的形成和稳定的重要影响因素,如磷脂和胆固醇能够稳定LNPs结构,聚乙二醇化脂质能够延长LNPs在生物体内的循环半衰期。因此,分析和监测LNPs制备过程的脂质载体是控制LNPs质量的关键,能够保证脂质纳米颗粒的形成并提高其稳定性。由于LNPs的主要四种组成组分的结构中不含明显的紫外吸收基团,在传统的紫外检测器上没有或具有较低的响应信号,因此高效液相色谱-蒸发光散射联用技术(HPLC-ELSD)和拉曼光谱技术(Raman spectra)是LNPs研发和生产中常用的分析技术,本文对这两种常用的脂质纳米颗粒分析技术进行简要介绍。图1. mRNA脂质纳米颗粒示意图1. 高效液相色谱-蒸发光散射联用技术(HPLC-ELSD)1.1 技术原理:高效液相色谱-蒸发光散射联用技术(HPLC-ELSD)将高效液相色谱与蒸发光散射通用检测器联用,其中蒸发光散射检测器(evaporative light scattering detector,ELSD)是20世纪90年代出现的通用型检测器。其工作原理如图2所示,被分析对象经过色谱分离后,随流动相从色谱柱流出,流出液引入雾化器与通入的气体(常为高纯氮,也可是空气)混合后喷雾形成均匀的微小雾滴,经过加热的漂移管,蒸发除去流动相,被分析组分形成气溶胶,然后进入检测室,用强光或激光照射气溶胶,产生光散射,最后使用光电二极管检测散射光。图2. 蒸发散射检测器(ELSD)的部件及原理[3]1.2 技术特点:高效液相色谱-蒸发光散射联用技术(HPLC-ELSD),采用的蒸发光散射检测器能够检测不含发色团的化合物,非常适合紫外检测响应信号不佳的半挥发性及非挥发性化合物的分析,它对各种物质有几乎相同的响应,但其灵敏度通常较低,尤其对于有紫外吸收的组分其灵敏度较紫外检测器约低一个数量级,高效液相色谱-蒸发光散射联用技术较适用于氨基酸、脂肪酸、聚合物、脂质、生物载体以及无紫外吸收的辅料的分析。1.3 分析仪器:第一台ELSD是由澳大利亚的Union Carbide研究实验室的科学家开发,距今已经数十年。目前ELSD通常与液相色谱配套使用,主流液相色谱品牌均可配备。该类设备国内外均有生产,如国内的上海通微ELSD-UM5800Plus蒸发光散射检测器、美国安捷伦1260 II 蒸发光检测器、岛津ELSD-LT III 蒸发光检测器、沃特世2424 蒸发光检测器、美国奥泰(Alltech)蒸发光散射检测器ELSD 6100等。2. 拉曼光谱技术(Raman spectra)2.1 技术原理:拉曼光谱法研究化合物分子受光照射后所产生的非弹性散射-散射光与入射光能级差及化合物振动频率、转动频率间关系。拉曼光谱采用激光作为单色光源,将样品分子激发到某一虚态,随后受激分子弛豫跃迁到一个与基态不同的振动能级,此时,散射辐射的频率将与入射频率不同。这种“非弹性散射”光被称之为拉曼散射,频率之差即为拉曼位移(以 cm-1 单位),实际上等于激发光的波数减去散射辐射的波数,与基态和终态的振动能级差相当。频率不变的散射称为弹性散射,即瑞利散射:如果产生的拉曼散射频率低于入射频率,则称之为斯托克斯散射;反之,则称之为反斯托克斯散射。实际应用中几乎所有的拉曼分析均为测量斯托克斯散射。2.2 技术特点:拉曼光谱技术具有快速、准确、不破坏样品的特点,样品制备简单甚至不需样品制备。谱带信号通常处在可见或近红外光范围,这也意味着谱带信号可以从包封在任何对激光透明的介质(如玻璃、石英或塑料)中或将样品溶于水中获得。拉曼光谱能够单机、联机、现场或在线用于过程分析,可适用于远距离检测。现代拉曼光谱仪使用简单,分析速度快(几秒到几分钟),性能可靠。因此,拉曼光谱与其他分析技术联用比其他光谱联用技术从某种意义上说更加简便,适合对药用辅料,以及脂质纳米颗粒的形态和组成成分的分析[4]。2.3 分析仪器:拉曼光谱仪器在实验室台式/在线和现场便携/手持仪器两个方向上呈现了多元化的发展。实验室仪器追求更高性能,目前常用的实验室拉曼光谱仪主要包括国内卓立汉光Finder微区激光拉曼光谱仪、港东科技LRS-4S显微拉曼光谱仪、奥谱天成 ATR8300自对焦显微拉曼成像光谱仪、日本HORIBA LabRAM HR Evolution高分辨拉曼光谱仪 、LabRAM Soleil 高分辨超灵敏智能拉曼成像仪、英国雷尼绍(Renishaw)inVia Oontor显微拉曼光谱仪、赛默飞DXR 3xi 显微拉曼成像光谱仪等。便携式与手持式小型拉曼光谱仪致力于现场检测,在快速检测方面得到应用,如国内南京简智的SSR-5000便携式拉曼光谱仪、奥谱天成ATR6600手持式拉曼光谱仪、鉴知技术(同方威视) RT6000S手持拉曼光谱仪、美国必达泰克i-Raman Prime高通量便携拉曼光谱仪、美国海洋光学ACCUMAN (SR-510 Pro)便携拉曼光谱仪、美国赛默飞First Defender RM手持拉曼等。3 应用实例分享3.1 采用HPLC-ELSD技术定量7种脂质有研究人员基于HPLC-ELSD技术建立同时定量7种脂质类成分的分析方法[5],包括阳离子脂质CSL3和DODMA、胆固醇Chol、磷脂DSPC和DOPE、亲水性聚合物脂类PolyEtox和DSPE-PEG2000,这7种脂质在高效液相色谱的C18 色谱柱上能够实现良好分离,见图3。通过分析4种不同脂质成分(CSL3/Chol/DSPE-PEG2000/DSPC、CSL3/Chol/PolyEtOx/DSPC和CSL3/Chol/DSPE-PEG2000/DOPE)以及不同脂质比的LNPs配方,评估了HPLC- ELSD方法在脂质定量中的适用性,同时发现LNPs中各类脂质在透析纯化后等比例损失了约40 %,这提示纯化步骤后脂质定量的重要性,该方法可以用于优化LNPs的配方和最终质量控制。图3. HPLC-ELSD方法检测到的7种脂类混合标准溶液的色谱图[5]3.2 采用拉曼光谱技术研究脂质纳米颗粒骨架和空间排列脂质纳米颗粒(LNPs)表面电荷的极性和密度能够影响静脉内给药的免疫清除和细胞摄取,从而决定其递送到靶标的效率,有研究人员采用不同配比的带负电荷脂质的抗坏血酸棕榈酸酯(AsP)和磷脂酰胆碱(HSPC)制备了AsP-PC-LNPs。采用DXR拉曼显微镜在50-3500 cm的位移范围内测定AsP/HSPC不同配比(4%,8%和20% w/w)的拉曼光谱。其中在位移1101cm-1和1063 cm-1处峰的强度比(I1101/I1063)和 1101cm-1和1030 cm-1处峰的强度比(I1101/I1030)均表示脂肪链C-C骨架的紊乱程度。由图4和图5可知,当AsP/HSPC比值分别为4%和8%(w/w)时,与仅含HSPC组无显著差异,而当AsP/HSPC比值增加到20%(w/w)时,两组峰强度均比下降,即过量的AsP增强了AsP-PC水合物中的脂肪链排序。在拉曼位移717cm−1处是C-N 的伸缩振动,随着AsP/HSPC比值逐渐增加,超过8%(w/w)时717cm−1处拉曼位移略有红移。当AsP/HSPC比值继续增加到20%(w/w)时,717cm−1处拉曼位移略微蓝移,结果表明低比例的AsP(≤8%,w/w)使极性的HSPC排列略无序和松散,而过量的AsP使极性的HSPC排列有序,进一步验证了拉曼光谱是研究脂质纳米颗粒骨架和空间排列的有力手段。图4 具有不同AsP比例的AsP-PC-LNPs的拉曼光谱图5 不同AsP比例的AsP-PC-LNPs拉曼光谱I1101/I1063和I1101/I1030的强度比4.小结与展望LNPs在疫苗、核酸等基因治疗等生物技术药物研发方面发挥着重要作用,LNPs中各类脂质配方的组成和配比,影响着疫苗等生物技术药物的稳定性、有效性、安全性。因此选择合适的分析技术,建立可行的分析方法,确保疫苗等生物技术药物中LNPs载体质量与稳定性,具有重要意义。参考文献:[1] Verbeke R, Lentacker I, De Smedt S C, et al. Three decades of messenger RNA vaccine development[J]. Nano Today, 2019, 28: 100766.[2] Karam M, Daoud G. mRNA vaccines: Past, present, future[J]. Asian Journal of Pharmaceutical Sciences, 2022, 17(4): 32.[3] Magnusson L E, Risley D S, Koropchak J A. Aerosol-based detectors for liquid chromatography[J]. Journal of Chromatography A, 2015, 1421: 68-81.[4] Fan M, Andrade G F S, Brolo A G. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry[J]. Analytica chimica acta, 2020, 1097: 1-29.[5] Mousli Y, Brachet M, Chain J L, et al. A rapid and quantitative reversed-phase HPLC-DAD/ELSD method for lipids involved in nanoparticle formulations[J]. Journal of pharmaceutical and biomedical analysis, 2022, 220: 115011.[6] Li L, Wang H, Ye J, Chen Y, et al. Mechanism Study on Nanoparticle Negative Surface Charge Modification by Ascorbyl Palmitate and Its Improvement of Tumor Targeting Ability[J]. Molecules. 2022 27(14):4408.
  • 【新品推荐】ZetaView x30系列纳米颗粒跟踪分析仪隆重登场
    生物纳米颗粒(比如细胞外囊泡、外泌体、病毒或类病毒颗粒)在生命科学和纳米药物研究中的作用越来越重要。纳米颗粒跟踪技术(NTA)可以帮助研究人员检测溶液中颗粒的大小以及浓度,并让研究人员能够亲眼看到他们所测的样品颗粒在溶液中的运动轨迹。2022年5月26日德国ParticleMetrix公司在法国的里昂ISEV2022年会(2022年5月25-29日)上隆重宣布最新一代的ZetaView x30系列产品诞生,除了具有常规的NTA功能外,还新增加了12位荧光检测通道和共定位分析功能,以其更方便的操作和超快的检测速度又将进一步助力研究人员对EV-抗体偶联物的荧光检测。ZetaView x30适用于各类生物纳米颗粒0 x 耗材5 x 更快的切换10 x 更快的清洗12 x 荧光通道∞ x 统计学数据主要特点• 扫描式NTA:无需额外配件,即可自动在样品池内的11个检测位置依次完成测试,并自动评估样品和数据质量;• 直观的软件:红绿信号指示可以帮用户直接判断当前浓度的样品是否可以测试。• 全新的固定式样品池模块设计:进一步增强了仪器稳定性,进一步保障仪器高效稳定地测试。• 功能一体化:可一次性完成样品的粒径、浓度、zeta电位和荧光测试。• 自动校准&自动聚焦:光学部件可通过仪器软件实现自动校准与优化,节省了用户的实验准备时间,完全避免了可能产生的用户主观偏差。• 荧光分析:仪器配备了超灵敏的CMOS相机和更多的荧光滤光片,具有更高的荧光检测灵敏度,进一步增强了仪器的荧光检测与分析能力。• 快速测试:60秒即可分析2000多个样品颗粒。• 无需高成本耗材:除进样所需的注射器之外,无其他耗材。• 易于维护:新的固定式样品池模块使仪器清洗更加简单便捷。• 无需校准:测试方法是客观的,仪器无需再校准多荧光NTA(F-NTA)Particle Metrix提供从单激光到多激光的一系列PMX-X30设备,新增加了12位的荧光检测通道,各设备均可实现不同激光波长之间、散射光模式与荧光模式之间的一键切换。PMX-X30系列设备的固定式样品池模块设计,既进一步增强了仪器的稳定性和测试的可靠性,又进一步简化了仪器清洗过程,提高了测试效率。 新增加的共定位分析功能(C-NTA)ZetaView 配备了高精度的激光器,还可以实现仪器部件的快速切换。这也是它能完成生物标志物共定位检测这一极具挑战性工作的必要条件。例如一种细胞外囊泡,用不同浓度的两种膜染料Cell MaskTM Green和Cell MaskTM Red进行染色,通过ZetaView TWIN的动画视频可以看到不同荧光通道之间的快速切换。主要应用生物纳米颗粒:• 细胞外囊泡• 外泌体• 脂质体&胶束• 蛋白质聚集体• 病毒&类病毒颗粒(VLPs)• 药物载体• 荧光标记的纳米颗粒 低浓度样品:• 纳米气泡• 纳米金属• 微量样品• 量子点德国Particle Metrix是一家专业研发和制造表征胶体特征和生命科学研究的仪器公司。广泛应用于外泌体、病毒颗粒、纳米气泡、微塑料等不同类型的纳米颗粒的检测工作中。尤其是在外泌体研究中,作为国际细胞外囊泡协会(ISEV)要求的外泌体鉴定必备技术之一,ZetaView以极其简单的操作,提供准确的NTA数据,为用户的外泌体研究工作提供高效可靠的技术支持。大昌华嘉科学仪器部作为Particle Metrix公司的中国区代理,我们为用户提供完善的售前、售后服务及全面的技术和应用支持。
  • 中国科学院徐明:基于光谱和质谱成像的纳米单颗粒原位分析研究
    在满足目前各种应用需求的前提下,光谱分析仪器和方法也在不断的创新发展中,不论是分子光谱还是原子光谱都涌现了一系列创新的成果,特别是拉曼光谱、近红外光谱、激光诱导击穿光谱、太赫兹、超快光谱、荧光相关光谱、高光谱等相关技术彰显了极具诱惑的市场活力,引领着行业发展的方向。第十二届光谱网络会议(iCS 2023)中,近50位专家报告充分彰显了光谱创新潜力,纷纷展示了一系列的创新成果:从仪器整机到关键部件;从系统集成到方法开发;从大型科研仪器,到用于现场的便携、手持设备;从实验室检测设备,到过程分析技术……为了更好的展示这些创新成果,同时也进一步加深专家、用户、厂商之间的合作交流,会议主办方特别策划《光谱创新成果“闪耀”iCS2023》网络专题成果展,集中展示本次光谱会凸显的创新成果,包括但不限于仪器、部件、技术、方法、应用等。徐明 研究员中科院生态环境研究中心人物简介:徐明,中国科学院生态环境研究中心,研究员,博士生导师。主要从事重金属(离子态、颗粒态)的健康效应、分子靶点及分析方法研究。获国家基金委优秀青年科学基金、入选中国科学院青年创新促进会。主持并参与国家自然科学基金、科技部973、科技部重点研发计划、中国科学院战略性先导科技专项B等9项。发表论文72篇,申请和授权国家发明专利3项。本次会议中,中科院生态环境研究中心徐明研究员分享了《贵金属纳米颗粒的体内示踪与原位成像谱学方法研究进展》(点击回看》》》)引发行业关注。会后,我们也再次邀请徐明研究员分享其团队在纳米颗粒原位分析的系列研究成果。1、成果简介纳米材料已被广泛应用于工业、农业、食品、医药等领域。例如,银纳米颗粒作为抗菌剂被用于病原微生物的消杀,金纳米颗粒因其优良的光学性能和生物相容性被用于疾病诊断与治疗等等。一旦进入生物体内,纳米颗粒会经历复杂的转化过程,包括溶解、聚集、解聚等。纳米颗粒的体内转化会改变其物理化学特性,进而对纳米颗粒的功能产生影响。然而,目前针对纳米颗粒体内转化、分布的原位分析表征极具挑战。通常使用电子显微镜对组织或细胞内的纳米颗粒进行检测,该种方式成本高,操作难,不易于推广。其它成像技术,如质谱、红外光谱、拉曼光谱、荧光光谱等,成像分辨率难以达到纳米级别,无法实现单颗粒分析。针对上述难题,为实现生物组织和细胞中纳米颗粒转化与分布的精确分析,徐明研究员研究团队近期开展了基于光谱成像和质谱成像的纳米单颗粒原位分析研究。成果一:细胞内金纳米颗粒聚集行为的单颗粒成像分析为观测金纳米颗粒(AuNPs)的细胞内聚集行为,我们基于高光谱暗场显微镜(EHDFM)开发了一种单颗粒成像分析新方法。利用局域表面等离子共振现象(LSPR)产生的散射光谱信号,可对AuNPs的聚集程度进行定性和定量分析,实现生物介质中和细胞内AuNPs的原位单颗粒分析(图一)。该方法具有很好的特异性与灵敏度,相关研究成果近期已发表于Journal of Physical Chemistry B(https://doi.org/10.1021/acs.jpcb.2c08289)。图一成果二:利用间充质干细胞进行肿瘤靶向递送金纳米颗粒的原位成像分析为观测金纳米颗粒(AuNPs)的体内行为与分布特征,其团队整合了激光溅射电感耦合等离子体质谱(LA-ICP-MS)和高光谱暗场显微镜(EHDFM)技术,可实现生物组织中AuNPs的定性与定量成像分析(图二)。针对纳米颗粒肿瘤靶向效率低的问题,我们比较了间充质干细胞(MSC)介导的AuNPs肿瘤靶向与增强渗透滞留效应(EPR)间的递送效率差异,证实MSC介导的肿瘤靶向递送效率比EPR效应提高了2.4~9.3倍,可将更多AuNPs递送至肿瘤坏死核心。相关研究成果近期已发表于ACS Nano(https://doi.org/10.1021/acsnano.2c07295)。图二成果三:新型核壳结构纳米探针成像分析银纳米颗粒的胃肠道转化为观测纳米颗粒的体内转化过程,我们开发了一种以星形金纳米颗粒为内核,外层包覆银壳的球形核壳结构纳米探针(Au@AgNPs)。在体内,一旦该探针的银壳发生溶解等转化,就伴随着元素和光谱信号的变化,进而可通过LA-ICP-MS和EHDFM进行成像分析(图三)。利用该纳米探针,其团队成功示踪了颗粒银在小鼠胃肠道中的转化与吸收过程,揭示了颗粒银和离子银的体内行为与分布特征的差异。相关研究成果近期已发表于Advanced Functional Materials(https://doi.org/10.1002/adfm.202302366)。图三2、产业化意向上述相关的成果正在申请国家专利,后续将发展更多面向应用的技术方法和成像探针,欢迎相关的科研与产业合作。3、课题组未来研究计划后续研究中,徐明研究员研究团队将重点开发针对生物分子和纳米材料的质谱、光谱成像技术。
  • 单颗粒ICP-MS应用:纳米管分析
    随着纳米技术的应用日益频繁,各种纳米材料广泛应用于各类产品当中。碳纳米管(CNT)是使用最广泛的纳米材料之一,其年生产量高达上千吨。其生产过程通常会用到金属催化剂,因此碳纳米管表面可能残留金属纳米粒子。碳纳米管的透射电子显微镜(TEM)图像,深色区域为金属颗粒,附着在无定形石墨材料和长单壁碳纳米管上测量碳纳米管上的金属含量是一项极大的挑战。XRF 最大的缺陷是它测量的是样品的金属总量,而不是单根或若干根碳纳米管上的金属。TEM 可以测量单根碳纳米管上的金属或纳米粒子,但过程十分缓慢冗长,一天之内只能测量少数几个碳纳米管样品。传统的 ICP-OES 和 ICP-MS 分析缺陷是它们需要完全消解碳纳米管,而鉴于其化学惰性,这将是一项巨大的挑战。单颗粒 ICP-MS(SP-ICP-MS),无需样品消解,通过监测瞬态金属信号即可实现金属量的半定量测量。SP-ICP-MS 还可以在一分钟之内分别对上千根碳纳米管进行快速测量,从而预估粒子的个数和含量。本文介绍了单壁碳纳米管(SWCNT)中钇(Y)(一种常用催化剂)的 SP-ICP-MS 测定方法。样品单壁碳纳米管是从溶液(Riverside,CA)中获取的,为粉末状。仪器NexION 2000 ICP-MS 实验结果图2 显示了 Y 的 SP-ICP-MS 信号,其中每个信号峰代表一根单壁碳纳米管的 Y 信号。随着过滤孔径的越来越小,越来越少的碳纳米管可以通过滤膜,因此 Y 信号越来越小。这说明 Y 纳米粒子与碳纳米管结合在一起,当碳纳米管出现时,可以观察到 Y 信号,当碳纳米管被滤除时,Y 信号消失。使用 Syngisitx 操作软件纳米模块,可自动计算分析中的峰数,显示本底脉冲和 Y 所生成脉冲的强度均值和中值。信号积分则反映出了单壁碳纳米管中的金属总量。该数值同使用酸消解后的样品信号,是一致的。结论使用SP-ICP-MS技术,可在无需消解碳纳米管(一个冗长繁琐的过程)的情况下准确量化碳纳米管中的金属杂质。使用金属杂质的含量可以推测单壁碳纳米管的计数浓度,有效拓展了 ICP-MS 在纳米材料领域的应用。想要了解更多详情,请扫描二维码下载完整的应用报告。
  • ICPMS-2030:单纳米颗粒分析一探究竟!
    纳米材料,这一看似离我们很遥远的微小粒子,其实已经出现在我们生活中的方方面面。例如具有广泛杀菌功效的纳米银在医疗卫生、医疗器械、纺织、涂料、日用品等方面有着广泛应用。在给我们生活带来便利的同时,纳米科技可能也是一柄双刃剑,对人类健康和环境存在危害的可能。 目前应用较为广泛的纳米材料多为金属、金属氧化物、以及纳米碳材料。大量的使用必将引起环境中的排放量日益增长,可能会对生态和环境造成破坏。 岛津ICPMS-2030能够对样品中的纳米粒子的成分、粒径大小及颗粒浓度进行分析,助您一探究竟! 仪器配置岛津电感耦合等离子体质谱仪ICPMS-2030系列 单纳米颗粒分析原理样品中的悬浮颗粒在进入ICP离子源时是不连续的,中间会有短暂的间隔,因此每个颗粒产生的离子云也是不连续的。当检测器高速采集数据时颗粒则会产生一个个不连续的脉冲信号。颗粒数量越多,则信号数量越多;颗粒越大,对应的信号强度则越高。对所测得的颗粒信号进行计算和统计,既能得到样品中颗粒的粒径信息。图1. 单纳米颗粒分析流程 样品前处理所有的纳米颗粒标品及试样通过超纯水进行稀释,稀释定容后超声分散20 min后马上进ICP-MS于时间分辨模式下采集信号。 样品分析 使用已知浓度的40 nmAuNPs(金纳米粒子)样品引入到ICPMS-2030中测试单颗粒信号。统计单位时间内测得的信号个数,并计算引入到仪器中的粒子总数。建立颗粒数量浓度同信号个数线性关系能够实现对未知样品中颗粒数量的测定。 表1纳米粒子信号-浓度计统计结果对地表水样品进行加标测试,向地表水中加入20 nm,40 nm,80 nm AuNPs分散液以及40、80 nm AuNPs分散液混合后进行ICPMS-2030测试,绘制样品粒径分布图。 图2.地表水样中不同粒径金纳米粒子(AuNPs)ICPMS粒径测试分布 结 论 使用岛津ICPMS-2030分析测定了地表水中金纳米粒子(AuNPs),具有灵敏度高,前处理简便等特点,能够快速得到样品中纳米材料元素构成,颗粒大小以及颗粒浓度等信息,为纳米材料的分析提供了一个新的思路。 撰稿人:刘子辉
  • 新帕泰克发布纳米粒度分析仪新品NANOPHOX CS
    近日,德国新帕泰克最新发布了一款能够快速分析高浓度浑浊分散体的纳米粒度分析仪NANOPHOX CS。本款产品创新采用了PsB PCCS技术,不仅延续了PCCS技术上消除了高浓度体系检测时的多次散射影响,提高结果真实性、准确性的优点,还通过偏振分离散射技术将信噪比提高到一个新的水平,适用于更高的样品检测浓度,测试更快、重复性更高。基于动态光散射0.5-10,000 nm 纳米粒度分析仪动态光散射(DLS)基本原理由于分子的热运动,使得颗粒与溶剂分子产生碰撞并在溶液中做无规则的布朗运动;大颗粒运动慢,小颗粒运动快。动态光散射(DLS)仪器的实现就是利用颗粒的这种运动现象,将入射光照射到待测溶液中,随后与颗粒发生散射作用,再由探测器在一定角度上收集散射光光强信号。散射光光强随着颗粒的布朗运动发生波动,分析这些散射强度随时间的波动可确定颗粒的扩散系数,从而利用斯托克斯-爱因斯坦方程进行进一步分析,获得被检纳米溶液的粒度大小和分布。PCS与PCCS技术传统DLS仪器采用光子相关光谱(PCS)技术,无法避免高浓度测试下多重散射带来的结果偏差问题,往往需要大量稀释,因此样品准备工作往往非常耗时且容易出错,同时稀释也会导致样品的粒度分布和稳定性发生变化。光子交叉相关光谱(PCCS)技术采用双光束设计,通过相关处理获得单散射信号,从而提高了高浓度检测的准确性。交叉相关技术的应用允许了不受多重散射影响的粒度分析。通过测量不同浓度系列的100nm聚苯乙烯标准品悬浮液,我们可以直观地比较PCS与PCCS在可分析样品浓度上的差别:上图可见,PCS需要大量稀释后才能得到可靠的粒度结果,而PCCS在样品浓度较高时就可获得正确的结果。PsB PCCS技术在光子交叉相关光谱(PCCS)技术的基础上,NANOPHOX CS创新设计的偏振分离后向散射PCCS技术(PsB PCCS),实现了更高浓度以及更快速的纳米样品分析。在这项强大的技术中,垂直和平行的两束偏振激光束照射在同一个测量体积上,随后散射信号分别由对应的两个探测器接收,通过互相关处理获得粒度大小信息。偏振分离后向散射PCCS技术提供了一个新的信号质量水平,增强被测颗粒的单散射信号,显著提高信噪比,从而获得更加准确和重复的分析结果。PsB PCCS帮助NANOPHOX CS实现高于PCCS技术100倍以上的浓度检测, 同时测试时间缩短10倍以上,让高浓度样品在原始状态下直接进行分析成为可能,为高浓度体系的研究提供科学依据。高浓度纳米激光粒度仪NANOPHOX CS应用案例——油墨面对油墨分析,挑战不仅来自样品的高不透光性,还来自对聚集体的高分辨率,正确的粒度分析结果有助于油墨质量与稳定性的确认:NANOPHOX CS适合测量亚微米到纳米范围内油墨中颜料颗粒的大小: ● 原液检测,避免稀释可能导致的油墨变化或引入杂质等 ● 缩短分析时间,无需样品制备过程,轻松检测 ● 智能软件操作,全自动化参数和可测量性检查 ● 多峰敏感,区分原生颜料产品与聚集体总结分析结果的准确性与科学性是研究、制造的基础,高浓度纳米体系保持原始状态的分析显然更具意义。NANOPHOX CS的上市,将进一步助力纳米产品的研究、开发与质量控制。
  • 岛津携纳米粒径分析装置IG-1000参加2010中国颗粒学会盛会
    2010中国颗粒学会盛会于8月15日-18日在西安举行,这是国内颗粒分析行业最重要的学术会议,颗粒分析专家和年轻学者汇聚一堂,交流各自学术研究成果。作为分析仪器界最大供应商之一,颗粒分析仪器的知名专业生产厂商,岛津公司盛装出席,展出了岛津公司最新的纳米粒径分析装置IG-1000。会议上还通过报告的形式将岛津公司颗粒分析的最新技术和应用进展与与会专家学者进行了分享汇报。用户在岛津展台前就颗粒分析技术问题进行交流 此次会议上岛津的单纳米分析装置IG-1000备受关注。IG方法(Induced Grating method)是岛津公司开发的独一无二的纳米粒径测定技术,为此IG-1000获得了2009 Pittcon大奖,这是全球分析仪器界对于岛津公司先进粒度分析技术的充分肯定。 岛津公司纳米分析技术专家安国玉经理向与会的各位专家学者详细介绍了岛津IG-1000在纳米分析行业的最新应用以及IG-1000的测定优势所在。与目前采用散射光的动态光散射仪器(DLS)方法相比较, 优势明显。测定范围最低到0.5nm,在单一纳米颗粒领域可以获得十分良好的信噪比(S/N),灵敏度也非常高。即便样品中含有少量的粗大粒子时对测定也没有影响,分布广的样品可以得到正确的结果,克服了以往DLS产品耐污染性差的缺点。IG-1000不使用散射光,因此不受物理参数的限制,不要求输入折射率因子(refractive index)作为测量条件。IG-1000测定结果可以与其他纳米粒子测定手段如TEM和SEM等所得结果吻合。IG-1000的方便可靠之处还在于,可利用原始数据(衍射光强度对时间的变化)来进行测定结果的可靠性验证。 岛津公司纳米分析专家安国玉经理在进行IG-1000的报告 此次会议上岛津公司粒度分析仪器应用工程师冯旭先生也就其在卫生陶瓷洁具分析中的应用方法开发结果与各位进行了分享。卫生陶瓷洁具行业涉及到多种粉体原料的分析测试,粉体材料的粒径会影响到最终产品的外观美观度和耐用度,因为粉体原料的粒径分析至关重要,所以岛津公司近期就如何使用粒度分析仪器得到准确的结果进行了研究并与颗粒分析工作者进行分享。 岛津公司粒度分析仪器应用工程师冯旭先生在作报告 岛津公司粒度测定装置种类齐全,单一纳米粒径的新产品IG-1000可以与岛津其他多种型号的激光粒度仪联合使用,实现了从纳米到微米范围的可靠测定。
  • 用单粒子ICP-MS对废水中的银纳米颗粒的分析测量
    “纳米银”是“银纳米颗粒”的简称或俗称,指由银原子组成的颗粒,其粒径通常在1~100nm范围。银材料表面具有抑菌性质早已为人熟知,其机理是位于材料表面的银原子可以被环境中的氧气缓慢氧化,释放出游离的银离子(Ag+),这些银离子通过与细菌壁上巯基结合,阻断细菌的呼吸链,最终杀死附着在材料表面的细菌。由于纳米颗粒的小尺寸效应和表面效应,随着颗粒尺寸的减小,纳米银的表面原子数与其内部原子数的比例急速升高,最终导致其银离子的释放速率显著增高,杀菌效果更加显著。利用纳米银抑菌特性的各种产品,包括纺织品、化妆品、药品等,以及其他工业产品,越来越多的研发并被投入使用。这些纳米银最终将会进入到环境中,对生态环境和生物健康产生影响。快速地检测和表征在各种不同的环境基体下的纳米粒子的技术手段因此显得极为必要,而珀金埃尔默公司的单颗粒ICP-MS技术则可以很好的应对这项挑战。本实验带您了解不同的废水中,单颗粒ICP-MS测定纳米银的能力。样品水样:是从加拿大魁北克省蒙特利尔附近的污水处理厂抽取。废水:是经过污水处理厂最终处理后排放到河里的废水,在二级沉降池后收集。混合溶液:经过生物处理后离开曝气池,到达二级沉降池处理悬浮物和沉积物的废水,从二级曝气池收集。海藻酸盐:一种在废水中可以检测到并由废水中溶解性有机碳组成的ppm级多糖。海藻酸盐溶液被用作于比较废水样品的一个已知的控制和替代物。用去离子水溶解从褐藻提取的海藻酸钠(Sigma-Aldrich, St. Louis, Missouri, USA)配制成浓度为6ppm的海藻酸盐溶液,并震荡一个小时。实验平均粒径为67.8±7.6nm的用PVP包裹的Ag ENPs标准品(用TEM定值,nanoComposix™ Inc., San Diego, California, USA),加入10mL到所有样品中,使浓度为10ppb(5,000,000粒/mL)。样品用去离子水稀释10-1000倍,测试前超声5分钟。所有样品一式三份。使用PerkinElmer NexION 300D/350D ICP-MS进行分析,采用SP-ICP-MS模式,在Syngistix™ 软件纳米分析模块下进行。实验参数如表1所示。实验结果图1显示了0.1ppb(50,000粒/mL)Ag ENPs标准品的粒径分布,相当于66.1±0.1nm的平均粒径,浓度为52,302±2102粒/mL。对粒径的测试结果和TEM定值的一致性表明海藻酸盐基并不影响测量精度。图1:在6ppm海藻酸盐溶液中的Ag的粒径分布在确定海藻酸盐溶液技术的准确度的基础上,排放废水和混合溶液样品进行下一步的测量。图2和图3显示了废水和混合溶液各自的粒径分布。分析前样品稀释100倍,表2显示了粒径大小和颗粒浓度的测试结果。另外,平均粒径与证书标称值一致,颗粒浓度接近计算值,表明没有废水基体会影响测量结果。这些结果表明,可以准确测量在废水样品中的Ag ENPs。图2:稀释100倍废水中Ag的粒径分布图3:稀释100倍的混合溶液中Ag的粒径分布结论实验证明SP-ICP-MS具有准确测试三种不同类型废水样品中的银纳米粒子的能力。虽然废水基体很复杂,但是它们不会抑制SP-ICP-MS准确测量粒径和纳米粒子浓度的能力。想要了解更多详情,请扫描二维码下载完整的应用报告。
  • 低电压下纳米颗粒的能谱EDS元素分析方案
    低电压下纳米颗粒的能谱EDS元素分析方案传统的能谱EDS分析通常要求较大的工作距离和较高的电压,而利用扫描电镜对样品进行图像观察时,可能会根据观察目的来选择更短的工作距离及更小的加速电压。 日本钢铁工程控股公司佐藤博士对钢中细小夹杂物的分析工作很好地展示了不同扫描电镜SEM成像条件对电子图像的影响。图1所示为2.25Cr-1 Mo钢在不同加速电压及工作距离下所观测到的不同碳化物的衬度。图1中的i,ii,iii箭头所指(i代表M23C6,ii代表M6C,iii代表AlN)及圆圈内的位置(M2C)是不同种类的碳化物,总体而言,随着电压的降低和工作距离的缩短表面的碳化物逐渐显现其清晰的形貌及分布位置。 那么,EDS是否也可以去表征这些表面的结构呢? 传统能谱EDS分析需要在高电压、长工作距离下进行,为了获得好的电子图像而选择的工作条件(低电压、短工作距离)对于EDS采集来说就不甚友好,通常接收到的信号过低,传统能谱几乎采集不到过多有效的信息。牛津仪器Ultim Extreme采用了不同于传统EDS的设计,将接收特征X-Ray光子信号的晶体大幅前移使之更加靠近样品,因而大大提高了信号量;Ultim Extreme的几何设计也有利于在短工作距离下的EDS分析。图2所示为传统EDS及Ultim Extreme与电子束和样品的相对几何关系的示意图,Ultim Extreme的WD和DD(探测器至样品的距离)都更短。此外,Ultim Extreme采用了无窗设计,大幅提升了低能特征X-Ray的检测率。综合以上特性,牛津仪器Ultim Extreme对低电压、短工作距离下的EDS采集效率及效果有了显著的提升。 图3所示为一离子抛光后的样品的电子图像(左)及元素分布图(右),工作电压为3kV,工作距离为4mm,元素分布图使用牛津仪器Ultim Extreme采集。从右侧的元素分布图可以轻易区分出红色的基底(不锈钢)和至少3种第二相,它们分别为粉红色的富Ni相,绿色的富Cr相及蓝色的富Mo相。在左侧的电子图像中,由于抛光的缘故,富Cr相并不清晰,EDS可以帮助快速定位、区分不同的第二相,提供形貌之外的元素信息。 在实际样品分析中,除了参数设置及电镜和EDS探头的性能之外,样品的表面状态和样品漂移也会影响低电压下能谱元素分析的结果。 1. 表面的碳(C)沉积 样品的积碳效应在低电压下尤为明显,表面沉积的无定型碳或碳氢化合物会对样品的特征X光子有强烈的吸收效应,进而影响EDS效果。通过等离子清洗可减弱样品表面的C沉积现象,进而改善EDS分析的效果。 图4所示为对样品进行等离子清洗前后经过相同电压相同剂量电子辐照后的表面状态。经过等离子清洗后的样品(右图)经过电子辐照C沉积明显减少,此时进行低电压EDS分析将更有利于Ultim Extreme能谱仪接收低能端光子信号,改善结果。 2. 样品漂移 样品漂移会造成细微结构展宽甚至畸变,对于含量很少或者尺寸很小的结构也可能因为样品的漂移而不能检出或检出结果与真实结构偏差较大。通常引起样品漂移的原因及解决方案如下: 碳导电胶坍塌所引起的物理漂移 常用的导电胶带内有大量气孔,在真空中这些气孔坍塌胶带发生变化,粘在其上的样品也会跟着移动。使用液体碳浆可解决此类问题。图5所示为10kV下含Bi粉末撒在碳胶带上和用液体碳浆进行固定的EDS分析结果,结果表明,即使是导电的大尺寸样品,使用C胶带进行固定(图5ab)也会发生颗粒的形状变化或者展宽等,而固化后的C浆(图5cd)则具有很高的稳定性,EDS元素面分布结果与电子图像完全匹配(碳浆选购网站www.51haocai.cn)。 样品导电性较差导致放电 使用低电压或低束流使样品表面达到电中性即可解决部分样品的放电漂移现象。但有的不导电样品难以通过此方法完全消除放电,此时可选择表面喷碳来解决。高倍下机台的稳定性 此类问题无法根除,只能通过跟踪样品的漂移来解决。牛津仪器AZtecLive能谱分析软件中提供了多种样品漂移矫正(Autolock)的模式来进行样品跟踪,以期获得理想的分析结果,如图6所示,高倍采集时,使用Autolock与否对颗粒物识别影响巨大。 图6. 高倍下采集EDS时,不使用AutoLock(左)和使用AutoLock(右)的比较 总结 通过扫描电镜及能谱仪,对10nm左右的纳米颗粒进行EDS分析时,推荐在低加速电压并配合牛津仪器大面积甚至无窗型Extreme的能谱采集,同时需要样品稳定性高并配合AutoLock功能,可以获得更好的空间分辨率结果。
  • 赛多利斯携手SPARTA Biodiscovery共建新型纳米颗粒分析平台
    仪器信息网讯 根据赛多利斯官方最新消息,生命科学集团赛多利斯与英国初创企业SPARTA Biodiscovery就SPARTA分析平台达成合作意向,该平台致力于加快生物制药所需纳米颗粒的研发、生产和质量控制。纳米颗粒是一种小型聚合物或脂质胶囊,可作为载体将活性制剂递送至靶细胞。作为合作的一部分,赛多利斯将通过旗下投资部门Sartorius Ventures投资350万英镑,获持SPARTA Biodiscovery的少数股份。赛多利斯企业研究部负责人兼首席技术官Oscar-Werner Reif教授表示:“SPARTA平台有助于客户在早期阶段优化纳米颗粒设计,甚至在候选药物进入临床之前。通过双方合作,我们将提供更多产品商业化和应用领域的专业知识,快速实现从原型开发到上市销售。”SPARTA Biodiscovery首席执行官兼联合创始人Jelle Penders博士表示:“新疗法进入临床应用所面临的挑战往往不是开发新的活性药剂,而是如何通过纳米颗粒等方式将活性药剂安全、可靠地递送进体内。通过分析纳米制剂的成分,我们发现其在研发、生产和质量控制方面的需求尚未得到满足。与赛多利斯携手合作将加快上市步伐,让这项技术更快为客户服务。”SPARTA Biodiscovery团队曾隶属于帝国理工学院,在此之前,该团队在联合创始人兼英国皇家学会院士、英国皇家工程院院士Molly Stevens教授的研究团队中开发出了核心技术和平台原型。SPARTA(Single Particle Automated Raman Trapping Analysis )技术利用光谱快速、自动、高通量地分析单个纳米颗粒群,有助于加速纳米颗粒的开发并优化生产过程中的质量控制。关于赛多利斯赛多利斯集团是生命科学研究和生物制药行业的领先国际合作伙伴。该集团的实验室产品与服务板块提供创新型实验室仪器和耗材,致力于满足制药和生物制药公司以及学术研究机构旗下科研和质量控制实验室的需求。生物工艺解决方案板块推出了广泛的产品组合,专注于一次性解决方案,帮助客户安全高效地制造生物技术药物和疫苗。集团总部位于德国哥廷根,拥有约60个制造和销售基地遍布全球。集团自身业务增长显著,并通过不断收购互补性技术以扩展其产品组合。2022财年集团销售收入约为42亿欧元。截至2022年底,约16,000名员工为全球客户提供服务。
  • LUM新品发布 - LUMiSpoc 颗粒技术仪@纳米级
    作为全球先进的科学仪器供应商之一,德国LUM自创立之初就秉着持续开拓创新精神,用科学技术为社会做贡献,公司依托创始人Lerche教授在流体力学、流变学及胶体领域的知识与经验,研发了STEP-Technology工艺,为不同产品的分析表征提供了技术平台,致力于为化工,材料,食品,制药等不同领域提供分散体稳定性分析及颗粒表征等应用分析。公司产品不断升级迭代,为用户和市场提供与时俱进的产品。2023年8月18日,LUM与上海奥法美嘉共同举办了一场纳米制剂颗粒控制与稳定性解决方案的研讨会。通过此次平台活动,德国LUM公司的颗粒计数仪LUMiSpoc首次在中国亮相,会上,LUM的创始人Dr.Lerche和LUM中国区总经理邓世宁博士为仪器揭幕。紧接着,Dr.Lerche对LUMiSpoc颗粒计数和粒度表征原理以及其在制药行业的应用进行经验分享.“LUMiSpoc-前向和侧向单颗粒散射分析仪”荣获柏林勃兰登堡创新奖提名。LUMiSpoc是一款高端的单颗粒分析系统,类似于流式细胞仪,它以绝佳的分辨率和动态范围测量悬浊液和乳浊液中纳米和微米颗粒的粒度分布和颗粒浓度。此项目由柏林LUM有限公司与Physikalisch Technisch Bundesanstalt(PTB)联合开发。此款仪器基于单颗粒光散射技术SPLS Technology (Single-Particle-Light-Scattering), 通过集成微光学的创新激光模块可产生微小的非球形焦点,颗粒通过微流体分离,并一个个地通过检测点,不同方向的散射光通过光学元件聚焦在高传感器上。通过专门开发的云服务以及基于网页版的SEPView软件,实时检测测量数据,分析存储的数据。第一批设备已经交付给欧盟的一家全球知名的制药公司,用于新冠疫苗的研发;以及两家著名的国家学术机构。
  • 纳米粒度分析仪的原理及应用
    梓梦科技纳米粒度仪是应用很广泛的一种科学仪器,使用多角度动态光散射技术测量颗粒粒度分布 。动态光散射(DLS)法原理 :当激光照射到分散于液体介质中的微小颗粒时,由于颗粒的布朗 运动引起散射光的频率偏移,导致散射光信号随时间发生动态变化,该变化的大小与颗粒的布朗运动速度有关,而颗粒的布朗运动速度又取决于颗粒粒径的大小,颗粒大布朗运动速度低,反之颗粒小布朗运动速度高,因此动态光散射技术是分析样品颗粒的散射光强随时间的涨落规律,使用光子探测器在固定的角度采集散射光,通过相关器进行自相关运算得到相关函数,再经过数学反演获得颗粒粒径信息。纳米粒度仪的应用领域: 纳米材料:用于研究纳米金属氧化物、纳米金属粉、纳米陶瓷材料的粒度对材料性能的影响。 生物医药:分析蛋白质、DNA、RNA、病毒,以及各种抗原抗体的粒度。 精细化工: 用于寻找纳米催化剂的最佳粒度分布,以降低化学反应温度,提高反应速度。 油漆涂料:用于测量油漆、涂料、硅胶、聚合物胶乳、颜料、 油墨、水/油乳液、调色剂、化妆品等材料中纳米颗粒物的粒径。 食品药品:药物表面包覆纳米微粒可使其高效缓释,并可以制成靶向药物,可用来测量包覆物粒度的大小,以便更好地发挥药物的疗效。 航空航天 纳米金属粉添加到火箭固体推进剂中,可以显著改进推进剂的燃烧性能,可用于研究金属粉的最佳粒度分布。 国防科技:纳米材料增加电磁能转化为热能的效率,从而提高对电磁波的吸收性能,可以制成电磁波吸波材料。不同粒径纳米材料具有不同的光学特性,可用于研究吸波材料的性能。
  • 单细胞分析的丝滑IMAX体验: icpTOF 以多元素指纹量化海藻细胞与纳米颗粒间相互作用为例
    Hendriks L., Skjolding L. M., Robert T., 确定细胞中金属元素的生物利用率的传统方法一般需对细胞进行酸消解,然后利用溶液进样电感耦合等离子体质谱(ICP-MS)进行后续分析。这种方法的缺点是需要大量的细胞,并且只能为给定的细胞群体提供平均值1。众所周知,千人千面,不同群体以及同群体细胞的特异性在文献中也多有报道2。基于这个大前提,使用特定的分析方法对不同群或同群细胞进行逐序单个分析,获取与单个细胞特异性有关的大数据就尤其重要(见图1)。本文中介绍的单细胞-电感耦合等离子体质谱法(sc-ICP-MS)与之前介绍过的单颗粒ICP-MS(sp-ICP-MS)基本类似(微信公共号:粒粒皆信息:什么是单颗粒物ICP-MS质谱分析法?)。事实上,上述两种技术都依赖于相同的基本原理和icpTOF瞬时事件全谱多元素测量能力,从而可以获得由单一个体产生的微秒时间区间内的瞬时信号,例如单个纳米颗粒(NPs)或单个细胞。(译者注:这等同在拍一段有很多快速武术对打的电影场景,需要使用高速摄像机来捕捉每一个武打动作细节和变化,同时也不漏过颜色,声音等关键信息,这样才能最终呈现出高清120Hz的作品。) 单颗粒ICP-MS方法的基础概念和硬件构架3源于2003年Degueldre等发表的第一篇论文。在过去的二十年间,通过进样系统,数据采集硬件和数据处理专用软件的进一步发展和商业化,不断增加的科研文献见证了该技术领域的迅速成熟。在单颗粒ICP-MS上投入的研究和应用开发同样的也使单细胞ICP-MS分析受益。 在单细胞ICP-MS中,细胞悬浮液经超声波雾化后形成的液滴被带入ICP-MS等离子体中。细胞在等离子体中依次被汽化、原子化和最终离子化。每个细胞产生一个含有多种元素的离子云,在仪器上被检测为高于背景的时长几百微秒的单个信号峰。与单颗粒ICP-MS类似,记录到的尖峰频率与细胞数量浓度成正比,这些尖峰的强度则与细胞中该元素质量有关。这种技术已经成功的应用在测定海藻中的镁元素含量4,并进一步用于纳米颗粒物毒理学研究中评估细胞对纳米颗粒物的摄取情况5,6,7。 虽然单细胞ICP-MS的测量方法看起来很简单,但要获得真实可靠的数据,实施起来需要注重的细节很多。除了需要额外注意来自培养基的可能高背景信号和细胞在样品导入系统中的潜在破损,在单细胞研究中反复报道的一个主要瓶颈是细胞进样装置的低运输效率,这是因为与纳米颗粒物相比,细胞的尺寸更大,在传输过程中也更容易损失。事实上,传统的系统通常包括一个旋风式雾化室,是专为引入较小的溶液液滴而设计的,导致细胞传输效率低于10%。而用于单细胞导入的定制系统,包括改进的雾化器或全消耗喷雾室8,9,以及其他创新设计10,11,经过多年反复测试,已被验证可以高效传输单细胞进入ICP-MS。 另一个瓶颈在于质谱仪器质量分析器的性能:传统的ICP-MS仪器具有单四极杆或扇形场质量分析器,在进行单细胞分析时最多只能同时检测一到两种元素信息(只能拍黑白影片)。而在常见的单颗粒分析场景中,比如在纳米毒理学研究中,在试图量化纳米颗粒物(特征金属元素)和细胞(蛋白固有元素)的关联时,需要同时获得单细胞事件内多种元素浓度信息。为了获得微秒级事件信息全貌,快速且广谱分析的质量分析器,如飞行时间质量分析器等高精尖‘摄影器材’是必不可少的(译者注:例如,等同于可提供高清彩色120Hz影片给观众更加真实的IMAX观影体验)。图1:a)在对细胞进行酸消解后,通过传统的雾化法将溶液样品引入ICP-MS,并记录仪器获得的稳态信号。这种整体分析法对初始样品中所包含的数千个细胞获得一个平均值。然而这种实验是基于细胞是均匀的假设,而忽略了细胞具有多样性的事实。因此,少数细胞群(用绿色和紫色表示),在元素组成上虽与主类细胞有差异,却没有被体现在结果中,这完美的诠释了辛普森悖论。b)在单细胞ICP-MS方法中,将细胞悬浮液稀释后,在单位时间内仅有一个细胞个体被引入ICP-MS等离子体。每个细胞产生一个独立的离子云,作为信号峰被ICP-MS仪器记录。这种方法允许检测每一个单独的细胞,从而保证了细胞特异性信息的无损获取和保存。简单来说,在单细胞ICP-MS中,细胞是以个为单位进行分析的,可以根据它们不同的分析物含量识别出不同的群体,而不是仅仅产生一个平均值。icpTOF飞行时间质谱法 在飞行时间质谱法(TOF-MS)中,其基本原理是根据离子到达检测器前通过固定长度的飞行管的飞行时间来精确分辨离子。离子束在脉冲加速电压后具有相同的动能,但轻的离子会比重的离子获得更高的速率,进而更早到达检测器。测量所有离子的陆续到达时间可以得到一个连续时间谱,经过简单的校准和换算后可以得到一张全质谱谱图(一般6-280 Th)。TOF质量分析仪的主要优点是:对分析的元素及同位素的数量没有限制,而且全谱数据采集速度快(通常几十微秒就可以获得一张全元素谱图)。这样的快速全谱数据采集能力在处理单一实体(如单细胞)检测时尤其重要,因为单细胞产生的瞬时事件长度很短,一般在200-500微秒区间。 飞行时间技术在单细胞分析领域并不是一个新概念,最初是由Bandura在2009年提出的,其原型机12用于单个细胞的时间分辨分析13,从而为众所周知的 "质谱流式 "领域打开了大门。这项应用使用稳定的稀土金属同位素来标记细胞,从而允许通过其金属标记物来检测相应细胞14。除了展现了生物研究和药物筛选应用中的巨大潜力,质谱流式也被用于检测细菌细胞中的银纳米颗粒15。然而,由于质量检测范围有限(80 Da)和涉及染色的样品制备程序,质谱流式细胞技术无法检测许多固有元素。 与质谱流式不同的,如图2a) 所示的ICP-TOF (TOFWERK AG, 瑞士) 可以测量从质荷比6到280的全谱图16,从而可以覆盖轻质元素,如Na, Mg, P, S, K, Ca, Mn, Fe, Cu, Zn等。这些元素是活细胞的固有元素,它们的分布(也被称为细胞离子组17)可以作为细胞发育状态的指标18。例如,磷存在于核酸(DNA和RNA)中,也是ATP、CTP、GTP和UTP等能量化合物的重要成分。钠和钾在电信号的传输中起作用,而锌被不同的生物过程中的多种酶用作催化剂。由于ICP-TOF-MS的同时多元素检测能力,可以在多种元素的相关分析基础上进行指纹识别19。如图2b) 所示,镁、磷、锰、铁、铜和锌被鉴定为被分析藻类的本征指纹元素。不需要标记或染色,即可依据细胞的 "天然 "元素指纹来进行单细胞分析20,21。通过测量特定细胞类型的金属微量元素,则可以获得更细致的指纹信息。例如,海藻细胞富含镁等金属微量元素,镁是叶绿素的核心组成部分,对光合作用至关重要。因此,金属微量元素的组成可以作为一种独特的指纹来明确识别不同的细胞种类。通过测量单细胞的金属元素组分,可更好地了解由金属蛋白和金属酶调节的基本生物过程,从而解密细胞生命周期不同状态22。尽管细胞的生物化学并不完全反映在其离子组上,但通过监测其金属含量的变化,可以确定地获得对细胞状况和生物过程的更深入了解。 通过使用TOF质量分析仪作为检测器,可以动态系统地获得完整的质谱数据,从而可以对发现特定实体本身及其所处环境进行连续或高通量表征。因此在纳米毒理学背景下,人们可以很容易地确定纳米颗粒物是否与细胞相关联。图2:a) icpTOF仪器(TOFWERK AG, Thun, Switzerland)的示意图:在iCAP Q(Thermo Scientific, Bremen, Germany)的框架上搭配一套高分辨率飞行时间质量分析器。因此,ICP-TOF受益于与iCAP Q相同的ICP离子源、离子光学、碰撞/反应池技术和样品引入设备。b) 用48 µ s时间分辩率采集的淡水藻类细胞raphidocelis subcapitata的瞬时信号速率。c) 藻类细胞通常用于毒理学风险评估研究,这里在暴露于金纳米颗粒一段时间后进行分析,以调查其摄取情况。在ICP-TOF的全质量数范围内,可以根据检测细胞的本征元素指纹对细胞进行追踪,并能直接定量测量纳米颗粒物-细胞的关联。icpTOF单细胞分析应用实例 单一实体分析,与批量样品测量相比,能产生信号的质量相对有限,这对仪器灵敏度要求更高。下面的应用案例研究展示了icpTOF S2仪器(TOFWERK AG,瑞士)的性能指标:具有与单四极杆ICP-MS类似的高灵敏度,又可同时快速检测全谱信号,特别适合分析单一实体,如单细胞或纳米颗粒(NPs)等。随着工业和日常生活中纳米颗粒物的广泛使用,纳米安全和纳米毒理学在过去20年一直是深入研究的课题。纳米颗粒物的安全评估研究中的一个重要参数是其在细胞摄取的分析和量化。 透射电子显微镜(TEM)和扫描电子显微镜(SEM)具有高空间分辨率,它们经常被用于细胞内纳米颗粒物的分析23,24。尽管有令人印象深刻的成像能力,基于电子显微镜方法的一个主要缺点是对样品制备的繁琐要求。此外,由于没有额外的元素定量或自动图像分析,获得的图像是定性的且结果较难被解读25,26。如前所述,单细胞ICP-MS也可用于量化细胞对纳米颗粒物的摄取,根据观察到的信号峰的强度大小,提供与细胞相‘关联’的纳米颗粒数量的信息5,6。这类实验通常有以下三个明显的观察结果: 只检测到纳米颗粒物中的特征元素,表明溶液中存在纳米颗粒物 只检测到细胞固有元素而没有任何纳米颗粒物中的元素,表明细胞并没有与纳米颗粒物相关联 同时检测到细胞固有元素和纳米颗粒物中的元素,意味着两者有关联 根据观察到的相关联的纳米颗粒/细胞峰的频率和幅度,可以确定摄取了纳米颗粒物的细胞的百分比以及与每个藻类细胞相关的纳米颗粒数量的估计值。在理想的情况下,可以根据浓度和暴露时间动态地对海藻细胞和纳米颗粒数量的相关性的进行评估。 在本案例研究中,将海藻细胞暴露在BaSO4(NM-220)溶液中72小时,接着按照Merrifield等人提出的程序进行清洗5,去除未与细胞结合的纳米颗粒。在暴露后并在ISO8692藻类培养基中进行冲洗后27,样品中预计只包含与藻类细胞相关联的纳米颗粒物。随后,样品被储存在15毫升的试剂管中,用锡纸包裹,等待分析。 在使用四极杆ICP-MS进行单细胞的初始研究中,我们发现清洗后的细胞悬浮液中仍存在BaSO4纳米颗粒,如图3a所示。有学者认为未关联的纳米颗粒已经去除,而这些检测到的纳米颗粒是与海藻细胞相关联的。然而由于只测量了一种元素138Ba,并不能完全证实这一猜想。 我们使用单细胞ICP-TOF-MS(见图2a)重复了一个类似的实验。从图2b中我们可以知道被分析的藻类细胞的本征元素指纹,即只有同时检测到Mg、P、Mn和Fe等元素时才被认为检测到了藻类细胞。令人惊讶的是,即使暴露72小时后,BaSO4 纳米颗粒与水藻细胞的指纹信号没有显著关联(图3b)。可以看到,Ba仅与Mg和Fe的信号同时被检测到,而没有水藻的其他指纹信号同时出现。虽然缺失的元素信号强度有可能是低于仪器检测极限,但至少这说明检测到的元素与藻类细胞的本征元素指纹不一致。然而在检测到藻类细胞的指纹信号中,没有观测到Ba元素信号。综上所述,如果没有icpTOF瞬时多元素检测能力,在清洗后细胞悬浮液中检测到的纳米颗粒的Ba信号很容易被误解为是与藻类细胞相关联的颗粒物。图3:a)实验流程图。在样品暴露于纳米颗粒物72小时后,细胞被清洗以去除上清液中游离态的纳米颗粒物。b) 通过使用飞行时间质谱仪重复单细胞测量,可以跟踪细胞的元素指纹,以验证纳米颗粒物信号和细胞信号的是否同时出现。结果显示虽然纳米颗粒物和细胞没有直接关联,但Ba信号与Mg和Fe信号是一起出现的。 这些结果导致了对可能引发该现象的机制的讨论。一个合理的解释是海藻细胞通过释放胞外聚合物物质(EPS)来清除粘附在细胞表面的纳米颗粒物。EPS被认为是影响藻类细胞对纳米颗粒的生物利用率的关键因素28,29。EPS产量的增加可使藻类细胞主动脱落纳米颗粒,从而减轻摄取或吸附到细胞外部,而纳米颗粒仍然以被包含在EPS中的形式存在于溶液中。虽然缺乏关于这种行为的定量数据,但足以解释BaSO4纳米颗粒信号与Mg和Fe信号的契合。当然Fe与Ba信号的同时出现还可以被解释为溶解的Ba与ISO 8692培养基中的EDTA络合在了一起,而EDTA被添加在溶液中以保持Fe的生物可利用率。要回答这个问题,我们使用TEM观察到EPS聚集体中包裹有纳米颗粒(图4)。由于TEM局限于定性分析,再加上EPS结构微妙,这种包裹的确切机制和发生频率很难被量化。然而单细胞ICP-TOF-MS则可以直接对这一现象进行定量分析,而不需要对样品进行复杂的制备,同时还可以在较短的时间内分析更多的藻类细胞及EPS聚集体,提供更可靠的统计数据。此外,单细胞ICP-TOF-MS可以动态地从藻类悬浮液中不间断取样,评估这种清除行为的发生频率与样品浓度和时间的关系,进一步了解藻类细胞和纳米颗粒之间的相互作用。这种利用ICP-TOF研究动态摄取和清除行为的研究思路不仅限于藻类细胞,还可以扩展到纳米医学或纳米生物技术的其他类型细胞,如哺乳动物细胞或细菌。图4:一个藻类细胞(Raphidocelis subcapitata)的透射电子显微镜图像,该细胞之前暴露在银纳米颗粒物中,脱落的细胞外聚合物物质(EPS)含有银纳米颗粒。(由Louise H. S. Jensen和Sara N. Sø rensen提供)。 正如本研究强调的那样,尽管传统的四极杆质谱(sc-ICP-Q-MS)可以测量单细胞,但它最多只能同时测量一种或两种元素或同位素,所以即使检测到纳米颗粒信号也不能100%确定其与细胞直接关联。另外还需要TEM来确定颗粒物是否被藻类吸收在内部或简单附着在细胞外部。然而使用ICP-TOF-MS可以将被暴露在纳米颗粒物中藻类的离子组与对照藻类的离子组进行比较,从而评估它们的状况。这些信息对于从机理上理解海藻细胞与纳米颗粒物的相互作用非常有价值,并可以进一步促进开发以生理学为基础的纳米颗粒物风险评估工具。icpTOF结论与展望 单细胞ICP-TOF-MS是一个新兴的、令人兴奋且快速发展的研究领域。虽然尚需数年时间才能达到质谱流式技术在单细胞多参数分析方面的水平,但ICP-TOF-MS得益于灵敏度的提高和同时全谱检测能力,能够基于元素指纹检测未被标记的细胞,从而为新的实验设计创意提供可能性。例如,除了测量纳米颗粒物和细胞的相关性外,ICP-TOF-MS记录的多元素数据可用于评估细胞在纳米颗粒介导毒性影响下的不同状态。 除了液体样品引入方法之外,也可以使用激光剥蚀(LA)-ICP-TOF-MS进行单细胞分析30,31。通过将制备有细胞的载玻片放在样品台上并使用激光扫描,可以产生单个完整细胞层面上的元素分布二维图像,其中每个像素包含一个完整的全元素谱图。LA-ICP-TOF-MS成像的高空间分辨率对纳米毒理学研究特别有意义,因为它可以观察和定位纳米颗粒物在亚细胞结构中的聚集,以进一步了解和解释各种现象(如摄取、积累和释放纳米颗粒)。 此外,所生成的大量数据可以通过降维技术进行处理,如主成分分析(PCA)或机器学习工具,并提取与细胞状态和类型有关的信息,从而使细胞的分类变得更容易。这在质谱流式工作流程中是常见的处理方法。这项技术不仅限于纳米毒理学研究,还可以扩展到金属组学和细胞生物学中。无论如何,我们将继续努力改进飞行时间质谱ICP-TOF-MS技术,使其在更广阔的应用领域发挥作用。icpTOF致谢作者感谢Olga Meili和Aiga Mackevica校对本文并提供反馈。Lars M. Skjolding得到了PATROLS – Advanced Tools for NanoSafety Testing项目资助(760813)。感谢Louise Helene Sø gaard Jensen和Sara Nø rgaard Sø rensen允许使用图4中的TEM图像。最后特别感谢Robert Thomas邀请在Spectroscopy杂志中的 "原子视角专栏 "刊登此文。原文链接:Hendriks L., Skjolding L. M., Robert T., Single-Cell Analysis by Inductively Coupled Plasma–Time-of-Flight Mass Spectrometry to Quantify Algal Cell Interaction with Nanoparticles by Their Elemental Fingerprint, Spectroscopy, 2020, Volume 35, Issue 10, Pages 9–16https://www.spectroscopyonline.com/view/single-cell-analysis-by-inductively-coupled-plasma-time-of-flight-mass-spectrometry-to-quantify-algal-cell-interaction-with-nanoparticles-by-their-elemental-fingerprint (请点击左下角“阅读原文”跳转)本文由TOFWERK中国-南京拓服工坊科技编译,结论以英文原文为准。参考文献1 S. J. Altschuler and L. F. Wu, Cell, 2010, 141, 559–563.2 W. M. Elsasser, Proc. Natl. Acad. Sci. U. S. A., 1984, 81, 5126–5129.3 C. Degueldre and P. Y. Favarger, Colloids Surfaces A Physicochem. Eng. Asp., 2003, 217, 137–142.4 K. S. Ho and W. T. Chan, J. Anal. At. Spectrom., 2010, 25, 1114–1122.5 R. C. Merrifield, C. Stephan and J. R. Lead, Environ. Sci. Technol., 2018, 52, 2271–2277.6 F. Abdolahpur Monikh, B. Fryer, D. Arenas-Lago, M. G. Vijver, G. Krishna Darbha, E. Valsami-Jones and W. J. G. M. Peijnenburg, Environ. Sci. Technol. Lett., 2019, 6, 732–738.7 I. L. Hsiao, F. S. Bierkandt, P. Reichardt, A. Luch, Y. J. Huang, N. Jakubowski, J. Tentschert and A. Haase, J. Nanobiotechnology, 2016, 14, 1–13.8 A. S. Groombridge, S. I. Miyashita, S. I. Fujii, K. Nagasawa, T. Okahashi, M. Ohata, T. Umemura, A. Takatsu, K. Inagaki and K. Chiba, Anal. Sci., 2013, 29, 597–603.9 M. Corte-Rodríguez, R. Á lvarez-Fernández García, P. García-Cancela, M. Montes-Bayón, J. Bettmer and D. . Kutscher, Curr. Trends Mass Spectrom., 2020, 18, 6–10.10 K. Shigeta, H. Traub, U. Panne, A. Okino, L. Rottmann and N. Jakubowski, J. Anal. At. Spectrom., 2013, 28, 646–656.11 P. E. Verboket, O. Borovinskaya, N. Meyer, D. Günther and P. S. Dittrich, Anal. Chem., 2014, 86, 6012–6018.12 D. R. Bandura, V. I. Baranov, O. I. Ornatsky, A. Antonov, R. Kinach, X. Lou, S. Pavlov, S. Vorobiev, J. E. Dick and S. D. Tanner, Anal. Chem., 2009, 81, 6813–6822.13 K. R. Atkuri, J. C. Stevens and H. Neubert, Drug Metab. Dispos., 2015, 43, 227–233.14 S. D. Tanner, V. I. Baranov, O. I. Ornatsky, D. R. Bandura and T. C. George, Cancer Immunol. Immunother., 2013.15 Y. Guo, S. Baumgart, H. J. Stä rk, H. Harms and S. Müller, Front. Microbiol., 2017, 8, 1–9.16 L. Hendriks, A. Gundlach-Graham, B. Hattendorf and D. Günther, J. Anal. At. Spectrom., , DOI:10.1039/c6ja00400h.17 M. Malinouski, N. M. Hasan, Y. Zhang, J. Seravalli, J. Lin, A. Avanesov, S. Lutsenko and V. N. Gladyshev, Nat. Commun., , DOI:10.1038/ncomms4301.18 D. E. Salt, I. Baxter and B. Lahner, Annu. Rev. Plant Biol., 2008, 59, 709–733.19 A. Praetorius, A. Gundlach-Graham, E. Goldberg, W. Fabienke, J. Navratilova, A. Gondikas, R. Kaegi, D. Günther, T. Hofmann and F. Von Der Kammer, Environ. Sci. Nano, 2017, 4, 307–314.20 O. Borovinskaya, S. Aulakh and R. Markus, Tofw. appilcation note, 2019, 1–3.21 M. von der Au, O. Borovinskaya, L. Flamigni, K. Kuhlmeier, C. Büchel and B. Meermann, Algal Res., 2020, 49, 101964.22 L. Mueller, H. Traub, N. Jakubowski, D. Drescher, V. I. Baranov and J. Kneipp, Anal. Bioanal. Chem., 2014, 406, 6963–6977.23 F. Piccapietra, C. G. Allue, L. Sigg and R. Behra, Environ. Sci. Technol., 2012, 46, 7390–7397.24 F. Perreault, A. Oukarroum, S. P. Melegari, W. G. Matias and R. Popovic, Chemosphere, 2012, 87, 1388–1394.25 L. H. S. Jensen, L. M. Skjolding, A. Thit, S. N. Sø rensen, C. Kø bler, K. Mø lhave and A. Baun, Environ. Toxicol. Chem., , DOI:10.1002/etc.3697.26 C. Brandenberger, M. J. D. Clift, D. Vanhecke, C. Mühlfeld, V. Stone, P. Gehr and B. Rothen-Rutishauser, Part. Fibre Toxicol., , DOI:10.1186/1743-8977-7-15.27 ISO, International Organization for Standarization. ISO 8692. Water quality - Fresh water algal growth inhibition test with unicellular green algae., 2012.28 J. Zhao, X. Cao, X. Liu, Z. Wang, C. Zhang, J. C. White and B. Xing, Nanotoxicology, , DOI:10.1080/17435390.2016.1206149.29 F. Chen, Z. Xiao, L. Yue, J. Wang, Y. Feng, X. Zhu, Z. Wang and B. Xing, Environ. Sci. Nano, 2019, 6, 1026–1042.30 S. Theiner, A. Schoeberl, S. Neumayer and G. Koellensperger, J. Anal. At. Spectrom., 2019, 34, 1272–1278.31 S. Theiner, A. Schweikert, C. Haberler, A. Peyrl and G. Koellensperger, Metallomics, , DOI:10.1039/d0mt00080a.
  • 单颗粒ICP-MS应用 | 西红柿吸收金纳米颗粒
    伴随着工程纳米材料在各个不同产品和过程的使用不断增加,人们开始对纳米颗粒的释放对环境和人类健康造成的影响产生了担心。要研究纳米颗粒对环境的影响,就必须探索纳米颗粒如何通过在水和土壤中的迁徙而被植物吸收的。如果纳米颗粒最终为食品作物所吸收,那么人类就直接面临ENPs释放造成的影响。这项研究工作的目标是开发一种从植物中提取其吸收的纳米颗粒的程序并借助单颗粒等离子体质谱仪进行分析。一旦这些步骤可以确定可行,那么它们都会被用于西红柿摄取金(Au)纳米颗粒含量的测定。样品番茄植物从种子种植,生长29天后,将幼苗浸没在装陈好有不同浓度的40nm的金纳米颗粒(nanoComposix™ ,圣迭戈,加利福尼亚州,USA)聚乙烯吡咯烷酮(PVP)容器里四天后收获用于分析。收获后,植物枝条用去离子水洗涤三次,然后切成小块均质化于8ml浓度为2mM柠檬酸盐缓冲溶液中。实验所有分析测试工作都在珀金埃尔默NexION300D/350D ICP-MS上完成,应用了Syngistix™ 软件内置的纳米应用模块。单颗粒的工作曲线和溶解金元素的含量工作曲线都建立了。其中金(Au)纳米颗粒标准曲线是采用30、50、80和100nm柠檬酸盐稳定的金纳米颗粒(nanoComposix™ ,圣迭戈,加利福尼亚州,USA),为了最大限度提高其分析灵敏度,看到最小的颗粒,对仪器进行了优化,选择最高灵敏度的金197同位素进行分析。表1.NexION 300/350D 仪器分析参数实验结果为了评估消化酶对金纳米颗粒的影响,我们对50nm的金(2.05*105NPs/mL)纳米颗粒采用Macroenzyme R-10进行了稳定处理。图1给出了所得到的颗粒尺寸分布,所测得的50nm颗粒浓度达到1.81*105NPs/mL,回收率达到88.3%。结果显示,经过处理后,酶消解过程不影响粒径分布。图1.酶处理过的50nm金纳米颗粒的粒径分布直方图对浸入在浓度为0.2mg/L 40nm金纳米颗粒溶液里4天的西红柿作物进行了消解和分析。图3a和b显示了西红柿对金纳米颗粒的吸收。图3c显示了不同颗粒金纳米颗粒分布,集中在40nm中心附近,符合统计分布理论。在相同的植物消解液中加入4.7*104NPs/mL的100nm金纳米颗粒,不同粒径的金纳米颗粒分布如图3d所示。图3.(a)和(b)暴露在5mg/L 40nm Au纳米颗粒4天的西红柿植物的重复原始数据;(c)图4(a)和(b)的暴露在5mg/L 40nm Au纳米颗粒的西红柿植物的颗粒分布直方图;(d)在暴露在5mg/L 40nm Au纳米颗粒的西红柿植物中加入4.7×104/mL 100nm Au纳米颗粒的粒径分布直方图。结论这项研究表明西红柿可以吸收纳米颗粒,SP-ICP-MS能够准确测定纳米颗粒的分布和大小。酶消解处理可以分解植物组织而不溶解金纳米颗粒,从而使SP-ICP-MS得以分析最终结果。结合酶消化和SP-ICP-MS,可以对部分或整个植物进行分析,使植物吸收纳米颗粒分析变得轻松快速。想要了解更多详情,请扫描二维码下载完整的应用报告。
  • 低电压下纳米颗粒的能谱EDS元素分析方案
    传统的能谱EDS分析通常要求较大的工作距离和较高的电压,而利用扫描电镜对样品进行图像观察时,可能会根据观察目的来选择更短的工作距离及更小的加速电压。 日本钢铁工程控股公司佐藤博士对钢中细小夹杂物的分析工作很好地展示了不同扫描电镜SEM成像条件对电子图像的影响。图1所示为2.25Cr-1 Mo钢在不同加速电压及工作距离下所观测到的不同碳化物的衬度。图1中的i,ii,iii箭头所指(i代表M23C6,ii代表M6C,iii代表AlN)及圆圈内的位置(M2C)是不同种类的碳化物,总体而言,随着电压的降低和工作距离的缩短表面的碳化物逐渐显现其清晰的形貌及分布位置。 那么,EDS是否也可以去表征这些表面的结构呢? 传统能谱EDS分析需要在高电压、长工作距离下进行,为了获得好的电子图像而选择的工作条件(低电压、短工作距离)对于EDS采集来说就不甚友好,通常接收到的信号过低,传统能谱几乎采集不到过多有效的信息。牛津仪器Ultim Extreme采用了不同于传统EDS的设计,将接收特征X-Ray光子信号的晶体大幅前移使之更加靠近样品,因而大大提高了信号量;Ultim Extreme的几何设计也有利于在短工作距离下的EDS分析。图2所示为传统EDS及Ultim Extreme与电子束和样品的相对几何关系的示意图,Ultim Extreme的WD和DD(探测器至样品的距离)都更短。此外,Ultim Extreme采用了无窗设计,大幅提升了低能特征X-Ray的检测率。综合以上特性,牛津仪器Ultim Extreme对低电压、短工作距离下的EDS采集效率及效果有了显著的提升。 图3所示为一离子抛光后的样品的电子图像(左)及元素分布图(右),工作电压为3kV,工作距离为4mm,元素分布图使用牛津仪器Ultim Extreme采集。从右侧的元素分布图可以轻易区分出红色的基底(不锈钢)和至少3种第二相,它们分别为粉红色的富Ni相,绿色的富Cr相及蓝色的富Mo相。在左侧的电子图像中,由于抛光的缘故,富Cr相并不清晰,EDS可以帮助快速定位、区分不同的第二相,提供形貌之外的元素信息。 在实际样品分析中,除了参数设置及电镜和EDS探头的性能之外,样品的表面状态和样品漂移也会影响低电压下能谱元素分析的结果。 1. 表面的碳(C)沉积 样品的积碳效应在低电压下尤为明显,表面沉积的无定型碳或碳氢化合物会对样品的特征X光子有强烈的吸收效应,进而影响EDS效果。通过等离子清洗可减弱样品表面的C沉积现象,进而改善EDS分析的效果。 图4所示为对样品进行等离子清洗前后经过相同电压相同剂量电子辐照后的表面状态。经过等离子清洗后的样品(右图)经过电子辐照C沉积明显减少,此时进行低电压EDS分析将更有利于Ultim Extreme能谱仪接收低能端光子信号,改善结果。 2. 样品漂移 样品漂移会造成细微结构展宽甚至畸变,对于含量很少或者尺寸很小的结构也可能因为样品的漂移而不能检出或检出结果与真实结构偏差较大。通常引起样品漂移的原因及解决方案如下: 碳导电胶坍塌所引起的物理漂移 常用的导电胶带内有大量气孔,在真空中这些气孔坍塌胶带发生变化,粘在其上的样品也会跟着移动。使用液体碳浆可解决此类问题。图5所示为10kV下含Bi粉末撒在碳胶带上和用液体碳浆进行固定的EDS分析结果,结果表明,即使是导电的大尺寸样品,使用C胶带进行固定(图5ab)也会发生颗粒的形状变化或者展宽等,而固化后的C浆(图5cd)则具有很高的稳定性,EDS元素面分布结果与电子图像完全匹配(碳浆选购网站www.51haocai.cn)。 样品导电性较差导致放电 使用低电压或低束流使样品表面达到电中性即可解决部分样品的放电漂移现象。但有的不导电样品难以通过此方法完全消除放电,此时可选择表面喷碳来解决。高倍下机台的稳定性 此类问题无法根除,只能通过跟踪样品的漂移来解决。牛津仪器AZtecLive能谱分析软件中提供了多种样品漂移矫正(Autolock)的模式来进行样品跟踪,以期获得理想的分析结果,如图6所示,高倍采集时,使用Autolock与否对颗粒物识别影响巨大。 图6. 高倍下采集EDS时,不使用AutoLock(左)和使用AutoLock(右)的比较 总结 通过扫描电镜及能谱仪,对10nm左右的纳米颗粒进行EDS分析时,推荐在低加速电压并配合牛津仪器大面积甚至无窗型Extreme的能谱采集,同时需要样品稳定性高并配合AutoLock功能,可以获得更好的空间分辨率结果。
  • 海水中的纳米颗粒
    纳米科技在为现代生活提供各种高性能产品的同时,也对环境造成了严重的负担。之前的文章中,我们一起学习了饮用水、湖泊水、废水等水体中的纳米颗粒的单颗粒ICP-MS的测定过程,了解到纳米颗粒的无处不在。那么“大海啊,全是水”的海水中,是不是也一定存在着纳米颗粒呢但是,海水和其他水体不一样,含有更多的“盐分”,也就是基体不同。通常,在ICP-MS 分析中,分析之前需要稀释具有较高基体的样品,以免对仪器产生影响。然而,纳米颗粒在环境样品中的溶解和聚合取决于基体,且样品基体组成和浓度(例如溶解有机质(DOM)和离子强度)对其具有极大影响。因此在处理纳米颗粒时,稀释可能触发转化,这意味着获得的结果可能无法准确反映样品中纳米颗粒的初始状态。为降低环境样品或其他高溶解固体含量样品在分析前稀释的必要性,PerkenElmer提供了适用于NexION系列ICP-MS(5000/2000/1000/350/300)的全基体进样系统(AMS)。这套系统包含一个耐高盐雾化器和一个带有氩气稀释气接口的雾室。稀释气的流速由独立的氩气通道控制,气流方向与雾化气流向垂直,以获得最佳的混合效果。可获得高达200倍的稀释比,避免了离线手工稀释的繁琐操作和随之而来的污染和误差。对于不需稀释的样品,只需将稀释气关掉,无需取下稀释气管路。借助AMS系统,对无需稀释的样品和需要稀释200倍以内的样品分别进行分析之间,无需对仪器再次进行参数优化。本文中,我们将探索模拟海水样品中金纳米颗粒的分析,并利用AMS 功能避免人为稀释,并讨论仪器配置条件对单颗粒ICP-MS进行精确和准确颗粒分析的影响。样品在超高纯(UHP)水中以1,2 和3 ppb 浓度制备离子金(Au+)标准品,并且在超高纯水中按60000 颗/mL制备60 nm 的金纳米颗粒标准品(NIST 8013)。使用标准参考物质(CASS-6,加拿大国家研究委员会)制备海水样品,并掺入60000 颗/mL的60 nm NIST 金纳米颗粒。在分析之前不进行进一步的样品稀释。实验所有分析均在NexION 2000 ICP-MS 上进行,并使用表1 中所示的进样附件和参数。全基体进样系统(AMS)的气流量设定为0.4 L/ 分钟,即10 倍稀释,可在未经任何人为稀释的情况下分析未稀释的海水,从而简化样品制备,并确保样品基体中纳米颗粒的完整性。实验结果如下图所示,在几种不同的AMS 气流量下精确确定NIST 60 nm 金颗粒的粒径,证明如果使用相应的离子校准,AMS 不会影响粒径测量的准确度。AMS 气体流量对NIST 8013 60 nm 金纳米颗粒测量粒径的影响。AMS 气体流量对NIST 8013 60 nm 金纳米颗粒测量粒径的影响将金纳米颗粒分别添加到海水和去离子水样品中并进行测量。下图显示了添加到海水和去离子水中的60 nm纳米颗粒的粒径分布,两者基本没有差异。结果表明,适当的仪器参数设置和AMS降低了基体效应,从而能够在复杂的环境基体(如海水)中进行准确精准的纳米颗粒测量,而无需与离子校准标液进行基体匹配。这种能力简化了流程,增加了可用性,最重要的是,由于消除了液体稀释的需要,可在分析样品中获得纳米颗粒的准确结果。未稀释的海水(a)和去离子水(b)中的NIST 8013 60 nm金纳米颗粒的粒径分布未稀释的海水(a)和去离子水(b)中的NIST 8013 60 nm金纳米颗粒的粒径分布结论使用配备了全基体进样系统(AMS)的PerkinElmer的NexION 2000 ICP-MS,可以无需考虑用水稀释导致的纳米颗粒状态的转化对于测量结果的影响,精确测量海水(典型的复杂基体)中纳米颗粒粒径大小和浓度,无需手工稀释样品。想要了解更多详情请扫描二维码《使用全基体进样系统和单颗粒ICP-MS快速测定海水中纳米颗粒》
  • 法国Cordouan发布Vasco纳米粒度分析仪新品
    VASCO颗粒粒度分析仪是基于增强型动态光散射(DLS)技术的纳米级悬浮和胶体特性的独特仪器。得益于与法国Institute of Petroleum(IFP)合作开发的技术, VASCOTM是浓缩和不透明悬浮液样品最有效的解决方案。主要特征• 基于增强型动态光散射原理(DLS)• 带有DTC系统的嵌入式样品池• 粒度范围(直径):0.5nm-10μm • 样品浓度:0.1ppm-40%w / wt • 专有产品软件NanoQ,专用于颗粒粒度• 在线样品池选项 • 改善荧光样品的测量技术与创新VASCO:独特的颗粒粒度分析仪• 由二氧化硅棱镜制成的嵌入式样品池 • 双厚度控制器(DTC)系统,可实现精确的样品厚度控制 • 测量原油等深色/浓缩样品,不需要稀释。创新的样品池设计:简单、自动、无耗材简单:DTC样品池的设计简化了样品制备,并防止任何过度稀释带来的危害。它与有机溶剂相容,可以测试微量样品。并可以在线测量,实现动力学研究(选项)。自动: DTC的简单调整足以将样品层从2mm减小到200μm(超薄层样品的体积)。这种用于降低测量体积的双厚度控制器可以防止由于多次扫描和局部热量导致的问题,并确保可靠地测量黑色介质或高浓度样品。与常规样品池相比,样品无需稀释!VASCO提供极宽的样品浓度测试范围,从非常稀的样品或差的对比度到高浓度和不透明的样品。Cordouan技术独特的专利设计,使得范围测量的实际浓度范围达到40%。这使其能够广泛应用于样品不能稀释而需要测试的行业。主要优势• 可测量黑色样品和原浓悬浮液,在不透明介质中具有更高的检测效率 • 直接测量无法进行后处理的样品• 耐溶剂嵌入式样品池:无消耗品 • 用于多模态样品分析的专有算法 • 即测样品 • 与传统DLS相比,样品检测浓度高于传统DLS 20多倍。应用领域:农业化学药品:牛奶、巧克力、咖啡、啤酒、乳胶等药品:悬浮液、粉末、糖浆剂、血管注射剂、微胶囊等化学品:聚合物、分散剂、杀虫剂等环境:自来水、污水、絮凝物和膜过滤等化妆品:香水、膏霜、乳剂等石油化学品:燃料、原油、沥青添加剂等创新点:VASCO 颗粒粒度分析仪是基于增强型动态光散射(DLS)技术的纳米级悬浮和胶体特性的独特表征仪器。得益于与法国Instute ofPetroleum(IFP)合作开发的专利技术,VASCO 是浓缩和不透明悬浮液样品的最有效解决方案。创新的样品池设计:简单、自动、无耗材 由二氧化硅棱镜制成的嵌入式样品池 专利双厚度控制器(DTC)系统,可实现精确的样品厚度控制 测量原油等深色/浓缩样品,不需要稀释产品优势可测量黑色样品和原浓悬浮液,在不透明介质中具有更高的检测效率直接测量无法进行后处理的样品耐溶剂嵌入式样品池:无消耗品用于多模态样品分析的专有算法即测样品与传统DLS相比,样品检测浓度高于传统DLS 20多倍Vasco纳米粒度分析仪
  • 3i流式新品|纳米流式新"玩家"——纬冉科技AN415纳米流式分析仪
    仪器信息网讯 近期,纬冉科技发布了新品纳米流式分析仪AN415将常规流式仪器的检测能力推向纳米级别,能够准确分析外泌体微囊泡、细菌、病毒、纳米材料等小粒径颗粒,为纳米尺度科学研究开辟了全新的可能。 纬冉科技AN415纳米流式分析仪(查看详情)仪器创新点:AN415 纳米流式分析仪凭借卓越的性能,将常规流式仪器的检测能力推向纳米级别,能够准确分析外泌体微囊泡、细菌、病毒、纳米材料等小粒径颗粒,为纳米尺度科学研究开辟了全新的可能。AN415纳米流式分析仪配备智能化软件,提供流畅的操作体验。支持批量组间对比和批量导出,处理高通量实验产生的大量数据。用户可以轻松管理和分析实验结果,无需手动处理。▍ 设备特点: AN415 纳米流式分析仪在外泌体微囊泡检测领域展现出优秀的应用价值,能够一次性准确表征外泌体微囊泡的粒径、浓度、携带的蛋白质和核酸等多个参数。AN415 纳米流式分析仪检测速度快,通量高,可以悬液上样,完美解决冷冻电镜等传统方法通量低,样品制备麻烦等问题。▍ 检测范围广 AN415纳米流式分析仪可检测30纳米到3微米的样本,涵盖了纳米级别的微粒和常规流式仪器的检测范围。▍ 多通道设计 AN415纳米流式分析仪采用多功能通道设计,最高可配置4个激光器,可3激光同时激发,最多支持13个荧光通道。可以在同一次实验中同时检测多种参数,实现更加全面的样本分析,提高实验的准确性和可靠性。此外,支持根据客户需求定制滤光片,灵活适配不同的实验需求。▍ 高通量上样AN415纳米流式分析仪具备高效的上样系统,支持96孔板自动上样,并且配备自动深度清洗功能,确保样本之间的严格隔离和无交叉污染,显著提高实验室的工作效率。▍ 开机便捷AN415纳米流式分析仪提供简便的操作流程,无需复杂的光路校准,15分钟内完成整个开机流程。使得用户能够更快速地开启实验,提高工作效率。
  • 【新品】欧美克NS-90Z纳米粒度及电位分析仪隆重上市!
    11月8日,珠海欧美克仪器有限公司(以下简称“欧美克”)隆重推出新产品NS-90Z纳米粒度及电位分析仪。新品成功引进和吸收了马尔文帕纳科纳米颗粒表征技术,在NS-90纳米粒度分析仪基础上进一步增加了zeta电位测试功能。NS-90Z纳米粒度及电位分析仪NS-90Z在一种紧凑型装置仪器中集成了动态光散射技术、静态光散射技术、电泳光散射技术三种技术,具有优越的粒度和电位分析功能,能满足广大纳米材料、制剂开发和生产用户的颗粒粒度和表面电位的测试需求。NS-90Z融合马尔文帕纳科M3-PALS相位分析检测技术,并广泛采用全球化供应链的优质光电部件,例如进口雪崩式光电二极管(APD)检测器和He-Ne气体激光器等,加上精确的内部温控技术、密闭光纤光路以及先进软件算法,保障了数据的高重复性、准确性和灵敏度,使该型号仪器可以分析宽广的粒径、浓度及电位范围的样品。NS-90Z同时支持SOP标准操作,以及测量数据智能评估,方便用户使用。技术指标【粒径】测量范围:0.3nm – 5000nm(以样品为准)测量原理:动态光散射法重复性误差:<1%(NIST可追溯胶乳标样)最小样品容积:20µL最小样品浓度:0.1mg/mL (以样品为准)【分子量】分子量测量范围:342 Da – 2×107 Da , 由流体动力学直径估算(动态光散射)分子量测量范围:9800 Da – 2×107 Da , 由德拜图计算 (静态光散射)测量原理:动态光散射,静态光散射最小样品容积:20µL(需要3-5种样品浓度)【Zeta电位】测量原理:电泳光散射灵敏度:10mg/mL 66kDa 蛋白质Zeta 电位范围:>+500mV / <-500mV电泳速度范围:>+20μ.cm/V.s / <-20μ.cm/V.s最高样品浓度:40% w/v (以样品为准)最小样品容积:20μL最高电导率:200mS/cm检测技术:M3-PALS【系统参数】检测角度:90。+13。激光光源:高稳定He-Ne 激光器,波长633nm,功率 4mW。激光安全:1类,符合CDRH 和 CE 标准检测器:雪崩式光电二极管(APD)检测器,QE50%相关器:采样时间25ns – 8000s,4000通道,1011动态线性范围冷凝控制方法:干燥空气吹扫(需外接气源)温度控制范围:0° – 90°C温度控制精度:± 0.1°C电源:AC 90 – 240V, 50 – 60Hz功率:50W典型应用胶体和乳液表征药物分散体和乳液脂质体和囊泡粒子和表面的 Zeta 电位墨水、碳粉和颜料性能改进优化水处理中絮凝剂的用量以降低水处理成本缩短稳定分散体和蛋白质溶液的开发时间了解产品稳定或不稳定的原因,提高产品保质期防止形成蛋白质聚集体增加蛋白质浓度时保持稳定性
  • 贝克曼库尔特发布新一代DelsaMax 纳米粒度及zeta电位分析仪
    2013年3月18日贝克曼库尔特发布最新一款高效能纳米粒度及ZETA电位分析仪。每年一度的全球最大型科学仪器展---美国费城PITTCON上,贝克曼库尔特公司发布一款多通道高效能的纳米粒度及Zeta电位仪---DelsaMax系列。该系列当前共推出DelsaMax Pro及DelsaMax Core 两个型号。该系列采用当前最尖端的并行测量技术,一次加样即可同步进行纳米粒径测量与Zeta电位分析,而且测量时间仅需1秒钟!最新的DelsaMax系列被赞誉为“最小的样品量,最快捷的分析,成就最极致的结果”。这又将是一项划时代的贡献!  DelsaMax PRO于3月18日至21日在PITTCON的2403展位展出。  DelsaMax PRO堪称为全球最快的同步分析仪,仅需45微升即可在短短1秒钟内获得纳米粒径与Zeta电位的结果,完全不可思议却又成为事实!  DelsaMax CORE分析仪利用独立的动态和真正的静态光散射检测器,测量从0.4纳米至10,000 纳米的颗粒大小与分子量,样品量低至11uL。系统温控范围为-15º 和150º C。  DelsaMax ASSIST样品前处理增压系统,可强制充入惰性气体以减少样品池中起泡现象,使样品更稳定。  欲了解更多信息,请访问www.delsamax.com。  关于Beckman Coulter公司,请访问:www.beckmancoulter.com。
  • HORIBA|重磅!HORIBA成功收购美国MANTA,纳米颗粒跟踪分析核心技术尽在掌握
    拓宽颗粒表征仪器技术2019 年 1 月 24 日,堀场制作所(总部位于日本京都,以下简称“HORIBA”)宣布HII(HORIBA Instruments Incorporated,总部位于美国尔湾市,以下简称HII)已成功收购MANTA仪器公司(MANTA Instruments, Inc.,总部位于美国圣地亚哥,以下简称“MANTA”)的全部股份。MANTA公司因其采用加州大学圣地亚哥分校研发并取得的突破性多谱段纳米颗粒跟踪技术,所以在纳米颗粒表征技术领域饱受赞誉。现在,这家领先的纳米颗粒跟踪分析系统开发商、制造商兼供应商加入HII旗下,成为其全资子公司,这意味着HORIBA仪器的颗粒表征技术得到了更大的拓宽。收购原因/目的HORIBA一直致力于研发、制造和销售应用于生命科学、半导体制造和过程环境领域的纳米颗粒跟踪分析系统,为满足客户需求,HORIBA采用各种方式,积引进领先的分析技术。美国MANTA公司新型的MANTA纳米颗粒跟踪分析系统 ViewSizer 3000是业内公认的领先系统,它向流体中进行布朗运动的纳米颗粒射出激光束进行跟踪,然后通过高清图像分析来评估 10 纳米级颗粒的粒径分布、计数浓度和聚集状态。在荧光模式下,可对荧光标记颗粒进行测量。对于需要颗粒计数浓度数据的生命科学和制药研究市场以及离不开纳米领域测量的化妆品、催化剂和半导体市场来说,该创新性仪器有望满足客户需求。另外,2019 年,MANTA ViewSizer3000 所在的颗粒表征仪器市场容量预计达到 20.6 亿日元,并有信心在 2022 年前以 8.4% 的年均复合增长率(CAGR)继续扩大(公司数据)。ViewSizer 3000 纳米颗粒跟踪分析系统目标领域和应用行业1---生命科学领域蛋白质的聚集/结晶,外泌体、病毒和抗体药物的研发2---农林水以及家用电子产品具有杀菌和净化作用的微气泡3---半导体材料半导体晶圆抛光的生产控制和半导体超纯水的质量控制4---环境水质监测和处理(水体纳米颗粒的数量)5---药品、食品和化妆品制药行业颗粒浓度控制,超低浓度样品。6---功能性纳米材料催化剂材料和纳米碳管7---催化剂和充电电池新材料的研发、改进和质量控制整合时间表收购完成后,MANTA的开发和生产职能将转移至HII,并利用HORIBA专有技术开始开发下一代型号。结合现有的光学技术,MANTA的图像处理技术有望对颗粒测量之外的体外诊断、再生医学、生技药品研发作出贡献。HORIBA还计划将这一先进技术在半导体领域内用于 CMP(化学机械抛光)浆料,以及在环境领域中用于水体纳米颗粒测量。关于MANTA公司名称:MANTA仪器公司首席执行官: Rick Cooper地址:美国加州圣地亚哥市摄政路 7770 号 #113-573成立日期:2014年9月经营范围:制造和销售纳米颗粒跟踪分析系统HORIBA科学仪器事业部结合旗下具有近 200 年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制